Tracer Tests in a Fractured Dolomite: 2. Controls on Mass-Recovery Rates for a Single-Porosity, Heterogeneous Conceptualization

PDF Version Also Available for Download.

Description

A single-well injection-withdrawal (SWIW) test is evaluated as a tool to differentiate between single- and double-porosity conceptualizations of a system. Results from single-porosity simulations incorporating plume drift are also compared to observed data from a recent series of SWIW tests conducted in a fractured dolomite unit, for which a double-porosity conceptualization has been proposed. We evaluate the difficulty of differentiating the response for a double-porosity conceptualization from that for a heterogeneous, single-porosity conceptualization incorporating plume drift. Results of sensitivity studies on multiple, stochastically generated, heterogeneous transmissivity fields indicate that to simulate extremely slow mass-recovery rates for a SWIW test with ... continued below

Physical Description

44 p.

Creation Information

Altman, S.J.; Meigs, L.C. & Jones, T.L. March 4, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A single-well injection-withdrawal (SWIW) test is evaluated as a tool to differentiate between single- and double-porosity conceptualizations of a system. Results from single-porosity simulations incorporating plume drift are also compared to observed data from a recent series of SWIW tests conducted in a fractured dolomite unit, for which a double-porosity conceptualization has been proposed. We evaluate the difficulty of differentiating the response for a double-porosity conceptualization from that for a heterogeneous, single-porosity conceptualization incorporating plume drift. Results of sensitivity studies on multiple, stochastically generated, heterogeneous transmissivity fields indicate that to simulate extremely slow mass-recovery rates for a SWIW test with a single-porosity conceptualization, the following conditions must be present: plume drift, extreme heterogeneities (high {sigma}InT), and an unusual configuration of the high and low transmissivity regions relative to the well location. A compilation of existing data suggests that the high degree of heterogeneity necessary is rare at the SWIW test scale.The observed data from the SWIW tracer tests cannot be matched to numerical simulation results when a single-porosity conceptualization is assumed. A signature of significant drift is less than 100% mass recovery with a zero derivative with respect to time of the late-time normalized cumulative mass curve indicating mass transported outside the capture zone of the withdrawal well. To minimize the risk of misinterpretation, an important design feature for SWIW tests is the collection of late-time data so that percent total mass recovery can be calculated.

Physical Description

44 p.

Notes

OSTI as DE00004173

Medium: P; Size: 44 pages

Source

  • Journal Name: Water Resource Research; Other Information: Submitted to Water Resource Research

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND98-2857J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 4173
  • Archival Resource Key: ark:/67531/metadc687600

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 4, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 12, 2017, 4:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Altman, S.J.; Meigs, L.C. & Jones, T.L. Tracer Tests in a Fractured Dolomite: 2. Controls on Mass-Recovery Rates for a Single-Porosity, Heterogeneous Conceptualization, article, March 4, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc687600/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.