ARTI REFRIGERANT DATABASE

January 1999

prepared by

James M. Calm
Engineering Consultant
10887 Woodleaf Lane
Great Falls, VA 22066-3003 USA

for the

Air-Conditioning and Refrigeration Technology Institute
4301 North Fairfax Drive, Suite 425
Arlington, VA 22203 USA

This report is one in a series prepared for the Materials Compatibility and Lubricant Research (MCLR) Program, under ARTI contract number 671-50000 for grant number DE-FG02-91CE23810 from the U.S. Department of Energy.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Please refer questions or comments on this document to:

James M. Calm
Engineering Consultant
10887 Woodleaf Lane
Great Falls, VA 22066-3003 USA
e-mail: jmc@spectrum-internet.com
telephone: 703/450-4313
telefax: 703/450-4313

Glenn C. Hourahan
Vice President
Air-Conditioning and Refrigeration Technology Institute
4301 North Fairfax Drive, Suite 425
Arlington, VA 22203 USA
e-mail: hourahan@ari.org
telephone: 703/524-8800
telefax: 703/528-3816

Neither James M. Calm, the Air-Conditioning and Refrigeration Technology Institute (ARTI), nor any person acting on behalf of them: (a) makes any warranty, expressed or implied, with respect to the accuracy, completeness, or usefulness of any information, apparatus, material, method, or process disclosed in this document or that such use may not infringe privately owned rights; or (b) assumes any liabilities with respect to use of, or damages resulting from use of, any information, apparatus, material, method, or process disclosed in this document. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring.

All product and brand names referenced by (TM) or (R) are trademarks or registered trademarks, respectively, of their owners.
TABLE OF CONTENTS

INTRODUCTION
- Purpose .. 1
- Contents .. 1
- Limitations .. 2
- Manual Version .. 2
- Computerized Version ... 2
- Distribution of the Refrigerant Database ... 4
- Additions .. 5
- Obtaining Documents .. 6

THERMOPHYSICAL PROPERTIES
- R-11 ... 9
- R-12 ... 9
- R-13 ... 10
- R-13B1 .. 10
- R-1311 ... 11
- R-14 ... 11
- R-22 ... 11
- R-23 .. 14
- R-32 ... 16
- R-50 (Methane) .. 19
- R-113 ... 20
- R-114 ... 20
- R-115 ... 21
- R-123 ... 21
- R-124 ... 25
- R-125 ... 26
- R-134 ... 28
- R-134a ... 28
- R-141b ... 37
- R-142b ... 38
- R-143 ... 39
- R-143a ... 39
- R-152a ... 41
- R-170 (Ethane) .. 42
- R-236fa .. 43
- R-245ca .. 43
- R-245cb .. 43
- R-245fa .. 44
- R-C270 ... 44
- R-290 (Propane) .. 45
- R-C318 ... 45
- R-338qcc ... 46
- R-400 ... 46
- R-401A ... 46
<table>
<thead>
<tr>
<th>Refrigerant Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-401B</td>
</tr>
<tr>
<td>R-401C</td>
</tr>
<tr>
<td>R-402A</td>
</tr>
<tr>
<td>R-402B</td>
</tr>
<tr>
<td>R-403B</td>
</tr>
<tr>
<td>R-404A</td>
</tr>
<tr>
<td>R-406A</td>
</tr>
<tr>
<td>R-407 Series</td>
</tr>
<tr>
<td>R-407A</td>
</tr>
<tr>
<td>R-407B</td>
</tr>
<tr>
<td>R-407C</td>
</tr>
<tr>
<td>R-408A</td>
</tr>
<tr>
<td>R-409A</td>
</tr>
<tr>
<td>R-410 Series</td>
</tr>
<tr>
<td>R-410A</td>
</tr>
<tr>
<td>R-410B</td>
</tr>
<tr>
<td>Other Zeotropes</td>
</tr>
<tr>
<td>R-500</td>
</tr>
<tr>
<td>R-502</td>
</tr>
<tr>
<td>R-503</td>
</tr>
<tr>
<td>R-507 Series</td>
</tr>
<tr>
<td>R-507A (R-507)</td>
</tr>
<tr>
<td>R-508 Series</td>
</tr>
<tr>
<td>R-508A (R-508)</td>
</tr>
<tr>
<td>R-508B</td>
</tr>
<tr>
<td>Other Azeotropes</td>
</tr>
<tr>
<td>R-600 (Butane)</td>
</tr>
<tr>
<td>R-600a (Isobutane) ...</td>
</tr>
<tr>
<td>R-704 (Helium)</td>
</tr>
<tr>
<td>R-717 (Ammonia)</td>
</tr>
<tr>
<td>R-717/718 (Ammonia/Water as Refrigerant/Absorbent)</td>
</tr>
<tr>
<td>R-718 (Water)</td>
</tr>
<tr>
<td>R-718/LiBr (Water/Lithium Bromide as Refrigerant/Absorbent)</td>
</tr>
<tr>
<td>R-729 (Air)</td>
</tr>
<tr>
<td>R-744 (Carbon Dioxide)</td>
</tr>
<tr>
<td>R-1150 (Ethene)</td>
</tr>
<tr>
<td>R-1270 (Propene)</td>
</tr>
<tr>
<td>Ethers</td>
</tr>
<tr>
<td>General and Multiple Fluids</td>
</tr>
<tr>
<td>MATERIALS COMPATIBILITY</td>
</tr>
<tr>
<td>R-123</td>
</tr>
<tr>
<td>R-124</td>
</tr>
<tr>
<td>R-134a</td>
</tr>
<tr>
<td>R-717 (Ammonia)</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Blends</td>
</tr>
<tr>
<td>LUBRICANTS AND TRIBOLOGY</td>
</tr>
<tr>
<td>APPLICATION DATA</td>
</tr>
<tr>
<td>Fractionation, Leakage, and Detection</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Glide Matching and Lorenz Cycles</td>
</tr>
<tr>
<td>Heat Transfer</td>
</tr>
<tr>
<td>Indirect Systems ("Secondary Loops")</td>
</tr>
<tr>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Cycle Analyses</td>
</tr>
<tr>
<td>Compressor Calorimeter Tests</td>
</tr>
<tr>
<td>Drop-In Tests</td>
</tr>
<tr>
<td>Optimized Compressor Tests</td>
</tr>
<tr>
<td>Optimized System Tests</td>
</tr>
<tr>
<td>Field Tests</td>
</tr>
<tr>
<td>Pipe Sizing and Flow</td>
</tr>
<tr>
<td>Recycling, Reclamation, and Disposal</td>
</tr>
<tr>
<td>Retrofit and Conversion</td>
</tr>
<tr>
<td>Appliances</td>
</tr>
<tr>
<td>Air Conditioners and Heat Pumps</td>
</tr>
<tr>
<td>Chillers</td>
</tr>
<tr>
<td>Commercial Refrigeration</td>
</tr>
<tr>
<td>Heat Pumps for District Heating</td>
</tr>
<tr>
<td>Industrial Heat Pumps</td>
</tr>
<tr>
<td>Industrial Refrigeration</td>
</tr>
<tr>
<td>Mobile Air Conditioners</td>
</tr>
<tr>
<td>Marine Refrigeration and Air Conditioning Systems</td>
</tr>
<tr>
<td>Valves and Accessories</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>SAFETY</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>R-10</td>
</tr>
<tr>
<td>R-11</td>
</tr>
<tr>
<td>R-12</td>
</tr>
<tr>
<td>R-12B1</td>
</tr>
<tr>
<td>R-13B1</td>
</tr>
<tr>
<td>R-13I1</td>
</tr>
<tr>
<td>R-14</td>
</tr>
<tr>
<td>R-20</td>
</tr>
<tr>
<td>R-20B3</td>
</tr>
<tr>
<td>R-21</td>
</tr>
<tr>
<td>R-22</td>
</tr>
<tr>
<td>R-23</td>
</tr>
<tr>
<td>R-30</td>
</tr>
<tr>
<td>R-30B1</td>
</tr>
<tr>
<td>R-31</td>
</tr>
<tr>
<td>R-32</td>
</tr>
<tr>
<td>R-40</td>
</tr>
<tr>
<td>R-40I1</td>
</tr>
<tr>
<td>R-50 (Methane)</td>
</tr>
<tr>
<td>R-112 and R-112a</td>
</tr>
<tr>
<td>R-113</td>
</tr>
<tr>
<td>R-114</td>
</tr>
<tr>
<td>R-115</td>
</tr>
<tr>
<td>R-116</td>
</tr>
<tr>
<td>R-123</td>
</tr>
<tr>
<td>Refrigerant</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>R-123B1</td>
</tr>
<tr>
<td>R-124</td>
</tr>
<tr>
<td>R-125</td>
</tr>
<tr>
<td>R-132b</td>
</tr>
<tr>
<td>R-133a</td>
</tr>
<tr>
<td>R-134</td>
</tr>
<tr>
<td>R-134a</td>
</tr>
<tr>
<td>R-E134</td>
</tr>
<tr>
<td>R-141b</td>
</tr>
<tr>
<td>R-142b</td>
</tr>
<tr>
<td>R-143</td>
</tr>
<tr>
<td>R-143a</td>
</tr>
<tr>
<td>R-152a</td>
</tr>
<tr>
<td>R-160</td>
</tr>
<tr>
<td>R-170 (Ethane)</td>
</tr>
<tr>
<td>R-E170</td>
</tr>
<tr>
<td>R-21711</td>
</tr>
<tr>
<td>R-218</td>
</tr>
<tr>
<td>R-225ca and R-225cb</td>
</tr>
<tr>
<td>R-227ea</td>
</tr>
<tr>
<td>R-236fa</td>
</tr>
<tr>
<td>R-245ca</td>
</tr>
<tr>
<td>R-245fa</td>
</tr>
<tr>
<td>R-C270</td>
</tr>
<tr>
<td>R-290 (Propane)</td>
</tr>
<tr>
<td>R-C318</td>
</tr>
<tr>
<td>R-401A, R-401B, R-401C</td>
</tr>
<tr>
<td>R-416A</td>
</tr>
<tr>
<td>R-502</td>
</tr>
<tr>
<td>R-600</td>
</tr>
<tr>
<td>R-600a (Isobutane)</td>
</tr>
<tr>
<td>R-601 (n-Pentane)</td>
</tr>
<tr>
<td>Cyclopentane</td>
</tr>
<tr>
<td>R-602 (n-Hexane)</td>
</tr>
<tr>
<td>R-630</td>
</tr>
<tr>
<td>R-717 (Ammonia)</td>
</tr>
<tr>
<td>R-744 (Carbon Dioxide)</td>
</tr>
<tr>
<td>R-744a</td>
</tr>
<tr>
<td>R-764</td>
</tr>
<tr>
<td>R-746</td>
</tr>
<tr>
<td>R-1110</td>
</tr>
<tr>
<td>R-1113</td>
</tr>
<tr>
<td>R-1114</td>
</tr>
<tr>
<td>R-1120</td>
</tr>
<tr>
<td>R-1140</td>
</tr>
<tr>
<td>R-1150 (Ethylene)</td>
</tr>
<tr>
<td>R-1216</td>
</tr>
<tr>
<td>R-1270 (Propylene)</td>
</tr>
<tr>
<td>R-1316</td>
</tr>
<tr>
<td>hexafluoropropene oxide (HFPO)</td>
</tr>
<tr>
<td>Lubricants</td>
</tr>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
</tbody>
</table>
TEST AND ANALYSIS METHODS ... 396

IMPACTS .. 406
 Costs and Operation ... 407
 Environmental ... 409

REGULATORY ACTIONS ... 430
 International .. 430
 National .. 431

SUBSTITUTE REFRIGERANTS .. 431

IDENTIFICATION .. 439

ABSORPTION AND ADSORPTION .. 440

NOT-IN-KIND TECHNOLOGIES ... 443

RESEARCH PROGRAMS ... 444
 AFEAS .. 444
 ARI .. 445
 ARTI ... 446
 ASHRAE ... 447
 PAFT ... 448
 NEDO ... 448

MISCELLANEOUS DOCUMENTS .. 449
INTRODUCTION

Purpose

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Contents

The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date.

Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.
Limitations

The Refrigerant Database is intended as a means to assist users in locating sources of information on alternative refrigerants. But, the database is:

- neither a comprehensive nor authoritative reference source,
- not a substitute for independent data collection by users,
- not a substitute for examination of the data, information on how they were arrived at, assumptions, and caveats in the cited documents, and
- not an endorsement of suitability or accuracy of referenced publications.

Materials compatibility, properties, safety considerations, and other characteristics affecting suitability or desirability may be influenced by a number of factors. Among them are specific application conditions, preparation such as drying before use, additives including fillers, impurities, catalytic interactions with other materials used, and changes in compounding between one source or batch and another. Similarly, new findings or corrections may supersede previously published data. The database is an aid in locating data that may be pertinent; it is not and should not be viewed as the source of data for research, design, analysis, or other purposes.

Manual Version

A listing of the database contents is provided in this document. Citations are grouped under the primary or first subject addressed, but are not cross-referenced under other topics. The computerized version, therefore, is better suited to search for information by subject.

Documents added since the August 1998 release of the database are flagged by a bar in the margin, as shown to the left. Users looking for new references, as well as added or substantively updated abstracts, will need to review only the citations so indicated.

