An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

PDF Version Also Available for Download.

Description

X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of ... continued below

Physical Description

17 p.

Creation Information

Fourspring, P.M. & Pangborn, R.N. June 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

  • Fourspring, P.M. Lockheed Martin Corp., Schenectady, NY (United States)
  • Pangborn, R.N. Pennsylvania State Univ., University Park, PA (United States)

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

Physical Description

17 p.

Notes

INIS; OSTI as DE99002671

Source

  • 28. ASTM national symposium on fatigue and fracture mechanics, Saratoga Springs, NY (United States), 25-27 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99002671
  • Report No.: KAPL-P--000219
  • Report No.: K--96037;CONF-9606178--
  • Grant Number: AC12-76SN00052
  • DOI: 10.2172/350927 | External Link
  • Office of Scientific & Technical Information Report Number: 350927
  • Archival Resource Key: ark:/67531/metadc687087

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 2:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fourspring, P.M. & Pangborn, R.N. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels, report, June 1, 1996; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc687087/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.