HUMAN GENETICS EDUCATION FOR MIDDLE AND SECONDARY SCIENCE TEACHERS

Progress Report
for Period April 1, 1994 - March 31, 1995

D.L. Collins, L. Segebrecht, R.N. Schimke

University of Kansas Medical Center
3901 Rainbow Boulevard, 4023 Wescoe Pavilion
Kansas City, KS 66160-7318

December 1994

Prepared for

THE U.S. DEPARTMENT OF ENERGY
AGREEMENT NO. DE-FG02-92ER61394

MASTER
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I. OBJECTIVE
This project is designed to increase teachers' knowledge of the Human Genome Project (HGP) with a focus on the ethical, legal and social implications of genetic technology. The project provides educators with the newest information on human genetics including applications of genetic technology, updated teaching resources and lesson plans, peer teaching ideas to disseminate genetic information to students and other educators, and established liaisons with genetic professionals.

II. PROJECT DESIGN
A four phase program during two school years including two consecutive summer workshops:

PHASE I: FIRST ONE WEEK WORKSHOP
The first one week workshop emphasized the ethical, legal and social implications of Human Genome Project technology through interaction with professionals familiar with HGP/ELSI issues including: geneticists, genetic counselors, educators, researchers, ethicists, attorneys, and consumers (individuals with genetic conditions or those who utilize genetic services). Participants attended didactic lecture sessions, family panels, ethics panels, laboratory hands-on activities, laboratory tours, and role play sessions to obtain content and resources for classroom applications.

PHASE II: CLASSROOM USE OF MATERIALS AND INFORMATION
During the school year teachers used the DOE / BSCS curriculum Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy as well as other curricular ideas from the workshop with their students. These new curricula foster an increased level of understanding and comfort in teaching about the Human Genome Projects' ethical, legal and social implications. Teachers developed and updated lesson plans, initiate mentor relationships, and introduced students to genetic information.

PHASE III: SECOND ONE WEEK WORKSHOP
After using new curricular materials and information with their students, teachers returned the following summer for a second workshop. During the workshop they shared experiences; exchanged successful teaching methods, lesson plans, curriculum concepts, and integration methods; discussed curricular changes; and focused on ideas for peer teaching. Workshop sessions updated teachers on cutting-edge HGP information to establish a solid foundation of knowledge. Additional family panels, ethics discussions, lab tours, hands-on activities, as well as online Internet sessions, helped coalesce all of the project elements.

PHASE IV: DISSEMINATION PROGRAMS
After the two summer workshops, participants organized in-services and workshops for their colleagues, and presentations at district, state and national teacher meetings to circulate new information and resources about the Human Genome Project and ELSI issues.
PROGRESS
• A one week workshop was held for 89 teachers in June 1994. (see Workshop Agenda in Appendix A)
 • 31 teachers completed Phase I and began Phase II
 • 58 teachers completed Phase III
 • 27 participants completed Phase IV
• 44% (27) completed at least part of phase IV during the 1994-95 school year.
• 99 mentors were available in 1994.
• 56 participants collaborated with mentors in 1994. (see Collaborations in Appendix H)
• 90 peer teaching sessions occurred (see Dissemination and Networking in Appendix I)
• 115 educators have participated in the project with an impact on approximately 2,875 peer teachers.
• Approximately 2,990 teachers impact more than 434,700 students during the project.
• Project cost: $1.37 per student

• Workshop participants completed different phases of the project this year:

<table>
<thead>
<tr>
<th></th>
<th>Jun 94</th>
<th>Sep 94 - May 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Phase IV</td>
<td>4 partial</td>
<td>11 complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

III. 1994 WORKSHOP DESCRIPTION

SPEAKERS
Professionals with first hand expertise in helping families deal with the complex decisions of new genetic technology presented didactic, interactive sessions. The speakers included genetic counselors, clinical geneticists and laboratory geneticists. Other speakers were lawyers and ethicists familiar with HGP / ELSI and public policy issues, researchers using DNA technology, curriculum developers, consumers, and teachers experienced in presenting HGP / ELSI topics in their classrooms. (see Presenters List in Appendix B)

An Educational Outreach Program Coordinator demonstrated activities including an electrophoresis laboratory, chromosome laboratory, DNA sequencing activity, and PCR technology laboratory. Case studies, role play, demonstrations, and discussions reinforced the application of technology and its integral role in ELSI. As well, lead teachers presented hands-on classroom activities and exercises to
promote inquiry and discussions about the applications of genetic technology and the acquisition of laboratory equipment.

Speakers conducted a variety of sessions:

- clinical lectures
- computer access demonstrations
- educational issues sessions
- ethics dialogues
- family panels
- Human Genome Project lectures
- legal discussions

- probability exercises
- public policy lectures
- social issues talks
- technological sessions
- review of genetics resources
- BSCS curricular demonstrations

Speakers addressed topics including:

- basic human genetics concepts
- Human Genome Project
- Genetic counseling process and medical genetics
- Ethical, legal and social implications of the HGP
- Biotechnology
- Careers in human genetics
- The Internet and information access
- Peer teaching
- Educational resources

FAMILY PANELS

Family panels gave educators a humanistic context about genetic conditions unavailable from any other source. The families' personal stories supplement textbook descriptions and expand knowledge of the human perspectives of genetic technology. Textbooks often present worse-case scenarios when describing genetic conditions. These textbook descriptions, frequently the only information available to teachers, are more appropriate to educate medical students or other health care professions about diagnosis. They are less appropriate for the public in their understanding of genetic conditions.

Family panels promote a different perspective. They are a valuable way to understand the impact of genetic technology on the decisions made by individuals and family members. Teachers have reported that family panels are the most valuable aspect of the workshop; that they can no longer teacher human genetic conditions in the same textbook-based way; that they now think of, and teach about individuals with genetic conditions as members of families, communities, and society, not just "a disease" described in a book. One participant stated: "Excellent comments about self-worth, discrimination, quality of life decisions." Another stated: "Panels are the best part of the workshop: so relevant and touching."

The interactive panel format uniquely affected the attitudes of teachers about the social, ethical and legal implications of having a genetic condition. Families presented information on the influence genetic conditions have on their lives, and discussed misconceptions about their condition. One participant commented: "Moving and amazing stories. We must as teachers be more sensitive to any possible gene condition that may be out there among our students." (See comments in Appendix C)
Panels of family members presented information on the impact of genetic conditions. The following conditions were represented:

- Cornelia de Lange syndrome
- cri-du-chat syndrome
- dystonia
- Down syndrome
- Ehlers-Danlos syndrome
- Huntington disease
- ichthyosis
- Marfan syndrome
- neurofibromatosis
- proteus syndrome
- retinitis pigmentosa
- Rubinstein-Taybi syndrome
- short stature
- Von Hippel-Lindau syndrome

LABORATORY TOURS
Participants toured local laboratory facilities where demonstrations of real world uses of biotechnology gave them a clearer understanding of the genetic technology they simulate in their classroom. (See Laboratory Tour Descriptions in Appendix D)

These labs included:
- biotechnology support facility [oligonucleotide synthesis, protein synthesis analysis]
- clinical laboratory [histocompatibility, DNA testing, bone marrow and organ transplant]
- cytogenetic laboratories [karyotyping, FISH]
- forensic laboratories [using PCR and RFLP technology]
- molecular genetics laboratories [cystic fibrosis and Duchenne muscular dystrophy]
- organ bank [histocompatibility, DNA testing]
- paternity testing [using PCR and RFLP technology]
- research laboratories [colon cancer, DNA data analysis, DNA sequencing, protein mapping]

Laboratory tours help teachers understand the ways genetic technology is used in clinical, research, and forensics settings. One participant commented: "Really interesting information. It is good to see the actual labs and see the process." Teachers were exposed to the equipment and technology of a laboratory setting, as well as career opportunities available to students soon to be entering college or the work force. The laboratory directors and technologists’ expertise were an asset to our program.

Participants felt that lab tours were one of the highlights of the week. One participant stated: "Obviously Dr. Fechtel is very interested in her field. Her enthusiasm for science would communicate well to high school students." Another said: "Excellent presentation raising many wonderful ethical issues. It was one of the highlights of the day." Still another commented: "Mr. Wilson was an excellent presenter: he explains things so well. I finally understand DNA probes thoroughly."

RESOURCES
Educational Materials
Educators were able to review current resources on human genetics, ethical, legal and social topics of human genetics, genetic technology, and the Human Genome Project. All workshop participants received 23 different resources and materials to update their curricula this year.

A resource room was set-up for participants to practice new computer software on genetics; access current genetics information on-line; and view videotapes on genetic conditions, genetic technology, careers in genetics, laboratory techniques, and the Human Genome Project. New curricula, textbooks, reference materials, and hands-on kits were available for teachers to review to attain new teaching ideas.
In 1994, 58% of the participants (46 teachers) received materials ordered from matching funds attained through school, administration or regional educational funding sources. 31 new participants received matching funds information to attain funds from their school administrator for materials. 3 new participants have ordered materials with matching funds to date. (See Educational Resource List in Appendix E)

Lesson Plan Exchange
An important component of the workshop is an exchange of teaching ideas and resources. Teachers presented their classroom ideas to each other during the workshop and discussed ways of modifying lesson plans to incorporate the broad scope of Human Genome Project implications into their classroom discussions. One participant commented that "It is wonderful to network with teachers from all parts of the country. Many tried, tested and perfected activities were shown. I found it most helpful." Another stated, "I have learned and seen so many excellent things. I see a great Human Genetics unit developing from this material that I hope to develop, teach, publish and present next year!"

(See Teacher Presentations, Lesson Plans and Teaching ideas in Appendix F)

IV. MENTOR NETWORK
The mentor network helps teachers remain current on new developments and changes in genetics. Once teachers begin integrating and expanding their human genetics curricular content, frequently they and their students have specific questions regarding clinical aspects of genetic conditions including legal, social, and ethical topics. Throughout the project, participants are linked with Mentors: professionals who assist them with the development and implementation of curricular materials to provide ongoing support, information, and resources.

A large database has been established of professionals willing to assist teacher with curricular content. These professionals with expertise in genetics or in ELSI topics have been recruited through notices in professional genetics journals (American Society of Human Genetics Journal, Perspectives in Genetic Counseling, and Human Genome News), through professional meetings (American Society of Human Genetics national meetings, National Society of Genetic Counselors national meetings, and HUGO), and through personal contacts at ELSI or DOE Project Directors Meetings.

The mentors, some of whom have access to funds for teacher education programs through state or regional sources, were given the names of teachers in their CORN (Council of Regional Networks) Region. And, each teacher received a list of Genetic Resource Professionals in their region. Each mentor agrees to 2-3 half days per year of collaboration with science educators by helping teachers develop and implement genetic lesson plans, providing laboratory tours, agreeing to speak at state teacher meetings, allowing student to observe during genetics clinics, giving classroom presentations, and preparing slides for teacher presentations.

Currently 99 mentors have volunteered to help teachers. These professionals include:
- 8 Clinical Geneticists
- 5 Educators
- 1 Ethicist
- 61 Genetic Counselors
- 1 Genetics Nurse Specialist
- 5 Laboratory Geneticists
- 1 Science Lecturer
- 15 Medical Geneticists
- 1 Metabolic Dietician
- 1 Science Writer

(See Mentors List in Appendix G)
Participants have initiated 56 collaborations with genetics and ELSI professionals. These collaborations include:
• acquiring current genetics resources
• arranging laboratory tours for students
• assisting with summer workshops for teacher
• discussing genetic research with students
• loaning slides for genetic presentations
• making contacts with speakers for classroom presentations and inservice workshops
• organizing and moderating family panels
• presenting genetic information to students
• participating in planning committees for peer teaching workshops
• providing answers to students' genetics questions
• providing case examples of genetic counseling sessions for students
• providing students with career information

(See Collaborations List in Appendix H)

V. DISSEMINATION
The project is designed to prepare teachers to serve as Genetic Resource Specialists throughout their state and CORN region by providing information and demonstrating new resource materials to their colleagues. During the workshops, participants acquired methods to update curriculum in their classroom and acquire new information throughout their professional lives.

In 1994, 39 teacher conducted 90 in-services to more than 5550 teachers and members of the general public. Dissemination was done at regional or national conventions, state meetings, district workshops, and teacher in-services.

Dissemination is the driving force of the Genetics Education for Middle and Secondary Science Teachers project. Teachers' networking with peers and colleagues broadens the impact of summer workshops and enables other educators to be exposed to the immense amount of information available. This helps insure that educators begin teaching about the complex concepts and decisions intrinsic to the Human Genome Project in a cohesive and sensitive manner. (See Dissemination and Networking in Appendix I)

Susan Sprouse, a 1993-94 workshop participant stated her view of dissemination:

(From the 95 teachers at the California Science Teachers Association's 3rd Annual Statewide Conference in Palm Springs) agreed that this material is vitally important for biology teachers to be presenting to their classes...We were all surprised and disappointed at the lack of workshops at the conference on ethics, HGP or genetics.

I am grateful you took a chance on me, because I am certainly excited about your program and am definitely talking about it with anyone who will listen!

Your workshop was an outstanding experience for me, and it is exciting to see just how far the information may travel - first to my students, and now to nearly a hundred teachers from all over California!

C:\WPH\DOEGRANT\GRANTS\DOE\ANNUALREP.94
March 24, 1995 - 10:38am
VI. NEWSLETTER: THE GENETIC PROBE

The Genetic Probe Newsletter was initiated in Fall 1993 by two teachers (B Neureither and J Bealer) as a vehicle for the exchange of ideas among the participants, other educators, and other professionals. Newsletter information helps update teachers on the new developments in human genetics, the HGP and ELSI. To date, 4 issues have been sent to workshop participants and other science teachers interested in human genetics (See Appendix K). The newsletter focuses on human genetics and ELSI issues not available in other national newsletters, thus complementing the efforts of newsletters such as Genetics Digest, Gene Pool, Genetic Engineering News, Genome, and Human Genome News.

The Genetic Probe is a forum to learn ways of obtaining inexpensive laboratory equipment, free publications, and other reference materials. It informs readers of national, regional and local meetings, workshops and speaker series. Participants share peer teaching experiences and solicit input into curriculum development and other teaching ideas. It also enables participants to be notified of other national programs, such as, for example, the Access Excellence program through Genentech, Inc., the MCET Telecourse on the Human Genome Project: Exploring the Scientific Humanistic Dimensions, from Boston, and the Genome issue of Science magazine. With increasing numbers of teachers with access to the Internet, future newsletters will be sent via the Internet and be accessible online.

VII. GENETIC RESOURCE GUIDE

To personalize genetic conditions and integrate them into teachers' curriculum, Genetic Conditions: Family Stories, a resource guide, was further developed. The guide contains personal stories/vignettes and photographic slides of individuals or family members with genetic conditions. It is envisioned as a guide to supplement teaching. Stories were requested locally, regionally, and nationally from members of the Alliance for Genetic Support Groups or other genetic support groups. During the 1994 workshop, teachers reviewed a draft form of the guide and found the personal stories extremely helpful in capturing their students' interest in the science of genetics. One teacher stated: "Excellent idea to have "normal" family pictures. Students can relate to real people and better understand the variation within disorders."

The guide will sensitize educators and students to the broad spectrum of genetic conditions which affect families. It shows the common, everyday life experiences, as well as the differences in the lives of families who deal with genetic conditions. Teachers see and present information about individuals with genetic conditions as members of families with children, siblings, parents, cousins; not just a "disease is a book".

Because of the sensitive nature of these stories, a Family Stories consent form and letter to support group members were reviewed by a university attorney familiar with HGP/ELSI issues. A letter describing the resource guide was sent to national support groups who in turn distributed an information letter about the project and a consent form to families. Stories from families who have completed the consent form are being compiled in a database and edited to include in the resource guide. More than 35 stories have been received to date. All are being edited and slides are being made of family portraits and karyotyping slides of conditions represented. (See Resource Guide Information Letters and Consent Form in Appendix J)

VIII. EVALUATION

The project is being evaluated in terms of its content, concepts and organization, its ability to increase teachers' knowledge about HGP/ELSI topics, How the workshop enables teachers to transfer that knowledge to their students, and how students increase their knowledge of human genetics and ELSI issues.
WORKSHOP EVALUATION
Participants were asked to list new concepts and ideas they learned as well as their comments about the session for each speaker, lab tour, panel or laboratory activity each day of the workshop week. These comments and pre and post survey information enable the workshop coordinator to access the efficiency and impact of the workshop and enable the planning committee to access content to plan future workshops.

TEACHER EVALUATION
During the workshop in June 1994, a pre-survey and post-survey were administered to the 31 new participants attending Phase I of the project, and a post-survey was administered to the 56 participants returning for Phase III of the project. This survey enabled evaluation of the effectiveness of the workshop to teach new concepts and increase comfort levels in teaching human genetics.

STUDENT EVALUATION
In January 1994, a post-survey was sent to the 78 participants of the 1993 workshop to complete the assessment of change in student knowledge. Participants administered the post-survey to the same class tested in September 1993. A post-survey was also sent to be administered to a sensitivity group: a different class not tested in September 1993.

The same post-survey was also sent to 14 control group teachers who had received the pre-survey in September 1993. Teachers administered the post-survey to one class of approximately 30 biology students as well as to a sensitivity class not previously surveyed.

In May and June 1994, a second student post-survey was administered to students of the 1993 workshop participants and to the control group to access the effect of the second workshop on the teaching style and content of workshop participants.

During the summer of 1994, the student survey was reviewed and re-worked.

In September 1994, a pre-survey was sent to new participants of the 1994 workshop to initiate a second round of evaluation of student knowledge.

A post-survey was sent in December 1994. Results will follow analysis of that data.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
APPENDICES

Appendix A ... Workshop Agenda
Appendix B ... Presenters List
Appendix C .. Family Panel Comments by Participants
Appendix D .. Laboratory Tour Descriptions
Appendix E .. Genetics Educational Resource Materials
Appendix F .. Teacher Presentations, Lesson Plans and Teaching Ideas
Appendix G .. Mentors: Genetic Resource Specialists
Appendix H .. Collaborations Between Mentors and Participants
Appendix I .. Dissemination and Networking
Appendix J .. Family Stories Information and Consent Letters
Appendix K .. The Genetic Probe Newsletters
HUMAN GENOME PROJECT: GENETICS EDUCATION WORKSHOP

FOR MIDDLE AND SECONDARY SCIENCE TEACHERS

KANSAS CITY, JUNE 20 - 25, 1994

The Quarterage Hotel
560 Westport Road, Kansas City, MO
(816) 931-0001

MONDAY, JUNE 20, 1994

THINGS TO DO AROUND KANSAS CITY (FOR EARLY ARRIVALS):

- The Steamship Arabia Museum in the River Market District via the Trolley
- Tour Midtown Kansas City on the K.C. Trolley. Trolley stops in front of Californos Restaurant, (turn left from Hotel, walk up the hill 1.5 blocks to Pennsylvania, turn right, 1 block down.)
- The Country Club Plaza Shopping Center
- (walk east 2.5 blocks to Broadway, turn right, 7 blocks south)
- Crown Center Shops via the Trolley (24th and Main Streets)
- Loose Park (south of the Plaza at 54th and Wornall Road)
- Westport Shops (1 block east)
- Vietnam Memorial
- (east on Westport Road to Broadway, turn right, 2 blocks south)
- World War I Liberty Memorial and Museum via the Trolley
- (west of Crown Center, 25th and Main Street)
- Manor Square of Westport: The Tivoli movie theater, shops (1 block east)

Note: More information about recreational activities is available in the Plaza and Westport Guides, Kansas City Star's FYI section, and Events in Kansas City page in Resource Room

<table>
<thead>
<tr>
<th>4:00</th>
<th>REGISTRATION IN THE HOTEL LOBBY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00 to 7:00</td>
<td>RECEPTION AND INTRODUCTION</td>
</tr>
</tbody>
</table>