Some superseded and older citations and abstracts have been removed from this document. They remain accessible through the computerized version, discussed below. A supplemental volume containing the citations and summaries for these historic and superseded documents will be prepared in February 1999.

Computerized Version

A companion version of this listing is available in computerized form. It contains more than 5,600 citations, including those in the report version, others from a supplement on copper in air conditioning and refrigeration, and an archival group covering historical and superseded documents. The computerized version also includes 592 specially-prepared data summaries,
including refrigerant (single compound and blend) profiles, tabular compatibility summaries for plastics and elastomers, and toxicity reviews for refrigerants. The refrigerant profiles cover designations, common uses, chemical and trade names, molecular mass, critical properties (pressure, temperature, specific volume, and density), physical and thermophysical properties for selected conditions, safety (toxicity and flammability) limits and classifications, atmospheric lifetime, ozone depletion potential, global warming potential, halogen global warming potential, commercialization, phaseout, and other data. Additional information and refrigerants will be added in future updates.

More than 8,000 pages of reference material can be searched and selectively printed using accompanying retrieval software, which enables very fast searches for user-selected terms or combinations of terms. The search program offers several automated features to simplify use. They include optional prompting by search category, an automated "thesaurus" of synonyms and related terms, chain searches to broaden or narrow prior searches, a "wildcard" capability to allow entry of word segments, and a configuration capability to customize a number of options.
Distribution of the Refrigerant Database

<table>
<thead>
<tr>
<th></th>
<th>computerized (diskette)</th>
<th>manual (report)</th>
<th>documents (copies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data summaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• refrigerants</td>
<td>yes</td>
<td>no</td>
<td>a</td>
</tr>
<tr>
<td>• compatibility</td>
<td>yes</td>
<td>no</td>
<td>a</td>
</tr>
<tr>
<td>• toxicity</td>
<td>yes</td>
<td>no</td>
<td>a</td>
</tr>
<tr>
<td>bibliographic citations and synopses (detailed abstracts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• current</td>
<td>yes</td>
<td>yes</td>
<td>a</td>
</tr>
<tr>
<td>• additions and changes flagged</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>• historical and superseded</td>
<td>yes</td>
<td>no</td>
<td>a</td>
</tr>
<tr>
<td>• CDA sponsored supplement b</td>
<td>yes</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>search and retrieval software</td>
<td>yes c</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>distributed on cost-recovery basis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• subscription (quarterly updates)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>• as ordered</td>
<td>no</td>
<td>yes</td>
<td>yes d</td>
</tr>
</tbody>
</table>

a Data summaries, citations, and synopses may be printed with the computerized version.
b The Copper Development Association (CDA) sponsored supplement provides additional citations and synopses, most of which address compatibility with or use of copper in air-conditioning and refrigeration systems. The supplement is included and searchable with the computerized version, but published as a separate report (not part of the listing); please see page 450.
c Use of the search and retrieval software is subject to acceptance of the license agreement for it; both accompany the computerized version.
d Distribution is limited to documents in the public domain or for which authorization has been obtained. Others may be ordered from their publishers, which are identified in the bibliographic citations.

An order form for the Refrigerant Database, which indicates the pricing, accepted methods of payment, and applicable terms and conditions, may be downloaded from the Internet from http://www.ari.org/arti/order.html. Alternatively, a copy may be obtained by mail or fax by calling +1-703/524-8800 or faxing +1-703/524-9011. Questions should be sent by e-mail to database@spectrum-internet.com.
Additions

Updates are planned for this database, with replacement releases scheduled four times a year. Please help in making the database more useful, and facilitating use of alternative refrigerants, by submitting the following:

- corrections to errors identified in the database,
- copies of helpful papers - whether your own or written by others - for citation, and
- suggestions for improving the database.

Authors or those holding rights to published or unpublished works pertinent to the database are invited - and encouraged - to authorize their reproduction and unrestricted distribution through the database. Product literature normally is not included, but studies providing relevant information, whether on proprietary or generic substances, will be considered.

Please send your inputs to: James M. Calm
Engineering Consultant
10887 Woodleaf Lane
Great Falls, VA 22066-3003 USA
jmc@spectrum-internet.com

Thank you for your help with and use of the database. Its objective is to accelerate phase out of chemical compounds of environmental concern by sharing the information needed to do so.
Obtaining Documents

Documents indicated as available from JMC in their citations are available through the database. An order form, which indicates the pricing, accepted methods of payment, and applicable terms and conditions, may be downloaded from the Internet from http://www.ari.org/ari/order.html. Alternatively, a copy may be obtained by mail or fax by calling +1-703/524-8800 or faxing +1-703/524-9011. Questions should be sent by e-mail to database@spectrum-internet.com.

Other documents should be ordered from their publishers or alternative sources as identified in the database. Many of these documents also may be obtained from libraries. An effort will be made to secure permission for JMC to distribute additional documents, to facilitate access to them, but compliance with copyright provisions precludes doing so until appropriate arrangements are made. Reports from national laboratories and the Gas Research Institute may be ordered from the NTIS; most other publications from the U.S. Government may be obtained from the GPO. Addresses for several alternative sources follow:

ACGIH American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Suite 600, Cincinnati, OH 45240 USA; phone +1-513/742-2020, fax +1-513/742-3355, e-mail acgih_pubs@pol.com.org

AIHA American Industrial Hygiene Association, 2700 Prosperity Avenue, Suite 250, Fairfax, VA 22031 USA; phone +1-703/649-8888, fax +1-703/207-3561; http://www.aiha.org

ASHRAE Publication Sales, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1791 Tullie Circle NE, Atlanta, GA 30329 USA; phone +1-404/636-8400, fax +1-404/321-5478, e-mail orders@ashrae.org

CAS Chemical Abstracts Service, Document Delivery Department, Post Office Box 3012, Columbus, OH 43210-0012 USA; phone +1-614/447-3670 x2956 (from USA 800/848-6538), fax +1-614/447-3648

EHIS Environmental Health Information Service, OCR Subscription Services Incorporated, Post Office Box 12510, Research Triangle Park, NC 27709-2510 USA; phone +1-919/541-3841, fax +1-919/541-0273, e-mail: ehis@niehs.nih.gov

EPRI EPRI Distribution Center, 207 Coggins Drive, Post Office Box 23205, Pleasant Hill, CA 94523 USA; phone +1-510/934-4212

IIR / IIF Institut International du Froid, 177, Boulevard Malesherbes, F-75017 Paris, France; phone +33-1/42.27.32.35, fax +33-1/47.63.17.93, e-mail iifiir@ibm.net

JAR Japanese Association of Refrigeration, Nippon Reito Kyokai, 4th Floor, San-el Building, 8 San-el-cho, Shinjuku-ku, Tokyo 160, Japan; phone +81-3/3359-5231, fax +81-3/3359-5233

JMC James M. Calm, Engineering Consultant, 10887 Woodleaf Lane, Great Falls, VA 22066-3003 USA, fax +1-703/450-4313, e-mail database@spectrum-internet.com

JSRAE Japan Society of Refrigerating and Air Conditioning Engineers, Sanel Building, 8 Sanel-cho, Shinjuku-ku, Tokyo 160-0008, Japan; phone +81-3/3359-5231, fax +81-3/3359-5233

LHL Linda Halls Library of Science, Engineering, and Technology, 5109 Cherry Street, Kansas City, MO 64110-2498 USA; phone +1-816/363-4600, fax +1-816/926-8785, e-mail requests@lhl.lib.mo.us

NTIS National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 USA; phone +1-703/487-4780

SAE Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096-0001 USA
THERMOPHYSICAL PROPERTIES

E. M. Clark (DuPont Fluorochemicals) and M. O. McLinden (National Institute of Standards and Technology, NIST), Refrigerants, ASHRAE Handbook - Fundamentals (published in separate editions with inch-pound and SI metric units), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, chapter 18, 18.1-18.10, 1997 (10 pages with 3 figures and 12 tables, RDB7A01)

P. E. Lilley and P. D. Desai (Purdue University), Thermophysical Properties of Refrigerants (SI Edition), publication 90375, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1993 (296 pages with 230 tables, available from ASHRAE for $33 to members and $44 to nonmembers, RDB3A81)

This reference provides detailed specific heat, thermal conductivity, viscosity, velocity of sound, and surface tension data in tabular form in metric (SI) units. The refrigerants addressed include R-11, R-12, R-13, R-13B1, R-14, R-142b, R-23, R-25 (methane), R-142b, R-2281, R-23, R-30, R-31, R-32, R-40, R-113, R-114, R-1150, and R-1270. Molecular mass, normal (atmospheric) boiling point, freezing point, critical properties (temperature, pressure, and specific volume), and liquid refractive index are tabulated for most of these fluids. Dielectric constants, volume resistivity, velocity of sound, latent heat of vaporization, comparative performance, effects of temperature on performance, and safety classifications are presented for some refrigerants. Swell data are tabulated for R-11, R-12, R-13, R-13B1, R-21, R-22, R-30, R-40, R-113, R-114, R-502, and R-600 for eight elastomers. They include nitrile butyl rubber (Buna(TM) N), butadiene styrene (Buna(TM) S, GR-S), Butyl(TM) (GR-1), natural rubber, neoprene GN, polysulfide rubber (Thiokol(TM) FA), fluoroelastomer (DuPont Viton(TM) B), and silicone. Diffusion data are tabulated for water and R-22 through neoprene, Buna N, synthetic rubber (DuPont Hypalon(TM) 40), Butyl, Viton, polyethylene, and natural rubber. Density, specific heat, and viscosity are plotted for water/lithium bromide solutions (for absorption cycles) as functions of the mass fraction of lithium bromide.
This reference provides detailed specific heat, thermal conductivity, viscosity, velocity of sound, and surface tension data in tabular form in inch-pound (IP) units. The refrigerants addressed include R-11, R-12, R-13, R-13B1, R-14, R-15, R-15A2, R-170 (ethane), R-290 (propane), R-318, R-500, R-503, R-506 (butane), R-600 (isobutane), R-702 (hydrogen), R-702p (para-hydrogen), R-704 (helium), R-717 (ammonia), R-718 (water), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (argon), R-744 (carbon dioxide), R-1150 (ethylene), and R-1270 (propylene). Empirical or semi-empirical property equations also are provided for R-11, R-12, R-13, R-13B1, R-14, R-15, R-15A2, R-170 (ethane), R-290 (propane), R-500, R-503, R-506 (butane), R-600a (isobutane), R-702 (hydrogen), R-702p (para-hydrogen), R-704 (helium), R-717 (ammonia), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (argon), R-744 (carbon dioxide), R-1150 (ethylene), and R-1270 (propylene). The typical data include temperature, pressure, volume, liquid density, enthalpy, entropy, specific heat, specific heat ratio, velocity of sound, viscosity, thermal conductivity, and surface tension. An enthalpy-concentration diagram and tabular data for the specific volume at saturation are presented for ammonia/water for absorption cycles. Enthalpy equilibrium and concentration diagrams are similarly provided for water/lithium bromide solutions.

R. B. Stewart, R. T. Jacobsen, and S. G. Penoncello (University of Idaho), ASHRAE Thermodynamic Properties of Refrigerants, inch-pound (IP) version, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1986 (608 pages with 31 figures and 65 tables, RDB3208)

This book provides detailed thermodynamic property data for 31 refrigerants in inch-pound (IP) units of measure. An introductory section presents the equations of state (EOS), ancillary equations, and references for the data used. Appendices summarize the conversion factors and reference (datum) states for entropy and enthalpy. A sequence containing a pressure enthalpy diagram and two tables follows for each refrigerant. The first table presents saturated properties by temperature including pressure; liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second provides the density, enthalpy, and entropy at unsaturated conditions, by temperature and pressure. The refrigerants covered include R-11, R-12, R-13, R-13B1, R-14, R-15, R-15A2, R-170 (ethane), R-290 (propane), R-500, R-503, R-506 (butane), R-600a (isobutane), R-702 (hydrogen), R-702p (para-hydrogen), R-704 (helium), R-717 (ammonia), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (argon), R-744 (carbon dioxide), R-1150 (ethylene), and R-1270 (propylene). Martin-Hou equations of state (EOS), or subsets or extensions thereto, were used for most of the fluorocarbon refrigerants. Detailed formulations were used for R-12 and R-22, and a truncated virial equation was used for R-13B1. Modified Benedict-Webb-Rubin (MBWR) equations were used for R-11, R-50, R-702, R-702a, R-720, R-728, R-732, R-1150, and R-1270. Specific formulations were used for the remainder, notably that by Haar and Gallagher for R-717.

