Title: On the Rossi-α Measurements of β_{eff} in Reflected Reactors

Author(s): Viktor A. Doulin (IPPE, Russia)
 Gregory D. Spriggs (LANL, USA)

Submitted to: Atomic Energy
 [English version of Russian Journal Article
 Atomnaya Energiya, 82, 1, pp. 66-68, (1997).]

March 13, 1997

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
On the Rossi-α Measurement of β_{eff}

in Reflected Reactors

Viktor A. Doulin
Institute of Physics & Power Engineering, Bondarenko sq., Obninsk, Kaluga Region, Russia

Gregory D. Spriggs (LANL, USA)
Los Alamos National Laboratory, P. O. Box 1663, MS B226, Los Alamos, NM, 87545-0001

In unreflected reactors, the probability of detecting chain-related counts is given by the well known Rossi-α expression as originally derived by Feynman.\(^1\)\(^2\)

\[
R(t) = C \int dt + \frac{D}{2F} \cdot \frac{k^2 C}{\tau^2 |\alpha|^2} \cdot (1 - \beta)^2 \cdot e^{-|\alpha|^2 t} dt ,
\]

(1)

where

- $C =$ detector count rate,
- $D =$ adjoint-weighted neutron dispersion factor (i.e., $D = g \Gamma$),
- $F =$ total fission reaction rate,
- $k =$ effective multiplication factor,
- $\tau =$ adjoint-weighted neutron removal lifetime, and
- $|\alpha| =$ magnitude of the alpha-eigenvalue, defined by

\[
|\alpha| = \frac{1 - k (1 - \beta)}{\tau} ,
\]

(2)

where $\beta =$ the effective delayed neutron fraction.

The integral of the correlated part of Eq. (1) is given by

\[
S = \frac{D}{2F} \cdot \frac{k^2 C}{\tau^2 |\alpha|^2} \cdot (1 - \beta)^2 .
\]

(3)

Using the definition of alpha from Eq. (2) and using the definition of the magnitude of the reactiv-
ity of the system (in units of dollars),

\[|\rho_s| = \frac{1-k}{\beta k}, \quad (4) \]

Eq. (3) can also be written as

\[S = \frac{DC (1-\beta)^2}{2F} \cdot \frac{1}{\beta^2 (1+|\rho_s|)^2} \cdot \quad (5) \]

Solving for \(\beta \) in Eq. (5) yields the following expression.3

\[\frac{1}{\beta} = 1 + (1+|\rho_s|) \sqrt{\frac{2F}{D}} \cdot \frac{S}{C}. \quad (6) \]

We shall now demonstrate that this expression for \(\beta \) is equally applicable for a reflected system in which two alphas are experimentally observed. We begin by assuming the Rossi-\(\alpha \) solution for a simple reflected system as derived by Kistner.4 That is,

\[\mathcal{R} (t) \, dt = Cdt + A_1 e^{-|\alpha_1| t} \, dt + A_2 e^{-|\alpha_2| t} \, dt, \quad (7) \]

The integral of the correlated part is given by

\[S = \frac{A_1}{|\alpha_1|} + \frac{A_2}{|\alpha_2|} = \frac{DC (1-\beta)^2}{2F} \cdot \frac{k_c^2}{\tau^2 \left(\lambda_c - \frac{\lambda_{cr} \lambda_{rc}}{\lambda_r} \right)^2}, \quad (8) \]

where

\[\lambda_c = \frac{1-k_c (1-\beta)}{\tau_c}. \quad (9) \]
In Eqs. (8) through (12), k_c is the number of neutrons produced in the core per neutron lost from the core; k_{cr} is the fraction of core neutrons that leak from the core into the reflector; k_{rc} is the fraction of reflector neutrons that leak back into the core; and τ_c and τ_r are the core and reflector lifetimes, respectively.\(^5\) Substituting Eqs. (9) through (12) into Eq. (8) leads to

\[
S = \frac{DC (1 - \beta)^2}{2F} \cdot \frac{k_c^2}{[1 - k_c (1 - \beta) - k_{cr}k_{rc}]^2} .
\]

As derived by Spriggs et al.,\(^6\) the effective multiplication factor, k, is related to k_c, k_{cr}, and k_{rc} by

\[
k = \frac{k_c}{1 - k_{cr}k_{rc}} ,
\]

where the product $k_{cr}k_{rc}$ is the fraction of core neutrons that return to the core after having leaked into the reflector. When Eq. (14) is inserted into Eq. (13), we again obtain Eq. (5). Hence, Eq. (6) is just as valid for reflected systems as it is for unreflected systems.
References

3. (In Russian. Needs to be translated.)

5. (In Russian. Needs to be translated.)