Westport Room and Hotel Lounge
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>WELCOME, INTRODUCTION AND LATE REGISTRATION</td>
<td>Stanfords</td>
</tr>
<tr>
<td>8:30</td>
<td>Probability Exercise</td>
<td>Participant Pre-Survey Westport Room</td>
</tr>
<tr>
<td></td>
<td>Linda Segebrecht, M.S.</td>
<td>RED, YELLOW</td>
</tr>
<tr>
<td>9:00</td>
<td>Genetic Conditions and the Gene Pool</td>
<td>BSCS Activity 1: DNA Sequencing</td>
</tr>
<tr>
<td></td>
<td>Laura Mitchell, Ph.D.</td>
<td>BSCS Activity 2: Do Our Genes Determine Our Future?</td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td>Becky Knetter, M.S.</td>
</tr>
<tr>
<td>10:00</td>
<td>Discussion</td>
<td>Westport Room</td>
</tr>
<tr>
<td>10:30</td>
<td>Shuttle to KUMC</td>
<td>BLUE, GREEN</td>
</tr>
<tr>
<td>11:00</td>
<td>Ethics Curriculum Development Discussion</td>
<td>Genetic Conditions and the Gene Pool</td>
</tr>
<tr>
<td></td>
<td>Gordon Mendenhall, Ph.D. and Helen Griech, M.S.</td>
<td>Laura Mitchell, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Wahl Hall East, KUMC</td>
<td>Stanfords</td>
</tr>
<tr>
<td>12:00</td>
<td>RED, YELLOW</td>
<td>Discussion</td>
</tr>
<tr>
<td>12:30</td>
<td>LUNCH</td>
<td>Shuttle to KUMC</td>
</tr>
<tr>
<td>12:45</td>
<td>KUMC, Stoland Lounge or Outside Patio</td>
<td>LUNCH</td>
</tr>
<tr>
<td>1:15</td>
<td>Legal Issues and the Human Genome Project: Teleconference from Boston</td>
<td>KUMC, Stoland Lounge or Outside Patio</td>
</tr>
<tr>
<td></td>
<td>Phillip Reilly, M.D., J.D.</td>
<td>RED, YELLOW</td>
</tr>
<tr>
<td></td>
<td>Wahl Hall West Auditorium, KUMC</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:15</td>
<td>Internet Access and the Information Highway</td>
<td>Impact of the HGP on Medical Genetics</td>
</tr>
<tr>
<td></td>
<td>David Voran, M.D.</td>
<td>R. Neil Schimke, M.D.</td>
</tr>
<tr>
<td></td>
<td>Wahl Hall West Auditorium, KUMC</td>
<td>1023 Orr-Major, KUMC</td>
</tr>
<tr>
<td>4:30</td>
<td>3 Shuttles to Quarterage approximately 20 minutes apart</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at Tenampa Taqueria (Meet in the Hotel Lobby to load bus)</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>Teacher Presentations</td>
<td>Winding Your Way Through DNA</td>
</tr>
<tr>
<td></td>
<td>38• S. Zupot• 7:00</td>
<td>Decoding the Book of Life</td>
</tr>
<tr>
<td></td>
<td>35• D. Tatge• 7:30</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>28• H. Nolen• 8:00</td>
<td>McCoy Room</td>
</tr>
<tr>
<td></td>
<td>21• S. Mensing• 8:30</td>
<td>12• A. Johnson• 8:45</td>
</tr>
<tr>
<td></td>
<td>10• M. Hess• 9:00</td>
<td>7• B. Garrison• 9:15</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predictive Testing for Huntington Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleft Lip and Palate</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>Shuttle to KUMC</td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td>HGP Information Management, Access and Regulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joseph McInerney, M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4015 Orr-Major, KUMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT BLUE, YELLOW, GREEN</td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>Shuttle to the Quarterage</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Public Policy Issues and the HGP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rebecca Anderson, M.S., J.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RED, BLACK, LT BLUE, YELLOW, GREEN</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Drosophila Research Lab Tour (Fechtel), KUMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>229 Smith East</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT BLUE</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>Regional Crime Lab Tour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1525 Holmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YELLOW</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Family Panel: Huntington Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caroline Gray, R.N., Moderator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT BLUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PINK, DK BLUE, BLACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YELLOW, GREEN</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Teacher Talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 • L. Davis • 3:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 • L. Davis • 3:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 • B. Limes • 3:55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 • C. Smith • 4:25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 • S. Zupo • 4:45</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Family Panel: Huntington Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caroline Gray, R.N., Moderator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RED, YELLOW, GREEN</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at Torre's Pizzeria</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>Facial Disfigurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spina Bifida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cystic Fibrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>PURPLE</td>
<td>PINK</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8:00</td>
<td>Public Policy Issues and the HGP</td>
<td>ORANGE, DK BLUE, PURPLE, PINK</td>
</tr>
<tr>
<td></td>
<td>Rebecca Anderson, M.S., J.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>HGP Information Management, Access and Regulation</td>
<td>PURPLE, PINK</td>
</tr>
<tr>
<td></td>
<td>Joseph McInerney, M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4015 Orr-Major, KUMC</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Johnson County Crime Lab Tour</td>
<td>Prenatal Diagnosis, Screening and</td>
</tr>
<tr>
<td></td>
<td>600 Lamar</td>
<td>Teratogens</td>
</tr>
<tr>
<td>1:30</td>
<td></td>
<td>Lenna Levitch, M.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>2:00</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Midwest Organ Bank Lab Tour</td>
<td>Family Panel: Huntington Disease</td>
</tr>
<tr>
<td></td>
<td>1900 W 47th</td>
<td>Caroline Gray, R.N., Moderator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT BLUE, DK BLUE, BLACK, PINK</td>
</tr>
<tr>
<td>3:30</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>4:00</td>
<td>Biochemistry Lab Tour, KUMC</td>
<td>Cross Clinical Lab Tour</td>
</tr>
<tr>
<td></td>
<td>4022 Wahl Hall East</td>
<td>3433 Rainbow Ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLACk, PINK</td>
</tr>
<tr>
<td>5:00</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at Torre's Pizzeria</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>Facial Disfigurement</td>
<td>CSHL Laboratory Techniques</td>
</tr>
<tr>
<td></td>
<td>Spina Bifida</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>8:30</td>
<td>NF</td>
<td>MCET Teleconference Series</td>
</tr>
<tr>
<td></td>
<td>Cystic Fibrosis</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>ORANGE</td>
<td>DARK BLUE</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8:00</td>
<td>Public Policy Issues and the HGP</td>
<td>PURPLE, PINK, ORANGE, DK BLUE</td>
</tr>
<tr>
<td></td>
<td>Rebecca Anderson, M.S., J.D. Stanfords</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Teacher Talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 • S. Morris • 9:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 • D. Glenn • 9:40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 • G. Slaybaugh • 9:55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 • J. McCain • 10:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 • L. Hays • 10:20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 • M. Bartlett • 10:35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 • D. Miller • 10:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 • C. MacMullan • 10:55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>ORANGE, DK BLUE</td>
</tr>
<tr>
<td>11:15</td>
<td>Snack on Shuttle</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>HGP Information Management, Access and Regulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joseph McInerney, M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4015 Orr-Major, KUMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORANGE, DK BLUE</td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>2:15</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Cross Clinical Lab Tour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3433 Rainbow Ext</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORANGE</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Family Panel: Huntington Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caroline Gray, R.N., Moderator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT BLUE, BLACK, PINK, DK BLUE</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Cytogenetic Lab Tour, Children's Mercy Lab Tour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2801 Wyandotte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORANGE</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Teacher Talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 • L. Davis • 3:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 • L. Davis • 3:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 • B. Limes • 3:55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 • C. Smith • 4:25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 • S. Zupo • 4:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td>LT BLUE, DK BLUE</td>
</tr>
<tr>
<td>5:00</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at Torre's Pizzeria</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>Facial Disfigurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spina Bifida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSHL Laboratory Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cystic Fibrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCET Teleconference Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>RED</td>
<td>BLACK</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8:30</td>
<td>Family Panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lena Levitch, M.S., Moderator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RED, BLACK</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Public Policy Issues and the HGP</td>
<td>LT BLUE, YELLOW, GREEN, RED, BLACK</td>
</tr>
<tr>
<td></td>
<td>Rebecca Anderson, M.S., J.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>HGP Information Management, Access and Regulation</td>
<td>RED, BLACK</td>
</tr>
<tr>
<td></td>
<td>Joseph McInerney, M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4015 Orr-Major, KUMC</td>
<td></td>
</tr>
<tr>
<td>2:15</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>2:30</td>
<td>Johnson County Crime Lab Tour</td>
<td>Family Panel: Huntington Disease</td>
</tr>
<tr>
<td></td>
<td>6000 Lamar</td>
<td>Caroline Gray, R.N., Moderator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PINK, LT BLUE, DK BLUE, BLACK</td>
</tr>
<tr>
<td>3:30</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>4:00</td>
<td>Family Panel: Huntington Disease</td>
<td>Cross Clinical Lab Tour</td>
</tr>
<tr>
<td></td>
<td>Caroline Gray, R.N., Moderator</td>
<td>3433 Rainbow Ext</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>YELLOW, GREEN, RED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PINK, BLACK</td>
</tr>
<tr>
<td>5:00</td>
<td>BREAK</td>
<td>Shuttle</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at Torre's Pizzeria</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>Facial Disfigurement</td>
<td>CSHL Laboratory Techniques</td>
</tr>
<tr>
<td></td>
<td>Spina Bifida</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>8:30</td>
<td>NF</td>
<td>MCET Teleconference Series</td>
</tr>
<tr>
<td></td>
<td>Cystic Fibrosis</td>
<td>videotapes</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>Light Blue</td>
<td>Yellow</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>8:30</td>
<td>Genetic Counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diane Baker, M.S.</td>
<td>LT BLUE, YELLOW</td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Technology Education and the HGP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paula Gregory, Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Teacher Talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 • J. LaFerriere • 12:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 • M. McCurdy • 12:50</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>26 • B. Neureither • 1:15</td>
<td>LT BLUE, YELLOW</td>
</tr>
<tr>
<td></td>
<td>34 • S. Talkmitt • 1:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Family Panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diane Baker, M.S., Moderator</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td>DK BLUE, BLACK, LT BLUE, YELLOW</td>
</tr>
<tr>
<td>3:30</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Biochemistry Lab Tour, KUMC</td>
<td>LT BLUE, YELLOW</td>
</tr>
<tr>
<td></td>
<td>4022 Wahl Hall East</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at the Westport Flea Market Restaurant</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>Prenatal Diagnosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer videotapes</td>
<td>Westport Room</td>
</tr>
<tr>
<td>8:00</td>
<td>Ehlers Danlos Syndrome</td>
<td>Westport Room</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>Purple</td>
<td>Pink</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8:00</td>
<td>Technology Education and the HGP
Paula Gregory, Ph.D.
Stanfords</td>
<td>Shuttle</td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td>Cytogenetics Lab Tour, Children’s Mercy
2801 Wyandotte</td>
</tr>
<tr>
<td>9:30</td>
<td>ORANGE, PURPLE</td>
<td>DK BLUE, PINK</td>
</tr>
<tr>
<td>9:45</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>10:00</td>
<td>Cytogenetics Lab Tour, KUMC
1405 Bell
PURPLE</td>
<td>Technology Education and the HGP
Paula Gregory, Ph.D.
Stanfords
RED, BLACK, DK BLUE, PINK</td>
</tr>
<tr>
<td>11:00</td>
<td>Shuttle</td>
<td>Discussion</td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td>LUNCH</td>
</tr>
<tr>
<td>12:30</td>
<td>Family Panel
Jill Rogers, M.S., moderator
Westport Room</td>
<td>ORANGE, PURPLE, PINK</td>
</tr>
<tr>
<td>1:30</td>
<td>Teacher Talks
17 • E. Mayo • 1:30
11 • F. Jahn • 2:00
20 • A. McDonald • 2:15</td>
<td>Shuttle</td>
</tr>
<tr>
<td>2:00</td>
<td>Stanfords
RED, PURPLE</td>
<td>Molecular Genetics Lab Tour, Children’s Mercy
2801 Wyandotte</td>
</tr>
<tr>
<td>2:30</td>
<td>Genetic Counseling
Michael Begleiter, M.S.
Hotel Lounge</td>
<td>Shuttle</td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td>GREEN, PURPLE</td>
</tr>
<tr>
<td>3:30</td>
<td>Politics and DNA
Diane Baker, M.S.
Westport Room</td>
<td>Teacher Talks
2 • J. Bealer • 3:30
29 • B. Schmidt • 4:00
30 • B. Silber • 4:10
6 • S. Dominic • 4:20
22 • B. Miller • 4:30</td>
</tr>
<tr>
<td>4:30</td>
<td>Discussion</td>
<td>Hotel Lounge
GREEN, BLACK, PINK</td>
</tr>
<tr>
<td>5:00</td>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td>DINNER at the Westport Flea Market</td>
</tr>
<tr>
<td>7:00</td>
<td>Prenatal Diagnosis
Cancer videotapes
Westport Room</td>
<td>MCET Teleconference Series
videotape
McCoy Room</td>
</tr>
<tr>
<td>8:00</td>
<td>Ehlers Danlos Syndrome videotapes
Westport Room</td>
<td>Human Genome Project videotape
McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>ORANGE</td>
<td>DARK BLUE</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8:00</td>
<td>Technology Education and the HGP</td>
<td>Shuttle</td>
</tr>
<tr>
<td></td>
<td>Paula Gregory, Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td>PURPLE, ORANGE</td>
<td>Cytogenetics Lab Tour, Children's Mercy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2801 Wyandotte</td>
</tr>
<tr>
<td>9:00</td>
<td>Discussion</td>
<td>PINK, DK BLUE</td>
</tr>
<tr>
<td>9:30</td>
<td>Shuttle</td>
<td>Shuttle</td>
</tr>
<tr>
<td>10:00</td>
<td>Molecular Genetics Lab Tour, Children's Mercy</td>
<td>Technology Education and the HGP</td>
</tr>
<tr>
<td></td>
<td>2801 Wyandotte</td>
<td>Paula Gregory, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>ORANGE</td>
<td>Stanfords</td>
</tr>
<tr>
<td>11:00</td>
<td>Shuttle</td>
<td>Discussion</td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Shuttle</td>
<td>Break</td>
</tr>
<tr>
<td>12:30</td>
<td>Family Panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jill Rogers, M.S., Moderator</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Westport Room</td>
<td>Drosophila Lab Tour (Fechtel), KUMC</td>
</tr>
<tr>
<td></td>
<td>PURPLE, ORANGE</td>
<td>229 Smith East</td>
</tr>
<tr>
<td>1:30</td>
<td>Shuttle</td>
<td>DK BLUE</td>
</tr>
<tr>
<td>2:00</td>
<td>Materials Review</td>
<td>shuttle</td>
</tr>
<tr>
<td>2:15</td>
<td>Boone Resource Room</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Preconception Genetic Counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jill Rogers, M.S.</td>
<td></td>
</tr>
<tr>
<td>3:15</td>
<td>McCoy Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RED, ORANGE</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Politics and DNA</td>
<td>Materials Review</td>
</tr>
<tr>
<td></td>
<td>Diane Baker, M.S.</td>
<td>Boone Resource Room</td>
</tr>
<tr>
<td>4:30</td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PURPLE, ORANGE</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER at the Westport Flea Market Restaurant</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>Prenatal Diagnosis</td>
<td>MCET Teleconference Series</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>videotape</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>McCoy Room</td>
</tr>
<tr>
<td>8:00</td>
<td>Ehlers Danlos Syndrome</td>
<td>Human Genome Project</td>
</tr>
<tr>
<td></td>
<td>videotapes</td>
<td>videotape</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>RED</td>
<td>BLACK</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td>Shuttle</td>
</tr>
<tr>
<td>8:30</td>
<td>Family Panel</td>
<td>Regional Crime Lab Forensic</td>
</tr>
<tr>
<td></td>
<td>Jill Rogers, M.S., Moderator</td>
<td>1525 Holmes</td>
</tr>
<tr>
<td></td>
<td>Westport LT BLUE, GREEN, RED</td>
<td>BLACK</td>
</tr>
<tr>
<td>9:30</td>
<td>Discussion</td>
<td>Shuttle</td>
</tr>
<tr>
<td>10:00</td>
<td>Technology Education and the HGP</td>
<td>DK BLUE, PINK, RED, BLACK</td>
</tr>
<tr>
<td></td>
<td>Paula Gregory, Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td></td>
<td>Shuttle</td>
</tr>
<tr>
<td>12:30</td>
<td>Teacher Talks</td>
<td>Drosophila Lab Tour (Osterbur), KUMC</td>
</tr>
<tr>
<td></td>
<td>3 • B. Cefalo • 12:30</td>
<td>229 Smith East</td>
</tr>
<tr>
<td></td>
<td>13 • S. Koba • 12:40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 • H. Nolen • 12:55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 • P. Wolkow • 1:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords RED</td>
<td>BLACK</td>
</tr>
<tr>
<td>1:30</td>
<td>Teacher Talks</td>
<td>Shuttle</td>
</tr>
<tr>
<td></td>
<td>17 • E. Mayo • 1:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 • F. Jahn • 2:00</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>20 • A. McDonald • 2:15</td>
<td>Break</td>
</tr>
<tr>
<td></td>
<td>Stanfords PURPLE, RED</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Preconception Genetic Counseling</td>
<td>Family Panel</td>
</tr>
<tr>
<td></td>
<td>Jill Rogers, M.S.</td>
<td>Diane Baker, M.S., Moderator</td>
</tr>
<tr>
<td></td>
<td>McCoy Room DK BLUE, RED</td>
<td>Westport Room DK BLUE, LT BLUE, YELLOW, BLACK</td>
</tr>
<tr>
<td>3:30</td>
<td>Shuttle</td>
<td>Teacher Talks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 • J. Bealer • 3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 • B. Schmidt • 4:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 • B. Silber • 4:10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 • S. Dominic • 4:20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 • B. Miller • 4:30</td>
</tr>
<tr>
<td>4:00</td>
<td>Cytogenetics Lab Tour</td>
<td>Hotel Lounge GREEN, PINK, BLACK</td>
</tr>
<tr>
<td></td>
<td>Children's Mercy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2801 Wyandotte RED</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Genetic Counseling and Prenatal Diagnosis</td>
<td>Michael Begleiter, M.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McCoy Room DK BLUE, BLACK</td>
</tr>
<tr>
<td>5:00</td>
<td>Shuttle</td>
<td>Break</td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td>DINNER at the Westport Flea Market</td>
</tr>
<tr>
<td>7:00</td>
<td>Prenatal Diagnosis; Cancer videotapes</td>
<td>MCET Teleconference Series videotape</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>McCoy Room</td>
</tr>
<tr>
<td>8:00</td>
<td>Ehlers Danlos Syndrome videotapes</td>
<td>Human Genome Project videotape</td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td>McCoy Room</td>
</tr>
<tr>
<td>Time</td>
<td>LT BLUE</td>
<td>BLACK</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>8:30</td>
<td>Clinical Application of Human Genome Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Neil Schimke, M.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanfords</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>Shuttle</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Cytogenetics Lab Tour, Children's Mercy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2801 Wyandotte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT BLUE, BLACK</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Biotechnology Support Lab Tour, KUMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1018/19 Orr-Major</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Shuttle to KUMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walk to Murphy</td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td>LUNCH in Murphy</td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td>LUNCH at Quarterage</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>The Human Genome Project: Implications for the Future - Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francis Collins, M.D., Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battenfeld Auditorium, KUMC</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>The Human Genome Project: Implications for the Future - Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francis Collins, M.D., Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battenfeld Auditorium, KUMC</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>1st Shuttle from Battenfeld to The Quarterage</td>
<td></td>
</tr>
<tr>
<td>4:20</td>
<td>2nd Shuttle from Battenfeld to The Quarterage</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>SMALL GROUP DIALOGUE AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethics Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biotechnology & Laboratory Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Technology Integration for the Classroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Genetics Educational Materials Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grant Writing and Funds Acquisition</td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td>Arthur Bryant's Barbecue Dinner, The Quarterage Hotel (Outside) for Participants, Speakers and Lab Personnel</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>ORANGE</td>
<td>PURPLE</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8:30</td>
<td>Family Panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Debra Collins, M.S., Moderator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westport Room</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td></td>
<td>Shuttle to KUMC</td>
</tr>
<tr>
<td>9:45</td>
<td>Internet Access and the Information Highway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Voran, M.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clendenning Auditorium, 2nd Floor Robinson, KUMC</td>
<td>ORANGE, PURPLE</td>
</tr>
<tr>
<td>11:15</td>
<td></td>
<td>Walk to Murphy</td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td>LUNCH at Murphy</td>
</tr>
<tr>
<td>12:00</td>
<td>The Human Genome Project: Implications for the Future - Technology</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>Francis Collins, M.D., Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battenfeld Auditorium, KUMC</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>1:30</td>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td>2:00</td>
<td>The Human Genome Project: Implications for the Future - Education</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>Francis Collins, M.D., Ph.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battenfeld Auditorium, KUMC</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td>BREAK</td>
</tr>
<tr>
<td>4:00</td>
<td>1st Shuttle from Battenfeld to The Quarterage</td>
<td></td>
</tr>
<tr>
<td>4:15</td>
<td>2nd Shuttle from Battenfeld to The Quarterage</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>SMALL GROUP DIALOGUE AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethics Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biotechnology & Laboratory Curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Technology Integration for the Classroom</td>
<td>Locations to be announced</td>
</tr>
<tr>
<td></td>
<td>Human Genetics Educational Materials Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grant Writing and Funds Acquisition</td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td>Arthur Bryant's Barbecue Picnic Dinner at the Quarterage Hotel (Outside) for Participants, Speakers and Lab Personnel</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Activity</td>
<td>Location</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>8:30</td>
<td>BSCS Activity 3: The Case of Nathaniel Wu
Becky Knetter, M.A.</td>
<td>Stanfords</td>
</tr>
<tr>
<td>9:30</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>BSCS Activity 4: Public Policy: Genetics and Alcoholism
Becky Knetter, M.A.</td>
<td>Stanfords</td>
</tr>
<tr>
<td>11:00</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Family Panel
Debra L. Collins, M.S., Moderator</td>
<td>Westport Room</td>
</tr>
<tr>
<td>1:30</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Curriculum Development Session
Bill Humphries, M.S.
Leo Palmero, M.S.</td>
<td>Stanfords</td>
</tr>
<tr>
<td>3:00</td>
<td>REVIEW OF PHASES 2, 3 AND 4 OF THE PROJECT
Debra Collins, M.S. & Linda Segebrecht, M.S.</td>
<td>Stanfords</td>
</tr>
<tr>
<td>3:30</td>
<td>PARTICIPANT POST-SURVEY
Debra Collins, M.S. & Linda Segebrecht, M.S.</td>
<td>Stanfords</td>
</tr>
<tr>
<td>4:00</td>
<td>DRAWING FOR PRIZES ADJOURNMENT</td>
<td>Stanfords</td>
</tr>
</tbody>
</table>
PRESENTER LIST
HUMAN GENOME PROJECT WORKSHOP:
GENETICS EDUCATION FOR MIDDLE AND SECONDARY SCIENCE TEACHERS
KANSAS CITY, JUNE 20 - 25, 1994

Rebecca Rae Anderson, M.S., J.D.
Attorney and Genetic Counselor
University of Nebraska Medical Center
Center for Human Genetics
600 South 42nd Street
Omaha, NE 68198-5430

Diane Baker, M.S.
Genetic Counselor, Director
Genetic Counseling Program
University of Michigan
Medical Science II M4708
Ann Arbor, MI 48109-0618

Michael Begleiter, M.S.
Genetic Counselor
Genetic Clinic Children's Mercy Hospital
2401 Gillham Road
Department of Genetics
Kansas City, MO 64108

Debra L. Collins, M.S.
Genetic Counselor
Division of Genetics, Medicine Department
University of Kansas Medical Center
3901 Rainbow Blvd., 4023 Wescoe
Kansas City, KS 66160-7318

Francis Collins, M.D., Ph.D.
Director, National Center for Human Genome Research
Building 49, Room 4A72
National Institutes of Health
9000 Rockville Pike
Bethesda, MD 20892

Carolyne Gray, R.N.
Nurse Clinician
Director, Huntington Disease Clinic
University of Kansas Medical Center
Department of Neurology
3901 Rainbow Blvd., 1012 Wescoe Pavilion
Kansas City, KS 66160

Paula Gregory, Ph.D.
Educational & Outreach Coordinator
National Institutes of Health
Education and Outreach Program
Bldg. 10, Room 10C 100A
9000 Rockville Pike
Bethesda, MD 20892

Gene Hampton, Ed.D.
Science Instructor, Shawnee Mission South High School
Science Fair Director, Science Pioneers, Inc.
425 Volker Boulevard
Kansas City, MO 64110

William Humphries, M.S.
Science Instructor
Living Materials Center
Richardson High School
Richardson, TX 75080

Becky Knetter, M.A.
Science Instructor
Piper High School
4400 North 107th Street
Kansas City, KS 66109

Lenna Levitch, M.S.
Genetic Counselor
University of Kansas Medical Center
OB/GYN Department
3901 Rainbow Blvd., 3rd Floor Wescoe
Kansas City, KS 66106

Joseph McInerney, M.S.
Genetic Counselor
Director, Biological Sciences Curriculum Study
830 Tejorn Street, Suite 405
Colorado Springs, CO 80903

Gordon Mendenhall, Ed.D.
Science Instructor
Lawrence North High School
6802 North Hugue Road
Indianapolis, IN 46253
Laura Mitchell, Ph.D.
Genetic Counselor / Epidemiologist
Washington University
660 South Euclid Avenue
Box 8067
St. Louis, MO 63110

Phillip R. Reilly, M.D., J.D.
Clinical Geneticist and Attorney
Director, Shriver Center
200 Trapelo Road
Waltham, MA 02254

Jill Rogers, M.S.
Genetic Counselor
Children’s Mercy Hospital
Section of Genetics
2401 Gillham
Kansas City, MO 64108-9898

R. Neil Schimke, M.D.
Clinical Geneticist, Director
Division of Genetics, Medicine Department
University of Kansas Medical Center
3901 Rainbow Blvd., 4023 Wescoe
Kansas City, KS 66160-7318

Linda Segebrecht, M.S.
President
Science Pioneers, Inc.
425 Volker Blvd.
Kansas City, MO 64110

Robert Smith, Ph.D.
Engineer
Allied Signal Aerospace Company
2000 East Bannister Road
Kansas City, MO 64131

Brian Walsh
Products Manager
Photodyne, Inc.
950 Walnut Ridge Drive
Hartland, WI 53029

David A. Voran, M.D.
Associate Clinical Professor
Family Practice
University of Kansas Medical Center
3901 Rainbow Blvd., G622 Bell
Kansas City, KS 66160-7370
CRI-DU-CHAT, OCULAR ALBINISM
• Heartbreaker. Kent was an effective speaker, brought tears to my eyes.
• Heartbreaking. What a brave man to be able to talk about his family in public.
• Wonderful. Gave the parent’s view and the mixed emotions of loving a handicapped child.
• Wow! Very moving experience, excellent to hear about these rare syndromes and the human impact.

DOWN SYNDROME, ICHTHYOSIS AND NEUROFIBROMATOSIS
• Did not know anything about ichthyosis before.
• Very interesting, I always get a lot out of family panels.
• First hand account of living with a child with ichthyosis.
• Excellent.
• I had not heard of ichthyosis before. Very interesting.
• Terrific.
• I was uninformed about ichthyosis, this was valuable. I continue to be impressed with the “parents as experts” on these conditions.
• We need to stress to our students that these children are more “normal” than “abnormal”.
• The importance of family support groups rather than doctors for spreading current information.
• It is so helpful to see and talk with people who know these problems first hand.
• Characteristics, chances.
• Sensitivity.
• I applaud there ability to address us and talk with us. Wonderful!

DWARFISM, DYSTONIA / RETINITIS PIGMENTOSA
• Difficult to experience.
• Excellent, heartwarming to actually meet people and families coping with these diseases we’ve been learning about.
• Joy Wyler was particularly informative.
• Thought provoking. An excellent presentation.
• Wonderful chance to meet people living with “handicaps” and hear their perspective.
• 100 different types of dwarfism.
• I greatly admire these families.
• Family panels put a humanistic element into the study of genetics.
• Genetic diseases from the patient’s point of view.
• Enlightening.
• I learned that there are many sources of dwarfism. But mostly the panel helped me in understanding the human dimension of all of the conditions.
• Inspirational. Humanistic aspect needed after labs, computers, and talks.
• The human aspects, real issues that people have to deal with, brought into a genetic aspect.
• It is difficult to accept that families’ needs are not met: additional health care should be given.
• The importance of self identity.
• the most moving experience so far. Learned more about human nature than genetics.
• Very valuable and memorable.
• Good opportunity.
• Very informative to see individuals who have some of these disorders. It is a refreshing and positive experience.
• Fantastic! Have more of these to give the human dimension to back statistics.