R. B. Stewart, R. T. Jacobsen, and S. G. Penoncello (University of Idaho), ASHRAE Thermodynamic Properties of Refrigerants, metric (SI) version, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1989 (508 pages with 31 figures and 65 tables, RDB3209)
This book provides detailed thermodynamic property data for 31 refrigerants in metric (SI) units of measure. An introductory section presents the equations of state (EOS), ancillary equations, and references for the data used. Appendices summarize the conversion factors and reference (datum) states for entropy and enthalpy. A sequence containing a pressure enthalpy diagram and two tables follows for each refrigerant. The first table presents saturated properties by temperature including pressure, liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second provides the density, enthalpy, and entropy at unsaturated conditions, by temperature and pressure. The refrigerants covered include R-11, R-12, R-13, R-13B1, R-14, R-22, R-50 (methane), R-113, R-114, R-142b, R-152a, R-170 (ethane), R-290 (propane), R-500, R-502, R-503, R-600 (butane), R-600a (isobutane), R-702 (hydrogen), R-702a (parahydrogen), R-704 (helium), R-717 (ammonia), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (argon), R-744 (carbon dioxide), R-1150 (ethylene), and R-1270 (propylene). Martin-Hou equations of state, or subsets or extensions thereto, were used for most of the fluorocarbon refrigerants included. Detailed formulations were used for R-12 and R-22, and a truncated virial equation was used for R-13B1. Modified Benedict-Webb-Rubin (MBWR) equations were used for R-11 and R-13, R-13B1, R-14, R-22, R-23, R-50 (methane), R-113, R-114, R-142b, R-152a, R-170 (ethane), R-290 (propane), R-500, R-502, R-503, R-600 (butane), R-600a (isobutane), R-702 (hydrogen), R-702a (parahydrogen), R-704 (helium), R-717 (ammonia), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (argon), R-744 (carbon dioxide), R-1150 (ethylene), and R-1270 (propylene). Specific formulations were used for the remainder, notably that by Haar and Gallagher for R-717.

R-11

thermodynamic properties of R-11: fundamental equation (FEQ); equation of state (EOS); thermophysical data

thermodynamic properties of R-11; thermophysical data

S. L. Rivkin and E. A. Kremenevskaya, *Investigation of the Density of Freon-11*, *Teplotizicheskie Svoistva Veshchestv i Materialov* [Thermophysical Properties of Substances and Materials], edited by V. A. Rabinovich, Izdatel'stvo Standartov, Moscow, Russia (then USSR), 8:46-64, 1975 (19 pages, rdb7c64)

thermodynamic properties of R-11; thermophysical data

R-12

thermodynamic properties of R-12: fundamental equation (FEQ), equation of state (EOS); thermophysical data

K. Watanabe (Koel University, Japan), T. Tanaka, and K. Oguchi, *Compressibility and Virial Coefficients of Dichlorodifluoromethane (R-12)* with Burnett Apparatus, *Proceedings of the Seventh Thermophysical Properties Symposium*, American Society of Mechanical Engineers (ASME), New York, NY, 470-479, 1977 (8 pages, rdb7b24)

thermodynamic properties of R-12: equation of state (EOS); thermophysical data

thermodynamic and transport data for R-12

Thermophysical Properties of Refrigerants (R-12, Dichlorodifluoromethane), Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, August 1981 with errata dated 1986 (160 pages with 23 figures and 90 tables, in both Japanese and English, rdb0401)

This comprehensive volume summarizes critical, thermodynamic, transport, physical, chemical, compatibility, and other data available on R-
12. Included are tabular data and/or plots for PVT properties, enthalpy, entropy, isobaric and isocho-ric specific heat capacity, specific heat ratio, speed of sound, surface tension, viscosity, kinematic viscosity, thermal conductivity, thermal diffusivity, Prandtl number, solubility, refractive index, dielectric constant, volume resistivity, and dielectric strength. A 32-term polynomial equation of state is presented and compared to other equations and data. Relations also are presented for key equilibrium properties. Data are tabulated for the solubility of R-12 in water, moisture contents of saturated R-12 liquid and vapor, and R-12 in a naphthenic mineral oil. Data, including decomposition products by pyrolysis and hydrolysis rates, are provided on the stability of R-12 in the presence of metals and oil. Linear swell, weight change, and observations are provided for R-12 with plastics including polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polyvinyl alcohol, polypropylene, polyvinylchloride (PVC), polyvinylidene chloride, nylon resin, acrylic resin (poly.methacrylate), polystyrene, phenolic resin, epoxy resin, acetal resin, cellulose acetate, cellulose nitrate, acryl fiber, and polyester fiber. Linear swell data are tabulated for neat R-12, oil, and a 50/50 mixture with elastomers including neoprene W, neoprene GN, neoprene RT, Buna(FM) N, Buna(FM) S, natural rubber, polysulfide rubber, epichlorohydrin rubber, butyl rubber GR-I, chlorosulfonated polyethylene (DuPont Hypalon(R) 40), polyvinyl alcohol (PVA), fluoroelastomers (DuPont Viton(R) A and B), and urethane rubber. Published safety data, including toxicity and flammability, are summarized. The volume contains an extensive list of references as well as discussion of the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. An appendix summarizes quality requirements for compliance with the Japanese Industrial Standards (JIS) and specifically JIS K1517-1973.

R-13

thermodynamic properties of R-13; thermophysical data

presents shear viscosity coefficients of saturated and compressed fluid R-13: describes measurements made with a torsional crystal viscometer at -173 to 47 °C (-280 to 116 °F) and pressures up to 35 MPa (5100 psia); presents a correlation to a fluidity-viscosity equation and examines the dependence of viscosity on density, molar volume, and temperature; transport properties; thermophysical data

thermodynamic properties of R-13; thermophysical data

thermodynamic properties of R-13: density, thermophysical data

R-13B1

thermodynamic properties of R-13B1; thermophysical data

thermodynamic properties of R-13B1: equation of state (EOS); thermophysical data

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thermophysical Properties of Refrigerants (R-13B1, Bromotrifluoromethane), Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, March 1989 (162 pages with 25 figures and 50 tables, in both Japanese and English, rdb0402)

This comprehensive volume summarizes critical, thermodynamic, transport, physical, chemical, compatibility, and other data available on R-13B1. Included are tabular data and/or plots for PVT properties, enthalpy, entropy, isobaric and isochoric heat capacity, specific heat ratio, speed of sound, surface tension, viscosity, kinematic viscosity, thermal conductivity, thermal diffusivity, Prandtl number, solubility, refractive index, dielectric constant, volume resistivity, and dielectric strength. An equation of state is presented and compared to other equations and data. Relations also are presented for the solubility of R-13B1 in both a naphthenic mineral oil and a synthetic polyglycol lubricant. Limited stability and compatibility data are outlined. Published safety data, including toxicity and flammability, are summarized. The volume contains an extensive list of references as well as discussion of the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. An appendix addresses compliance with the Japanese Industrial Standards (JIS), noting that the quality of R-13B1 is not covered; requirements for the quality of R-13B1 as a fire extinguishant, Halon 1301, under an ordinance of the Ministry of Home Affairs are summarized. R-13B1 also is regulated as a "liquefied gas" by the Japanese Regulation on High-Pressure Gases.

R-13B1

Y-Y. Duan, L. Shi, M-S. Zhu, and L-Z. Han (Tsinghua University, China), Surface Tension of Trifluoriodomethane (CF3I), Fluid Phase Equilibria, 154(1):71-77, 4 January 1999 (7 pages with 5 figures and 1 table, RDB9110)

measurements of the surface tension of R-13B1 under vapor-liquid equilibrium (VLE) conditions by the differential capillary rise method (DCRM) for -30 to 71 °C (-22 to 160 °F): presents the apparatus used, raw data, and a correlation for them; also presents analyses of their relation to reduced temperatures (ratio to the critical temperature) and deviations between the fit equations and measurements

R-14

thermodynamic properties of R-14; thermophysical data

R-14, thermodynamic properties, thermophysical data, EOS

M. Simon, C. M. Knobler, and A. G. Duncan, The Vapor Pressure of Tetrafluoromethane from 86 to 146 K, Cryogenics, 7:138-140, 1967 (3 pages, rdb7B22)

R-23, thermodynamic properties from -187 to -125 °C (-305 to -197 °F), thermophysical data

R-23, thermodynamic properties from -261 °C (-438 °F) to its boiling point, thermophysical data

R-22

presents density measurements for liquid R-22 for 13 isotherms between -10 and 100 °C (14-212 °F) and 1.0-6.2 MPa (145-900 psia); the measurements were made with a vibrating tube densimeter; the accuracy of the data is estimated as ±0.05% except near the critical point; thermodynamic properties; thermophysical data
transport properties of R-22: measurements of the shear viscosity coefficient for -153 to 47 °C (-244 to 116 °F) and pressures up to 30 MPa (4350 psia) with a torsional crystal viscometer; data are correlated to an empirical fluidity-volume equation; paper presents the apparatus, procedures, measured data, and cited correlation [a corrected fluidity-volume equation was obtained from the authors, but not published pending development of a more comprehensive correlation]; thermophysical data

presents a fundamental equation (FEQ) based on Helmholtz energy for R-22; this equation of state (EOS) is applicable for -73 to 277 °C (-100 to 530 °F) for pressures up to 60 MPa (8700 psia); temperatures are given on the new International Temperature Scale of 1990 (ITS-90); the EOS development incorporated new pressure-density-temperature data and speed of sound data in the liquid region; also presents new ancillary functions for the vapor pressure, saturated liquid density, saturated vapor density, and ideal gas heat capacity; the accuracy of the new formulation is estimated to be ±0.2% in density, ±1.0% in heat capacities, and ±0.5% in sound velocity; thermodynamic properties; thermophysical data

A. Kamel, S. W. Beyerlein, R. T. Jacobsen, and K. R. Den Braven, A New Interim Thermodynamic Property Formulation for Chlorodifluoromethane (R-22), Symposium on Global Climate Change and Refrigerant Properties (AIChE Spring National Meeting, Orlando, FL, 18-22 March 1990), American Institute of Chemical Engineers (AIChE), New York, NY, 1990 (rdb9114)

presents a fundamental equation (FEQ) based on Helmholtz energy for R-22; equation of state (EOS); thermodynamic properties; thermophysical data

A. V. Kletskii and S. T. Butierskaya, Coefficient of Dynamic Viscosity of Liquid Freon 22, Kolloidnyi Tekhnika [Refrigeration Technology], 6:31 ff, 1973 (in Russian, rdb8319)

transport properties of R-22; viscosity; thermophysical data

R. Kohlen, Das Fluide Zustandsgebiet von R-22: Berechnung, Korrelationen [The Vapor-Phase Region of R-22: Calculations, Correlations], report series 19 number 14, Verein Deutscher Ingenieure (VDI) [Association of German Engineers] Verlag, Düsseldorf, Germany, 1987 (in German, rdb5492)

R-22, thermodynamic properties, thermophysical data

thermodynamic properties of R-22, thermophysical data

B. Kruppa and J. Straub (Technische Universität München, Germany), Thermal Diffusivity of Refrigerants, Thermophysical Properties of Pure Substances and Mixtures for Refrigeration (proceedings of the meeting of IIR Commission B1, Herzlia, Israel, March 1990), International Institute of Refrigeration (IIR), Paris, France, 69-75, 1990 (7 pages with 4 figures and 2 tables, RDB5623)

R-22, thermal diffusivity, transport data, photon correlation spectroscopy; presents results for R-22, but indicates that measurements also have been made for R-13, R-13B1, R-23, R-744, R-744A, R-7146, R-23/7146, and R-7146/13B1

presents correlations obtained by least squares, linear regression for the saturation temperature and pressure, heat of vaporization, vaporization specific volume, density of saturated vapor, saturated liquid dynamic viscosity, saturated vapor dynamic viscosity, and thermal conductivity of saturated liquid for -90 to 95 °C (-130 to 203 °F) based on published property data: graphically compares the equations with the published data; figures show the fitted curves, data points, and the resulting errors

K. Oguchi, H. Sagara, I. Matsushita, K. Watanabe (Keio University, Japan), and I. Tanashita, Experimental Study of PVT Relations for Fluorinated Hydrocarbon R22, Nippon Kikai Gakkai Ronbun-shu (Transactions of the Japan Society of Mechanical Engineers, JSME), JSME, Tokyo, Japan, B45(558):1522-1528, 1979 (7 pages in Japanese, rdb7056)

thermodynamic properties of R-22; thermophysical data

K. Oguchi, I. Matsushita, H. Sagara, K. Watanabe, I. Matsushita, and I. Tanashita (Keio University, Japan), and I. Tanashita, Pressure-Volume-Temperature Properties of Chlorodifluoromethane (R22) in Liquid and Gaseous States, Proceedings of the XVth International Congress of Refrigeration (Moscow, USSR), International Institute of Refrigeration (IIR), Paris, France, II:55-61, 1978 (7 pages, rdb9117)

thermodynamic properties of R-22; thermophysical data

thermodynamic properties of R-22; thermophysical data

thermodynamic properties of R-22 for 37-127 °C (98-260 °F) and pressures up to 10 MPa (1450 psia); thermophysical data

thermodynamic properties of R-22: equation of state (EOS) for -157 to 277 °C (-251 to 530 °F) and pressures up to 200 MPa (29,000 psia); thermophysical data

Thermophysical Properties of Refrigerants (R-22, Chlorodifluoromethane), Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, November 1975 with errata dated 1986 (132 pages with 21 figures and 38 tables plus 16 page errata, in both Japanese and English, rdb-0403)

This comprehensive volume summarizes critical, thermodynamic, transport, physical, chemical, compatibility, and other data available on R-22. Included are tabular data and/or plots for PVT properties, enthalpy, entropy, isobaric and isochoric specific heat capacity, specific heat ratio, speed of sound, surface tension, viscosity, kinematic viscosity, thermal conductivity, thermal diffusivity, Prandtl number, solubility, refractive index, dielectric constant, volume resistivity, and dielectric strength. A section on physical and chemical provides tabular data on the solu-
bility of R-22 in water, miscibility diagrams for naphthenic and paraffinic mineral oils in R-22, and plots of the solubility in naphthenic mineral oil. It also identifies the decomposition products of R-22 in several heat sources and indicates the hydrolysis rate of R-22 in water alone and with several metal catalysts. The effects of R-22 on plastics are summarized, including polytetraflouroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, poly(1-chloro-1,2,2-trifluoroethylene), polyvinyl alcohol, polyethylene, polynvinylchloride (PVC), polyvinylidene chloride, nylon resin, acrylic resin (polyacrylic), polystyrene, phenolic resin, epoxy resin, acetal resin, cellulose acetate, cellulose nitrate, and acryl fiber. Linear swell data are tabulated for neat R-12, oil, and a 50/50 mixture with elastomers including Buna™ N, Buna™ S, neoprene W (type GN), butyl rubber, and natural rubber. The maximum temperature limit is provided for R-22 with several enamel (varnish) types, including acrylic, polyvinyl formal, isocyanate modified polyvinyl formal, polyamide imide, polyester imide, and polyimide. Published safety data, including toxicity and flammability, are summarized and explosion limit curves are provided for air mixtures. An equation of state is presented and compared to other equations and data. Relations also are presented for key equilibrium properties. Published safety data, including toxicity and flammability, are summarized. The volume contains an extensive list of references as well as discussion of the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. An appendix summarizes quality requirements for compliance with the Japanese Industrial Standards (JIS) and specifically JIS K1519-1973.

