Geochemical alteration of backfill FY98 status report

One of 83 reports in the series: Fiscal Year 1998 available on this site.

PDF Version Also Available for Download.

Description

The Yucca Mountain Project is considering some type of backfill, possibly emplaced as a capillary barrier, for inclusion in the Engineering Barrier System (EBS) at the potential Yucca Mountain nuclear waste repository site. The performance of capillary barriers in isothermal, low- temperature, environments has been studied extensively (e.g., Ho and Webb, 1998; OZdenburg and Pruess, 1993; Ross, 1990). The performance of capillary barriers in an non-isothermal, high temperature environment, such as during the thermal pulse phase of a nuclear waste repository, has received much less attention. One concern is that the backfill materials may be altered from that of the ... continued below

Physical Description

2.6 Megabytes

Creation Information

Buscheck, T; Knauss, K; Rosenberg, N & Viani, B September 30, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

  • Main Title: Geochemical alteration of backfill FY98 status report
  • Series Title: Fiscal Year 1998

Description

The Yucca Mountain Project is considering some type of backfill, possibly emplaced as a capillary barrier, for inclusion in the Engineering Barrier System (EBS) at the potential Yucca Mountain nuclear waste repository site. The performance of capillary barriers in isothermal, low- temperature, environments has been studied extensively (e.g., Ho and Webb, 1998; OZdenburg and Pruess, 1993; Ross, 1990). The performance of capillary barriers in an non-isothermal, high temperature environment, such as during the thermal pulse phase of a nuclear waste repository, has received much less attention. One concern is that the backfill materials may be altered from that of the as-placed material by the hydrothermal regime imposed by the emplacement of waste in the repository, changing hydrologic properties in a way that degrades the performance of the EBS system. This report is a status report on our efforts to address this concern. The work was initiated by SCR #98-76-041 and was authorized to begin at LLNL in summer 1998. This report is organized as follows. In the first part, we discuss our understanding of the relevant issues of backfill performance based on thermal hydrology. We focus here on changes to hydrologic properties, but we recognize that changes to thermal, mechanical and chemical (e.g., sorptive) properties are also important. Our primary interest is in addressing concerns over possible changes in the magnitude of key hydrologic properties (i.e., porosity, permeability, and moisture retention characteristics) that could significantly affect the design performance of backfill in the EBS. We report on what we know from previous work about geochemical alteration of backfill material, focusing primarily on crushed tuff. In the second part of this report, we present our progress on geochemical studies on backfill materials. These include sub-boiling, two-phase column experiments, batch experiments at above boiling temperatures and associated numerical modeling.

Physical Description

2.6 Megabytes

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00003020
  • Report No.: UCRL-ID-132055
  • Grant Number: W-7405-Eng-48
  • DOI: 10.2172/3020 | External Link
  • Office of Scientific & Technical Information Report Number: 3020
  • Archival Resource Key: ark:/67531/metadc687652

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 30, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Oct. 20, 2016, 1:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Buscheck, T; Knauss, K; Rosenberg, N & Viani, B. Geochemical alteration of backfill FY98 status report, report, September 30, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc687652/: accessed January 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.