HUNTINGTON DISEASE PANEL
• I cannot believe the strength of the people. I have so much empathy for them. Good and interesting.
• These panels are great. They provide an experience teachers cannot get easily in any other way.
• Wow! Another great presentation.
• A lot of new information.
• Great!
• All individuals with HD have different manifestations of the condition.
• Panels are the best part of the workshop: so relevant and touching.
• Characteristics, chances and lifestyle decisions.
• Doctors need to be aware of people's feelings.
• Family attitudes.
• Excellent.
• First hand exposure to individuals with the condition.
• HD diversity of symptoms.
• Fascinating!
• Honest and informative. I was surprised how much variation in HD there is.
• Excellent.
• How family members deal with HD.
• How it feels to be tested and make choices about children.
• Fantastic.
• Human viewpoint. Useful for HGP modules.
• Excellent
• I learned that it can express itself in a mild way as well as acutely.
• Insight into the family with Huntington disease.
• This is so good for us. Most beneficial.
• Interesting to get the "real life" information.
• Good!
• leaned some of the symptoms of HD.
• Patents and their families presented the "human" side of these scientific disease.
• A very humbling experience.
• Reinforcement of the valuable role (support) of genetic counselors.
• Excellent and informative.
• Sensitiveness is necessary in the classroom.
• The question remains in my mind that many of these people knew HD ran in their family and still had families of their own. Why?
• The range in degree of expression was new to me. Also the cases of early onset (juvenile and younger).
• Excellent.
• The themes that I felt were important: the need of understanding and support on the part of the community. I got the feeling that these people were very alone. They have support groups but only over long distances.
• The wide range of ages for onset.
• Very powerful panel.
• This was the first person I'd seen with Huntington disease.
• Very good.
• Two year old who had the symptoms.
• Very eye-opening.
• Moving and amazing stories.
• We must as teachers be more sensitive to any possible gene condition that may be out there among our students.
• Good panel.
PROTEUS SYNDROME AND SHORT STATURE

- I can't keep from being too emotional.
- Interesting.
- Discussion on variations in genetic anomalies.
- Excellent.
- Excellent comments about self-worth, discrimination, quality of life decisions.
- Joy really made me think about looking at these social issues. I look forward to incorporating it into my middle school curriculum.
- Family panels remind me that a defect does not necessarily mean mental deficiency.
- Good panel group. I saw Alex last year and could see a real improvement in his personality. It was good to see him in a family setting.
- These are outstanding. They give a totally new view of human genetic conditions. This is the best part of the week.

RUBENSTEIN-TABI, CORNELIA DE LANGE, EHLERS-DANLOS SYNDROME

- These panels are exceptional experiences.
- Very informative.
- Best way to learn about these syndromes.
- Great!
- Didn't know about Ehlers-Danlos problems with diagnosis: how one syndrome blends with another.
- Excellent. Bravo to these people. Wonderful.
- Great background information on genetic diseases. Gained insight.
- Very good!
- Nothing has opened my eyes more than the family panels. To actually talk directly to the patients and families really puts the truth right in front of you!
- The difficulty in diagnosing conditions when there is no gene marker.
- Two of the syndromes I had never heard of.
- Fascinating.

SHORT STATURE AND DYSTONIA

- Always one of the best parts of the workshop.
- Excellent.
- Excellent.
- Shows the real life people who live with these conditions.
- Good!
- This is the first time I had ever seen or heard about dystonia. Seeing before my eyes the three brothers shows the impact of dominance in a gene.
- Joy gave a lot of information about handling handicaps in the classroom. This was fantastic. I wish we'd had more time.
LABORATORY TOUR DESCRIPTIONS

HUMAN GENOME PROJECT WORKSHOP:
GENETICS EDUCATION FOR MIDDLE AND SECONDARY SCIENCE TEACHERS
KANSAS CITY, JUNE 20 - 25, 1994

Clinical Labs:

MOLECULAR GENETICS LABORATORY • Paul Rothberg, Ph.D.
Children's Mercy Hospital, Kansas City, MO
DNA clinical based testing for cystic fibrosis and Duchenne muscular dystrophy, controlled gene expression in cancer research.

CROSS CLINICAL LABORATORY • Donald Cross, M.D. and Michael Anthes
Kansas City, KS
Histocompatibility, DNA and paternity testing, bone marrow transplant information and organ transplantations.

MIDWEST ORGAN BANK • Karen Baier
Kansas City, KS
Histocompatibility and DNA testing for organ procurement [flow cytometer and polymerase chain reaction (PCR) amplification techniques demonstrated].

Cytogenetic Labs:

CYTOGENETICS LABORATORY • Terry Arthur, B.S.
University of Kansas Medical Center, Kansas City, KS
Karyotyping explanation/demonstration (displaying variety of normal and aneuploid karyotypes), computer karyotype system explained, karyotypes from amniocentesis, chorionic villi sampling, and tumors displayed.

CYTOGENETICS LABORATORY • Linda Pasztor, Ph.D.
Children's Mercy Hospital, Kansas City, MO
Karyotyping, demonstration of fluorescent in-situ hybridization (FISH) technology and probes.

Forensic Labs:

JOHNSON COUNTY CRIME LABORATORY • Gary Dirks
Mission, KS
DNA forensic analysis laboratory using polymerase chain reaction (PCR) technology for local law enforcement, on-line automated fingerprint identification system.

MISSOURI POLICE DEPARTMENT REGIONAL CRIMINOLOGY LABORATORY • John Wilson
Kansas City, MO
DNA forensic lab using restriction fragment length polymorphism (RFLP) technology for regional crime investigation and explanation of autoradiography, FBI analysis using computer technology, restriction enzymes, probes and legal issues.
Research Labs:

BIOCHEMISTRY LABORATORY • Lynwood Yarbrough, Ph.D. and Jackie Tremblay
University of Kansas Medical Center, Kansas City, KS

DNA Data analysis, protein mapping and sequencing techniques, DNA research on stress proteins and aging, tubulin refolding.

DROSOPHILA LABORATORY • Kim Fechtel, Ph.D. and David Osterbur, Ph.D.
University of Kansas Medical Center, Kansas City, KS
Drosophila research laboratory, DNA sequencing demonstrated.

BIOTECHNOLOGY SUPPORT FACILITY • Satya Yadav, Ph.D.
University of Kansas Medical Center, Kansas City, KS
State of the art instrumentation of technology for oligonucleotide synthesis (including chromatography), protein synthesis analysis and degradation demonstrated.
GENETICS EDUCATIONAL RESOURCE MATERIALS
September 8, 1994

The following list of genetics education materials was compiled by the Genetics Education Center, University of Kansas Medical Center, Kansas City, KS 66160-7318. Phone: (913) 588-3886
E-mail: geneduc@ukanvm.cc.ukans.edu

In general, it contains materials available since 1992 which may be helpful to teachers and other professionals to supplement their teaching curricula. The books, booklets, brochures, computer programs, curriculum, journals, hands-on materials, newsletters, and videotapes are part of an ongoing genetics education database project.

We welcome input and suggestions. See Suggestions Form at end of list.

This Genetics Education Resource List will be updated periodically.

BOOKS
Book subj: GENETIC TESTING
Grade(s): secondary, adult, professional

Book subj: LAW, ETHICS
Grade(s): secondary, adult

Book subj: BASIC GENETICS
Grade(s): elementary, middle

Book subj: BASIC GENETICS
Grade(s): elementary, middle

Book subj: GENERAL GENETIC
Grade(s): secondary, adult

ISBN: 0-879-69381-9
Book subj: DNA TECHNOLOGY
Grade(s): secondary
book subj: MOLECULAR GENETICS
grade(s): secondary, adult

ISBN:0-8018-4491-6
book subj: GRIEF
grade(s): professional

book subj: BIRTH DEFECTS
grade(s): professional

book subj: HGP
grade(s): secondary, adult, professional

book subj: DNA
grade(s): adult, professional

book subj: GENETICS, INTERNATIONAL
grade(s): adult, professional

book subj: GENETIC TESTING
grade(s): adult, professional

ISBN:0-8018-4800-8
book subj: TERATOGEN
grade(s): professional

book subj: MOLECULAR GENETICS
grade(s): adult, professional

book subj: MOLECULAR GENETICS
grade(s): adult, professional
book subj: GENETIC COUNSELING
grade(s): professional

book subj: CYSTIC FIBROSIS
grade(s): secondary, adult, professional

book subj: HGP / ELSI
grade(s): adult

book subj: DIFFERENCES
grade(s): elementary

book subj: HGP / ELSI
grade(s): adult, professional

book subj: MEDICAL GENETICS
grade(s): professional

book subj: PHYSICAL DISABILITIES
grade(s): secondary, adult, professional

book subj: MEDICAL GENETICS
grade(s): professional

book subj: BIOTECHNOLOGY, ELSI
grade(s): middle, secondary

book subj: HISTORY OF GENETICS
grade(s): secondary, adult, professional
book subj: DISABILITIES
grade(s): secondary, adult

book subj: HUMAN GENETICS
grade(s): adult, professional

book subj: GENETICS
grade(s): adult, professional

book subj: HUMAN GENETICS
grade(s): secondary, adult, professional

book subj: HGP
grade(s): secondary, adult, professional

book subj: MOLECULAR GENETICS
grade(s): secondary, adult, professional

book subj: MEDICAL GENETICS
grade(s): professional

book subj: MEDICAL GENETICS
grade(s): adult, professional

book subj: HEREDITY
grade(s): secondary, adult, professional

book subj: HUMAN EMBRYOLOGY
grade(s): secondary, adult, professional
book subj: REFERENCE
grade(s): professional

book subj: MEDICAL GENETICS
grade(s): adult, professional

book subj: PHYSICAL DIABILITIES
grade(s): elementary, middle

book subj: GENETIC TESTING
grade(s): adult, professional

book subj: CLINICAL GENETICS
grade(s): secondary, professional

book subj: GENE TARGETING
grade(s): middle, secondary

book subj: SICKLE CELL
grade(s): secondary

book subj: MEDICAL GENETICS
grade(s): professional

book subj: HUMAN EVOLUTION
grade(s): middle, secondary, adult

book subj: CHROMOSOMES
grade(s): adult, professional
book subj: GENETIC ENGINEERING
grade(s): elementary, middle, secondary

book subj: NF
grade(s): secondary, adult

book subj: MEDICAL GENETICS
grade(s): secondary

book subj: ELSI RESOURCE
grade(s): middle, secondary, adult, professional

book subj: ETHICS
grade(s): professional

book subj: TECHNOLOGY
grade(s): professional

ISBN: 0-07-052009-7
book subj: EVALUATION
grade(s): professional

BOOK / CASSETTE
subj: DNA
grade(s): middle, secondary, adult

BOOK / VIDEOTAPE
subj: SPINA BIFIDA
grade(s): adult, professional
BOOKLETS

booklet subj: MEDICAL GENETICS
grade(s): adult, professional

booklet subj: CAREERS IN GENETICS
grade(s): middle, secondary, adult, professional

booklet subj: CYSTIC FIBROSIS, GENETIC TESTING
grade(s): secondary, adult, professional

Howard Hughes Medical Institute, BLOOD: BEARER OF LIFE AND DEATH "NEW WAYS TO FIGHT DISEASES CAUSED BY FAULTS IN THE BLOODSTREAM", Howard Hughes Institutes, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, 1993.
booklet subj: MEDICAL GENETICS
grade(s): middle, secondary, adult, professional

Howard Hughes Medical Institute, FROM EGG TO ADULT, The Howard Hughes Medical Institute, 1992.
booklet subj:
grade(s): middle, secondary, adult, professional

booklet subj: GENETIC COUNSELING
grade(s): middle, secondary, adult, professional

booklet subj:
grade(s): secondary, adult, professional

ISBN:NTH-92-3190
booklet subj: HGP
grade(s): middle, secondary, adult, professional
booklet subj: MPS
grade(s): secondary, adult, professional

booklet subj: HGP
grade(s): secondary, adult, professional

booklet subj: BASIC GENETICS
grade(s): secondary, adult, professional

BROCHURES
Browder, Sue, THIS "TREE" CAN SAVE YOUR LIFE, Reader's Digest, Reprint Department-R, Pleasantville, NY 10570, 1993.
brochure subj: HEREDITY
grade(s): middle, secondary, adult, professional

ISBN: 09-576-00
brochure subj: GENETIC TESTING
grade(s): secondary, adult, professional

Zacharias, Rebecca, and PacNoRGG Education Committee, FAMILY GENETICS UPDATE: WHY DO DNA TESTING OR BANKING?, PacNoRGG, Oregon Health Sciences University, CDRC, Eugene, OR 97403-5254, 1994.
brochure subj: DNA TESTING
grade(s): secondary

COMPUTER PROGRAMS
ELECTROPHORESIS ANALYSIS SOFTWARE, Ward's Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
software subj: BIOTECHNOLOGY
grade(s): secondary

Apple's Multimedia Lab LIFE STORY, Sunburst / Wings for Learning, 101 Castelton Street, Pleasantville, NY 10570-9963, 1993. Cat. #: 6489KG
software subj: DISCOVERING DNA
grade(s): secondary

software subj: HEREDITY
grade(s): professional
Mamelka, Paul M., B. Dyke, J.W. MacCluer, PEDIDRAW, Southwest Foundation for Biomedical Research, P.O. Box 28147, San Antonio, TX 78228-0147, 1993.
software subj: PEDIGREE
grade(s): secondary, adult, professional

software subj: BASIC GENETICS
grade(s): professional

software subj: BIOTECHNOLOGY
grade(s): secondary

CURRICULA
curriculum subj: GENETIC CONDITIONS
grade(s): middle, secondary, adult, professional

HGP Genetics Education Workshop Participants, HUMAN GENETICS LESSON PLANS, Genetics Education Center, University of Kansas Medical Center, Kansas City, KS 66160-7318, 1993.
curriculum subj: TEACHING RESOURCES
grade(s): middle, secondary, adult

LHS GEMS, IN ALL PROBABILITY, Lawrence Hall of Science, University of California, Berkeley, CA 94720, 1994.
curriculum subj: PROBABILITY
grade(s): elementary, middle

LHS GEMS, MYSTERY FESTIVAL, Lawrence Hall of Science, University of California, Berkeley, CA 94720, 1994.
curriculum subj: DNA FINGERPRINTING
grade(s): elementary, middle

Mathematics and Science Education Center, BIOTECHNOLOGY UNIT - JUNIOR HIGH SCHOOL LEVEL, Math and Science Education Center, 8001 Natural Bridge Road, St. Louis, MO 63121, 1993.
curriculum subj: BIOTECHNOLOGY
grade(s): middle

Mathematics and Science Education Center, BIOTECHNOLOGY UNIT - SECONDARY SCHOOL LEVEL, Math and Science Education Center, 8001 Natural Bridge Road, St. Louis, MO 63121, 1992.
curriculum subj: BIOTECHNOLOGY
grade(s): secondary
Mathematics and Science Education Center, BIOTECHNOLOGY UNIT - UPPER ELEMENTARY SCHOOL LEVEL, Math and Science Education Center, 8001 Natural Bridge Road, St. Louis, MO 63121, 1993.
curriculum subj: BIOTECHNOLOGY
grade(s): elementary, middle

curriculum subj: HGP / ELSI
grade(s): secondary

HANDS-ON MATERIALS
COLORED PAPER CLIPS, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
Cat. #:15-9846
kit subj: HGP
grade(s): secondary

CROSSING OVER KIT, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
Cat. #:81-4504
kit subj: BASIC GENETICS
grade(s): secondary

kit subj:
grade(s): middle, secondary

DNA SIMULATION KIT, Carolina Biological Supply Company, 2700 York Road, Burlington, NC 27215, 1993. Cat. #:17-1030
kit subj:
grade(s): middle, secondary

FERTILIZATION KIT, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
Cat. #:81-4503
kit subj:
grade(s): secondary

GENETIC ENGINEERING / TRAITS OF E COLI, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993. Cat. #:88 W 8230
kit subj:
grade(s): secondary

GENETIC ENGINEERING III: A PHAGE EFFECT, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993. Cat. #:36W 3007
kit subj:
grade(s): secondary
MEIOSIS KIT, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
Cat.#:814501
kit subj:
grade(s): middle, secondary

MITOSIS KIT, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993.
Cat.#:81-4202
kit subj:
grade(s): middle, secondary

kit subj: DNA
grade(s): secondary

REGULATION OF GENE EXPRESSION, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993. Cat.#:36Y 5373
kit subj:
grade(s): secondary

RNA SIMULATION KIT, Carolina Biological Supply Company, 2700 York Road, Burlington, NC 27215, 1993. Cat.#:17-1035
kit subj: RNA
grade(s): middle, secondary

National Diagnostics, SEQUAGEL SEQUENCING SYSTEM, National Diagnostics, 305 Patton Drive, Atlanta, GA 30336, 1993.
kit subj: ELECTROPHORESIS
grade(s): secondary

National Diagnostics, SEQUAGEL-6 AND SEQUAGEL-8, National Diagnostics, 305 Patton Drive, Atlanta, GA 30336, 1993.
kit subj: ELECTROPHORESIS
grade(s): secondary

Ward’s Natural Science, MAPPING AND SEQUENCING THE HUMAN GENOME, Ward’s Natural Science Establishment, Inc., 5100 West Henrietta Road, P.O. Box 92912, Rochester, NY 14692-9012, 1993. Cat.#:36 Y0023
kit subj: HGP
grade(s): secondary
JOURNALS
 journal subj:
 grade(s):

Shea, Nadine, LOS ALAMOS SCIENCE JOURNAL, HGP ISSUE, Los Alamos National
 Laboratory, Mail Stop # 20, Los Alamos, NM 87545, 1992.
 LAUR-92-2620
 journal subj: HGP
 grade(s): secondary, adult, professional

NEWSLETTERS
GENE POOL NEWSLETTER, Region II Genetic Center, Children’s Medical
 Center, Dayton, OH 45404, 1993.
 newsletter subj:
 grade(s): secondary, adult, professional

YOUR WORLD: BIOTECHNOLOGY AND YOU, GENETICS ISSUE, Pennsylvania
 Biotechnology Association, 1524 West College Avenue, State College,
 PA 76801, 1993.
 newsletter subj: BIOTECHNOLOGY
 grade(s): middle, secondary

Neureither, Barb and Bealer, Jonathan M., GENETIC PROBE, Genetics
 Education Center, University of Kansas Medical Center, Kansas City,
 newsletter subj: TEACHING GENETICS
 grade(s): secondary, adult

POSTERS
DIRECTED GENOME SCREENING POSTER, ONCOR, 209 Perry Parkway, Gaithersburg,
 MD 20877, 1993.
 poster subj:
 grade(s): secondary, adult, professional

FISH POSTER, ONCOR, 209 Perry Parkway, Gaithersburg, MD 20877, 1994.
 poster subj:
 grade(s): secondary, adult, professional

The Journal of NIH Research, LANDMARKS OF HUMAN GENOME, 2ND EDITION,
 Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711,
 1993. Cat.#:36-0023
 poster subj: POSTER
 grade(s): secondary, adult, professional

RESOURCES
Alliance of Genetic Support Groups, DIRECTORY OF NATIONAL GENETIC
 VOLUNTARY ORGANIZATIONS, Alliance of Genetic Support Groups, 35
 resource subj: REFERENCE, SUPPORT GROUPS
 grade(s): secondary, adult, professional
Cat. #: 0959-437x
resource subj: REFERENCE
grade(s): secondary, adult, professional

National Association of Biology Teachers, SOURCE BOOK OF BIOTECHNOLOGY ACTIVITIES, National Association of Biology Teachers, 11250 Roger Bacon Drive, #19, Reston, VA 22090, 1993.
resource subj: BIOTECHNOLOGY
grade(s): secondary

VIDEOTAPE
AMNIOCENTESIS AND CHORIONIC VILLUS SAMPLING, Millner-Fenwick, 1993.
videotape subj: PRENATAL DIAGNOSIS
grade(s): secondary, adult, professional

ASSOCIATION OF CYTOGENETIC TECHNOLOGISTS MEETING, ACT, 1992
videotape subj: CYTOGENETIC TECHNOLOGY
grade(s): secondary, adult, professional

CYSTIC FIBROSIS - EVERY KINDA PEOPLE, 1992
videotape subj: CYSTIC FIBROSIS
grade(s): secondary, adult, professional

CYSTIC FIBROSIS CARRIER TESTING: THE CHOICE IS YOURS, 1992
videotape subj: CYSTIC FIBROSIS
grade(s): secondary, adult, professional

GENETIC ENGINEERING: THE NATURE OF CHANGE, Math and Science Education Center, 8001 Natural Bridge Road, St. Louis, MO 63121, 1993.
videotape subj: GENETIC ENGINEERING
grade(s): secondary, adult, professional

videotape subj: HGP
grade(s): secondary

MAP OF LIFE: SCIENCE, SOCIETY, AND THE HUMAN GENOME PROJECT, Carolina Biological Supply Company, 2700 York Road, Burlington, NC 27215, 1992
videotape subj: HGP
grade(s): secondary, adult, professional

MARCH OF DIMES CLINICAL GENETICS CONFERENCE: MICRODELETIONS AND FRONTIERS, March of Dimes Birth Defects Foundation, Education and Health Promotion Department, White Plains, NY 10605, 1992
videotape subj: MEDICAL GENETICS
grade(s): secondary, adult, professional
MOLECULAR MIRACLES: HUMAN GENE THERAPY AND THE FUTURE OF MODERN MEDICINE, Carolina Biological Supply Company, 2700 York Road, Burlington, NC 27215, 1992
videotape subj: GENE THERAPY
grade(s): secondary, adult, professional

NANNY’S BIRTHDAY: YOU’RE NOT SICK, YOU’VE ONLY GOT H.D., Huntington Disease Soceity of America, 14 West 22nd Street, New York, NY 10011-2420, 1993.
videotape subj: HUNTINGTON DISEASE
grade(s): secondary, adult, professional

videotape subj:
grade(s): secondary, adult, professional

PARENTING CHILDREN WITH DISABILITIES, Research Press, Department J, Champaign, IL 61826, 1993
videotape subj: DISABILITIES
grade(s): secondary, adult, professional

PARENTS’ VIEWS OF LIVING WITH A CHILD WITH DISABILITIES, Research and Training Center on Independent Living, Media Project, Lawrence, KS 66045, 1993
videotape subj: DISABILITIES
grade(s): secondary, adult, professional

SUPPORT FOR PRENATAL DECISION, Support for Prenatal Decision, P.O. Box 1161, San Bernardino, CA 92402, 1994.
videotape subj: PRENATAL DIAGNOSIS
grade(s): professional

UNDERSTANDING SPINA BIFIDA, ACCESS Plan, 1993
videotape subj: SPINA BIFIDA
grade(s): secondary, adult, professional

Aase, Jon M., THE CLINICAL DIAGNOSIS OF FETAL ALCOHOL SYNDROME, Flora & Company, P.O. Box 8263, Albuquerque, NM 87198-8263, 1994
videotape subj: FETAL ALCOHOL SYNDROME
grade(s): professional

Blatt, Robin, EXPLORING THE SCIENTIFIC AND HUMANISTIC DIMENSIONS OF THE HGP (TEACHER), MCET, 38 Sidney Street, Cambridge, MA 02139, 1994
videotape subj: HGP
grade(s): secondary

videotape subj: MEDICAL GENETICS
grade(s): secondary, adult, professional
Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 1 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 2 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 3 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 4 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 5 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

Cold Spring Harbor, WINNING YOUR WAY THROUGH DNA, 6 OF 6, Cold Spring Harbor Laboratory Press Co., Fulfillment Department, Plainview, NY 11803-2500, 1992
videotape subj: DNA TECHNOLOGY
grade(s): secondary, adult, professional

videotape subj: MEDICAL GENETICS
grade(s): secondary

videotape subj: LABORATORY TECHNIQUES
grade(s): middle, secondary, adult

videotape subj:
grade(s): professional
videotape subj: NF
grade(s): secondary, adult, professional

University of Michigan Education Program, FRANCIS COLLINS’ KEY NOTE ADDRESS, University of Michigan Education Program, Human Genome Center, Ann Arbor, MI 48109-0674, 1993.
videotape subj: HGP
grade(s): secondary, adult, professional

WGBH Education Outreach, THE SECRET OF LIFE (PREVIEW), WGBH, Education Outreach, Boston, MA 02134, 1992
videotape subj: BASIC GENETICS
grade(s): secondary, adult, professional

WGBH Education Outreach, THE SECRET OF LIFE: PROGRAMS 1 AND 2, WGBH, Education Outreach, Boston, MA 02134, 1993
videotape subj: BASIC GENETICS
grade(s): secondary, adult, professional

WGBH Education Outreach, THE SECRET OF LIFE: PROGRAMS 3 AND 4, WGBH, Education Outreach, Boston, MA 02134, 1993
videotape subj: BASIC GENETICS
grade(s): secondary, adult, professional

WGBH Education Outreach, THE SECRET OF LIFE: PROGRAMS 5 AND 6, WGBH, Education Outreach, Boston, MA 02134, 1993
videotape subj: BASIC GENETICS
grade(s): secondary, adult, professional

videotape subj: BASIC GENETICS
grade(s): secondary, adult, professional

143 MATERIALS TOTAL
SUGGESTION FORM

Other resources to recommend:

- Book
- Booklet
- Brochure
- Computer Program
- Curricula
- Hands-on Material
- Videotape

Author:

Title:

Year:

Subject:

Publisher / Distributor:

Publisher Address:
 City:
 St.:
 Zip:

Book ISBN #:

Kit Catalog #:

Target Grade(s):

- Elementary
- Middle
- Secondary
- Adult
- Professional

Annotation:

e-mail to:

geneduc@ukanvm.cc.ukans.edu

or send to:

Genetics Education Center - Resources
4023 Wescoe Pavilion
University of Kansas Medical Center
3901 Rainbow Boulevard
Kansas City, KS 66160-7318
TEACHER PRESENTATIONS
Compiled by the Genetics Education Center,
University of Kansas Medical Center, Kansas City, KS 66160-7318

1. Title: Embryology and Genetics
 Description: Slide presentation on sequence of embryological development and disorders arising week to week.
 Teaching Supplies: slide projector

2. Title: Rappin' and Replication
 Description: This project, through music, helps students to learn and to retain information about the structure of nucleic acids and the processes culminating in protein production.