R-23

thermodynamic properties of R-23, thermophysical data

R-23, thermodynamic properties, thermophysical data

R. Döring and H. J. Löffler (Technische Universität Berlin, Germany), Thermodynamische Eigenschaften von Trifluormethan (R23) [Thermodynamic Properties of Trifluoromethane (R-23)], Kältetechnik-Klimatisierung, 20:342-348, 1968 (7 pages, in German, rdb4307)

thermophysical data

thermodynamic properties of R-23 measured with an adiabatic calorimeter: describes measurements of the isochoric heat capacity obtained on 418.8 and 509.3 kg/m³ (26.1 and 31.8 lb/ft³) isochores with an estimated accuracy of 1-2%; thermophysical data

K. Hori, S. Okazaki, M. Uematsu, and K. Watanabe (Keio University, Japan), An Experimental Study of Thermodynamic Properties of Trifluoromethane, Proceedings of the Eighth Thermophysical Properties Symposium (Gaithersburg, MD, 15-18 June 1981), edited by J. V. Sengers, American Society of Mechanical Engineers (ASME), New York, NY, 2:380-386, 1982 (7 pages, rdb4309)

thermodynamic properties of R-23; thermophysical data

R-23, equation of state (EOS), thermophysical data

thermodynamic properties of R-23; thermophysical data

thermodynamic properties of R-23; thermophysical data

thermodynamic properties of R-23; presents equations to determine the saturated vapor
pressure and the saturated liquid and vapor densities; proposes property equations for relative pressure and density near the triple point; thermophysical data

A. Popowicz, T. Oi, J. Shulman, and T. Ishida (State University of New York), *Vapor Pressure Isotope Effects in Liquid Fluoroform*, *Journal of Chemical Physics*, 76(7):3732-3743, 1 April 1982 (12 pages with 6 figures and 7 tables, rdb4143)

thermodynamic properties of R-23; thermophysical data

thermodynamic properties of R-23: PVT; thermophysical data

thermodynamic properties of R-23; thermophysical data

D. S. Rasskazov, U. M. Babikov, and N. Y. Filatov, *Experimental Study of Viscosity of Freon-23*, *Teplofizicheskie Svoistva Veshchestv i Materialov* [Thermophysical Properties of Substances and Materials], Izdatel’stvo Standartov, Moscow, Russia, 8:142-147, 1975 (6 pages, in Russian, rdb4B32)

R-23, transport properties, thermophysical data

thermodynamic properties of R-23; thermophysical data

thermodynamic properties of R-23; thermophysical data

R-23, thermodynamic properties, thermophysical data, PVT

R-23, density, thermodynamic properties, thermophysical data

R-23, thermodynamic properties, thermophysical data

N. I. Timenshenko, E. P. Kholodov, and A. L. Yamnov, *Refractive Index, Polarizability, and Density of Freon-23*, *Teplofizicheskie Svoistva Veshchestv i Materialov* [Thermophysical Properties of Substances and Materials], Izdatel’stvo Standartov, Moscow, Russia, 8:17-26, 1975 (10 pages in Russian, rdb4B36)

R-23, transport properties, thermophysical data

R-23, thermodynamic properties, thermophysical data

R-23, thermophysical data

Thermophysical Properties of R-23, research project 997-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, September 1997 - August 1998 (ASH0997)

The research will develop thermodynamic and transport properties and equations for R-23. The results will be presented as a pamphlet summarizing the thermophysical properties in tabular, chart and equation form. The contractor for the work is the University of Idaho led by S. G. Penoncello; it is sponsored by ASHRAE
R-32

Y. Chernyak (University of Delaware, USA), P. V. Zhelezny (Odessa State Academy of Refrigeration, Ukraine), and M. E. Paulaitis (University of Delaware, USA), Thermodynamic Properties of Difluoromethane on the Saturation Curve, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and A. Groll, Purdue University, West Lafayette, IN, 435-440, July 1996 (6 pages with 4 figures and 5 tables, RDB6C21)

data source citations and data correlations for the saturated vapor pressure and for the saturated liquid and vapor densities of R-32; listing of data and source citations for critical parameters (temperature, density, and pressure) for R-32; recommended critical properties and coefficients to apply the equations presented, to predict the thermodynamic properties of R-32, over a wide temperature range and in the vicinity of the critical point

thermodynamic properties of R-32: describes measurements of the pressure-volume-temperature (PVT) behavior using a vibrating-tube densimeter and a Burnett isochoric apparatus; correlations with a virial equation of state (EOS) and an abbreviated form of a Benedict-Webb-Rubin (MBWR) EOS; provides tabular data for the saturated liquid and vapor states

Y-Y. Duan, H-W. Xiang, L. Shi, et al. (Tsinghua University, China), A New Equation of State of Difluoromethane (HFC-32) over the Entire Region, Oqinghua Daxue Xuebao [Journal of Tsinghua University], Beijing, China 36(5):, 1998 (rdb8C16)

presents an equation of state (EOS) for R-32; thermodynamic properties, thermophysical data

thermodynamic properties of R-32; thermophysical data

Y-D. Fu, L-Z. Han, and M-S. Zhu (Tsinghua University, China), PVT Properties, Vapor Pressures, and Critical Parameters of HFC-32, Fluid Phase Equilibria, 111(2):273-286, October 1995 (14 pages with 5 figures and 9 tables, RDB7735)

summarizes measurements of pressure-volume-temperature (PVT) data for R-32 in the vapor phase using a three-chamber Burnett apparatus along fourteen isotherms for temperatures from -30 to 100 °C (-22 to 212 °F) and pressures from 0.07-5.7 MPa (10-827 °F); also summarizes measurements of vapor pressure for the temperature range from -40 to 78 °C (-40 to 172 °F); demonstrates agreement of the data to an equation of state (EOS) developed by Piao et al. with an RMS deviation of 0.17% and 0.063%, respectively, for the two sets; presents a new vapor pressure equation for R-32 based on these data and those from other investigators; presents new determinations of the critical temperature, density, and pressure for R-32 as 78.145 ±0.010 °C (172.661 ± 0.006 °F), 425 ±3 kg/m³ (26.53 ±0.02 lb/ft³), and 5.785 ±0.002 MPa (839 ±0.3 psia), respectively, based on visual observation of the disappearance of the meniscus in an optical cell

thermodynamic properties of R-32; thermophysical data

thermodynamic properties of R-32; thermophysical data

T. Hozumi, H. Sato, and K. Watanabe (Keio University, Japan), Speed of Sound in Gaseous Difluoromethane, Journal of Chemical and Engineering Data, 39:493-495, 1994 (3 pages, rdb6952)

properties of R-32; thermophysical data

H. Kubota, T. Sotani, and Y. Kunimoto, Isobaric Specific Heat Capacity of Difluoromethane at Pressure up to 0.5 MPa, Fluid Phase Equilibria, 104:413-419, 1995 (7 pages, rdb6955)

properties of R-32; thermophysical data

S. Kuwabara, J. Tatoh, H. Sato, and K. Watanabe (Keio University, Japan), Critical Parameters and

thermodynamic properties of R-32; thermophysical data

thermodynamic properties of R-32; thermophysical data

R-32: thermodynamic, structural, and dynamic properties, PVT data, heat of vaporization, thermophysical data

P. F. Malbrunot, P. A. Meunier, G. M. Scatena (Laboratoire des Hauts Pressions, France), W. H. Mears, K. P. Murphy, and J. V. Sinka (AlliedSignal Incorporated, then Allied Chemical Corporation), Pressure-Volume-Temperature Behavior of Difluoromethane, Journal of Chemical and Engineering Data, 13(1):16-21, January 1968 (6 pages with 3 figures and 7 tables, RDB2310)

The pressure-volume-temperature (PVT) properties of R-32 are correlated using the Martin-Hou equation of state to within ±0.94% standard deviation over the experimental ranges: 25-200 °C (77-392 °F), 0.8-20 MPa (120-2900 psia), and 47-1.8 cc/g (0.75-0.03 cf/lb). Vapor pressures have been determined from -83 °C (-117 °F) to 78.4 °C (173 °F), the measured critical temperature. Using liquid densities measured between -25 and 78 °C (-13 and 172 °F) and densities of saturated vapor computed from the Martin-Hou equation, a rectilinear diameter line has been developed. The critical pressure and density are 5.630 MPa (846 psia) and 430 kg/m³ (26.8 lb/ft³), respectively.

R-32, physical properties, thermophysical data, measurements with an impedance analyzer

A. Nishimura, Z-Y. Qian, H. Sato, and K. Watanabe (Keio University, Japan), Thermodynamic Properties of HFC-32 at the Gaseous Phase and Saturated States, Proceedings of the 13th Japan Symposium on Thermophysical Properties, Akita, Japan, 57-60, 1992 (4 pages, rdb4B24)

thermodynamic properties of R-32; thermophysical data

thermodynamic properties of R-32: modified Benedict-Webb-Rubin (BWR) equation of state (EOS); thermophysical data

thermodynamic properties of R-32; thermophysical data

Z-Y. Qian, H. Matsunobe, H. Sato, and K. Watanabe (Keio University, Japan), Thermodynamic Property Measurements for Difluoromethane (HFC-32) by a Burnett Method, paper B103, Proceedings of the Twelfth Japan Symposium on Thermophysical Properties, 73-76, 1991 (4 pages with 8 figures, RDB2428)

This paper summarizes measurements of vapor pressures of R-32 at temperatures of 300-330 K (80-134 °F) and compressibility factors for 300-350 K (80-170 °F) and 0.15-4.3 MPa (22-624 psia). The experimental apparatus used, based on a Burnett method, is briefly described. Second and third virial coefficients for property calculations are presented. A systematic error, related to an adsorption effect in the Burnett experimental procedure, and a correction are discussed.

thermodynamic properties of R-32; thermophysical data

T. Sato, H. Sato, and K. Watanabe (Keio University, Japan), \textit{A Study of PVT Properties of HFC-32, Proceedings of the 13th Japan Symposium on Thermophysical Properties, Akita, Japan, 49-52, 1992 (rdb4a43)}

thermodynamic properties of R-32; thermophysical data

L. Shi, M-S. Zhu, L-Z. Han, Y-Y. Duan, L-Q. Sun, and Y-D. Fu (Tsinghua University, China), \textit{Thermophysical Properties of Difluoromethane (HFC-32), Science in China, China, series E, 41(4):435-442, August 1998 (6 pages with 7 figures and 4 tables, RDB8C14)}

thermodynamic properties of R-32; thermophysical data

measurements of the speed of sound in R-32 for 0-60 °C (32-140 °F) and 46-390 kPa (7-57 psia) with a cylindrical, variable-path, acoustic interferometer; describes determination of the ideal-gas heat capacity at constant pressure and the second virial coefficients form those data; compares the results those calculated form to data published from other studies and to speed of sound measurements; estimates the uncertainty to be less than ±1%; describes the apparatus and tabulates the measured data

R. Tillner-Roth (Universität Hannover, Germany) and A. Yokozeki (DuPont Chemicals), \textit{An International Standard Equation of State for Difluoromethane (R-32) for Temperatures from the Trivle Point at 138.34 K to 435 K and Pressures up to 70 MPa}, \textit{Journal of Physical and Chemical Reference Data, 26(6):1273-1328, 1997 (56 pages with 20 figures and 17 tables, available as reprint 532)}

fundamental equation of state (EOS) for the Helmholtz free energy of R-32 from the triple point at -136.81 °C (-214.26 °F) to 162 °C (323 °F) and pressures up to 70 MPa (10,200 psia); EOS is based on available measurements of pressure-density-temperature relations, speed of sound, heat capacity, and vapor pressure; compares the 19-coefficient EOS to equations reported in other studies; presents new values for the isobaric heat capacity of the ideal gas; thermodynamic properties; thermophysical data

thermodynamic properties of R-32; thermophysical data

This paper presents measured vapor pressure data for R-32 at relatively low temperatures and pressures, between -65 and -36 °C (-55 and -33 °F). It describes a comparative ebulliometer used for the measurements. The paper shows and tabulates deviations of the measured data from fits to an Antoine equation and, combined with data from other researchers, to a Wagner equation. It compares the findings to those published by others. The results offer a means to calculate the vapor pressure of R-32 from -83 °C to the critical temperature, 78.21 °C (-118 to 172.78 °F). The paper then presents calculated thermodynamic properties, including liquid and vapor pressure, density, enthalpy, entropy, and specific heat at low temperatures, from -73 to -23 °C (-100 to -10 °F). It also presents estimates of the second virial coefficients for R-32.

M. Yomo, H. Sato, and K. Watanabe (Keio University, Japan), \textit{Measurements of Isobaric Heat Capacity for Liquid Difluoromethane (HFC-32), High Temperatures - High Pressures, 26:267 ff, 1994 (rdb8971)}

thermophysical properties of R-32

M-S. Zhu and C-X. Lu (Tsinghua University, China), \textit{Surface Tension of Difluoromethane, Journal of Chemical and Engineering Data, 39(2):205-206, 1994 (2 pages with 3 figures and 1 table, RDB8C19)}

measurements of the surface tension of R-32 using the differential capillary method for -5.2 to 61.1 °C (23-142 °F); correlation with a van der Waals equation; tabulates the measured and predicted data; concludes that most of the measured data fit the correlation with deviations of less than 3%
Thermodynamic Properties of R-32; thermophysical data

M.-S. Zhu, J. Li, and C-X. Lu (Tsinghua University, China), Experimental Research on Vapor Pressure and Surface Tension of HFC-32, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 54-60, October 1993 (7 pages with 6 figures and 3 tables, RDB3A26)

This bulletin provides physical property, comparative performance, and thermodynamic data on R-32, difluoromethane, in inch-pound (IP) units. It summarizes physical properties including the chemical formula, molecular weight, atmospheric boiling point, and flammability. It also indicates the liquid density and specific heats of the liquid and vapor at 26.7 °C (80 °F) as well as the Ozone depletion potential (ODP) and estimated global warming potential (GWP).

Thermodynamic Properties of Klea® 32, SI Units, bulletin CP/30473/1Ed/152/1192, ICI Chemicals and Polymers Limited, Runcorn, Cheshire, UK, November 1992 (60 pages with 2 tables, RDB6B28)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-32 in metric (SI) units of measure. It comprises tables. The first presents saturation temperatures by temperature (°C and K) for -80 to 78 °C (-112 to 172 °F) and at the critical point, 78.35 °C (173.03 °F). The tabular data include absolute pressure, liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second table provides volume, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 14-5170 kPa (2-750 psia) to temperatures as high as 114 °C (238 °F).

Thermodynamic Properties of Klea® 32, British Units, bulletin 620250270, ICI Klea, Wilmington, DE, July 1993 (56 pages with 2 tables, limited copies available from JMC as RDB4107)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-32 in inch-pound (IP) units of measure. It comprises tables. The first presents saturation properties by temperature (°F and °R) for -84 to 78 °C (-120 to 172 °F) and at the critical point, 78.35 °C (173.03 °F). The tabular data include absolute and gauge pressure; liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second table provides volume, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 20-5500 kPa (3-800 psia) to temperatures as high as 198 °C (388 °F). ICI's product name for R-32 is Klea® 32.

R-50 (Methane)

R-50, equation of state (EOS), thermodynamic properties, thermophysical data

R-50, thermodynamic properties

thermodynamic properties of R-50 (methane) for -173 to -13 °C (-280 to 8 °F) and pressures up to 8 MPa (1160 psia): thermophysical data

thermodynamic properties of R-50 (methane) for 0-50 °C (32-122 °F) and pressures up to 8 MPa (1160 psia): thermophysical data

R-50, thermodynamic properties, thermophysical data

R-50 (methane): thermodynamic properties from the freezing line to 352 °C (655 °F) and 1000 MPa (145,000 psia), thermophysical data, equation of state (EOS)

\[\text{R-114} \]

R-114, thermophysical data

Y. Higashi, M. Uematsu, and K. Watanabe (Kelo University, Japan), Measurements of the Vapor-Liquid Coexistence Curve and Determination of the Critical Parameters for Refrigerant 114, Bulletin of the Japan Society of Mechanical Engineers (JSME), 28(246):2968-2973, 1985 (6 pages, rdb-7C40)

R-114, thermodynamic properties, thermophysical data

R-114, modified Martin-Hou (MH) equation of state (EOS), 1,2-dichloro-1,2,2-tetrafluoroethane

R-114, refrigerant-lubricant (RL) properties, thermophysical data, 1,2-dichloro-1,2,2-tetrafluoroethane

thermodynamic properties of R-114; thermophysical data

D. P. Wilson (AlliedSignal Incorporated, then Allied Chemical Corporation) and K. R. Hules (Sperry Corporation), Experimental Study of the Thermodynamic Properties of 1,2-Dichlorotetrafluoroethane, Proceedings of the Eighth Thermophysical

R-114 [actually R-114/114a (93/7)], measurements of pressure-volume temperature (PVT) properties at 17-234 °C (62-453 °F) and 0.2-10.4 MPa (24-1514 psia) using a high pressure, constant volume and mass apparatus, which is described; 13 isochores were generated in the vapor, supercritical dense gas, and compressed liquid regions; new critical constants were determined; reviews measurements by others, noting that most were on commercial R-114, actually and isomeric blend of R-114/114a (95/5); relations for liquid density, vapor pressure, and ideal gas heat capacity; modified Martin-Hou (MH) equation of state (EOS); vibrational fundamentals for the trans and gauche isomers of R-114

Thermophysical Properties of Refrigerants (R-114, 1,2-dichlorotetrafluoroethane), Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, March 1986 (162 pages with 23 figures and 46 tables, in both Japanese and English, RDB0404)

This comprehensive volume summarizes critical, thermodynamic, transport, physical, chemical, compatibility, and other data available on R-114 (1,2-dichloro-1,1,2,2-tetrafluoroethane). Included are tabular data and/or plots for PVT properties, enthalpy, entropy, isobaric and isochoric specific heat capacity, specific heat ratio, speed of sound, surface tension, viscosity, kinematic viscosity, thermal conductivity, thermal diffusivity, Prandtl number, solubility, refractive index, dielectric constant, volume resistivity, and dielectric strength. An extended Martin-Hou equation of state is presented and compared to other equations and data. Relations also are presented for key equilibrium properties. Data are tabulated for the solubility of R-114 in water, moisture contents of saturated R-114 liquid and vapor, and R-114 in both a naphthenic mineral oil and a synthetic polyperfluoroether lubricant. Limited data on hydrolysis rates, stability of R-114 in the presence of metals and oil, and compatibility with other materials are outlined. Published safety data, including toxicity and flammability, are summarized. The volume contains an extensive list of references as well as discussion of the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. An appendix summarizes quality requirements for compliance with the Japanese Industrial Standards (JIS) and specifically JIS K1528-1982. R-114 also is regulated as a "liquified gas" by the Japanese Regulation on High-Pressure Gases.

R-115

R-115 (chloropentafluoroethane) from -262 °C (-440 °F), thermodynamic properties, thermophysical data

thermodynamic properties of R-115; thermophysical data

thermophysical data, refrigerant-lubricant mixtures

R-115, thermodynamic properties, thermophysical data

R-123

please see page 6 for ordering information
thermodynamic properties of R-123 (2,2-dichloro-1,1,1-trifluoroethane); measurements by ebulliometric and static techniques for -17 to 181 °C (2-357 °F); correlation for the vapor pressure; thermophysical data

U. Hamersschmidt and W. Hemminger, Die Wärmeleitfähigkeit von Monochlordifluormethan (R22) und von Dichlortrifluorethan (R123) im Temperaturbereich von 30 bis 190 °C bei Atmosphären druck [The Thermal Conductivity of Monochlorodifluormethane (R-22) and 2,2-Dichloro-1,1,1-trifluoroethane (R-123) in the Temperature Range from 30 to 190 °C (86 to 374 °F) at Atmospheric Pressure], DKV Jahrestagung [Proceedings of the DKV Annual Meeting] (Hannover, Germany, 1989), Deutscher Kälte- und Klimatechnischer Verein (DKV, German Association of Refrigeration and Air-Conditioning Engineers), 397-410, 1989 (14 pages in German, rdb8461)

the thermal conductivity of R-22 and R-123: transport properties, thermophysical data

A. Laesecke, R. A. Perkins, and J. B. Howley (National Institute of Standards and Technology, NIST), An Improved Correlation for the Thermal Conductivity of HCFC123 (2,2-Dichloro-1,1,1-trifluoroethane), International Journal of Refrigeration (IJR), 19(4):231-238, May 1996 (8 pages with 6 figures and 2 tables, copies available from JMC as RDB7949)

transport properties of R-123; presents a survey of existing data; new measurements, and an improved correlation based on the combined data; correlation covers -93 to 207 °C (-163 to 404 °F) and pressures up to 67 MPa (9700 psia) or densities up to 1900 kg/m³ (119 lb/ft³); thermophysical data

S. Nakagawa, H. Sato, and K. Watanabe (Keio University, Japan), Isobaric Heat Capacity Data for Liquid HCFC-123 (CHCl₂CF₃, 2,2-Dichloro-1,1,1-trifluoroethane), Journal of Chemical and Engineering Data, 36(2):156-159, 1991 (4 pages, rdb4867)

thermodynamic properties of R-123; thermophysical data

S. Nakagawa, H. Sato, and K. Watanabe (Keio University, Japan), Measurements of Isobaric Specific Heat of HCFC-123 in the Liquid State, Thermochimica Acta, 163:203-210, 1990 (8 pages, rdb5337)

thermodynamic properties of R-123; thermophysical data

K. Oguchi, M. Yamagishi, and A. Murano (Kanagawa Institute of Technology, Japan), Experimental Study of PVT Properties of HCFC-123 (CHCl₂CF₃), Preprints of the 11th Symposium on Thermophysical Properties (Boulder, CO, 23-27 June 1991), American Society of Mechanical Engineers (ASME), New York, NY, 1991; republished in Fluid Phase Equilibria, 80(4):131-140, 30 November 1992 (10 pages, rdb7964)

presents pressure-volume-temperature (PVT) properties and vapor pressures of R-123 for -20 to 220 °C (-4 to 428 °F) and pressures up to 17 MPa (2500 psia): measurements were made with a constant volume apparatus with uncertainties of less than ±0.005 °C (0.009 °F) and ±2.2 kPa (0.32 psia); provides a correlation of the new experimental data and other available data to a modified Benedict-Webb-Rubin (MBWR) equation of state (EOS); the fit considered the Gibbs function and latent heat along saturation; also presents a correlation of the vapor pressure for temperatures above -20 °C (-4 °F); the experimental data were converted to the 1990 International Temperature Scale for determination of the correlations; thermodynamic properties of R-123; thermophysical data

K. Oguchi and Y. Takaishi (Kanagawa Institute of Technology, Japan), Measurement of Saturated Liquid Density of HCFC-123, Proceedings of the Tenth Japan Symposium on Thermophysical Properties, Shizuoka University, Japan, 55-58, 1989 (4 pages, rdb4313)

thermodynamic properties of R-123; thermophysical data

R-123: surface tension, thermodynamic properties, thermophysical data

R-123 transport properties, thermophysical data

C-C. Piao, H. Sato, and K. Watanabe (Keio University, Japan), Equation of state for a new working fluid HCFC-123, Preprints of the 11th Symposium on Thermophysical Properties (Boulder, CO, 23-27 June 1991), American Society of Mechanical Engineers (ASME), New York, NY, 1991; republished in Fluid Phase Equilibria, 80(4):87-98, 30 November 1992 (12 pages, RDB)

An equation of state for environmentally acceptable refrigerant, HCFC-123, has been devel-
opred, based on the available thermodynamic property data. It is a non-dimensionalized virial equation of state which has 21 coefficients and effective in the entire fluid phase of pressures up to 15 MPa, temperatures from 270 K to 550 K, and densities from 0 to 1600 kg/m³, respectively. The equation represents the reliable PVT measurements within plus or minus 0.5% in pressure for the superheated gaseous and supercritical fluid phase, while within plus or minus 0.5% in density for the compressed liquid phase. The vapor pressures and other essential thermodynamic properties have been derived from the present modeling. Detailed discussions on the results compared with other measured data are also reported. As a typical example, the isobaric specific heat data (Nakagawa et al., 1991) in the liquid phase have been reproduced within plus or minus 3% by the present equation of state, while the existing best equation of state has reproduced them with the maximum deviation of 12%. (Author abstract) [References: 21]

C-C. Piao, H. Sato, and K. Watanabe (Keio University, Japan). An Equation for a New Working Fluid HCFC-123, Fluid Phase Equilibria, 80:122-129, 1991 (7 pages, rdb5481)

thermodynamic properties of R-123; thermophysical data

C-C. Piao, H. Sato, and K. Watanabe (Keio University, Japan). PVT and Vapor Pressure Measurements on 1,1-Dichloro-2,2,2-trifluoroethane [2,2-dichloro-1,1,1-trifluoroethane] (HCFC-123), Journal of Chemical and Engineering Data, 36:398-403, 1991 (6 pages, rdb5462)

thermodynamic properties of R-123; thermophysical data

R-123; R-123a, viscosity, transport properties, thermophysical data

transport properties of R-123: thermal conductivity; viscosity; thermophysical data

R-123: thermal conductivity, viscosity, thermophysical data

thermodynamic properties of R-123; thermophysical data

presents a fundamental equation (FEQ) for R-123: this equation of state (EOS) is valid from -107 to 252 °C (-161 to 485 °F) at pressures to 40 MPa (5800 psia) with temperatures in the International Temperature Scale of 1990 (ITS-90); also presents ancillary functions for the vapor pressure, saturated liquid density, and saturated vapor density; the equation are based on a stepwise, linear, least squares regression algorithm used in a multi-property fit to vapor pressure, density, temperature, heat capacity, and speed of sound data; compares the FEQ to the experimental data to verify the accuracy

J. E. S. Venart, Transient Hot-Wire Measurements of the Thermal Conductivity of R123, University of New Brunswick, Fredericton, Canada, 1993 (rdb8454)

transport properties of R-123; thermophysical data

L. A. Weber and J. M. H. Levent Sengers (National Institute of Standards and Technology, NIST), Critical Parameters and Saturation Densities of 1,1-dichloro-2,2,2-trifluoroethane [2,2-dichloro-1,1,1-trifluoroethane], Fluid Phase Equilibria, 55:241-249, 1990 (9 pages with 2 figures and 1 table, RDB0915)

This paper describes measurements to determine the critical parameters (temperature and density) as well as densities along the liquid-vapor phase boundary of R-123. It describes and schematically shows the optical cell employed. It also outlines the experimental procedures used for the measurements. The measured data are tabulated and an empirical correlation

please see page 6 for ordering information
and uncertainty analysis are presented. The critical temperature and density were found to be 183.72 °C (362.70 °F) and 550 kg/m³ (34.3 lb/ft³), respectively. The critical pressure was calculated from vapor pressure data to be 3674 kPa (532.9 psia), which yields a value of 0.269 for the critical compressibility factor, Zc. Measurement temperatures varied from 25 °C (77 °F) to the critical point for the saturated liquid and from 160 °C (320 °F) to the critical point for saturated vapor.