3. Title: Human Karyotyping Made Easy (and Fun)
 Description: Stylized chromosomes and photographs make karyotyping a pleasure and can lead into discussions about chromosomal abnormalities.
 Teaching Supplies: Glue sticks, scissors, envelopes: 1/student

4. Title: Gel Electrophoresis
 Description: I would like to explain the "Lending Library" we have developed through the Cornell Institute of Biology Teachers which includes a lab on gel electrophoresis and DNA Fingerprinting.
5. Senate Health Subcommittee Debate on Funding for Specific Genetic Disorder Associations

Description: Budget cuts require a reduction in Federal funding for 6 different genetic disorder associations. All sides present issues, and a subcommittee rendered a decision. (Student group learning)

Teaching Supplies: overhead projector

Linda S. Davis

6. What Do Genes Have To Do With Proteins?

Description: DNA, chromosomes, nucleotide and genes are all related. Amino acids make proteins. Sequences of nucleotide determine sequences of amino acids in proteins. Students have a hard time seeing these relationships!

Teaching Supplies: black board or flip chart

Sally De Mott

7. Let's Have A Baby

Description: Students are randomly paired with each other and then given 23 pairs of chromosome. Various genetic problems and defects are carried on these chromosomes. They create children by donating one of each pair of chromosomes.

David S. Ely

8. I will share a variety of handouts and activities I use and just recently collected at the NSTA National Convention in Kansas City.

Teaching Supplies: overhead projector

Tom Ford

9. Genetic Defects

Description: A slide presentation of defects that have been taken from textbooks.

Teaching Supplies: slide projector

Pete Hay
10. Title: DNA Profiling Activity
Description: Through the process of simulating treatment of DNA with restriction enzymes, electrophoresis, and radioactive probes, students determine if a baby mix up has occurred at the local hospital.
Teaching Supplies: audiotape player

11. Title: Investigating Inherited Human Traits from "Biology"
Description: This is a paper lab using coins to help determine which traits are inherited. A composite picture is drawn using these traits.
Teaching Supplies: overhead projector

12. Title: Independent Lab Visits
Description: Students conduct their own "Field Trips" to area research laboratories. They become class experts on the lab's research projects via interviews and an indepth tour of the facility. Video presentations of lab's work enables slides of "experts" to teach peers in class.
Teaching Supplies: overhead projector, VCR and monitor

13. Title: Go Ahead, Make My DNA!
Description: A partnership was formed in Seattle between teachers and scientists to provide lab experience and equipment. Local biotechnology companies purchased 10 kits for electrophoresis, chromatography, and DNA extraction.
Teaching Supplies: slide projector
14. **Title:** Why Do You Have Your Grandmother's Nose?
Description: This is a sample genetics unit for a 7th grade science class. It overviews the basics of genetics in an interdisciplinary, multi-cultural, hands-on manner.

Teaching Supplies: slide projector, overhead projector

15. **Title:** Marriage Lab / Metaphase Spread
Description: Students are married to fictitious partners with an established genotype and have children. Use a kit created by the University of Michigan to make a metaphase spread.

Teaching Supplies: overhead projector

16. **Title:** Rockets into the Unknown: Diagnosing Multiple Sclerosis
Description: Multiple sclerosis, a disease of the central nervous system in which myelin is destroyed, is thought to be an autoimmune disease with a genetic component. This activity is used in a genetics course to illustrate several basic immunology and genetics concepts: 1. autoimmune diseases, 2. antigen-antibody complex, and 3. use of electrophoresis to diagnose diseases.

Teaching Supplies: overhead projector

17. **Title:** The Genetic Tale of Romeo and Juliet, à la Morris
Description: After an initial discussion of dominance and recessiveness and the use of the punnet square, this is a fun activity the students enjoy. It is designed to be a cross curriculum activity with English. Of course, it requires a discussion of the multiple allele and polygenic affects on eye color.

Teaching Supplies: overhead projector
18. Title: Human Genome and Public Policy
Description: An interdisciplinary high school program (biological and social sciences) designed to explore the legal ramifications of the Human Genome Project. Parts of program: Mock Scientific Symposium, case studies, Mock Senate and current legislation.
Teaching Supplies: VCR and monitor

19. Title: "Making a Baby" Adaptation of Ball State Activity
Description: In this activity students will produce a karyotype, locate specific genes on chromosomes, carry out meiosis and fertilization and play the role of a genetic counselor.
Teaching Supplies: overhead projector

20. Title: Using the Mock Interview Technique to Begin a Lesson
Description: A short mock interview using students can generate much interest at the beginning of a new unit of topic. Students begin to ask questions about issues which impinge on their content learning. This provides motivation to learn more.

21. Title: Forming Industry - Secondary School Alliances
Description: Developing strategies for obtaining equipment and supplies from the corporate sector.

22. Title: Simple Restriction Enzyme Mapping of a Plasmid; Slides of Genetic Defects
Description: Techniques will be presented for teaching students how to map plasmid DNA of a bacterial cell once it has been cut by restriction enzymes.
Teaching Supplies: slide projector overhead projector
23. Title: Science Material Fellowship and GTE GIFT Grant
Description: Learn about these exciting opportunities for math and science teachers. Sample application will be available for close scrutiny by future applicants.

24. Title: Human Model of DNA Replication and Protein synthesis
Description: People will be used to demonstrate the essentials of the two roles of DNA in the cell.

25. Title: How DNA/Protein Research at OHSU Provided Background for a Unit in Molecular Genetics
Description: By working at the Oregon Health Science University on a Murdack Research Grant for two summers, I developed a unit in molecular genetics involving electrophoresis, restriction digests, cloning, mini preps.

Teaching Supplies: slide projector

26. Title: Inheritance of Chromosomes
Description: This exercise depicts the inheritance of chromosomes (with their accompanying genetic conditions) through three generations, demonstrating the percent of inheritance from grandparents being a matter of chance.

Teaching Supplies: overhead projector, power source
LESSON PLANS
Compiled by the Genetics Education Center,
University of Kansas Medical Center, Kansas City, KS 66160-7318

30. DNA/RNA Protein Synthesis
Title: DNA/RNA Protein Synthesis
Objective: To help students, through music, to learn and to retain knowledge about the structure of nucleic acids and the processes culminating in protein production.
Supplies: instruction sheet, log sheet, rap music tape, tape players, and any props or costumes that the students choose.
Grade Level: 9 10
Class Time: 6 days during classtime

31. RFLP and Electrophoresis in DNA
Title: RFLP and Electrophoresis in DNA
Objective: To understand the mechanism and implications of DNA fingerprinting
Supplies: colored pens or pencils (2 colors per student)
Grade Level: 9 10 11 12
Class Time: 1 hour, 20 minutes
Description: Part I: the students would read an article from "Discover Magazine" titled "DNA Fingerprint: Witness for the Prosecution", June '88 pp42-52, and answer a set of questions about the article. Part II: The students are given a set of DNA fragment listings for four people: a victim and 3 suspects. They are then shown two restriction endonuclease and where these enzymes cut DNA. They are instructed to mark sites of enzyme activity and to count base units in resulting fragments. They then mark the fragments on a "gel" data sheet. As in the article, they can then discover the criminal.

32. Human Genetics
Title: Human Genetics
Objective: To stimulate interest in heritable traits.
Grade Level: 11 12
Class Time: 50 minutes

Mary Jane Bassett

Jonathan Bealer

Cissy Bennett
I have my students fill out the first side of the sheet at home. Usually, they haven't previously noted these differences that exist between people. In class we discuss the results, making sure everyone understands the relevant terms and concepts of dominance, phenotype, etc. The other side of the sheet is then filled out in class as a groups. This generates a lot of questions and surprise that dominant traits and not always the most common. We usually include a discussion about selection of traits leading evolution.

33.

Title: Dropping Your Genes

Objective: To simulate how genetic traits are passed from parents to child.

Supplies: paper, scissors, stapler, pencil

Grade Level: 9 10

Class Time: 30 to 40 minutes

Description: Using cut out paper chromosomes, students simulate the passing of selected genetic traits from two parents to a child. Students are placed in pairs (preferably boy/girl). They analyze their own genetic make-up for nine selected genetic traits. The student cuts from paper a set of chromosomes and marks them to match his or her personal traits. The pair of students then drops their chromosome sets on the desk and determines the traits and gender of their potential child. To conclude the activity, the students draw a portrait of their child.

34.

Title: Human Genetic Disorders Debate

Objective: Advocate funding for a specific genetic disorder via lobbying in the senate forum

Supplies: overhead projector

Grade Level: 9

Class Time: 3.5 days in class; 2 days media center
Description: 1. Logistics for students: divide into six groups of 3-4 people. Senate subcommittee consists of seven people with one person appointed chairperson. Each group selects a disorder and is given questions to focus on for their research/discussion. 2. Logistics For Research: Media Center staff alerted as to which areas students will be seeking information. If many books are pulled from the shelves students stay on task. Minimum of two days to find, write, and document sources. 3. Logistics for the Debate: one day for the group to decide roles, order of presentation, prepare visual aids, etc. Prescribed debate format followed with an open-ended style. Subcommittee ask questions for each group, records answers, keeps order and allows a good flow for discussion. Subcommittee adjourns for discussion. Reasons for their decision must be made. Videotaping allows keeping track of participation and good public relations for parents' night.

Richard G. Dawson

35.

Title: Poetic Approach to Genetics

Objective: To involve more students more fully in understanding by having them translate genetic concepts into poetic form. (i.e., to stimulate divergent thinking among the narrow-focused, and to reach out and catch the imagination of those out-of-focus students and bring them in.)

Supplies: directions, examples (printed or oral)

Grade Level: 7 8 9 10 11 12

Class Time: 2 class periods or more

Description: Science educators ask students to respond to short-answer and essay questions about facts and concepts. We ask them to summarize book excerpts and magazine article for literature reviews. We ask them to describe laboratory exercises or their own research investigations. All of these are too often cast in lifeless, stodgy, and stilted prose, as are the papers of professional scientists. We need more ways to spark the imagination of uninvolved students, to stimulate the science-bound to write better, and to entice creative writers into becoming interpreters of the fun and excitement of science for the general audience. One way is by reading how the discoveries, ideas and practices of sciencing have been tweaked by the careful and colorful word-choice of poetry. I have put together a number of poems I have found useful to illustrate various topics, have written some, and each year publish student poems.

Sheryl Dominic

36.

Title: Debate Format for Biology Class

Objective: To enable students in debating moral and ethical issues relating to biology

Supplies: pad of large sheets of paper, magic markers, stop watch.

Grade Level: 7 8 9 10 11 12

Class Time: 3 class periods minimum
Description: This lesson plan outlines a strategy to engage biology students in debate. First, a proposition is written. Then, students work in cooperative groups to investigate pro and con arguments and to outline them on large sheets of paper. One student from each group is selected to participate in the debate following the format in the lesson plan. One student is selected to serve as moderator and time keeping. Other class members serve as judges and prepare reports outlining their opinions on the debate. Following this plan, all students play an active role in debating a societal issue relating to biology.

37. Title: Genetic Inheritance
 Objective: Improve students understanding of how traits are inherited
 Supplies: jellybeans, jelly bellies, disposable cups or beakers
 Grade Level: 9 10
 Class Time: 30 minutes
 Description: Each cup contains both jellybeans and jelly bellies. The jelly beans represent the genes coding for hair color with black being dominant over white. The jelly bellies represent genes coding for eye color. Brown is dominant over blue. Draw 1 jellybean from each cup. List their genotype and phenotype, then return them to the cup. Repeat 10 times. These represent the offspring. Repeat drawing 1 jellybean and 1 jelly belly from each cup. Make sure to return to the appropriate cup. Again state the genotype and phenotype for each child.

38. Title: Chances' Choices Curriculum Ma
 Objective: To familiarize students with various human genetic disorders and to involve them in debates over various bio-ethical decisions
 Supplies: overhead projector
 Grade Level: 10 11 12
 Class Time: 2 - 4 weeks
 Description: This module, created by GENESySTEMs, provides the students with various scenarios depicting the real life situations faced by the Chance family. The scenarios provide the students with background information on some common genetic disorders. At the same time, the module requires students to become familiar with pedigree analysis. By learning the 'cast of characters', students develop an understanding of how these disorders are inherited by family members. I've used this module for about three years and I'm always amazed at the level of motivation by the students. They become extremely dismayed when we have to leave the module. As a matter of fact, this year I continued the module by having them write the final episode of the Chances' Choices.
39. Title: **Doodle bug to analyze Karyotype**
 Objective: To construct a karyotype from the metaphase chromosomes of the doodle bug and then analyze prepared karyotypes for chromosome abnormalities
 Supplies: Macintosh computer, optical viewer
 Grade Level: 9 10 11
 Class Time: 1 - 2 class periods
 Description: This activity was developed from a lab activity found in "The Dynamics of Life Laboratory Manual" from Merrill Publishing Co., 1991. It uses a doodle bug graphic to show how a change in the chromosomes causes phenotypic changes in the doodle bug. It requires the student to construct a karyotype and analyze prepared karyotypes. This lab was developed as part of a summer program at Brown University.

40. Title: **Bioethics and Biotechnology**
 Objective: Debating Bioethics
 Supplies: current articles regarding biotechnology
 Grade Level: 10 11 12
 Class Time: 9 - 12 class periods
 Description: This activity uses debate as a unit culmination vehicle of an 8 week biotechnology study that has covered the basic concepts and lab experiences pertaining to molecular genetics and DNA science. At the end of this unit, students will be able to: identify, understand, and discuss many of the ethical questions related to biotechnology; use critical thinking skills to analyze complex questions; formally debate and evaluate issues and arguments concerning biotechnology.

41. Title: **Gene Regulation**
 Objective: To discover how the Lac Operon works through the use of a manipulative.
 Supplies: scissors, stiff paper, tape
 Grade Level: 10 11 12
 Class Time: 50 minutes

42. **Maureen Floor**
 Robert L. Garrison
 Cheryl L. George
 Becky Goodwin
Title: Advances in Techniques & Tech.
Objective: Generate discussions about modern technology and genetics.
Supplies: 35mm slide projector or photo CD system
Grade Level: 9 10 11 12
Class Time: 50 minutes
Description: I never try to start a discussion or introduce a topic without some photo, drawing, or model. I have developed a series of slides (now on a photo CD) which are readily available to recall as needed depicting advances in genetic-related material, concepts connected to genetics, and headlines from magazines, newspapers, or other sources. Students have an ongoing assignment to bring articles to class from a variety of sources relating to health, genetics, and environmental issues. This helps them become more aware if issues, helps create good reading habits, and helps my picture/concept file grow. Students do not have to give me the magazine (I just photograph the article or story), and we xerox the newspaper stories. These materials generate discussions, from scientific explanations, to ethical content on an ongoing basis. We have a hallway bulletin board where this information is displayed for all to see.

Title: Genetic Counseling
Objective: To become familiar with the human problems of occurrence or risk of a genetic disorder.
Grade Level: 10 11 12
Class Time: 2 - 3 days (depending on class size and enthusiasm)
Description: Near the end of the genetics unit I divide my class into groups. Each group is responsible for preparing a script that would simulate a real situation. After the assignment of players and their roles, students role-play a genetic counseling session in front of their peers. Following the role-playing session, class members ask questions and make comments about the genetics of the session as well as the dialogue. This activity is especially valuable for students that have difficulty participating in a group situation. Students pick their own genetic condition and write their own script.
44. Title: Biology - Genetics
Objective: To understand human inheritance and genetic recombination
Supplies: coins, paper for making sketches, pencil
Grade Level: 7 8 9 10 11 12
Class Time: 45 - 50 minute period
Description: Students receive a list of 30 facial characteristics which includes the mode of inheritance of each and a sketch of the phenotypes that could result. One example would be widow’s peak hairline. (WW or Ww)-present; (ww)-absent. Students working in teams of two simulate the role of heterozygous parents by flipping coins (which represent gametes) to determine the trait that their one offspring will inherit. Heads represents the dominant allele; tails the recessive. The coin is tossed along with that of the partner’s for each of the 30 characteristics. The resulting combination of coins (zygotes) is recorded for each trait. Students then make a composite sketch of “their child” as she/he would appear as a teenager based upon the phenotypic sketches provided and the genotypes inherited. The sketches are displayed in the classroom. One very positive aspect of this activity is the realization by students of the process of genetic recombination. All parents are genetically the same yet the offspring, when compared, display remarkable phenotypic differences. A similar laboratory appears in Miller-Levine’s Biology Laboratory Manual - Prentice Hall, 1991.

45. Title: Human Genetics Unit
Objective: To simulate the ways characteristics are passed from generation to generation.
Grade Level: 7 8 9
Class Time: 2 - 3 weeks
Description: The students explore the principles of human genetics by participating in a variety of activities that simulate the ways that characteristic are passed from generation to generation.

Learning outcomes include: Content: human reproductive cycle, mitosis, meiosis, probability in genetics, diversity, modes of inheritance, sex determination, determining disorders through karyotyping, ethical decision-making. Process: observation, measurement, organization, prediction, record-keeping, gathering information, models, experimentation, problem-solving, listening, group presentations, reading, writing, electronic communication. Teaching Strategies: puzzle game, cooperative learning, case studies, models, student presentations, microscope lab investigation, role plays, student library research.
46.
Title: Biology
Objective: To experience some of the problems of a specific disease.
Supplies: Tempera paint
Class Time: 1 period prep and research, 1 period discussion
Description: This exercise is designed to allow the student to experience some of the problems associated with this disease. The student wears a mark on his or her face or a sign pinned to clothing identifying the student as "diseased". The students then have a paper due describing the experience. This assignment works well after doing the BSCS module of Human Genome. These activities coupled with the research on his or her condition give the student a good basis for teaching other students and teachers about ramifications of the disease.

47.
Title: Rocket Electrophoresis
Objective: Genetic nature of autoimmune diseases; antigen-antibody complex
Supplies: overhead, electrophoresis equipment, micropipette equipment
Grade Level: 9 10 11 12
Class Time: 3 class periods

48.
Title: Face Lab
Objective: To present Mendelian Genetics using facial characteristics.
Supplies: paper (8 1/2 X 11 or larger, or newsprint paper) or drawing boards; crayons or markers, one coin for each student.
Class Time: 2 class periods
Description: Students assume they are heterozygous for each of the 29 facial characteristics. Working in pairs (one husband and one wife) the students each flip a coin to determine if they are contributing a dominant gene or a recessive one to this particular offspring. The resulting genotype and phenotype are recorded until all 29 traits are listed. Then the students draw the person they "created". If MacPaint is available on a classroom set of computers, the faces can be drawn this way, and then colored in. Since all sets of parents are genetically the same, it is easy for the students to conclude that there are many possible combinations of offsprings. These papers or boards make excellent classroom decorations for the rest of the genetics unit. Hand-out: List of Traits
49.

Title: **Who Dun It?**

Objective: To become familiar with forensic pathology techniques

Supplies: DNA extraction kit (Carolina 21-1149 electrophoresis equipment)

Grade Level: 10 11 12

Class Time: Five 55 minute class periods

Description: Students view a crime scene where a bakery worker (a member for the class) has been "strangled". They gather clues, such as a footprint in spilled flour, a drip of blood on a recipe card (actually food coloring), a hair sample found also on the recipe card, tissue from under the fingernail of the victim (macerated liver), and the rope form around the victim's neck. The footprint is sketched and a photo is taken. (A cast could be poured.) The hair sample is examined under the microscope and a photo taken. Tissue from the fingernail is collected and becomes the source of extracted DNA. You can use a DNA extraction kit with Freeze dried E. Coli to simulate actual human DNA or macerated dog testis can be placed under the fingernail and DNA extracted following the standard extraction procedure. A DNA profile can be made. To simulate the creation of a human profile, use Restriction Enzyme Cleavage of DNA Kit. Using gel electrophoresis, load uncut DNA in well #1, DNA cut with Eco RI (which represents the suspect #1's DNA) into well #2, DNA cut with Hind III (which represents suspect #2's DNA) into well #3, and DNA cut with Eco RI again (which represents the tissue taken from the victim's fingernail) into well #4. Students will compare the bands and determine whether suspect 1 or 2 is the killer. After looking at all the evidence gathered at the crime scene and the DNA analysis, the two suspects are brought into the classroom. From the DNA profile, they know who the murderer is, but they also look for hair color, shoe pattern, cuts and scratches, etc.. The students determined that the physics teacher was the culprit. (He had been gracious enough to step in the flour and donate several strands of hair.)

50.

Title: **Human Genome Project Overview**

Objective: To present a cohesive overview of the Human Genome Project.

Supplies: Printed materials, overhead projector and transparencies

Grade Level: 11 12

Class Time: 2 - 3 periods
When I present this material, my Biology II students spend considerable time learning about the "Technology of DNA" and have done hands-on labs while dealing with gel electrophoresis of DNA and protein and planned DNA.

This is the first attempt at teaching the details of the Human Genome Project and the development of this material was as much for my benefit as theirs. The stapled four page material was given to the students to read. Then we spent the next 2 - 3 days going over the material and the graphics I produced. I liked the unit because there are a great many concepts that both I and my students found enjoyable and challenging.

I thought the unit went well and I plan to update and modify it for next year.

Title: Human Genome and Public Policy
Objective: To explore the legal and social ramifications of the Human Genome Project
Grade Level: 9 10 11 12
Class Time: two weeks
Description: HUMAN GENOME AND PUBLIC POLICY is an interdisciplinary high school program (biological and social sciences) designed to explore the legal and social ramifications of the world-wide Human Genome Project (HGP). This program emphasizes critical thinking skills and provides instructional materials for all parts of the program, including the scientific symposium, the case studies, the senate and the current legislation.

BACKGROUND FOR THE HUMAN GENOME PROJECT: The HGP, being compared in magnitude to the Manhattan project, thrusts students into what many scientists refer to as a "revolution". Over the next fifteen years, an estimated 100,000 genes will be "mapped and sequenced", allowing scientists to determine a person's propensity to disease, years before cures are found. The focus of this program is to involve students in decision-making processes surrounding the social and legal dilemmas created as a result of the new science technology.

PART 1 SCIENTIFIC SYMPOSIUM: The program begins as the classroom is turned into a scientific symposium. Following the presentation of essential background information regarding the HGP, student teams research and present information regarding a genetic disease recently discovered as a result of the HGP.

PART 2 CASE STUDIES: Equipped with the knowledge of several genetic diseases, the students are placed in the public realm to solve case studies related to the genetic disease. For example, if the genetic disease of colon cancer had been researched, the student team would discuss a case study about a young man who, during a pre-employment physical, discovers that he has a gene for colon cancer. The students would identify issues surrounding the case study such as whether or not the young man should be hired, whether or not his wife, his children, his insurance company should have access to this information, etc. Worksheets are used to help the students clarify these issues.

PART 3 MOCK SENATE: Following the identification of the issues, preparation is make for the mock senate. The students become senators working in committees to draft bills. Using simplified parliamentary Rules, the senate convenes at which time authorship, proponent and opponent speeches are made in order to persuade the mock Senate to pass legislation. Compromises in the form of amendments are needed to pass bills. Great excitement is generated as students use their knowledge of the HGP, their critical thinking skills and their powers of logic and negotiation to pass their committee's bill.

PART 4 CURRENT LEGISLATION: As a wrap-up, each student is given a copy of the current law that is supposed to "protect" those predisposed to genetic disease. The students list the strengths and weaknesses of this law - The Americans with Disabilities Act (ADA 1991) - and decide whether or not it should be amended.

PART 5 EVALUATION: Written evaluation includes the research paper (part 1), the issues surrounding a case study (part 2), the justification concerning the law (part 4). Evaluation of the scientific symposium and senate (parts 1 & 3) includes a videotape for portfolios. Evaluation of group participation is in checklist form (parts 1 & 4).
52.
Title: Mitosis-Meiosis-Gene Inheritance
Objective: An inexpensive hands-on method to show Mitosis-Meiosis-Gene inheritance
Supplies: mitosis, etc transparencies, video and laser disk, compass, colored markers, construction paper 24 X 36, various colored construction papers, scissors, glue.
Grade Level: 10
Class Time: Mitosis 2 classes; Meiosis 2 classes; Gene Inheritance 2 classes
Description: Purpose: Mitosis is simple cell division. During mitosis, a cell divides into 2 daughter cells that each contain the same number of chromosomes as does the parent cell. Meiosis is reaction division. During meiosis a cell divided into two cells that each contain half the number of chromosomes as did the parent cell. The purpose of this activity will be for you to model what happens in the nuclear area of cells that go through mitosis and meiosis. When you are finished you should be able to explain how "G-Whatsit" grows, repairs and reproduces. After discussing gene inheritance on chromosomes, you will then use your model to follow the progress of selected genes on the model.

53.
Title: Genetics
Objective: To explore how genetic traits are passed from one generation to another
Supplies: overhead projector, tape, scissors, dice, resources for genetic conditions.
Grade Level: 10 11 12
Class Time: 3 class periods or more
Description: Students will produce a karyotype using a metaphase spread of "cartoon" chromosomes. They will organize them in the karyotype using size, banding pattern and centromere location. Students locate nine specific genes on the chromosomes using standard notation such as 7q12. The genes will be assigned in such a way as to make the individual a "carrier" for the recessive disorders. Students carry out meiosis 1 using dice to determine which chromosome from each pair will be passed on to the sex cells. They will use scissors to cut the double chromosome in half to perform meiosis 2. Students carry out fertilization by combining the chromosomes in their sex cell with those in another sex cell from a classmate. The chromosomes will be organized into a karyotype for the offspring. Students become genetic counselors who analyze the karyotype for genetic disorders, determining what the child may encounter in the future. Student do research about the disorders the child may encounter in the future and then prepare a report for the doctor and parents of the child. Then students carry out a discussion with classmates who are acting as parents of the affected child. Answering their questions about what the future holds for their child and their family.
54.
Title: Recombinant DNA, Modern DNA Technology
Objective: Sensitizing students to one of the ethical issues in this area and give motivation to learn
Grade Level: 9 10 11 12
Class Time: 15 - 20 minutes
Description: A mock interview between the personnel director of a chemical company (teacher) and a prospective researcher (student volunteer) is conducted at the beginning of a unit.

55.
Title: Genetics
Objective: Review the major concepts of genetics
Supplies: IBM computers
Grade Level: 9 10
Class Time: variable
Description: This computer program developed by the WISD in Ann Arbor, MI is designed to allow students to reinforce concepts and material concerning genetics. A novel approach is used which allows students to select correct or incorrect answers and be faced with reading material which tells them why they are correct or wrong.

56.
Title: Ethical Aspects of Testing
Objective: Discover some of the complexity in the ethical questions related to genetics testing and screening
Grade Level: 9 10 11 12
Class Time: 1 period of discussion
Description: Is genetic screening desirable for pre-pregnancy or premarital situations? If every person carries 6 or 7 deleterious genes, which diseases should be tested for? The most common? The most likely? Just because we can locate mutations should we test for them? Is it cost effective? Is it necessary? Is it beneficial and for whom? Certain diseases such as Cystic Fibrosis and Tay-Sachs are caused by one of several mutations. Just because scientists know two common mutations, the tests (negative results) don’t eliminate all possibilities of the disease. Individuals might be told they are 70% to 80% free. How many mutations do you look for? When do you stop looking? Is 80% surety enough? If technology is available should you test everybody for everything? Where do you allocate precious dollars? Do you stop at one level of knowledge or certainty? Do you test for “esoteric” diseases? What if someone is part of an inbreeding group? Some tests are inconclusive. Perhaps the individual is a carrier, but not definitely. How would you feel and what would you do if told that a test is inconclusive. if a couple goes ahead with a pregnancy test on the embryo, then the decision is a different one: choosing abortion, not choosing abortion, or perhaps somatic gene therapy.

57.

Title: Mitosis / Meiosis

Objective: Teach mitosis and meiosis through hands-on activities.

Supplies: 6 red, 6 white, 6 blue skeins of yarn, 6 rolls of scotch tape, 24 pairs of scissors for a class of 24.

Class Time: 1 period & homework session for teacher; 4-5 periods for students

Description: Yarn will be used to demonstrate the stages of mitosis and meiosis.

58.

Title: Genetics Karyotyping

Objective: To learn to karyotype in order to match with pictures.

Supplies: overhead and slide projector

Grade Level: 9 10

Class Time: 3 days
Description: Judy Capra Program
Day 1: Students are shown large photographs of 5 humans. After a brief discussion of each photographed person's features, students cut out stylized chromosomes with the purpose of matching the karyotypes with the pictures.
Day 2: Students compare the 5 karyotypes and try to match karyotype with the 5 people. Students record these features, then discuss what one can determine by karyotyping.
Day 3: Students observe overlays and slides of completed karyotypes, discuss Down's Syndrome, Edward's Syndrome from a human perspective. Show chromosome mutation and prenatal diagnosis techniques. Show a sonogram.

59.
Title: MiniPrep
Objective: Learn how to extract plasmids from bacteria.
Supplies: JM101 bacteria with plasmids such as PUC 19, centrifuge, promege magic mini prep.
Grade Level: 11 12
Class Time: 1 period

60.
Title: Recombinant DNA Using Plasmids
Objective: Understanding process of recombinant DNA using paper / paste simulation
Supplies: Instructions and colored paper sheets: enzymes, cell DNA, plasmid, answer sheet, scissors, tape
Grade Level: 9 10 11 12
Class Time: 2 class periods for work; 1/2 class period for pre-lab
Description: Working in pairs, students simulate the process of selecting the proper enzyme to cut plasmid and cell DNA (close to insulin gene) and then use ligase to join the pieces together. Finally they determine how to test for plasmid uptake.
Title: Inheritance of Chromosomes

Objective: To illustrate the pattern of chromosome inheritance through three generations

Supplies: overhead projector

Grade Level: 10 11 12

Class Time: 2 - 3 days

Description: Students usually think of genes, not chromosomes, being inherited from parents. This lab demonstrates chromosome inheritance through their generations and illustrates the fact the grandchildren do not automatically inherit 25% of their grandparents' genetic make-up. This lab includes karyotyping techniques and is also excellent for reinforcing (or introducing) genetic terms such as dominant, recessive, homozygous, heterozygous, loci, homologous chromosomes, sister chromatids, polygenic inheritance, crossing over, etc.
TEACHING IDEAS ABSTRACTS
Compiled by the Genetics Education Center,
University of Kansas Medical Center, Kansas City, KS 66160-7318

1. Title: Student-led discussions on Concepts of Their Choice
 Objective: To engender student responsibility for student learning.
 Grade Levels: 9 10 11 12 U
 Description: This is a technique that I have used for classroom discussion of such topics as "spontaneous generation" and "Are viruses alive?". Rhodes and Schaible of Southern Maine University devised the process which I have adapted to my needs.
 Presentation: Wednesday from 10:35 to 10:45 Location: Westport Room

2. Title: Human Genetics and Bioethical Decision Making
 Objective: Help students deal with ethical dilemmas
 Source: Dr. Jon R. Hendrix, Ball State University, Muncie, IN
 Grade Levels: 7 8 9 10 11 12 U
 Description: Begin with a short discussion about ethics and morality. Then, provide a decision-making model for teachers to use in their classroom and show them how to focus the discussion.
 Presentation: Thursday from 3:30 to 4:00 Location: Hotel Lounge

3. Title: The Human Genome Project: An Introduction
 Objective: To give students an introductory activity and video experience to the purpose of the Human Genome Project.
 Grade Levels: 9 10 Supplies: video "The Human Genome Project", paper, pencil
 Description: Using sample maps and short descriptions of various locations, the students place towns in a road map. This concrete experience leads to a video "The Human Genome Project". While the video is playing, students answer short answer questions about what they are viewing. The hour is complete with a short reading compiled from various sources. The students complete some questions about the reading, extending basic facts to set the stage for the ethical, legal and social activities to follow on other days.
 Presentation: Thursday from 12:30 to 12:40 Location: Stanfords
4. Engineering Genes

Objective: The positive effects from accidental discovery of altering a gene.

Source: Prentice - Hall

Grade Levels: 9 10 Supplies: overhead

Description:
From Prentice - Hall's "A Gene For All Seasons", a creative method of demonstrating the concept of how genetic engineering evolved. Students developed a storyboard and shared visually what they believed was the object of the article.

Presentation: Wednesday from 3:45 to 3:55 Location: McCoy Room

5. Mendelian Patterns of Genetics

Objective: Illustrates the meiosis and genetic variation

Grade Levels: 8 9 10 Supplies: overhead

Description:
Students are presented the concept of meiosis and variation in genes using an imaginary organism composed of 7 pairs of chromosomes. Following directions builds new generations to specific plans. Misread directions results in mutations. Many ideas for additional activities could be generated. Activity developed at the University of Wisconsin.

Presentation: Wednesday from 3:30 to 3:45 Location: McCoy Room

6. Concept Mapping: the Human Genome Project

Objective: To create a visual representation of the relationships among ideas relating to the Human Genome Project.

Grade Levels: 7 8 9 10 11 12 U Supplies: overhead projector

Description:
A concept map is a visual representation of the relationships among ideas. Concept maps encourage students to organize and synthesize information in a meaningful way and provide teachers with a useful tool to evaluate student understanding. This presentation will show how concept maps can be constructed on the Human Genome Project.

Presentation: Thursday from 4:20 to 4:30 Location: Hotel Lounge

7. Bob Garrison
8.
Title: Student Medical History Project

Objective: To research one's medical history and analyze its implications.

Grade Levels: 11 12
Supplies: slide projector and screen

Description:
The Family Medical History is a project I have my pathology students complete. Using a family tree as a vehicle, students research causes of death, medical afflictions, and age of death. A detailed statistical analysis of longevity and causes of death a required.

Presentation: Wednesday from 9:40 to 9:55
Location: Westport Room

9.
Title: A Biotechnology Unit for High School Biology

Objective: Hands-on experience with biotechnology, writing skills, portfolio development.

Source: two of the labs come from DNA Science and Carolina

Grade Levels: 10 11 12
Supplies: overhead projector

Description:
Students study topics of DNA, DNA fingerprinting, restrictive enzymes, transformation, and genetically engineered food and then perform labs such as DNA extraction, restriction enzymes, and transformation. Students also study real state police autorads to determine the paternity, and innocence or guilt in a sexual assault case. Creative writing assignments are used throughout such as creating stories that use DNA fingerprinting or the defense of the use of DNA fingerprints as evidence in court. Students also develop and advertise presentation and math portfolio entries. The work is then compiled in a "Biotechnology Portfolio". This unit takes a complete quarter and the biotechnology portfolio represents the quarter grade.

Presentation: Wednesday from 10:20 to 10:35
Location: Westport Room
10. Title: Paper Clip Set

Description: Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 9:00 to 9:15 Location: Westport Room

11. Title: Discrepant Events in Enzyme Laboratory

Objective: Enzymes, critical thinking, scientific method

Source: original idea

Grade Levels: 9 10 Supplies: slide projector, overhead

Description: Laboratory exercises with unexpected results often dramatically demonstrate scientific concepts. Students conduct a simple analysis of the ability of commercially available lactase to break down lactose to monosaccharides. They are then asked if lactose can break down other disaccharides. Students employing poorly constructed experimental design have a positive result. The erroneous results clearly demonstrate to the student the importance of controls and standards and the specificity of enzymes. Two other discrepant labs may be discussed if time permits. Grading rubrics are also distributed.

Presentation: Thursday from 2:00 to 2:15 Location: Stanfords

12. Title: Mitosis Chromosome Phenomena Demonstration Set

Description: Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 8:45 to 9:00 Location: Westport Room
13.
Title: Building and Analyzing Pedigrees
Objective: To construct and interpret a family pedigree based on research of family traits.
Grade Levels: 9 10 11 12
Supplies: Large art/post paper or access to PediDraw computer program

Description:
This activity is an independent homework assignment designed to bring closure to a variety of concepts: modes of human inheritance, building of pedigrees, interpretation of pedigrees by genetic counselors and respect for diversity. Prior to this activity, students have completed a modified version of the Marriage Lab (presented by Pat Lamb during the 1993 HGP Workshop). I modified this activity so that it was completed in class by partners. We then laid the groundwork for use of pedigrees by genetic counselors, practiced making and interpreting pedigrees and completed some ethical issues decision-making related to human disorders. This activity assessed student understanding of modes of inheritance and pedigree construction / interpretation. They had one month to research a disorder or trait in the family, construct a four-generation pedigree for that trait / disorder and determine its mode on inheritance. Students were required to complete both a pedigree and a booklet describing their trait / disorder and what it is like to have that trait.

Presentation: Thursday from 12:40 to 12:55
Location: Stanfords

14.
Title: Legal and Ethical Issues Regarding Job Discrimination
Objective: To practice taking a well developed position on an issue.
Source: BSCS
Grade Levels: 9 10 11
Supplies: BSCS lab activity: The Case of Nathaniel Wu

Description:
Do the BSCS curriculum: Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy with the following changes:
1. Present to an adult panel with a lawyer, nurse and school administrator.
2. Have students switch positions to represent the pro and con sides regarding the hiring of Nathaniel Wu. And, present to a new panel of the same kind professionals but different people.
3. Have a go-round afterwards with the panel present where each student and adult is allowed to make comments regarding the entire event and process.

Presentation: Thursday from 12:30 to 12:50
Location: McCoy Room

15.
Title: Human Genetics and Biotechnology
Objective: A two semester, team taught genetics curriculum.
Source: Multi-media
Grade Levels: 11 12
Supplies: overhead, slide projector

Susan Koba

Joe LaFerriere

Bill Limes
Description:
Keith Barnes and Bill Limes have collaborated in developing a team taught Human Genetics Program as a Pilot Project at Olathe South High School, Olathe, KS in 1993. The program has been considered successful enough to be taught at Olathe North High School, Olathe, KS during the 1994-95 academic year as well as at Olathe South High School. The course is divided into 2 one semester courses, Genetics I and II. In Genetics I, students are exposed to the molecular basis of inheritance. In Genetics II, a clinical approach to human genetics is followed including a two week mentorship, various field trips and guest lectures from experts in the field. Many of the teacher presentations are interactive for student and teachers simultaneously. Some cooperative learning is accomplished when appropriate.

Presentation: Wednesday from 3:55 to 4:25
Location: McCoy Room

16. Carole MacMullan
Title: Human Karyotyping Lab Activity
Objective: Students will describe the role of meiosis and fertilization as well as Mendel’s Laws in determining the human genome.
Grade Levels: 7 8 9 10 11 12
Supplies: Overhead
Description:
I have designed a classroom set of human make and female chromosomes based on Susan Offner’s *Plain English Chromosomes* that was published in the October 1993 edition of Biology Teacher. Both the male and female kits contain 23 monoploid chromosomes in which 8 or 9 human genes are shown. Students are paired up with the opposite sex. The male student receives a packet of 23 blue paper chromosomes, and the female student receives a packet of 23 pink paper chromosomes. The students pair up the chromosomes by number until the complete diploid set of 46 chromosomes is created. After all the maternal and paternal chromosomes are paired, the students use Mendel’s Law of Dominance to determine the genetic traits of their paper baby. Each baby has the misfortune to inherit a genetic disease, and each couple must obtain information from a genetic counselor (a student or teacher) on the disease for which the write a report.

Presentation: Wednesday from 10:55 to 11:15
Location: Westport Room

17. Ellen Mayo
Title: The HGP Telecourse: "Exploring the Scientific and Humanistic Dimensions"
Objective: National availability of scientific and ELSI issues related to the Human Genome Project via satellite telecourses.
Source: MCET, Boston, MA
Grade Levels:
Description:
Students and teachers participated in a teleconference this Spring on the scientific and bioethical issues raised by developments in human genetics.

Presentation: Thursday from 1:30 to 2:00
Location: Stanfords
18. Bioethics Research

Objective: Student research into a bioethical issue will lead to greater understanding of both sides of the issue.

Grade Levels: 10 11 12

Description: I will briefly describe how my second year biology class researched and presented a bioethical issue.

Presentation: Wednesday from 10:10 to 10:20 Location: Westport Room

19. Colonizing Mars: An Ethical Dilemma

Objective: Discuss ethics of genetic engineering for human gain other than medical purposes.

Description: We worked as autonomous study groups to each cover a particular need for colonization of Mars. For instance, one group would deal with life support systems for the human colonists. All solutions and mechanisms designed must incorporate ideas based on genetic engineering. If no such technology exists, students must use comparable techniques and extrapolate! A review panel of "Learned Experts" will hear testimony for and against each groups proposals and determine the outcome of the mission.

Presentation: Thursday from 12:50 to 1:15 Location: McCoy Room

20. The DNA Daily Deliberator

Objective: Introduce DNA fingerprint analysis problems

Description: The "Daily Deliberator" is a "newspaper" filled with stories about fictional crimes and other current problems that may be solved using DNA fingerprint analysis. After reading the "paper", students are given DNA fingerprints for each article, which they use to try to "close the case".

Presentation: Thursday from 2:15 to 2:30 Location: Stanfords
21. Title: Paper Clip Set

Description: Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 8:30 to 8:45 Location: Westport Room

Sharon Mensing

22. Title: A Look at Bioethics

Objective: To present and discuss some ethical dilemmas

Source: A modification and development of materials presented during the 1993 HGP workshop.

Grade Levels: 11 12

Description:
From the 1993 Genetics Education Workshop, I was impressed at how big a role ethics plays in all of the new breakthroughs in biotechnology.

I took some of the case studies from last year's workshop and with a short introduction to ethics, I had my AP Biology II class break into groups and discuss one case study. I gave the students a set of guidelines to use as a basis for their discussion and used a Potter's Box as well.

Presentation: Thursday from 4:30 to 4:40 Location: Hotel Lounge

Bruce Miller

23. Title: Crooked Cell Mysteries: Some Interactive Approaches to Teaching About Sickle Cell Anemia

Objective: To prepare and observe a model of blood with sickle cells. Manipulate models of blood cell to gather data and make inferences about sickle cell anemia. To work cooperatively to develop an explanation for sickle cell anemia symptoms.

Source: City Lab, Boston University School of Medicine

Grade Levels: 7 8 9 10 11 12 Supplies: overhead

Description:
This teaching method enables hands-on, interactive approaches for teaching about sickle cell anemia and the connection between hemoglobin and disease symptoms. The materials needed include: zip lock bags, rice, marshmallows, red hots, elbow macaroni, water, a model of capillaries made from tygon tubing, clay blood cell models, models of normal hemoglobin and affected hemoglobin in red blood cells. Working in teams, students will construct a model of sickle cell blood and compare it with normal blood. They will read a story about a sickle patient and be told to discover as much as they can about the disease and try to establish what is happening in the patient to cause the symptom.

Presentation: Wednesday from 10:45 to 10:55 Location: Westport Room

Daryl G. Miller
24. Popit Bead Kit

Description:
Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 8:15 to 8:30 Location: Westport Room

25. Can Genetics Make Reading "Fun"?

Objective: To make genetics and medical topics more familiar and current.

Source: The English teacher and I worked on this cross-curriculum. She also used the books for regular book reports.

Grade Levels: 11 12 Supplies: Some of the books might be a bit touchy with parents. They must all be read by the teacher first.

Description:
Knowledge of Genetics can make reading fun. My senior physiology students are given a book such as: "Devil's Waltz" by Jonathan Kellerman, "Jurassic Park" by Michael Crichton, "Terminal" by Robin Cook. After reading the book the students have to copy 10 scientific passages, then discuss the meaning of the scientific passages and why the author thought it was necessary to include these elements of science in order to develop the plot. This was a very successful activity. Students who don't like "school" novels really enjoyed these books. In fact, I'm having an hard time keeping track of by books as students are continuing to read them for ENJOYMENT! One student said the books were enjoyable because she could visualize the part and processes described by the author; her quote: "I feel really smart, and it's fun reading".

Presentation: Wednesday from 19:30 to 9:40 Location: Westport Room

26. Sanger Sequencing

Objective: To help students understand how scientists sequence DNA.

Grade Levels: 9 10 11 12 Supplies: overhead projector

Description:
Sanger sequencing has become a very important tool when working with DNA. Our students need to understand this technology through a hands on activity even if we don't have the technology in our classroom to actually do the sequencing. I have developed a simulation involving pop beads which my students found helpful. It helped prevent some of the misconceptions they develop when they simply read a sequence off a film.

In this simulation the students act as the enzyme, the pop beads are the nucleotides, altered pop beads are the cideoxys, and my lab tables become the electrophoresis chambers. After being given the DNA strand, the "enzymes" produce the complimentary strand with the "nucleotides" provided. They then load their strands into the appropriate well in the "electrophoresis gel" and separate them. This activity is still in development so I would appreciate any feedback on how to improve it from any of the workshop participants.

Presentation: Thursday from 1:15 to 1:45 Location: McCoy Room
27.
Title: Investigating the Process and Products of the Human Genome and Recombinant DNA

Objective: To engage all high school students and teachers in an intensive, thematic short course.

Grade Levels: 9 10 11 12

Description: From May 31 to June 3, Big Pine High School will concentrate all subjects in the study of the Human Genome and Recombinant DNA. We have had one all-day inservice to coordinate and begin our plans. We reviewed portions of the Secret of Life video series and other introductory video's, my Genome Workshop materials and books, and we discussed ways and means for each teacher to incorporate the materials and ideas. We have never done a thematic study before. At this time we are all planning and enveloping. So far, we plan to have mixed 9 - 12 student groups which rotate through all the disciplines the first two days for basic exposure. The last days will be by selection for an in-depth specific project, such as in art, drama, laboratory, etc. Big Pine is a very small school but hopefully some of our efforts will be applicable. I will make files and keep lessons plans to bring with me to Kansas City.

Presentation: Thursday from 12:55 to 1:15
Location: Stanfords

28.
Title: Crossing Over Kit

Description: Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 8:00 to 8:15
Location: Westport Room

29.
Title: Student Exchange of Genetic Materials to Examine Results

Objective: To understand the chances in heredity and the ethics of genetic testing.

Grade Levels: 9 10 11 12

Description: The students exchange paper genetic materials in class and then determine the characteristics of their children. They first establish their own genotypes. Then the question is: Should their children’s characteristics be available to a public domain database? Employers? Police? Insurance companies? Etc.

Presentation: Thursday from 4:00 to 4:10
Location: Hotel Lounge
30. Using Online Mendelian Genetics in Man (OMIM) to Research Human Genetic Diseases

Barbara Silber

Objective: To enable students to use this data base for source material on human genetic conditions and diseases.

Grade Levels: 11 12

Supplies: Computer with modem and welcome program for Telenet access. Access to OMIM

Description: The basic assignment is for the students to research and gather information about a human genetic condition of their choice prior to writing a report and/or making a presentation to the class. Since this data base is a full listing of the known genetic diseases the student's choice is not restricted.

Presentation: Thursday from 4:10 to 4:20

Location: Hotel Lounge

31. Using the FCCSET computer capture system.

Gary Slaybaugh

Objective: To provide photographic quality 8x11" prints to enhance classroom presentations.

Grade Levels: 10 11 12

Description: The computer generated FCCSET capture system and Adobe Printshop program were used to provide students with high resolution color prints to use as a guide for making drawings for their Histology Notebook. This process was also used to capture and print pictures from videotape. These pictures included fertilized devedeny sea urchin eggs and animated drawings from commercial quality programs dealing with biochemistry. The latter will be used to make xerox copies for students to write on as they take notes, while watching the same commercial tapes.

Presentation: Wednesday from 9:55 to 10:10

Location: Westport Room

32. Meiosis Chromosome Phenomena Demonstration Set

Chuck Smith

Description: Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 7:45 to 8:00

Location: Westport Room
33.
Title: Meiosis
Objective: To show how chromosome count goes from diploid to monoploid during meiosis.
Grade Levels: 9 10 11
Description:
Using 4 strands yarn pieces representing chromosomes, students show replications during the S phase, reduction during anaphase I, and single thread chromosome, formation during anaphase II. Students imagine their desks are cells. They physically manipulate the chromosome threads through each of the phases. I would take enough cut yarn pieces for the activity so each teacher can go through the process.

Presentation: Wednesday from 4:25 to 4:45 Location: McCoy Room

34.
Title: Model for Teaching: Concept Attainment
Objective: To enhance student learning of concepts taught.
Source: Strategies for Teaching, Gerald Shoog, Texas Tech University, College of Education
Grade Levels: 7 8 9 10 11 12
Supplies: masking tape, open wall or board for presentation
Description:
This model allows students to use critical thinking skills to derive a concept taught through the use of "yes" and "no" examples. If they derive the concept, they have a better understanding because of the rules they established in developing the concept.