New data are presented for the vapor pressure and gas-phase PVT surface of R-123 in the temperature range 338-453 K (149-356 °F) at densities up to 0.67 mol/L. The data have been represented analytically to demonstrate the precision and to facilitate calculation of thermodynamic properties.

modified Benedict-Webb-Rubin (MBWR) equation of state (EOS) for R-123 based on measured properties and data available from the literature: provides coefficients for the 32 coefficient EOS and for ancillary equations representing the vapor pressure, saturated liquid and saturated vapor densities, and ideal gas heat capacity; while the measurements cover differing ranges of temperature and pressure, the MBWR formulation is applicable along the saturation line and in the liquid, vapor, and supercritical regions at temperatures from -107 to 223 °C (-161 to 440 °F) with pressures to 40 MPa (5800 psia) and densities to 11.6 mol/L (0.4 mol/ft³) or 1774 kg/m³ (11 lb/ft³); this EOS was selected as an international standard by a group working under the auspices of the International Energy Agency (IEA)

This bulletin supplies information on R-123, described as a replacement for R-11 in centrifugal chillers. It provides physical property data, in inch-pound (IP) units, including the chemical formula, molecular weight, atmospheric boiling point, corresponding heat of vaporization, critical parameters (temperature, pressure, and density), flammability, and ozone depletion potential. It also indicates the liquid density and specific heats of the liquid and vapor at 30 °C (86 °F). It then presents a tabular comparison of performance for R-11 and R-123. The report provides tabular thermodynamic properties (pressure, density, vapor volume, liquid and vapor enthalpy and entropy, and latent heat of vaporization) for -18 to 71 °C (0 to 160 °F). Formulas are provided to calculate thermodynamic properties including vapor pressure, ideal gas heat capacity, and liquid density correlations. Estimated coefficients are presented for a Martin-Hou equation of state. AlliedSignal’s product name for R-123 is Genetron(R) 123.

Thermodynamic Properties of HCFC-123 (2,2-Dichloro-1,1,1-trifluoroethane), technical Information report T-123-ENG (H-47753), DuPont Chemicals, Wilmington, DE, January 1993 (40 pages with...
This report provides thermodynamic property data for R-123 in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a modified Benedict-Webb-Rubin (MBWR) equation of state and an ideal gas heat capacity equation at constant pressure. It also gives a Martin-Hou equation of state (EOS), fit from MBWR data, and a corresponding ideal gas heat capacity equation at constant pressure. It supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (pressure and liquid and vapor volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 183 °C (-150 to 362 °F). A set of tables presents volume, enthalpy, entropy, heat capacity at constant pressure, heat capacity ratio (dimensionless Cp/Cv), and velocity of sound data for superheated vapor at constant pressure for 7-3450 kPa (1-500 psia). The new tables are based on experimental data from the National Institute of Standards and Technology, NIST). The report concludes with a pressure-enthalpy diagram. DuPont's product names for R-123 are Suva(R) 123 Refrigerant and Suva(R) Centri-LP Refrigerant.

R-124

R. Bender, K. Bier, and G. Maurer. Heat Capacity at Constant Pressure and Joule-Thomson Coefficient of Monochloro-1,2,2,2-tetrafluoroethane [2-chloro-1,1,2,2-tetrafluoroethane], Journal of Chemical Thermodynamics, 12:335-341, 1980 (8 pages, rdb4222)

R-124, thermodynamic properties, thermophysical data

This paper presents new, very precise, thermodynamic data on R-124 in the temperature range of 5-150 °C (41-302 °F). The measured data include vapor pressures and the gas-phase pressure-volume-temperature (PVT) surface. The paper explains the apparatus and measurement techniques. It describes and graphically shows the influence of a volatile impurity, determined to be R-32. Compensating corrections to the data are outlined. The paper tabulates the measured data, and provides a fit to a Wagner equation for the saturated vapor pressures and to a virial PVT surface equation. It compares the findings to existing data in the literature, and also presents calculated values of saturated vapor density.

R-124, thermodynamic properties, thermophysical data: overview of available experimental data
data and comparisons between sources; Helmholtz free energy equation of state (EOS)

M. Fukushima and K. Watanabe (Keio University, Japan), Thermodynamic Properties of HCFC-124, Nippon Reito Kyokai Ronbunshu [Transactions of the JAR], Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, 10:75-86, 1993 (10 pages in Japanese, rdb9124)

thermodynamic properties of R-124, thermophysical data

thermophysical data

R-124, thermophysical data

R-124, HCFC-124, transport data

Thermodynamic Properties of HCFC-124 (2-Chloro-1,1,1,2-tetrafluoroethane), technical information report T-124-ENG (H-47755), DuPont Chemicals, Wilmington, DE, January 1993 (36 pages with 1 figure and 2 tables, available from JMC as RDB3424)

This report provides thermodynamic property data for R-124 in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a modified Benedict-Webb-Rubin (MBWR) equation of state and an ideal gas heat capacity equation at constant pressure. It also gives a Martin-Hou equation of state (EOS), fit from MBWR data, and a corresponding ideal gas heat capacity equation at constant vapor. It supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (pressure and liquid and vapor volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 122 °C (-150 to 252 °F). A set of tables presents volume, enthalpy, entropy, heat capacity at constant pressure, heat capacity ratio (dimensionless Cp/Cv), and velocity of sound data for superheated vapor at constant pressure for 7-3450 kPa (1-500 psia). The new tables are based on experimental data from the National Institute of Standards and Technology, NIST). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-124 is Suva(R) 124 Refrigerant.

Thermodynamic Properties of HCFC-124 (2-Chloro-1,1,1,2-tetrafluoroethane), technical information report T-124-SI (H-47756), DuPont Chemicals, Wilmington, DE, January 1993 (32 pages with 1 figure and 2 tables, available from JMC as RDB3425)

This report provides thermodynamic property data for R-124 in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a modified Benedict-Webb-Rubin (MBWR) equation of state and an ideal gas heat capacity equation at constant pressure. It also gives a Martin-Hou equation of state (EOS), fit from MBWR data, and a corresponding ideal gas heat capacity equation at constant vapor. It supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (pressure and liquid and vapor volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -100 to 122 °C (-148 to 252 °F). A set of tables presents volume, enthalpy, entropy, heat capacity at constant pressure, heat capacity ratio (dimensionless Cp/Cv), and velocity of sound data for superheated vapor at constant pressure for 10-3600 kPa (1-520 psia). The new tables are based on experimental data from the National Institute of Standards and Technology, NIST). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-124 is Suva(R) 124 Refrigerant.

R-124

C. Barocnici, G. Giuliani, G. Latini, F. Polonara (Università degli Studi di Ancona, Italy), and R. Camorese (Consiglio Nazionale della Ricerche, CNR,
Impact of R-125, thermophysical data, measurement, vapor pressure, PVT properties, Redlich-Kwong-Soave (RKS) equation of state (EOS)

G. Biglardo, R. Camporese (Consiglio Nazionale delle Ricerche, CNR, Italy), Propriétés Thermodynamiques du Réfrigérant Pentafluoroéthane (R125), [Thermodynamic Properties of Refrigerant Pentafluoroethane (R125)], *International Journal of Refrigeration* (IJR), 13(8):44-49, November 1990 (6 pages with 5 figures and 7 tables, rdb5457)

thermophysical data

S. J. Boyes and L. A. Weber (National Institute of Standards and Technology, NIST), Vapour Pressures and Gas-Phase (p, ro(n), T) Values for CF₂CF₃ (R125), *Journal of Chemical Thermodynamics*, 27:163-174, 1995 (12 pages with 5 figures and 7 tables, RDB8C37)

thermodynamic properties of R-125: reports measurements of the vapor pressures and the pressure-density-temperature surface for 0-90 °C (32-194 °F); presents correlations of the vapor pressure from -53 °C (-64 °F) to the critical point temperature of 66.15 °C (151.07 °F); also presents a virial equation for the pressure-density-temperature surface and derived second and third virial coefficients; thermophysical data

R-125

thermodynamic properties of R-125: density measurements with a vibrating tube densimeter for 2.96 °C (35-205 °F) and 1600-6300 kPa (232-914 psia); 32 parameter modified Benedict-Webb-Rubin (MBWR) equation of state (EOS); thermophysical data

M. Fukushima and S. Ohtoshi (Asahi Glass Company, Limited, Japan), *Thermodynamic Proper-

presents coefficients for the Martin-Hou (MH), Peng-Robinson (PR), and Redlich-Kwong-Soave (RKS) equations of state (EOSs) for R-125: notes that the three EOSs produce reasonable agreement for property determination, but that the results from them should be used only as an estimate in performance calculations; the accuracy of the PR EOS decreases as the saturated temperature approaches the critical temperature, but it is described as very useful when measured property are limited and some are of doubtful accuracy; the more complex MH and RKS EOSs are preferred for a full set of measured refrigerant data

M-F. Liu and L-Z. Han (Tsinghua University, China), Experimental Research on Surface Tension of HFC-125, *Qinghua Daxue Xuebao* [Journal of Tsinghua University], Beijing, China 35(2):17-21, April 1995 (5 pages, rdb7A37)

presents surface tension data for R-125 measured using both an absolute capillary rise technique and a differential capillary rise technique at -40 °C (-40 °F): the separate experimental results of the two methods were found to be consistent; deviations between the two methods are ±0.2%; authors propose a Van der Waals surface tension correlation using the new data

measurements of the surface tension of R-125 with both an absolute capillary rise technique and a differential capillary rise method for -40 to 61.1 °C (-40 to 140 °F); correlation with a van der Waals equation; tabulates the measured and predicted data; concludes that the measured data fit the correlation with deviations of less than 0.8%

Y. Monluc, T. Sagawa, H. Sato, and K. Watanabe (Keio University, Japan), *Thermodynamic Proper-

please see page 6 for ordering information
This paper reports experimental data for R-125, including vapor pressure and PVT properties in the vapor phase. Vapor pressures were measured for 303-339 K (86-151 °F) and correlated; the critical pressure (3.633 MPa, 527.3 psia) also was determined based on a critical temperature previously determined by M. O. McLinden of 339.4 K (151.3 °F). PVT properties were measured along five isochors for temperatures of 240-423 K (-27 to 302 °F), pressures of 1.5-8.6 MPa (220-1250 psia), and densities of 97-446 kg/m³ (6-28 lb/ft³). The experimental approach and regression equation are presented and vapor pressure measurements are tabulated and plotted. The PVT properties for the vapor phase also are plotted and compared to other published data.