Presentation: Thursday from 1:45 to 2:00 Location: McCoy Room

35.
Title: Paper Clip Set
Description:
Discussion of classroom use of this hands-on kit from Ward's.

Presentation: Tuesday from 7:30 to 7:45 Location: Westport Room
36.
Title: Quantifying DNA
Objective: To determine the purity and measure the amount of isolated DNA using spectrophotometry.
Source: Ilya Goldberg, Department of Cell Biology, Johns Hopkins University
Grade Levels: 10 11 12
Supplies: spectrophotometer with ultraviolet capability
Description: Extracting DNA from E. coli or onion or yeast is a satisfying experience, but a way to measure what has been extracted would increase the relevance of this lab, especially for upper level students. DNA previously isolated by students from cells of your choice can be held in freezer until you are ready to quantify. Warm up spectrophotometer. Zero in pure water. Dilute your DNA sample to about 200x. Measure at OD260 and OD280. Calculate the amount of DNA extracted. DNA at 50 μg/ml has OD260 - 1.0. Determine the relative purity of the sample. Pure DNA in water has OD260/OD280 = 1.7 - 2.0. After obtaining their optical density measurements, the students can use the relationships above to calculate quantity and relative purity as a concluding exercise in isolation of DNA.
Presentation: Thursday from 1:15 to 1:30
Location: Stanfords

37.
Title: Sickle Cell Anemia Chance Inheritance Kit
Description: Discussion of classroom use of this hands-on kit from Ward's.
Presentation: Tuesday from 7:15 to 7:30
Location: Westport Room

38.
Title: Human Genome Activity
Description: Discussion of classroom use of this hands-on kit from Ward's.
Presentation: Tuesday from 7:00 to 7:15
Location: Westport Room

39.
Title: Three original genetic labs to enhance students' interest.
Objective: The application of genetic concepts.
Grade Levels: 10 11 12
Supplies: overhead
Description: 1. Using the Portland Trailblazers for student-created models of polygenic inheritance.
2. DNA: the notes to the songs of life: a paper lab for protein synthesis
3. Mutant olympians: a mutation lab incorporating a school logo.
Presentation: Wednesday from 4:45 to 5:00
Location: McCoy Room
MENTORS

Genetic Resource Specialists

The following professionals have agreed to collaborate with science educators participating in the HGP/DOE workshop: *Genetics Education for Middle and Secondary Science Teachers*

<table>
<thead>
<tr>
<th>Mentor, Profession</th>
<th>Affiliation, Address</th>
<th>Phone, Fax, Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentor, Profession</td>
<td>Affiliation, Address</td>
<td>Phone, Fax, Network</td>
</tr>
<tr>
<td>Dianne Abvelo, M.D.</td>
<td>Rhode Island Hospital
593 Eddy Street
Providence, RI 02902</td>
<td>Ph:(401)444-8361
Fax:(401)444-8845</td>
</tr>
<tr>
<td>Janice Vaden Bach, M.S.</td>
<td>Michigan Department of Public Health
3423 N. Logan CSHCS Genetics
Lansing, MI 48909-7695</td>
<td>Ph:(517)335-8887
Fax:(517)335-9419</td>
</tr>
<tr>
<td>Corinne Boehm</td>
<td>Genetics Diagnostic Laboratory
Johns Hopkins Hospital CMSC 1008
Baltimore, MD 12187-3914</td>
<td></td>
</tr>
<tr>
<td>Susie Ball, M.S.</td>
<td>Yakima Valley Memorial Hospital
Genetics 2811 Tieton Drive
Yakima, WA 98902</td>
<td>Ph:(509)575-8160
Fax:(509)575-8921</td>
</tr>
<tr>
<td>Don Ball, Ph.D.</td>
<td>Biotechnology Center
Anaerobic Microbiology Laboratory
V.P.I. & S.U.
Blacksburg, VA 24061</td>
<td></td>
</tr>
<tr>
<td>Lori Bailinger, M.S.</td>
<td>University of New Mexico
Fetal Alcohol Syndrome Epidemiology Project
CASAA 2350 Alamo SE
Albuquerque, NM 87106</td>
<td>Ph:(505)243-6067
Fax:(505)768-0113</td>
</tr>
<tr>
<td>Troy A. Becker, M.S.</td>
<td>University of Florida Health Science Center
Division of Pediatric Genetics
Box 10296 1600 SW Archer Road
Gainsville, FL 32601-0296</td>
<td>Ph:(904)392-4104
Fax:(904)392-3051</td>
</tr>
<tr>
<td>Michael Begleiter, M.S.</td>
<td>Genetic Clinic Children’s Mercy Hospital
2401 Gillham Road Department of Genetics
Kansas City, MO 64108</td>
<td>Ph:(816)234-3290</td>
</tr>
<tr>
<td>Robin L. Bennett, M.S.</td>
<td>University of Washington Medical Center
Medical & Biochemical Genetics Clinic
Medical Genetics, RG-25
Seattle, WA 98195</td>
<td>Ph:(206)548-4030
Fax:(206)543-3050</td>
</tr>
<tr>
<td>Cindy Benson, M.S.</td>
<td>Children’s Mercy Hospital
9901 Wornall Road
Kansas City, MO 64114</td>
<td>Ph:(816)943-1471</td>
</tr>
<tr>
<td>Katherine Berry, M.S.</td>
<td>Shodair Hospital</td>
<td>Ph:(800)447-6614</td>
</tr>
</tbody>
</table>
Genetic Counselor

P.O. Box 5539
Helena, MT 59604
Fax:(406)444-7536

Miriam G. Blitzter, Ph.D.
Medical Geneticist
Associate Professor
American Society Human Genetics
Education Committee
Division of Human Genetics
University of Maryland School Of Medicine
655 W. Baltimore St., Rm. 11-037
Baltimore, MD 21202
Phone:(410)706-4065
Fax:(410)706-6105
Email:genetics.ab.umd.edu

Joann Bodurtha, M.D., M.P.H.
Clinical Geneticist
Asst. Professor
Medical College of Virginia
Virginia Commonwealth University
Department of Human Genetics Box 33
Richmond, VA 23298-0033
Phone:(804)786-9632
Fax:(804)786-3760

Joann A. Boughman, Ph.D.
Professor & Dean
Graduate School
University of Maryland at Baltimore
511 West Lombard
Baltimore, MD 21201
Phone:(410)706-8323
Fax:(410)706-5035

Katie Bradley, LD
LD for Metabolic Patients
University of Texas Southwestern Med Center
5323 Harry Hines Blvd.
Dallas, TX 75235-9063
Phone:(214)648-4568
Fax:(214)648-8617

Gail Brookshire, M.S.
Genetic Counselor
Children's Medical Center
1935 Motor Street
Dallas, TX 75235-7794
Phone:(214)640-2357

Amy Browder
Boys Town National Research Hospital
Department of Genetics
555 N. 30th St.
Omaha, NE 68131-2136

Michael Brown, M.D.
Clinical Geneticist
Southwest Medical Center
University of Texas Southwestern Med Center
5323 Harry Hines Blvd.
Dallas, TX 75235-7200
Phone:(214)688-2179
Fax:(214)688-8804

Becky Brandt Butler, M.S.S.W.
Administrator, Genetics Clinics
Arkansas Genetics Program
UAMS Slot 506, 4301 West Markham
Little Rock, AR 72205-7199
Phone:(501)686-8338
Fax:(501)686-7945

Peter H. Byers, M.D.
Clinical Geneticist
Professor, Pathology & Medicine
University of Washington
Department of Pathology SM-30
Seattle, WA 98195-0001
Phone:(206)543-4206
Fax:(206)543-3644

Susan R. Capasso, M.S.
Professor, Biology & Chemistry
Middlesex Hospital, Wilcox College of Nursing
Science Department, 28 Crescent Street
Middletown, CT 06457
Phone:(203)344-6402

Suzanne M. Carter, M.S.
Genetic Counselor
Albert Einstein College of Medicine
Genetic Counseling Program Room 211
1410 Pelham Parkway South
Bronx, NY 10469
Phone:(212)430-2496
Fax:(212)824-8919
Teresa M. Castellano, M.A.
Genetic Counselor, Coordinator
University of New Mexico Hospital
Department of Obstetrics
7304 Rosewood Court, NW
Albuquerque, NM 87120
Ph:(505)272-6391
Fax:(505)272-6385

Kathleen M. Cleply, M.S.
Supervisor of Genetic Research
West Penn Hospital
4800 Friendship Avenue
Pittsburgh, PA 15224
Ph:(412)578-7333
Fax:(412)578-4868

Joe Clark
Chief Executive Officer
Videodiscovery
Seattle, WA

Persis C. Coleman, Ph.D.
Professor of Biology,
Genetic Counselor
Rollins College
Department of Biology & Integrated Genetics
100 Holt Avenue
Winter Park, FL 32789
Ph:(407)646-2136
Fax:(407)646-2600

Debra L. Collins, M.S.
Genetic Counselor
Director, Genetics Education
University of Kansas Medical Center
3901 Rainbow Blvd., 4023 Wescoe
Kansas City, KS 66160-7318
Ph:(913)588-6043
Fax:(913)588-3995
Net:collins@ukanvm.co.ukans.edu

Beth Conrad-Totu, M.S.
Genetic Counselor
Indiana University Northwest
Genetics Center 3400 Broadway
Cary, IN 46408
Ph:(219)980-6560
Fax:(219)980-6566

Jo Day Cope, M.A.
Genetic Counselor
Program Specialist
University of New Mexico Medical Center
Department of Pediatrics, Division of Genetics
2211 Lamos NE
Albuquerque, NM 87131-5311
Ph:(505)272-5551
Fax:(505)272-6845

William L. Daniel, Ph.D.
Genetic Counselor
Associate Professor
University of Illinois
Department of Cell & Structure Biology
506 Morrill Hall 505 S. Goodwin Avenue
Urbana, IL 61801
Ph:(217)333-8172
Fax:(217)244-1648

Kathleen J. Delp, M.S.W.
Genetic Counselor
Social Worker
Michigan State University
Butterworth Genetics Ste 301 221 Michigan NE
Grand Rapids, MI 49503-2560
Ph:(616)774-1863
Fax:(616)776-1986

Richard T. Dineen, M.S.
Genetic Counselor, Clinical Assoc.
Univ. of Illinois College of Medicine at Peoria
530 NE Glen Oak Avenue
Peoria, IL 61637
Ph:(309)655-7436
Fax:(309)655-7658

Barbara Dixson, R.N., M.S.N.
Genetic Counselor
Sharp/Children's Prenatal Diagnosis Center
8010 Frost St.
San Diego, CA 92123
Ph:(619)541-6860
Fax:(619)541-6899

Luba Djurdjnovic, M.S.
Genetic Counselor
Project Director
Genetic Counseling Program
16 Leory Street
Binghamton, NY 13905
Ph:(607)724-4308
Fax:(607)724-8290
Colleen M. Dougherty, M.S.
Genetic Counselor
University of Maryland
405 W. Redwood St., Suite 400
Baltimore, MD 21201
Ph:(410)706-6715
Fax:(410)706-4059

A. Christine Dowman, M.S.
Genetic Coordinator
Vivgen Lab
2000 Vivgen Way
Santa Fe, NM 87505
Ph:(505)438-1111
Fax:(505)438-1101

Sharon J. Duky, Ph.D.
Research Associate, Ethicist
University of Washington
School of Medicine, SB-20
Department of Medical History & Ethics
Seattle, WA 98195
Ph:(206)543-5447
Fax:(206)685-7515
Net: sjduke@u.washington.edu

Louise Elbaum
Education Staff
University of Wisconsin
Madison, WI

Robert Farrell, Ph.D.
President
Exon-Intron Inc.
9151 Ramsey Road, Suite 130
Columbia, MD 21045

Rosemary Flannigan, Ph.D.
Ethicist
Midwest Bioethics Center
410 Archibald Street
Kansas City, MO 64111
Ph:(816)756-2713

Michelle Fox, M.S.
Genetic Counselor
University of California, Los Angeles
10833 Le Conte Avenue, MDCC 22-499
Los Angeles, CA 90024
Ph:(310)206-6581
Fax:(310)206-8616

Joy Frestedt, Ph.D.
Professor
University of Minnesota in Minneapolis
Box 198 UMHC
Minneapolis, MN 55455
Ph:(612)625-5676
Fax:(612)625-0617

Brenda Gerwin, Ph.D.
Researcher
National Institutes of Health
Bethesda, MD

Ann Gilman, M.S.W.
Genetics Program Coordinator
University of Texas Southwest Medical Center
Dept of Pediatrics 5323 Harry Hines Blvd
Dallas, TX 75235-9063
Ph:(214)648-4568
Fax:(214)648-8417

Robin Gold, M.S.
Genetic Counselor
Sinai Hospital
OB/GYN 6767 Outer Drive, West
Detroit, MI 48235
Ph:(313)493-6060
Fax:(313)493-7503

Rosalie Goldberg, M.S.
Genetic Counselor
Montefiore Medical Center
Craniofacial Center Blythesdale Children's Hospital
111 East 210 Street
Bronx, NY 10467
Ph:(718)920-4781
Fax:(914)725-4294

Gail Goldberg, R.N. M.S.
Nurse Geneticist
Mountain State Genetic Services, Inc.
4545 East 9th, #010
Denver, CO 80220
Ph:(303)320-2955
Fax:(303)320-2853
Lauren M. Goralski, M.B.A.
Lab Supervisor
Chief Cytogeneticist
University of Illinois
College of Medicine at Urbana-Champaign
416 Medical Science Bldg. 506 South Mathews
Urbana, IL 61801
Ph:(217)244-2577
Fax:(217)333-8868

Martine A. Gould, M.S.
Genetic Counselor
John Peter Smith Country Hospital
1325 Pennsylvania Ave.
Ft. Worth, TX 76104-2128
Ph:(817)878-5298
Fax:(817)878-5294

Teresa A. Hadro, M.S.
Genetic Counselor
Children’s Memorial Medical Center
Box 59 - Genetics 2300 Children’s Plaza
Chicago, IL 60614
Ph:(312)880-4462

Nancy Hanson, M.S.
Genetic Counselor,
Department Manager
Kaiser-Permanente
2280 Geary Blvd.
San Francisco, CA 94115-3416
Ph:(415)202-2992
Fax:(415)202-2999

Susan Hassed, M.S.
Genetic Associate
University of Arkansas for Medical Sciences
Arkansas Children’s Hospital Arkansas Genetics 800 Marshall
Little Rock, AR 72202
Ph:(501)320-2966
Fax:(501)320-1564

Ronald L. Haun, M.D.
Clinical Geneticist
University of Miami School of Medicine
Department of Pediatrics Division of Genetics
Mailman Center for Child Development
P.O. Box 016820 / D-820
Miami, FL 33101
Ph:(305)547-6006
Fax:(305)547-3919

Karen Heller, M.S.
Genetic Counselor
Children’s Medical Center
1935 Motor Street
Dallas, TX 75235
Ph:(214)640-2357

Jon Hendrix, Ph.D.
Professor, Genetic Educator
Ball State University
Department of Biology
Muncie, IN 47348

Kerri-Lynn Hopper, M.S.
Genetic Counselor
Michigan State University
B240 Life Sciences
East Lansing, MI 48824
Ph:(517)353-2046
Fax:(517)353-8464

Toby Horn, Ph.D.
Biotechnologist
Thomas Jefferson Magnet School for Science
Springfield, VA

Carl A. Huether, Ph.D.
Professor of Biology
Director, Genetic Counselor Program
University of Cincinnati
Biology Department 821A Rievesch Hall (ML6)
Cincinnati, OH 45221-0006
Ph:(513)556-9764
Fax:(513)556-5299

Barbara Hull, M.S.
Genetic Assistant
Health Educator
The Cornell University Medical College
Program in Regional Genetics & Sickle Cell St.
Charles Hospital 200 Belle Terre Rd.
Port Jefferson, NY 11777
Ph:(516)474-6374
LaDonna Immken, M.D.
Medical Geneticist
Valley Children's Hospital
Medical Genetics / Prenatal Detection 3151
North Millbrook
Fresno, CA 93703
Ph:(209)225-3000
Fax:(204)225-9022

Margaret Jefferson, Ph.D.
Geneticist
Professor of Genetics
California State University, Los Angeles
Department of Biology & Microbiology
5151 State University Drive
Los Angeles, CA 90032-8201
Ph:(213)343-2059
Fax:(213)343-2095
Net:mjeffer@flytrap.calstatela.edu

George Kleffer, Ph.D.
Genetics Professor
University of Illinois at Urbana-Champaign
School of Life Sciences
393 Morrill Hall 505 S. Goodwin Ave.
Urbana, IL 61801

Kathryn Spitzer Kim, M.S.
Genetic Counselor
Brandeis University
Biology Department
Waltham, MA 02254
Ph:(617)736-3108
Fax:(617)736-3107

Ellen Knell, Ph.D.
Geneticist
City of Hope
Medical Genetics
1500 East Duarte
Duarte, CA 91010
Ph:(618)301-8263

Karen Kovak, M.S.
Genetic Counselor
Oregon health Sciences university
CDRC Box 574
Portland, OR 97207
Ph:(503)494-8344
Fax:(503)494-4447

Robert Krasner, Ph.D.
Professor of Biology
Providence College
Providence, RI

Janice H. Kurth, Ph.D.
Clinical Geneticist
Department of Neurological Institute
350 West Thomas Road
Phoenix, AZ 85013-4496
Ph:(602)785-3390
Fax:(602)650-7161

Amy Lemke, M.S.
Genetic Counselor
University of Chicago
Department OB/GYN
5841 S. Maryland Ave., MC2050, Rm L201
Chicago, IL 60637
Ph:(312)702-6621
Fax:(312)702-0840

Lenna Mallin Levitch, M.S.
Genetic Counselor
University of Kansas Medical Center
OB/GYN Department 3901 Rainbow Blvd
Kansas City, KS 66106
Ph:(913)588-6260
Fax:(913)588-6270

Abby Lippman, Ph.D.
Professor
McGill University
Department of Epidemiology & Biostatistics
1020 Pine Avenue West
Montreal, Quebec, CN H3A 1A2
Ph:(514)398-6266
Fax:(514)398-4503
Net:abbyl@epid.ian.mcgill.ca

Patrick MacLeod, M.D.
Director, Section of Genetics
Victoria General Hospital
University of British Columbia Department
Laboratory Medicine, Medical Genetics
35 Helmcken Rd.
Victoria, BC V8Z 6R5
Ph:(604)727-4461
Fax:(604)727-4221
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seth Marcus, M.S.</td>
<td>Lutheran General Hospital Perinatal Center, #325</td>
<td>(708)696-7705</td>
<td>(708)831-2290</td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>1875 Dempster Street Park Ridge, IL 60068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorene Markel, M.S., M.H.S.A.</td>
<td>The Human Genome Center University of Michigan 2570 MSRB II, Box 0674 Ann Arbor, MI 48109-0674</td>
<td>(313)764-8056</td>
<td>(313)764-4133</td>
<td>dorene.markel@med.umich.edu</td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellen T. Matloff, M.S.</td>
<td>SUNY Health Science Center Department of Pediatrics 750 East Adams Syracuse, NY 13210</td>
<td>(315)464-7610</td>
<td>(315)464-7564</td>
<td>matloff@vax.cs.hescyr.edu</td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bettsy McFarland, M.S.</td>
<td>Region II Genetic Center Children's Medical Center One Children's Plaza Dayton, OH 45404-1815</td>
<td>(513)226-8480</td>
<td>(513)463-5325</td>
<td></td>
</tr>
<tr>
<td>Genetic Educator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew J. McGinniss, Ph.D.</td>
<td>Children's Hospital San Diego 3020 Children's Way San Diego, CA 92123</td>
<td>(619)495-4911</td>
<td>(619)565-6179</td>
<td></td>
</tr>
<tr>
<td>Molecular Geneticist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carole M. Meyers, M.D.</td>
<td>University of Maryland at Baltimore Division of Human Genetics 405 West Redwood Street, Suite 400 Baltimore, MD 21201-1703</td>
<td>(410)706-5749</td>
<td>(410)706-4059</td>
<td></td>
</tr>
<tr>
<td>Assistant Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melonie Krebs Michelson, M.A.</td>
<td>Children's Medical Center Hospital of Akron Genetics Center 281 Locust Street Akron, OH 44308</td>
<td>(216)379-8792</td>
<td>(216)379-8152</td>
<td></td>
</tr>
<tr>
<td>Genetic Associate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education Coordinator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judith H. Miles, M.D., Ph.D.</td>
<td>University of Missouri Hospital & Clinic School of Medicine Dept. of Child Health #1 Hospital Drive Columbia, MO 65212</td>
<td>(314)882-6991</td>
<td>(314)882-2742</td>
<td></td>
</tr>
<tr>
<td>Geneticist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joanne Millsa, M.S.</td>
<td>Perinatal Associates of New Mexico 201 Cedar, Suite 405 Albuquerque, NM 87106</td>
<td>(505)764-9535</td>
<td>(505)843-9646</td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabash Minocha, Ph.D.</td>
<td>University of New Hampshire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patricia D. Murphy, Ph.D.</td>
<td>Genica Pharmaceuticals Corporation 373 Plantation Street Worcester, MA 01605</td>
<td>(800)394-4439</td>
<td>(508)753-5601</td>
<td></td>
</tr>
<tr>
<td>Laboratory Operations Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jay Nead, M.D.</td>
<td>American Red Cross Portland, OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Geneticist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathy Nelson, M.S.</td>
<td>Shodair Hospital P.O. Box 5539 Helena, MT 59604</td>
<td>(800)447-5614</td>
<td>(406)444-7536</td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Organization</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Linda Nicholson, M.S., M.C.</td>
<td>Genetic Counselor</td>
<td>A.I. DuPont Institute</td>
<td>P.O. Box 269, 1600 Rockland Road, Wilmington, DE 19899-0269</td>
<td>(302)651-4234</td>
</tr>
<tr>
<td>Shelley Nottingham, M.S.W.</td>
<td>Genetics Outreach Coordinator</td>
<td>Children's Hospital-Clinical Genetics Regional Center</td>
<td>700 Children's Drive, Columbia, OH 43205-2696</td>
<td>(614)722-3539</td>
</tr>
<tr>
<td>Carol O'Brien, M.S.</td>
<td>Genetic Counselor</td>
<td>Morristown Memorial Hospital Genetics Box 82</td>
<td>100 Madison Avenue, Morristown, NJ 07960</td>
<td>(201)971-5636</td>
</tr>
<tr>
<td>Shane Marie Palmer, M.S.</td>
<td>Public Health Genetic Counselor</td>
<td>North Carolina Department of Environment Health & Natural Resources</td>
<td>1424 Carolina Avenue P.O. Box 2188, Washington, DC 27889-2188</td>
<td>(919)946-6481</td>
</tr>
<tr>
<td>Louise A. Paquin, Ph.D.</td>
<td>Clinical Cytogeneticist Professor</td>
<td>Western Maryland College Biology Department, 2 College Hill Westminster, MD 21157-4390</td>
<td>(410)857-2402</td>
<td>(410)857-2729</td>
</tr>
<tr>
<td>Scott Polzin, M.S.</td>
<td>Genetic Counselor</td>
<td>Lutheral General Hospital Perinatal Center</td>
<td>1875 Dempster St., Suite 335, Park Ridge, IL 60068</td>
<td>(708)696-7705</td>
</tr>
<tr>
<td>Gayathri Prabhakar, Ph.D.</td>
<td>Technical Director, Cytogenetic Lab</td>
<td>University of Maryland at Baltimore Department of Human Genetics</td>
<td>655 W. Baltimore St., Baltimore, MD 21201</td>
<td>(410)706-4064</td>
</tr>
<tr>
<td>Valerie Lambert Prenger, Ph.D., M.H.S.</td>
<td>Assistant Professor</td>
<td>University of Maryland School of Medicine Division of Human Genetics OB/GYN & Epidemiology & Preventive Medicine</td>
<td>405 Redwood Street, Suite 400, Baltimore, MD 21201</td>
<td>(410)706-7277</td>
</tr>
<tr>
<td>Louis J. Prbyl, M.S., Ph.D.</td>
<td>Molecular Biologist</td>
<td>FOA - CFSAN</td>
<td>1920 South St., N.W. #306, Washington, DC 20009</td>
<td>(202)328-1234</td>
</tr>
<tr>
<td>Virginia K. Proud, M.D.</td>
<td>Clinical Geneticist</td>
<td>Laboratory of Medical Genetics The University of Alabama at Birmingham</td>
<td>323 Byrd Building 908 South 20th Street, Birmingham, AL 35294-2050</td>
<td>(205)934-4973</td>
</tr>
<tr>
<td>Marilyn Anne Ray, M.P.H.</td>
<td>Genetic Counselor</td>
<td>California Cryobank, Inc.</td>
<td>1019 Gayley Ave., Los Angeles, CA 90024-3425</td>
<td>(310)443-5244</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Phone</td>
<td>Fax</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Peggy Richards, Ph.D.</td>
<td>Center College Kentucky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patti Robbins-Furman, M.P.H.</td>
<td>University of Texas, Houston Dept. OB/GYN 6655 Travis #320 Houston, TX 77030</td>
<td>(713)794-5170</td>
<td>(713)794-5130</td>
<td></td>
</tr>
<tr>
<td>Ann E. Roberson, M.A.</td>
<td>University of Maryland Division of Genetics 405 West Redwood Street, Suite 400 Baltimore, MD 21201</td>
<td>(410)706-6715</td>
<td>(301)328-4059</td>
<td></td>
</tr>
<tr>
<td>Jill Cellars Rogers, M.S.</td>
<td>Children's Mercy Hospital Section of Genetics 2401 Gilham Kansas City, MO 64108-9898</td>
<td>(816)234-3290</td>
<td>(816)471-5460</td>
<td></td>
</tr>
<tr>
<td>Stacie Rosenthal, M.S.</td>
<td>University of Texas Southwestern Med Center Department of Pediatrics 5323 Harry Hines Blvd. Dallas, TX 75235-9063</td>
<td>(214)648-4568</td>
<td>(214)648-8617</td>
<td></td>
</tr>
<tr>
<td>Christine Sauer, M.S.</td>
<td>Children's Hospital of Wisconsin 1000 N. 92nd St., MS 716 Milwaukee, WI 53226</td>
<td>(414)266-2988</td>
<td>(414)266-3247</td>
<td></td>
</tr>
<tr>
<td>Joan Shepard</td>
<td>Regional Organ Bank of Illinois Lab 800 South Wells, Suite 190 Chicago, IL 60607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Siegel, M.D., Ph.D.</td>
<td>Stanford University Program in Human Biology, MC 2160 Stanford, CA 94303-2160</td>
<td>(415)725-3212</td>
<td>(415)725-5451</td>
<td></td>
</tr>
<tr>
<td>Mary Simmons, M.S.</td>
<td>Univ of Texas Southwestern Medical Center 5323 Harry Hines Blvd Dallas, TX 75235-9063</td>
<td>(214)648-4568</td>
<td>(214)648-8617</td>
<td></td>
</tr>
<tr>
<td>Connie Smith</td>
<td>National Kidney Foundation Illinois Organ Bank Chicago, IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelley Smith, Ph.D.</td>
<td>Boys Town National Research Hospital Department of Genetics 555 North 30th Street Omaha, NE 68131-2136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heather Stieglitz</td>
<td>Biology Researcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol Strom, M.S.</td>
<td>University of South Dakota School of Medicine 1011 11th Street Rapid City, SD 57701</td>
<td>(605)394-5110</td>
<td>(605)394-5158</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karen R. Supovitz, M.S.</td>
<td>University of Maryland Medical System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>405 Redwood, Suite 400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(410)706-3815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(410)706-4059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorraine Suslak, M.S.</td>
<td>Univ. of Medicine & Dentistry of New Jersey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>New Jersey Medical School</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Center for Human & Molecular Genetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 Bergen Street, Suite 5400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newark, NJ 07103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(201)982-2200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(201)982-2210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joellyn Taylor, M.S.</td>
<td>Loyola Medical Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>Department of Pediatrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160 South 1st Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maywood, IL 60153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George E. Tempel, Ph.D.</td>
<td>Medical University of South Carolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associate Professor of</td>
<td>171 Ashley Avenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology</td>
<td>Charleston, SC 29425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(803)792-2977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan Tinley, M.S.</td>
<td>Boys Town National Research Hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Nurse Specialist</td>
<td>Department of Genetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>555 North 30th Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omaha, NE 68131-2136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(402)498-6560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(402)498-6331</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net:tinley@boystown.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helga V. Torriello, M.S., Ph.D.</td>
<td>Director of Genetic Services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butterworth Hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 Michigan St. NE, Suite 350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Rapids, MI 49503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(616)456-1700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(616)732-8570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicki Venne, M.S.</td>
<td>Nichols Institute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Associate</td>
<td>33608 Ortega Hwy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Juan Capistrano, CA 92690-6130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(800)642-4657</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(714)728-4982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis Waber, M.D., Ph.D.</td>
<td>Univ of Texas Southwestern Medical Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head of the Metabolic Division</td>
<td>Department of Pediatrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5323 Harry Hines Blvd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dallas, TX 75235-9063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(214)648-4568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(214)648-8617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivian Wang, M.S.</td>
<td>Columbia University, Teachers College</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>Department of Counseling Psychology Box 102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctoral Candidate</td>
<td>New York, NY 10027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joel Weiner</td>
<td>University of Illinois, Chicago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicago, IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joan O. Weiss, MSW</td>
<td>Alliance of Genetics Support Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive Director</td>
<td>35 Wisconsin Circle, Suite 440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>Chevy Chase, MD 20815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(301)652-5553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(301)654-0171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melissa King Wesson, M.S.</td>
<td>Southern Illinois University School of Medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic Counselor</td>
<td>SIU Physicians & Surgeons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>P.O. Box 19230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springfield, IL 62794-9230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph:(217)524-0654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax:(217)785-4117</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COLLABORATIONS BETWEEN MENTORS AND PARTICIPANTS
HGP / DOE Project Genetics Education for Middle and Secondary Science Teachers

Mentor by State

ALABAMA
Virginia Proud
Pediatric Geneticist
University of Alabama
Birmingham, AL

ARKANSAS
Becky Butler, M.S.
Genetic Counselor
Arkansas Genetics Program
Little Rock, AR

ARIZONA
Tim Bowden, Ph.D.
Cancer Researcher
Arizona Cancer Center
Tucson, AZ

CONNECTICUT
Lynn Duchan, M.S.
Genetic Counselor

FLORIDA
Troy A. Becker, M.S.
Genetic Counselor
University of Florida
Health Science Center
Gainesville, FL

Persis C. Coleman, Ph.D.
Genetic Counselor, Professor
Rollins College
Winter Park, FL

Ronald L. Haun, M.D.
Pediatric Clinical Geneticist
Univ of Miami School of Medicine
Miami, FL

Ways They Collaborated

Spent 4 house talking genetics. She provided slides for a presentation.

Collaborated with teacher to present workshops in the summer.

Will present cancer and genetics information to students or teachers.

Gave presentations to educators classes about human genetics and genetic conditions.

• Provided case examples of genetic counseling for classroom use.
• Made initial contact about requests for expertise, assistance with acquiring resources, and the availability of speakers for groups.

Made initial contact about requests for expertise, assistance with acquiring resources, and availability of speakers for groups.

• Contacted individuals from the March of Dimes to acquire current resource materials for students.
• Made initial contact about requests for expertise, assistance with acquiring resources, and availability of speakers for groups.
Maxine Sutcliffe, Ph.D.
Director of Cytogenetics
University of South Florida
Dept of Pediatrics
Tampa, FL

Made initial contact about requests for expertise, assistance with acquiring resources, and availability of speakers for groups.

Helen Travers, M.S.
Genetic Counselor
Miami, FL

Made initial contact about requests for expertise, assistance with acquiring resources, and availability of speakers for groups.

ILLINOIS
Monica Barth, M.S.
Genetic Counselor
Northwestern University Medical
Chicago, IL

Presented to students the Northwestern Program requirements to be a genetic counselor.

George Kieffer
Genetics Professor
University of Illinois at Urbana-Champaign
Urbana, IL

- Spoke and gave slide presentation to classes on genetic engineering and biotechnology, new reproductive technology, embryology, cancer, DNA fingerprinting, etc.
- Working with educator on the development of an NCSA Mosaic document for life science teachers. This document will serve as an easy to use interface allowing individuals access to current information dealing with the Human Genome Project, using any computer connected to the internet.

Robert Roger Lebel, M.D.
Geneticist
Elmhurst, IL

Gave a 2 hour in-school presentation to advanced biology students.

Seth Marcus, M.S.
Genetic Counselor
Loyola Medical Center
Maywood, IL

Gave lectures, and organized and moderated patient panels during human genetics program.

John Olis
consumer
Hoffman Estates, IL

Spoke during family panel about his heart transplant and why people should be organ donors.

Scott Polzin, M.S.
Genetic Counselor
Loyola Medical Center
Maywood, IL

Gave lectures, and moderated patient panels during human genetics program.
Joan Shepard
Laboratory Technician
Illinois Kidney Foundation
Histocompatibility Lab
Regional Organ Bank of Illinois
Chicago, IL

Connie Smith
Public Relations Director
National Kidney Foundation
Illinois Organ Bank
Chicago, IL

Joel Weiner
Ph.D. Candidate, Molecular Biology
University of Illinois
Chicago, IL

Lorraine Willmot
Public Relations Director
Regional Organ Bank of Illinois
Chicago, IL

INDIANA
Jon Hendrix, Ph.D.
Genetics Educator
Ball State University
Muncie, IN

Showed a new kidney transplant video to students. Assisted with contacting a possible speaker for the classroom who has had an organ transplant.

- Helped organize a panel of individuals who have received a kidney transplant. Lead a discussion on organ donation and previewed a new National Kidney Foundation video.
- Moderated panel discussion that included individuals who have donated or received kidneys.

- Gave slide presentation on Mendelian inheritance. Gave scenarios of the roles a genetic counselor plays in various family situations.
- Presented two sessions: gave an introduction to genetic disorders, then gave several case studies.
- Presented an overview of genetic disorders and presented real case studies of patients for students to "solve" problems.

- Presented current research in isolating the gene for muscular contraction in the euglena.
- Presented current study in molecular biology to students.

- Showed students a new kidney transplant video and discussed histocompatibility lab work. Assisted in contacting a possible speaker who has had an organ transplant.
- Worked with National Kidney Foundation to provide panel participants.
- Helped organize a panel of individuals who have kidney transplants. Lead a discussion on organ donation and previewed a new National Kidney Foundation video.

Provided materials, and expertise at a Houston workshop.
KANSAS
Debra L. Collins, M.S.
Genetic Counselor
Genetics Education Center
University of Kansas Medical Center
Kansas City, KS

Provided answers to students questions about human genetics and the Human Genome Project.

Lenna Levitch, M.S.
Genetic Counselor
OB/GYN Department
University of Kansas Medical Center
Kansas City, KS

Assisted with mentorship program as part of Human Genetics Magnet pilot program, Olathe South High School.

Bill Limes
Science Instructor
Olathe South High School
Olathe, KS

Shared materials and ideas for future classes.

KENTUCKY
Peggy Richards, Ph.D.
Professor
Centre College

Collaborated as a resource person to teacher and her students.

MARYLAND
Corinne Baehm
Director
Johns Hopkins
DNA Diagnostic Laboratory
Baltimore, MD

• Was a speaker during a "Human Genetics and DNA Diagnosis" presentation at Maryland Science teachers Association Convention, Columbia, MD.
• Spoke during a joint presentation with educator at sessions featuring the Human Genome Project and the Johns Hopkins DNA testing program at teachers’ conference.

Brenda Gerwin, Ph.D.
Researcher
National Institutes of Health
Bethesda, MD

Acted as a mentor to me for 6 weeks when I worked in her lab.

Robert Farrell, Ph.D.
President
Exon-Intron Inc.
Columbia, MD

Worked with county schools in biotechnology education. He provided suggestions, materials and training in recombinant DNA methods.

Louise Paguin, Ph.D.
Professor
Western Maryland College
Westminster, MD

Worked with educator to develop presentations for HGP workshops.
MAINE
Ed Kloza, M.S.
Genetic Counselor
Foundation for Blood Research
Scarborough, ME

Spoke to class about careers in genetic counseling, and discussed the implications of the Human Genome Project in the field of clinical genetics.

MICHIGAN
Janice Bach, M.S.
Genetic Counselor
Michigan Dept of Public Health
Lansing, MI

Diane Baker, M.S.
Genetic Counselor
University of Michigan
Ann Arbor, MI

Assisted with the planning of a genetics workshop for March 19th, 1994.

• Was guest speaker to 110 high school students on "Genetic Fingerprinting" and "Advances in Genetics and the HGP".
• Spoke at Teaching Inservice about human genetics.

MINNESOTA
Bonnie LeRoy

Arranged lab visits and internships in numerous labs for students, including the lab that recently identified the ataxia gene in Minnesota. One of the students did a 6 week internship at the Molecular Diagnostics Lab in human genetics.

MISSOURI
Rosemary Flannigan, Ph.D.
Ethicist
Mid-West Bioethics Center
Kansas City, MO

Linda Pasztor, Ph.D.
Cytogeneticist
Children's Mercy Hospital
Cytogenetics Lab
Kansas City, MO

Lori Williamson-Kruse, M.S.
Genetic Counselor
University of Missouri Hospital
Columbia, MO

Lectured on "What Is Ethics and What Is It Not" for Genetics Magnet Program classes.

Assisted with mentorship program for Human Genetics Magnet pilot programs at Olathe South High School.

NEBRASKA
Amy Browder
Boys Town Nat'l Research Hospital
Department of Genetics
Omaha, NE

Provided lab tours of facilities and spoke on genetic research at the institute.
Shelley Smith, Ph.D.
Medical Geneticist
Boys Town Nat’l Research Hospital
Department of Genetics
Omaha, NE

Gave presentation to North Platte Catholic School students
during Career Awareness day.

Sue Tinley, R.N.
Genetic Nurse Specialist
Boys Town Nat’l Research Hospital
Department of Genetics
Omaha, NE

- Coordinated a speaker from the institute.
- Gave access for clinical laboratory tour.

NEW HAMPSHIRE
Sabash Minocha, Ph.D.
Professor
University of New Hampshire

Provided materials for labs: DWP, enzymes, etc.

NEW MEXICO
Lori Ballinger, M.S.
Genetic Counselor
Mental Health Program
Albuquerque, NM

Initial contact was made.

Teresa Castellano, M.S.
Genetic Counselor
Department of Obstetrics
University of New Mexico Hospital
Albuquerque, NM

Has had an initial conversation and will provide a lot of stuff
resources.

OREGON
Karen Kovac, M.S.
Genetic Counselor
CDRC Oregon Health Sciences
University of Washington

Spoke to classes about genetics, counseling and disorders.

Jay Nead, M.D.
Medical Geneticist
American Red Cross
Portland, OR

- Conducted tour through the molecular genetics laboratory
 for students.
- Visited classroom to show students how paternity testing
 is done.

Pennsylvania
Bea Leopold
National Society of Genetic Counselors
Wallingford, PA

Provided high school students with a career packet on
 genetic counseling.
RHODE ISLAND
Robert Krasner, Ph.D.
Professor of Biology
Providence College
Providence, RI

Worked with educator as the director of biotechnology projects at Providence College.

SOUTH DAKOTA
Carol Strom, M.S.
Genetic Counselor
Rapid City, SD

• Spoke to physiology and anatomy classes 1st and 2nd semesters (75 students total) about birth defects, bioethical decisions.
• Educator then introduced her to a colleague who in turn had her speak to his biology class.

TEXAS
Michael Brown, M.D.
Nobel Prize Laureate
Southwest Medical Center Parkland
Dallas, TX

Heather Stieglitz
Biology Researcher
Dallas, TX

Presented during the Awards STAR Programs.

VIRGINIA
Don Ball, Ph.D.
Microbiologist and Biotechnologist
Biotechnology Center
VPI & State University
Blacksburg, VA

Toby Horn, Ph.D.
Biotechnologist
Thomas Jefferson Magnet School for Science
Springfield, VA

• Was on planning committee to organize 2 workshops in July, 1994 for Virginia teachers which last for 1 week and include lab activities, lectures, and visits to biotechnology labs.
• Assisted educator in networking with genetic professionals in her state.

Tracy Wilkins, Ph.D.
Microbiologist and Biotechnologist
Biotechnology Center
VPI & State University
Blacksburg, VA

• Was on planning committee to organized 2 workshops in July, 1994 for Virginia teachers which last for 1 week and include lab activities, lectures and visits to biotechnology labs.
• As director of the new Center for Biotechnology, is assisting educator in networking with genetic professionals in the state.
Terri Woodworth, M.D., Ph.D.
Geneticist, Center Director
Biotechnology Center
for Innovative Technology
Medical Center of Virginia
Richmond, VA

- Served on a State Education Committee which formulates new ideas for serving teachers.
- Collaborated with teacher as a member of the State Biotechnology Committee that he has started this year.

WASHINGTON
Robin Bennett, M.S.
Genetic Counselor
University of Washington
Genetic Counselor Services

Did committee work for PacNoRGG.

Joe Clark
CEO Videodiscovery
Seattle, WA

Directed a design team who created Genetics Videodiscs titled "Genetics Today".

WISCONSIN
Tom Zinnen, Ph.D.
Biotechnologist
University of Wisconsin
Madison, WI

Providing information on project he directs: BCEPP, a new computer networking system for biotechnology.
DISSEMINATION AND NETWORKING
by Teacher / Participants of HGP / DOE Project:
Genetics Education for Middle and Secondary Science Teachers

NEW YORK STATE REGION

Leo J. Palmero

• BSCS Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy curriculum's
 Nathaniel Wu Activity Debate between A.P. Biology class and English Honors class with social studies
teacher moderation, North Rockland High School, Thiells, NY
• Biotechnology Awareness Week, Toronto, Ontario

GREAT LAKES REGION
(Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin)

Linda S. Davis

• Human Genome Project Information to biology teachers from districts of Palatine, IL
• Human Genetics Inservice with Science Department, Hoffman Estates High School, Hoffman Estates, IL
• Genetic Debate Simulation for High School Students, National Association of Biology Teachers National
 Convention, St. Louis, MO
• Introduction to Gel Electrophoresis for Teachers, Orland Park school district in conjunction with
 Sargent-Welsh and Edvotek, Orland Park, IL

Rochelle S. Epperson

• Human Genetics Workshop with $1800 grant from GLaRGG, Urbana, IL

David D. Glenn

• Genetics in the 90's, Michigan Science Teachers Association Annual Convention, Detroit, MI

Alan D. Hoffmann

• Human Genome Project Presentation, Illinois Science Teacher Conference, Collinsville, IL
• Human Genome Project Presentation, Hope College Science Day, Holland, MI
• Making Human Genetics Real: Bring in a Genetic Counselor, National Association of Biology Teachers
 Convention, St. Louis, MO

Peggy Keeling

• Human Genetics and the Human Genome Project workshop, Minneapolis, MN

Linda Leively

• BSCS Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy Laboratory Activities,
 Metro Detroit Science Teachers Association, Detroit, MI
• Mapping and Sequencing The Human Genome: Science, Ethics and Public Policy (BSCS) Activities 1 and 2,
 Metropolitan Detroit Science Teachers Association Convention, Plymouth, MI
• Update on the Human Genome Project, Metropolitan Detroit Science Teachers Association Convention,
 Plymouth, MI
• BSCS Activity 1 Genetics Workshop, Madison Heights, MI
• Teaching Human Genetics and the Human Genome Project workshop Bishop Foley High School, Madison
 Heights, MI

KEY TO RIGHT COLUMN
A = Attended
O = Organized
P = Presented
Gordon Mendenhall
- *Pedigree and Probability*, National Association of Biology Teachers, Denver, CO
- *Partnership in Teaching Genome Technology*, National Genome Center, University of Michigan Education Program, Ann Arbor, MI
- *Teaching the New Genetics: An Update for Educators*, Genetics Center of Children's Hospital Medical Center, Akron, OH
- *Human Genetics*, GLaRGG Meeting, GLaRGG Regional Conference, Indianapolis, IN
- *Population Genetics Made Easy*, NABT National Conference, Boston, MA
- *Genetics Reunion Meeting*, NABT National Conference, Boston, MA
- *Revisit to the Tragedy of the Commons*, Wingspread Conference, Racine, WI
- *Genetics Teaching Materials Project*, Indiana School for the Blind, Indianapolis, IN
- *Population Genetics Made Easy*, Housier Association of Science Teachers, Indianapolis, IN
- *Human Genetics Pre-service Special Education Undergraduate Course*, Spring Semester, Bio 453/553 Ball State University, Muncie, IN

Kristi Slaby
- *Bioethics and the Human Genome*, Indianapolis, IN
- *Bioethics*, NABT National Convention, Boston, MA
- *Update on the Human Genome Project*, Kanakee Valley High School, Wheatfield, IN

Gary Owen Slaybaugh
- *DNA: The Double Helix, Forty Years: Perspective and Prospective* including presentations by 10 nobel laureates, The New York Academy of Science's Conference on DNA, Chicago, IL
- *Howard Hughes' Biotechnology and Genetic Engineering Course II*, Dr. George Kieffer, professor, University of Illinois Circle Campus, Chicago, IL

David M. Stone
- *Human Genetics Workshop* from $1800 grant from GLaRGG, Urbana, IL
- *Bioethics Workshop*, University of Illinois, Urbana-Champaign, Urbana, IL
- *Bioethics Curriculum Development Workshop*, University of Urbana-Champaign, Urbana, IL

Great Plains Region
(Arkansas, Iowa, Kansas, Missouri, Nebraska, Oklahoma, North Dakota, South Dakota)

Rebecca L. Ayers-Knetter
- *Update on the Human Genome Project*, National Association of Biology Teachers Convention, St. Louis, MO

Keith Barnes
- *Magnet Program on Human Genetics and Biotechnology*, Olathe School District, Olathe, KS
- *HGP: Genome Technology and Its Implications*, University of Michigan, NIH Human Genome Center, Ann Arbor, MI

Mary Buehrer
- *Magnet Program on Human Genetics and Biotechnology*, Olathe School District, Olathe, KS

KEY TO RIGHT COLUMN
A = Attended O = Organized P = Presented
Richard G. Dawson
- **Genetics Issues in the Future**, futurist worksheet, National Association of Biology Teachers National Convention, Boston, MA
- **Woodrow Wilson Bioethics Presentation**, National Association of Biology Teachers National Convention, Boston, MA
- **Bioethics Education Workshops**, Rockhurst College, Kansas City, MO
- **Human Genetics Issues in the Future** presentation of futurist worksheet, National Science Teachers Association National Convention, Anaheim, CA
- **Woodrow Wilson Bioethics Presentation**, National Science Teachers Association National Convention, Anaheim, CA
- **Medical Ethics and Genetics Issues**, Bragg Symposium on Humanism, Kansas City, MO
- **Bioethics and the Human Genome Project**, KATS Kamp, Junction City, KS
- **Workshop on Bioethics Materials**, Rockhurst College, Kansas City, MO

Ronald R. Fahy
- **Native American Genetics Curriculum Pilot Project Presentations** by Carol Strom, Genetic Counselor, South Dakota Science Teachers Association, Huron, SD
- **Argentina’s Disappeared and Mitochondrial DNA Testing**, Joint Conference on the Teaching of Undergraduate Mathematics and Science, Huron, SD
- **Argentina Disappeared Presentation on Mitochondrial DNA Testing and the Human Genome Project**, South Dakota Science Teachers Association and South Dakota Council of Teachers of Math Joint, Conference, Huron, SD

Peggy Jane Farmer
- **Developments in Genetics**, Junior College Course session, Hermitage, MO

Becky Goodwin
- **The Human Genome Project** Presentation to High School Students, Kansas School for the Deaf, Olathe, KS
- **Human Genetics and the Human Genome Project** planning session with public school teachers for 1994 school year involvement in cooperative learning, Kansas School for the Deaf, Olathe, KS
- **The Human Genome Project** Inservice for School Staff, Kansas School for the Deaf, Olathe, KS
- **Discussions on the Human Genome Project and Teaching Human Genetics** KATS Kamp, Rock Springs, AR

Susan B. Koba
- **Genetic Lab Options for Teachers**, Bryan Senior High School, Omaha, NE
- **Academic Decathlon Competition on Biotechnology** development committee in conjunction with two teachers and three students, Omaha, NE
- **Why Do You Have Your Grandmother’s Nose** curriculum presentation, Nebraska Association of Science Teachers Fall Conference, Fremont, NE
- **Why Do You Have Your Grandmother’s Nose** curriculum presentation, NSTA National Convention, Anaheim, CA
- **Genetics and the Human Genome Project** during the K-12 project (SSI) to teachers and Upward Bound students, Lincoln, NE
- **4 Hour Class on Genetics during Biology 101: Elementary Science Education**, University of Nebraska, Lincoln, NE

William E. Limes, Jr.
- **Human Genome Project Workshop**, University of Michigan, Ann Arbor, MI
- **Missouri Regional Conference on Genetic Disorders**, Tan Tara Lodge, Osage Beach, MO
- **Magnet Program on Human Genetics and Biotechnology**, Olathe School District, Olathe, KS

KEY TO RIGHT COLUMN

A = Attended
O = Organized
P = Presented
Carole McRight
• *Human Genome Project Information*, Northwest Arkansas Math and Science Alliance, Springdale, AR
• *Basics of the Human Genome Project*, Springfield High School, Springfield, AR