R-125, measurements of thermodynamic properties, equation of state (EOS), thermal conductivity, thermophysical properties

C-C. Piao and M. Noguchi (Daikin Industries, Limited, Japan), Thermodynamic Properties HFC-125, Proceedings of the 15th Japan Symposium on Thermophysical Properties, Japan, 9-12, 1994 (4 pages, rdb7851)

modified Benedict-Webb-Rubin (SWR) equation of state (EOS) for R-125, thermophysical data

measurements of the thermal conductivity of R-125 by transient and steady-state coaxial cylinder methods at temperatures from -123 to 295 °F and pressures from atmospheric to 6 MPa (870 psia): the experimental approach was validated by measuring the thermal conductivity of R-12 and R-22 and the estimated uncertainty of the results is ±2.3%; vapor

pressure and PVT measurements were made using a constant-volume apparatus for the temperature range -10 to 170 °C (14-338 °F), pressures up to 6 MPa (870 psia), and densities of 36-516 kg/m³ (2-32 lb/ft³)

presents measurements of thermophysical properties of R-125; they include vapor pressures, critical temperature, critical pressure, critical density, pressure-volume-temperature (PVT) data, liquid and vapor heat capacities, isobaric enthalpy differences, liquid and vapor viscosities, and liquid and vapor thermal conductivities; provides a BWRS equation of state (EOS) to correlate the PVT and vapor pressure data and to predict enthalpy departures; compares the experimental data to published findings from other studies

R-134

T. Tamatsu, H. Sato, and K. Watanabe (Keio University, Japan), Measurements of the Pressure-Volume-Temperature Properties of 1,1,2,2-Tetrafluoroethane (HFC-134), Journal of Chemical and Engineering Data, 37:216-219, 1992 (4 pages, rdb-5478)

R-134, thermodynamic properties, thermophysical data

T. Tatoh, S. Kuwabara, H. Sato, and K. Watanabe (Keio University, Japan), Measurements of the Vapor-Liquid Coexistence Curve in the Critical Region and Critical Parameters of 1,1,2,2-Tetrafluoroethane (HFC-134), Journal of Chemical and Engineering Data, 38:116-118, 1993 (3 pages, rdb5467)

R-134, thermodynamic properties, thermophysical data

R-134a

M. J. Assael (Aristotle University, Greece), Y. Naganaka (Keio University, Japan), C. A. Nieto de Castro (Universidade de Lisboa, Portugal), R. A. Perkins
interim results of an international project to investigate discrepancies in findings of different researchers for the viscosity and thermal conductivity of refrigerant R-134a; investigation involves new measurements with a single sample to test whether the reported differences stem from sample purity; project is coordinated by the Subcommittee on Transport Properties of Commission I.2 of the International Union of Pure and Applied Chemistry (IUPAC)

C. Baroncini, G. Giuliani, M. Pacetti, and F. Polonara (Università degli Studi di Ancona, Italy), *Experimental Study of Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (R-134a)*, *Thermophysical Properties of Pure Substances and Mixtures for Refrigeration* (proceedings of the meeting of IIR Commission B1, Herzlia, Israel, March 1990), International Institute of Refrigeration (IIR), Paris, France, 83-88, 1990 (6 pages with 4 figures and 3 tables, RDB4B45)

R-134a, thermodynamic properties, thermophysical data

R-134a, thermodynamic properties, thermophysical data: critical parameters (temperature, pressure, and density); measured vapor pressure, liquid density, pressure-volume-temperature (PVT), and ideal-gas heat capacity data and correlations; Martin-Hou (MH) equation of state (EOS)

thermodynamic and transport properties of R-134a: density, isobaric heat capacity, sound velocity, viscosity, and thermal conductivity; thermophysical data

A. V. Dobrokhotov, A. V. Maslennikov, J. V. Se- menuk, and E. E. Ustjushanin (Moscow Power Engineering Institute, Russia), *The Density of Refrigerant 134a - Experiment and Generalization, Kolloidnyi Tekhnika* [Refrigeration Technology], 7:16-20, 1991 (5 pages, in Russian, rdb5441)

R-134a, thermodynamic properties, thermophysical data

A. R. H. Goodwin and M. R. Moldover (National Institute of Standards and Technology, NIST), *Thermophysical Properties of Gaseous Refrigerants from Speed of Sound Measurements (Apparatus, Model, and Results for 1,1,1,2-Tetrafluoro- ethane, R-134a)*, *Journal of Chemical Physics*, 93(4):2741-2753, 15 August 1990 (13 pages with 10 figures and 4 tables, available from JMC as RDB-0919)

The speed of sound in gaseous R-134a has been obtained between 233.16 and 340 K from measurements of the frequency of the radial acoustic resonances of a gas-filled spherical cavity. Perfect gas heat capacities and second and third acoustic virial coefficients are used to estimate the density virial coefficients B(T) and C(T) and an effective square-well potential. The estimates of B(T) are consistent with B(T) deduced from high-quality equation-of-state measurements; those for C(T) are slightly inconsistent. The apparatus and its calibration with argon are described.

R-134a, transport properties, thermophysical data

ermodynamic properties of R-134a, thermophysical data

please see page 6 for ordering information
This paper discusses five computerized databases distributed by the NIST Standard Reference Data (SRD) Program. The databases provide national standards for the properties of pure fluids, an accurate evaluated mixture program focusing on the properties of natural gas mixtures, a predictive package emphasizing hydrocarbon systems up to those with 20 carbon atoms, a database for refrigerant and prospective alternative refrigerant fluids (REFPROP), and the current scientific thermophysical property surfaces for pure water and steam. The databases include both thermodynamic surfaces and representations for transport properties over broad ranges of temperature, pressure, and composition. The paper also discusses research to improve the standards for air and for aqueous systems, including R-717/718 (the binary mixture of ammonia and water) widely used in absorption cycle refrigeration.

This paper reports the use of two methods, namely simulated annealing (SA) and threshold accepting (TA), to determine a set of optimal terms (the structure) of the vapor pressure correlation for R-134a. The SA algorithm with the Lundy and Mees annealing schedule, and the TA algorithm with the Aarts and Van Laarhoven schedule gave the best performance, based on minimal computational time for a given performance. The authors conclude that SA and TA appear to be versatile, powerful, and computationally simple methods for determining the structure of empirical correlations for thermophysical property data.

M. L. Huber (National Institute of Standards and Technology, NIST) and J. F. Ely (Colorado School of Mines), A Predictive Extended Corresponding States Model for Pure and Mixed Refrigerants Including an Equation of State for R134a, International Journal of Refrigeration (IJR), 17(1):18-31, January 1994 (14 pages with 14 figures and 9 tables, RDB9745)

R-134a, ECS equation of state (EOS), thermodynamic properties, thermophysical data; extensive reference list for thermodynamic data on R-11, R-12, R-13, R-13B1, R-14, R-22, R-23, R-32, R-114, R-115, R-123, R-124, R-125, R-134, R-141b, R-142b, R-143a, R-152a, and R-227a

M. L. Huber and J. F. Ely (National Institute of Standards and Technology, NIST), An Equation of State Formulation of the Thermodynamic Properties of R-134a (1,1,1,2-Tetrafluoroethane), International Journal of Refrigeration (IJR), 15(6):393-400, July 1992 (8 pages with 10 figures and 10 tables, available from JMC as RDB3702)

thermophysical data

M. L. Huber and M. O. McInden (National Institute of Standards and Technology, NIST), Thermodynamic Properties of R-134a (1,1,1,2-Tetrafluoroethane), Proceedings of the 1992 International Refrigeration Conference - Energy Efficiency and New Refrigerants, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, II:453-462, July 1992 (10 pages with 4 figures and 9 tables, RDB2828)

R-134a, equation of state (EOS), thermophysical data

Y. Kabata, S. Tanikawa, M. Uematsu, and K. Watanabe (Keio University, Japan), Measurements of the Vapor-Liquid Coexistence Curve and the Critical Parameters for 1,1,1,2-Tetrafluoroethane, International Journal of Thermophysics, 10(3):605-616, 1989 (12 pages, RDB4119)

thermodynamic properties of R-134a: vapor-liquid equilibria (VLE), thermophysical data

P. M. Kesselman, V. P. Dzelezny, and Y. V. Semenuk (Moscow Power Engineering Institute, Russia), Thermal Properties of Refrigerant 134a in the Liquid Phase, Kolloidnyi Tekhnika [Refrigeration Technology], 7:9-11, 1991 (3 pages, in Russian, RDB5455)

R-134a, thermodynamic properties, thermophysical data

R-134a, thermodynamic properties, thermophysical data

R. Krauss (Universität Stuttgart, Germany), J. Luettmser-Strathmann (University of Maryland, USA), J. V. Sengers (University of Maryland, USA, and National Institute of Standards and Technology, NIST, USA), and K. Stephan (Universität Stuttgart, Germany), Transport Properties of 1,1,1,2-Tetrafluoroethane (R134a), International Journal of Thermophysics, 14(4):951-988, July 1993 (38 pages with 23 figures and 6 tables, RDB4601)

This paper presents new equations for the thermal conductivity and viscosity of R-134a. The paper summarizes a critical evaluation of avail-
I. Available experimental data, with emphasis on the vapor phase. It outlines the methodology used to correlate the data, which was based on a temperature-dependent dilute gas term, an excess or residual term that accounts for density dependence, and the critical enhancement around the vapor-liquid critical point. A crossover model is presented for the latter along with a new fundamental equation (FEQ) of state (EOS) for the critical region. Tables summarize the saturation properties as a function of temperature for -33 to 101 °C (-27 to 214 °F) and the viscosity and thermal conductivity as a function of pressure and temperature, for 0.1-30.0 MPa (1.5-44 psia) and 17-157 °C (62-314 °F) respectively.

H. Kubota and T. Matsumoto (Kobe University, Japan), High-Pressure Vapor-Liquid Equilibrium for the System HFC-134a, Journal of Chemical Engineering, Japan, 26:320 ff, 1993 (rdb7639)

thermodynamic properties of R-134a; thermophysical data, VLE

R-134a, viscosity for 0-80 °C (32-176 °F), transport properties, thermophysical data

A. Laesecke (National Institute of Standards and Technology, NIST), Data Reassessment and Full-Surface Correlation of the Viscosity of 1,1,1,2-Tetrafluoroethane (HFC-134a), Journal of Physical and Chemical Reference Data, 1999 (rdb6222)

transport properties of R-134a; thermophysical data [a private communication from the author indicates that this paper is being revised with publication anticipated in 1999]

A. Laesecke, R. A. Perkins (National Institute of Standards and Technology, NIST, USA), and C. A. Nieto de Castro (Universidade de Lisboa, Portugal), Thermal Conductivity of R134a, Fluid Phase Equilibria, 80(11):263-274, 1992 (12 pages with 5 figures and 1 table, available from JMC as RDB3708)

transport properties of R-134a; thermophysical data

thermodynamic properties of R-134a; thermophysical data

This paper summarizes measurements of vapor pressure for R-134a for -93 to 177 °C (-136 to 350 °F) by using an automated static cell. Temperatures and pressures were measured with a platinum resistance thermometer and with calibrated, oscillating quartz-crystal pressure transducers, respectively. The paper reviews the experimental approach, presents the measured data, plots the pressure-temperature relationship, provides a regression equation, and examines the deviations to it. The results provide highly accurate measurements of vapor pressure for purified R-134a. This work extends the range of available data for R-134a to lower temperatures, more than 60 °C (108 °F) below its normal boiling point.

J. W. Magee (National Institute of Standards and Technology, NIST), Measurements of Molar Heat Capacity at Constant Volume (C_v) for 1,1,1,2-Tetrafluoroethane (R134a), International Journal of Refrigeration (IJR), 15(6):372-380, July 1992 (9 pages with 4 figures and 3 tables, available from JMC as RDB3705)

thermodynamic properties of R-134a; thermophysical data

R-134a, measurements for -60 to 150 °C (-76 to 302 °F) up to 30 MPa (4350 psia), transport properties, thermophysical data

reports new measurements of the viscosity of liquid R-134a for -38 to 70 °C (-37 to 158 °F) and pressures up to 50 MPa (7300 psia) in a vibrating-wire viscometer: estimates the uncertainty as ±0.6%; represents the viscosity data as a function of density by means of a formulation based upon the rigid, hard-sphere theory of dense fluids with a maximum deviation of ±0.3%; this representation allows extrapolation of the data to regions of thermodynamic state not covered by measurements.
Reconciling of Diverse Literature Sources of PVT Data on 134a, Energy Efficiency and Global Warming Impact (proceedings of the meetings of Commissions B1 and B2, Ghent, Belgium 12-14 May 1993), International Institute of Refrigeration (IIR), Paris, France, 183-190, 1993 (8 pages with 4 figures and 2 tables, RDB5315)

R-134a, thermodynamic properties, thermophysical data, Martin-Hou equation of state (EOS), GFLT correlation

R-134a, enthalpy-log pressure diagram

C-C. Piao, M. Noguchi (Daikin Industries, Limited, Japan), H. Sato, and K. Watanabe (Keio University, Japan), An Improved Equation of State for R-134a, Transactions (Winter Meeting, New Orleans, LA, January 1994), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 100(1):358-366, 1994 (9 pages with 16 figures and 1 table, RDB4872)

presents an 18-coefficient, modified Benedict-Webb-Rubin (MBWR) equation of state (EOS) and new correlations of vapor pressure and saturated liquid density for the thermodynamic properties of R-134a: the EOS was developed from measured pressure-volume-temperature (PVT) properties, saturation properties, and isochoric heat capacities by a least-squares fit; experimental data for the isobaric heat capacities, speed of sound, and second virial coefficients also were considered; the equation covers both the superheated vapor and compressed liquid phases at pressures up to 70 MPa (10,000 psia), densities from 1,600 kg/m3 (100 lb/ft3), and temperatures from -93 to 227 °C (-135 to 440 °F); the data and correlations are based on the 1990 International Temperature Scale (ITS-90)

C-C. Piao, H. Sato, and K. Watanabe (Keio University, Japan), Thermodynamic Charts, Tables, and Equations for HFC-134a, paper 3518, Transactions (Annual Meeting, Indianapolis, IN, 22-26 June 1991), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 97(2):268-284, 1991; republished in Alternative Refrigerants, technical data bulletin 7(3), ASHRAE, 28-44, October 1991 (17 pages with 15 figures and 4 tables, RDB2615)

R-134a, thermodynamic properties, equation of state (EOS)