K. Sara Morris
• *Romeo and Juliet Genetics Activity*, State Science Teacher’s Retreat, Norfolk, NE
• *Information on Human Genome Project* small group discussion, State Science Teacher’s Retreat, Norfolk, NE
• *Update on Genetics*, Nebraska Association of Teachers of Science, Fremont, NE
• *Genetics and Ethics: Overview of the Human Genome Project*, Great Plain’s Medical Center Ethics Committee, North Platte, NE
• *Board Member of Bioethics / Genetics section*, Policy Board for the Western Regional Math and Science Coalition, North Platte, NE
• *Los Desaparecidos* as part of Multicultural Awareness Week, Spanish Classes, North Platt Catholic Schools, North Platte, NE
• *Legal and Social Issues: Bioethics*, Nebraska Association of Teachers of Science, Fremont, NE

Linda J. Morris
• *Intergenerational Ethics Program*, Denver Metro High School Ethics Consortium, Denver, CA

Brad Williamson
• *Search Genetic Databases*, Genetics Education Workshops for Middle and High School Science Teachers, Kansas City, KS

MID-ATLANTIC REGION
(Delaware, District of Columbia, Maryland, New Jersey, Pennsylvania, Virginia, West Virginia)

Helen Ann Griech
• *Students and Researchers Interaction Session*, Fox Chase Cancer Center, Philadelphia, PA
• *One Day Student Interaction Session with Genetics Researchers*, Fox Chase Cancer Center, Philadelphia, PA
• *The New Genetics*, EIRC, Sewell, NJ
• *Human Genetics and the Human Genome Project*, Burlington Rotary Club, Burlington, NJ
• *Human Genetics and the Human Genome Project*, The New Jersey Association of Independent Schools, NJ
• *The New Genetics In Revolutionizing Your World*, Cornell Institute Medical Research program, College of Physicians of Philadelphia, PA
• *Introduction to the Human Genome Project*, Burlington Rotary Club, Burlington, NJ
• *Bioethics Curriculum Writing Session* with the NJSSA to develop new case studies for use in the classroom, Roche Institute of Molecular Biology, Nutley, NJ
• *Resource Person For Human Genetics Educational Materials*, sent articles to New Jersey Science Teacher’s Bulletin posting availability

Rebecca E. Ross
• *The Human Genome Project: An Update*, Virginia Association of Science Teachers State Convention, Williamsburg, VA
• *DNA Plasmid Mapping Techniques* workshop, Virginia Association of Science Teachers State Convention, Williamsburg, VA
• *The Human Genome Project* education session, Virginia Association of Science Teachers State Meeting, Williamsburg, VA
• *Plasmid Mapping*, Virginia Science Teachers Association State Convention, Williamsburg, VA
• *National Biotechnology Education Convention*, University of Wisconsin, Madison, WI
• *Workshop on the Human Genome Project*, Roanoke County, Roanoke, VA
• *The Human Genome Project* inservice to Roanoke city and Roanoke county teachers, Roanoke, VA

KEY TO RIGHT COLUMN

A = Attended
O = Organized
P = Presented
• Workshop on the Human Genome Project, Roanoke City Schools, Roanoke, VA
• Human Genetics and the Human Genome Project meeting for teachers, Thomas Jefferson Magnet School, Springfield, VA
• The Human Genome Project, State V-Quest Group, Roanoke, VA
• State Biotechnology Education Committee Meeting on Human Genetics Educational Ideas for State Curriculum, Fishersville, VA
• Coordinator of Full Day Biotechnology Laboratory Activity Session for State VAST Convention, November, 1995, Blacksburg, VA
• DNA and Proteins Workshops for Teachers, V.P.I. and State University, Blacksburg, VA

Penny Wolkow
• Tech Prep Program for High School and Community College Students, Howard County, MD
• Curriculum Writing Workshop New curriculum being developed for Tech Prep Program, Howard County Public Schools, Columbia, MD
• DNA Isolation Procedure, Howard County Public School, Columbia, MD
• Update on Recombinant DNA Technology for Teachers, Partnership Conference for Maryland Businesses and Educators, Lithiumum, MD
• Human Genetics and DNA Diagnosis, Maryland Science Teachers Association Convention, Columbia, MD

MOUNTAIN STATE REGION
(Arizona, Colorado, Montana, New Mexico, Utah, Wyoming)

Jonathan M. Bealer
• Human Genetics and Bioethical Decision Making, Spring, TX
• BSCS Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy Activity 2 Genetics Workshop for the Unified Schools of Buckeye, Arizona, Buckeye, AZ
• Bioethical Decision Making, Genetics Workshop for the Unified Schools of Buckeye, Arizona, Buckeye, AZ
• Human Genetics and Bioethical Decision Making, Houston Texas in Conjunction with Ball State, University, Houston, TX
• BSCS Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy Curriculum: Understanding the Social and Scientific Implications, Buena High School Social Studies Department, Sierra Vista, AZ
• Human Genome Project Information for Social Studies Teachers, Sierra Vista, AZ
• Human Genome Activities for Bioethics, Buckeye, AZ
• Health Careers Workshop, Sierra Vista High School, Sierra Vista, AZ

Robert Cefalo
• Cold Spring Harbor DNA Science Workshop, University of Utah, Salt Lake City, UT
• Human Genetics and the Human Genome Project Secondary Science Teacher Inservice, Box Elder School District, Brigham City, UT

Bruce Miller
• Interactive Computer Software for Learning the Basics of Mendelian and Human genetics, and the Nature and Function of DNA and RNA, La Cueva High School, Albuquerque, NM

KEY TO RIGHT COLUMN
A = Attended
O = Organized
P = Presented
NEW ENGLAND REGION
(Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont)

Sheryl B. Dominic
• Mapping and Sequencing the Human Genome: BSCS Activities Demonstration, Rockland, ME

Maureen Floor
• BSCS Mapping and Sequencing the Human Genome: Science, Ethics and Public Policy Activities 2 and 3, Providence College Biotechnology Workshop, Greenville, RI
• An Overview of the Human Genome Project: The Interdisciplinary Nature of Genetics and Bioethics for Social Studies and Biology Teachers, Lincoln Junior-Senior High School, Lincoln, RI
• Human Genome Project: An Overview Activities for pre-college students, Providence College, Providence, RI
• The Human Genome Project: A Model for Interdisciplinary Studies, Rhode Island College, Providence, RI

Susan M. Lamos
• Update on the Human Genome Project, New Hampshire Science Teachers Association Annual Convention, Nashua, NH

Mary Carroll McCaffrey
• Human Genome Project BSCS Materials, Montgomery County, PA
• Human Genome Project BSCS Materials, Delaware Valley of Pennsylvania and New Jersey, Delaware Valley, PA
• Human Genome Project BSCS Materials, NABT National Convention, Boston, MA

PACIFIC NORTHWEST REGION
(Alaska, Idaho, Oregon, Washington)

Marlys I. McCurdy
• Recipient of PacNoRGG Grant for Human Genetics Inservices for 20 Secondary Science Educators in Idaho, 1994 Idaho Science Teachers Convention, Pocatello, ID

Butch Schmidt
• Update on the Human Genome Project, Wrangell School District, Wrangell, AK
• Update on the Human Genome Project, Wrangell School District, Wrangell, AK

Chuck Smith
• Overview of HGP Materials and BSCS Activity I, Vancouver, WA
• Human Genome Project Update for Teachers, Hewlett-Packard Corporation, Vancouver, WA
• Human Genome Project Update for Teachers, Hewlett-Packard Corporation, Vancouver, WA
• Human Genome Project Update for Teachers, PacNoRGG Regional Meeting, Portland, OR
• Human Genome Project: Curriculum Materials and Activities, S.M.A.R.T.: Science and Math Advancement Reachout for Teachers, Vancouver, WA
• Human Genome Project Update for Teachers, Lake Oswego High School, Lake Oswego, WA
• Human Genome Project Update for Teachers, Willamette High School, Eugene, OR
• Review of BSCS Activity 2 and Chances’ Choices Activities, Vancouver, WA
• Human Genome Project Update, Oregon Science Teachers Association meeting, OR
• Overview of the Human Genome Project and BSCS Activity 2, Oregon Science Teachers Fall Conference, Eugene, OR
• Overview of the Human Genome Project, BSCS Activity 2 and Chances’ Choices, Vancouver, WA
• HGP and Chances Choices Workshop, Vancouver, WA
• Human Genome Project Update for Teachers, Hewlett-Packard Corporation, Vancouver, WA
• Human Genome Project Update for Teachers, Hewlett-Packard Corporation, Vancouver, WA

KEY TO RIGHT COLUMN
A = Attended O = Organized P = Presented
Sharon Zupo
- *Introducing Bioethics Into The Classroom* assisted 3 WWNFF Teachers to lead a 1 week workshop, Chicago, IL
- *Lesson Plans Presentation to the Ball State Network*, NABT National Conference, Boston, MA
- *Forensic Workshop including DNA Fingerprinting Paper Lab Activity*, NABT National Convention, Boston, MA
- *An Update on the Human Genome Project*, Oregon Science Teachers Association Inservice, Willamette High School, Eugene, OR
- *Karyotypes and Inheritance of Chromosomes* presented with WWNFF module, Oregon Science Teachers Association State Inservice, Willamette High School, Eugene, OR
- *Deciphering the Human Genome: A Coming Revolution in Biology and Medicine in the 21st Century* Distinguished Lecture Series by Dr. Leroy Hood, John's Hopkins, Cal Tech, Reed College, Portland, OR

PACIFIC SOUTHWEST REGION
(California, Hawaii, Nevada)

Hope C. Nolen
- *The Human Genome Project*, California Science Teachers Association, Los Angeles, CA
- *Human Genetics and the Human Genome Project* teacher inservice, Big Pine High School, Big Pine, CA

Susan Sprouse
- *Human Genetics Curricular Materials and Lesson Plans for Cooperative Learning Activities*, Beverly Hills High School Summer Workshop for Biology Teachers, Beverly Hills, CA
- *Implications of the Human Genome Project*, California Science Teacher Association 3rd Annual Statewide Conference, Palm Springs, CA

SOUTHEAST REGION
(Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee)

Cissy Bennett
- *Presentation on Bioethics*, National Association of Biology Teachers, Boston, MA
- *Human Genome Project*, State Medical Technology Students Meeting, Birmingham, AL
- *Bioethics / Biotechnology Workshop for Secondary Teachers* (5 days), Paideia School, Atlanta, GA
- *AP Biology Forum to Organize Bioethics Workshops*, University of Alabama, Birmingham, Alabama Science, Teachers Meeting, Birmingham, AL
- *Human Genome Project*, Alabama State Society Medical Technician State Meeting, Birmingham, AL

Margaret A. Hess
- *A Presentation of Argentina's Lost*, Fernandina Beach High School Foundation, Fernandina Beach, FL
- *Networking and Providing Genetics Materials to Teachers and Students*, Fernandina Beach, FL
- *Inservice on How to Use BSCS Genetics Materials*, Fernandina Beach, FL

Arlene F. Johnson
- *BSCS Unit: the Human Genome: Science, Ethics and Public Policy* workshop, Staples High School, Westport, CT

Vicki Lete
- *Gel Electrophoresis Demonstration*, Jefferson County Biology Alliance, Louiville, KY

KEY TO RIGHT COLUMN
A = Attended O = Organized P = Presented
Carolyn Napier Martin
- Woodrow Wilson Outreach on Biotechnology and Bioethics, Many, LA
- Human Genome Project: ELSI Issues, State Teacher Conference, LA
- Woodrow Wilson Outreach on Biotechnology and Bioethics, Alexandria, LA
- Swinging on the Family Tree: How will the Human Genome Project Affect Us, National Association of Biology Teachers, St. Louis, MO

Daryl G. Miller, Ph.D.
- Biotechnology and Granola: A Potent Partnership for Human Rights, Broward Community College, South, Phi Theta Kappa Lecture Series, Broward, FL
- Assist student editors in HGP feature columns in *Gray Matters* science newsletter, Broward County Public Schools, Pembroke Pines, FL
- Genetics and the HGP: Hands-on Lessons, Pembroke Pines and Hollywood schools, Pembroke Pines, FL
- Genes R Us: Science 4 Kids programs, Broward Community College, South, Broward, FL

Mark A. Stallings
- The Human Genome Project, Georgia Science Teachers Association Area Meeting, Ellijay, GA
- The Human Genome Project, Georgia Science Teachers Association Regional Science Inservice Day, Dahlonega, GA
- The Human Genome Project, Georgia Science Teachers Association State Conference, Savannah, GA

TEXAS STATE REGION

William Humphries
- DNA Technology, Richardson Living Materials Center, Richardson, TX
- DNA Technology, Richardson School District, Richardson, TX
- Human Genome Project, Association of Science Teachers Continuing Education Program, Austin, TX
- DNA Workshop, Tyler Community College, Dallas, TX

Audrey Martin-Henderson
- Advances in Technology and Biotechnology, Texas Association of Superintendents and School Boards, Austin, TX

Grace McLeroy
- TexGene Conference, South Padra, TX
- New Wave Genetics, Metroplex Science Educators, Dallas, TX
- Getting Genetics with the Genome, Region 10 Science Conference, S. Garland High School, Garland, TX
- Fast Foods Genetics Workshop, Garland Teacher Inservice, Garland, TX
- Human Genetics Teacher Inservice Training, National Institutes of Health, Bethesda, MD
- Using Yeast to Study Genetics and Radiation Workshop on Yeast, Kansas State University, Manhattan, KS
- Lesson Plans Development for DNA Activities, presented on KERA-TV Master Teacher Program, Dallas, TX
- Getting Genetics with the Genome, Conference for Association of Science Teachers (CAST), Austin, TX

KEY TO RIGHT COLUMN
A = Attended P = Presented O = Organized
Re: Genetic Conditions: Family Stories (a resource guide for teaching Human Genetics)

We are writing regarding a project to create a resource guide on genetic conditions called Genetic Conditions: Family Stories. The resource will be a booklet of stories and photographs (slides) of individuals and families affected by genetic conditions. This resource is intended to help educate the public, correct misconceptions, and increase understanding of the effects of genetic conditions/birth defects on individuals and families.

We would like to include a story about individuals with condition~ in the resource. From our experiences in teaching, we have found personal stories to be one of the most helpful ways to explain the impact of a genetic condition on an individual or family. Would you be willing to identify individuals who would be interested in sharing a letter or story about themselves or their family member for the guide?

We would like:

• a short personal story (one page) describing, for example, how the individual was first diagnosed and any misconceptions they find important to correct for the public. We are also interested in any aspects of their lives which will help others know and appreciate the unique and special qualities of individuals and families with this condition. When appropriate, we might add laboratory information (such as chromosome pictures) or supplemental materials.

• a photograph of the individual or the family member with this condition. Photographs of every day life situations are requested, rather than medical book poses.

Please send the enclosed letter and consent form to an individual in your organization.

The resource will be available to secondary science teachers as a genetics curriculum, genetic professionals, families and others. We intend for the resource to be used by educators to discuss these conditions in a more sensitive context rather than an impersonal textbook description. In the future, many individuals may have decisions to make regarding genetic testing. These decisions are rarely simple and straightforward. Through education, we can help prepare the public and health care providers for this future. Upon completion, we expect to distribute the resource at cost.

If you have any questions about this project, please feel free to contact us. We look forward to hearing from you.

Sincerely,

Debra L. Collins, M.S.
Genetic Counselor

Enclosure: Family Letter, Consent Form
Re: Genetic Conditions: Family Stories (a resource guide for teaching Human Genetics)

Dear Support Group Member:

We are writing to you regarding a project to create a resource guide on genetic conditions titled Genetic Conditions: Family Stories (a curriculum resource for teaching Human Genetics). The resource will be a booklet of stories and photographs (slides) of individuals and families affected by genetic conditions. This resource is intended to help educate the public, correct misconceptions, and increase understanding of the effects of genetic conditions/birth defects on individuals and families.

We would like to include a story about individuals with condition~ in the resource. From our experiences in teaching, we have found personal stories to be one of the most helpful ways of explaining the impact of a genetic condition on an individual or family. We are writing to ask if you would be willing to share Would you be willing to share a letter or story about yourself or a family member for the guide.

We would like:
- a short personal story (one page) describing, for example, how the individual was first diagnosed and any misconceptions you find important to correct for the public. We are also interested in aspects of your lives which will help others know and appreciate the unique and special qualities of individuals and families with this condition. When appropriate, we will add laboratory information (such as chromosome pictures) or supplemental materials.

- a photograph of you or your family member with this condition. Photographs of every day life situations are requested, rather than medical book poses.

Please fill out and return the enclosed consent form.

The resource will be available to secondary science teachers as a genetics curriculum, genetic professionals, families and others. We intend for the resource to be used by educators to discuss these conditions in a more sensitive context rather than an impersonal textbook description. In the future, many individuals may have decisions to make regarding genetic testing. These decisions are rarely simple and straightforward. Through education, we can help prepare the public and health care providers for this future. Upon completion, we expect to distribute the resource at cost.

If you have any questions about this project, please feel free to contact us. We look forward to hearing from you.

Sincerely,

Debra L. Collins, M.S.
Genetic Counselor

Enclosure: consent form
FAMILY STORIES CONSENT FORM

Organization:
Name: ___

Address: ___

City: ________________________ St: _____ Zip: _________
Phone: _______________________

I have submitted a story and/or photograph to The University of Kansas Medical Center about:

☐ my child
☐ myself
☐ a family member

with (condition): __

I give my permission to the University of Kansas Medical Center for my story and/or photograph to be reproduced and published in Genetic Conditions: Family Stories (a curriculum guide for teaching Human Genetics). This resource guide will be copyrighted in the name of the University of Kansas Medical Center.

I understand that the publication will be available to educators, genetic professionals, families and others; however the publication may also be printed and distributed to a general audience.

I understand that the story and/or photograph is intended for educational purposes and will be available at cost; therefore I relinquish any financial reimbursement for the use of this story or photograph.

I understand and agree that the University of Kansas Medical Center may edit the material as necessary for inclusion in the publication.

Signed:

your name

association or affiliation name

Date
WELCOME

Welcome to the first edition of The Genetic Probe. It is our hope that this can be a vehicle for the exchange of ideas among educators and other professionals for the furthering of education of students in genetics and the implications to society.

The Probe cannot continue without your support. Please send us anything that might be useful for the cause. Even if it is not polished we can work with it.

If you have genetics problems with which you are having difficulty, feel free to share them with us. If we can’t find the answer we will put it out to the readership.

If you have some unusual or unique way of presenting an idea or concept, please share it with us. Ask yourself how many of your teaching ideas were original with you and realize what a debt you owe to your fellow educators.

True to our name we want to explore knowledge and techniques the way a DNA probe can home in on matching DNA among cells. Like the old saying, all of us are smarter than any us.

So please set a deadline for yourself to submit something to the newsletter. Three weeks should be enough time, don’t you think?

-The editors

Genetic Evangelism: Spreading the Word

Helen Griech from Willingboro spoke at her local Rotary Club in Burlington, New Jersey on August 5th. The group was very interested in all of the aspects of the Human Genome Project. Her headmaster is trying to get her on the program for the New Jersey Association of Independent Schools meeting in the fall.

Linda Levely of Royal Oak, Michigan will be presenting the BSCS labs at the Metro Detroit Science Teachers Association on November 20. She usually runs through the first two labs and previews Nathaniel Wu as well as the alcohol lab. This lets the teachers become comfortable with these labs and gets the bugs out before they use these with their students.

Penny Wolkow of Columbia, Maryland is planning a workshop for her state science teachers association convention. It will feature Genetic Resource Professional (mentor) Corinne Baehm, from Johns Hopkins DNA Diagnostic Laboratory.

Continued on page 2.
SPREADING THE WORD:
News from the Trenches

Cissy Bennett of Alabama talked to the Jefferson County Chapter of the State Society for Medical Technologists (ASSMT) about the Human Genome Project and its impact on genetic counseling. She was then invited to present at the statewide ASSMT meeting in April. She has also done a presentation on biotechnology and its relevance to today’s youth for her local school board. In November, Cissy was in Boston presenting a session on teaching bioethics to high school students at the National Association of Biology Teachers Conference.

This winter Don Tatge of Jefferson High School in Minnesota, will be teaching a Human Genetics and Bioethics workshop for elementary teachers. The workshop is six hours in length with emphasis on hands on materials suitable for fifth and sixth grade students.

Chuck Smith of Oregon has been spreading the word at a series of mini conferences funded with Woodrow Wilson funds in Vancouver, Washington. Early in the fall he gave an overview of the Human Genome Project and briefly discussed the BSCS activity number two. In November he had the participants work through activities number one and two. In January he is planning on having the participants work through Activities number three and four. Also in January Chuck will be attending the Research Corporation Annual Meeting held in Tucson, Arizona where he will conduct a two hour workshop in biotechnology for twenty four teachers. One of the lab Activities he is planning to present involves an easy-to-use “mini-prep” for extracting plasmid DNA from E. coli. He believes it is of value for high school students as a way of showing them how to get plasmids out. This could be used either before or after transforming bacteria. Also, it is a way for teachers to maintain a ready supply of purified plasmids in their laboratory freezer.

Sharon Zupo and Chuck Smith also presented an overview of the Human Genome Project and BSCS Activity number two at the Oregon State Science Teachers Association area meeting in October. Teachers at all the sessions agreed that they intend to use the materials in their classrooms.

Mark Stalling did a presentation on the

Continued page 2.
Newsletter Suffers from Identity Crisis

In case you didn’t notice, our newsletter has two names. It started off as The Genetic Probe, but the last issue had a new name - The HGP Vector. Okay, okay, so I forgot. Anyone could do it. Right? Oh well, my apologies to one and all. I will from this day forward resist the temptation to monkey with the moniker.

Please don’t let this be an excuse for not sending in your stories and information for our publication! When T.S. Eliot told us that “April is the cruellest month” I am quite sure that he was not speaking about teachers facing the end of the year but it applies. Never is the calendar so full. We face prom, end of the year parties, a panoply of field trips releasing students from a long winter, faculty meetings, in services, final exam preparations, and more.

Of course, when you read these words you will be in the final downhill slide to June. It is already too late for you to help the Messenger for this issue. But let me exhort you to bring materials to the June conference for the fall issue. If you do not, we will search you out! We will rattle your door late at night when you are finally asleep. We need COPY!

See you in Kansas City.

Jon Bealer

IN THIS ISSUE...

PAGE 2 ... SPREADING THE WORD
PAGE 3 ... BSCS FIELD TESTS HGP MATERIALS
PAGE 4 ... RESOURCES AND MATERIALS
PAGE 5 ... COMMENTS

Science and Social Studies DO Mix

I had the opportunity to present the HGP materials to a group of social studies teachers last week. Isn’t that remarkable? It looks so plain in black and white but it really made my day.

I asked the social studies department chair at the beginning of this school year if her department might be interested in such a presentation. She agreed but never said anything more. A couple of months ago I was talking informally to a member of that department and the subject came up. This fellow got really excited. Next thing I knew the department chair was back asking when I’d be able to talk.

So after school we had a one hour meeting. I had to ask for an “all-call” announcement to get

Continued on pg. 2.
EDITORS CORNER

We hope that you all had an enjoyable holiday season and we trust that you are rested and ready to start the new year. Thank you so much for responding to the request for material to be included in The Probe. I know that you are all very busy, but because you are busy you also have much to share. The response was overwhelming during the month of December.

Our NABT reporter, Linda Davis, said the convention was a success, and that nearly two dozen K.C. participants presented and shared some aspect of their summer experience. I wish I could have been there to hear the presentations and to participate in the line dance instruction given in the hotel ballroom. Linda says pictures were taken and copies will be sent for the asking.

Linda also reports that the NABT booth was filled with new books and made shopping there very convenient. The vendors were happy to see them and many had presented materials for use with high school students involving biotechnology. She said the atmosphere was friendly and lots of networking went on by everyone. K.C. participants did stake out a portion of the lounge on Thursday night to get together, and next year, if all goes well, we'll plan another reunion. I think I will have to make that convention a priority for next year, how about the rest of you?

CONGRATULATIONS!!!!

Many of you probably saw Cissy Bennett on the cover of the NABT publication News and Views. It was a profile of her as the NABT state representative for Alabama and described her unique contributions to the organization. She, like many of you, was able to obtain a commitment from a biological supply house to provide her with free biotechnology kits which she used to train other biology teachers. She was also able to obtain, on loan, some videodiscs to use at her workshop which ultimately led to her receiving a disc free. When groups of teachers get together and share as Cissy is doing or as we did in K.C., we are able to keep our curricula alive for our students.

Tom Haren from Canton, Ohio, received the Outstanding Biology Teacher Award for Ohio this year. He is working hard to enrich his genetics unit by having Melonie Krebs Michelson from the Children's Medical Center Hospital of Akron come in and give a presentation to his classes. He is also working with Dr. Vance Lemmon from Case Western University, on planning a visit for his students to his research lab in Cleveland this spring.

Daryl Ann Miller was awarded an Endowed Teaching Chair from Broward Community College in Pembroke Pines, Florida. What this involves is $15,000 cash and $7,500 to develop a college project. Congratulations!