Z-Y. Qian, H. Sato, and K. Watanabe (Keio University, Japan), Compressibility Factors and Virial Coefficients of HFC-134a by a Burnett Apparatus, Fluid Phase Equilibria, 78:323-329, 1992 (7 pages, rdb5464)

R-134a, thermodynamic properties, thermophysical data

M. Ross, J. P. M. Trusler, W. A. Wakeham, and M. Zalaf (Imperial College, UK), Thermal Conductivity of R-134a over the Temperature Range 240 to 373 K, Thermophysical Properties of Pure Substances and Mixtures for Refrigeration (proceedings of the meeting of IIR Commission B1, Herzlia, Israel, March 1990), International Institute of Refrigeration (IIR), Paris, France, 103-108, 1990 (6 pages with 5 figures and 3 tables, RDB5489)

R-134a, transport properties, thermophysical data, -28 to 212 °F

thermodynamic data

A. Saitoh, S. Nakagawa, H. Sato, and K. Watanabe (Keio University, Japan), Isobaric Heat Capacity Data for Liquid HFC-134a, Journal of Chemical and Engineering Data, 35(2):107-110, 1990 (4 pages, rdb4B54)

R-134a, thermodynamic properties, thermophysical data

I. R. Shankland, R. S. Basu, and D. P. Wilson (AlliedSignal Incorporated), Thermal Conductivity and Viscosity of a New Stratospherically Safe Refrigerant - 1,1,1,2-Tetrafluoroethane (R-134a), Status of CFCs - Refrigeration Systems and Refrigerant Properties (proceedings of the meetings of IIR Commissions B1, B2, E1, and E2, Purdue University, West Lafayette, IN), International Institute of Refrigeration, Paris, France, 305-314, July 1988; republished in CFCs: Time of Transition, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 117-122, 1989 (9 pages with 6 figures and 2 tables, available from JMC as RDB0516, last page is very faint)

thermophysical properties

K. B. Shubert and J. F. Ely (Colorado School of Mines), Application of a New Selection Algorithm to the Development of a Wide-Range Equation of State For Refrigerant R134a, International
presents a new selection algorithm to develop Helmholtz equations of state (EOS): method combines least-squares regression analysis with simulated annealing optimization; simulated annealing, unlike stepwise regression, allows controlled acceptance of random increases in the objective function; procedure produces a computationally-efficient selection algorithm that is not susceptible to function-space local-minima problems present in a purely stepwise regression approach; compares equations derived with and without the new algorithm against experimental data and other EOSs for R134a.

S. Tang, G. X. Jin (University of Maryland), and J. V. Sengers (University of Maryland and the National Institute of Standards and Technology, NIST), Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (R134a) in the Critical Region, International Journal of Thermophysics, 12(3):515-540, May 1991, with erratum in 16(4):1027-1028, July 1995 (28 pages with 9 figures and 5 tables, RDB-7A30)

theoretically based, simplified crossover model to represent the thermodynamic properties of fluids near the critical point: resulting equation of state (EOS) model is applied to R-134a to calculate thermophysical data at 92-177 °C (197-350 °F)

R. Tillner-Roth (Universität Hannover, Germany) and R. Krauss (Universität Stuttgart, Germany), R134a - Extended Thermophysical Properties, International Institute of Refrigeration (IIR), Paris, France, 1995 (rdb7A11)

R-134a, thermophysical data

R. Tillner-Roth and H. D. Baehr (Universität Hannover, Germany), An International Standard Formulation of the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) Covering Temperatures from 170 K to 455 K at Pressures up to 70 MPa, Journal of Physical and Chemical Reference Data, 23(5):657-729, 1994 (73 pages, rdb7967)

R-134a, equation of state (EOS), thermodynamic properties, thermophysical data

R-134a, thermal conductivity, transport properties, thermophysical data

O. B. Tsvetkov, Y. A. Laptev, and A. G. Asemeaev (Saint Petersburg State Academy of Refrigeration and Food Technologies, Russia), Experimental Study and Correlation of the Thermal Conductivity of 1,1,1,2-Tetrafluoroethane (R134a) in the Rarified Gas State, International Journal of Refrigeration (IJR), 18(6):373-377, July 1995 (5 pages with 1 figure and 3 tables, RDB8262)

thermodynamic properties of R-134a; thermophysical data

A. van Pelt, G. X. Jin (University of Maryland), and J. V. Sengers (University of Maryland and National Institute of Standards and Technology, NIST), Critical Scaling Laws and a Classical Equation of State, International Journal of Thermophysics, 15(4):687-697, July 1994 (11 pages with 3 figures, RDB6402)

method to modify a classical equation of state (EOS) by incorporating nonclassical critical behavior, illustrated by application to the Carnahan-Starling-DeSantis (CSD) EOS, gives parameters and constants for renormalized CSD equation for R-134 and compares the results to published experimental data

E. T. Vas'kov, Equation of State and Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane, Inzhenerno-Fizicheskii Zhurnal [Journal of Engineering Physics], Minsk, Belarus (then USSR), 68(1):66-70, January 1995 (5 pages probably in Russian, rdb7O02)

presents pressure, density, temperature, and heat capacity data for R-134a along with a derived virial equation of state (EOS) and a set of equations to determine thermodynamic properties for the vapor and liquids phases; also presents calculated property tables for saturated and superheated R-134a for -53 to 227 °C (-64 to 440 °F) and 0.01-7.5 MPa (1.5-1088 psia)

J. Wilhelm and E. Vogel (Universität Rostock, Germany), Gas Phase Viscosity of the Alternative Refrigerant R134a at Low Densities, Proceedings of the Fourth Asian Thermophysical Properties Conference (Tokyo, Japan, 5-8 September 1995), 1995 (rdb8906)

transport properties for R-134a; thermophysical data

L. A. Weber (National Institute of Standards and Technology, NIST), Vapor Pressures and Gas-Phase PVT Data for 1,1,1,2-Tetrafluoroethane,
New data for the vapor pressure and PVT surface of R-134a in the temperature range of 40-150 °C (104-302 °F) are presented. The PVT data are for the gas phase at densities up to one-half critical. Densities of the saturated vapor are derived at five temperatures from the intersections of the experimental isochores with the vapor pressure curve. The data are represented analytically, in order to demonstrate experimental precision and to facilitate calculation of thermodynamic properties. The paper describes and schematically shows the Burnett apparatus, filling system, and pressure measuring system used to obtain the data. It identifies the chief impurities as R-125, R-143a, R-1122, and water, each present at approximately 100 ppm. The paper presents the raw data, equations used to fit the data, and a plot of deviations from the fit; previously published data are overlaid for comparison.

M-S. Zhu, L-Z. Han, and W. Zhou (Tsinghua University, China), Experimental Research of Surface Tension for HFC-134a, Journal of Engineering Thermophysics, China, 13(1):16-18, 1992 (3 pages in Chinese, rdb8c22)

V. V. Zhidkov (NORD Association, Ukraine), V. P. Zhelezny, and P. V. Zhelezny (Odessa State Academy of Refrigeration, Ukraine), Phase Equilibrium in Oil-Refrigerant Solution R-134a/SW22, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 447-451, July 1996 (5 pages with no figures or tables, RDB8c25)

thermodynamic properties of R-134a; thermophysical data

M-S. Zhu, J. Wu, and Y-D. Fu (Tsinghua University, China), New Experimental Vapor Pressure Data and a New Vapor Pressure Equation for HFC134a, Fluid Phase Equilibria, 80:99-105, 1992 (7 pages with 2 figures and 4 tables, RDB4b41)

Forane(R) 134a, technical digest, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1994 (4 pages with 4 tables, available from JMC as RDB4768)

This bulletin supplies information on R-134a in traditional R-12 applications and as a component for blends targeted for R-22 and R-502 applications. It compares the physical and environmental properties of R-12 and R-134a, and provides a tabular data summary for the latter in inch-pound (IP) units. The table lists the chemical formula, molecular weight, normal boiling and freezing points, heat of vaporization, vapor and liquid density at the boiling point and 27 °C (80 °F), critical parameters (temperature, pressure, and density), specific heat of the liquid at the same temperature and of the vapor at atmospheric pressure, Workplace Environmental Exposure Level (WEEL), ozone depletion potential (ODP), and halocarbon global warming potential (HGWP). The table also shows R-134a to be nonflammable. A second table gives the saturated vapor pressures of R-12 and R-134a for -46 to 93 °C (-50 to 200 °F). A third presents the saturated vapor pressure and liquid vapor and liquid densities and enthalpies for the same temperature range. The document briefly reviews the performance and lubricant considerations of R-134a for climate control and refrigeration. It notes immiscibility with mineral oils, but polyolester and polyalkylene glycol lubricants have been recommended by various equipment manufacturers. The bulletin then discusses
Retrofitting centrifugal chillers, automotive air conditioners, and refrigeration systems with R-134a. The digest concludes with container identification for R-134a and other alternative refrigerants. Elf Atochem's product name for R-134a is Forane® 134a.

This bulletin supplies information on R-134a and application data in metric (SI) and inch-pound (IP) units. R-134a is described as a replacement for R-12 in automobile air conditioning; residential and commercial refrigeration; residential, commercial, and industrial air conditioning including centrifugal chillers; and as a blowing agent and aerosol propellant. The bulletin describes these applications and lists basic physical properties including the chemical name and formula, appearance, molecular weight, normal boiling and freezing points, and critical parameters (temperature, pressure, density, and specific volume). The property data also include the vapor density, latent heat of vaporization at the boiling point, flammability limits (none), autoignition temperature, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP). Representative data are provided for 25 °C (77 °F) including the liquid density; vapor pressure; solubility in and of water; and vapor and liquid heat capacity, thermal conductivity, and viscosity.

The bulletin provides Mollier (pressure-enthalpy) charts, product purity specifications, a tabular comparison of performance with R-12, and tabular pressure-temperature data for -45 to 70 °C (-60 to 160 °F). It then discusses lubricant suitability with primary focus on polyalkylene glycol (PAG) and polyolester (POE) synthetics. Characteristic miscibility plots are shown. The document discusses copper plating with PAG and POE lubricants. It notes that plating levels are lower for R-134a with the cited lubricants than with R-12 and mineral oil. While plating does not appear in laboratory tests with two POEs (Castrol Icematic® SW32 and Mobil EAL Arctic® 22), field occurrence suggests that it may result in the presence of other materials. The bulletin tabulates stability data for the same POEs in the presence of aluminum, copper, and steel. It discusses the effects of chlorinated solvents and residual refrigerants, noting that R-134a is chemically compatible with chlorinated materials, but that the associated PAG and POE lubricants may not be. It notes, however, that R-12 and R-134a form a higher-pressure azeotrope.

The bulletin then discusses materials compatibility and provides tabular, qualitative indications for elastomers and plastics. It discusses suitability with polyethylene terephthalate (PET) and desiccants, and also provides a plot of solubility of water in R-134a. The bulletin then discusses safety, including both toxicity and flammability. It describes the former as intrinsically low. While it suggests that R-134a is nonflammable, it notes that R-134a can become combustible at higher pressures when mixed with more than 60% v/v air. The bulletin discusses storage, handling, safety guidelines, and leak detection methods. It briefly outlines environmental considerations, reclamation, retrofit procedures for R-12 equipment, and R-134a packaging. AlliedSignal's product name for R-134a is Genetron® 134a.

Refrigerant Reclin® 134a, product bulletin AFK2322e(035), Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, April 1994 (12 pages with 6 figures and 4 tables, RDB4776)

This bulletin provides data for R-134a, identified as a substitute for R-12, in refrigeration engineering, in metric (SI) units of measure. The introduction reviews the phaseout of chlorine-containing refrigerants and criteria for substitutes. A table summarizes physical and thermodynamic property data for R-134a, including the chemical formula and name, molecular mass, normal boiling and freezing points, and critical parameters (temperature, pressure, and density). It also gives the heat of vaporization, surface tension, liquid density, isentropic exponent, solubility of water, solubility in water, dynamic viscosity, and thermal conductivity at selected conditions. The bulletin reviews thermodynamic similarities of R-134a with R-12. Four plots compare their compression ratios, compressor discharge temperatures, volumetric refrigerating effect, and coefficient of performance for suction temperatures of -30 to 5 °C (-22 to 41 °F). The bulletin then discusses compatibility with metals, recommending avoidance only of zinc, magnesium, lead, and aluminum alloys with more than 2% magnesium. It reports storage tests that showed good stability to hydrolysis and no corrosive attack on ferritic steel, V2A steel, copper, brass, and aluminum. The bulletin provides elastomer swell, extraction, and elongation data for R-134a with butyl (IIR), acrylonitrile-butadiene (NBR, Perbunan®), hydrogenated nitrile butadiene rubber (HNBR), chloroprene (CR, Neoprene®), fluoroelastomer (FPM, DuPont Viton® A), natural (NR), and ethylene propylene diene terpolymer (EPDM) rubbers. It notes suitability with polytetrafluoroethylene (PTFE, Hostafon®, polyacetal (POM, Hostaform®), and polyamide (PA) thermoplastics, but cautions that lubricant influences also must be considered. R-134a is indicated as al-
most completely immiscible with conventional mineral oils and also with some synthetics lubricants such as alkylbenzenes. The bulletin discusses miscibility and considerations for polyalkylene glycol (PAG) and polyester (POE) lubricants as well as consequences of residual paraffinic or naphthenic oils from retrofit or manufacturing. A plot shows conceptual mixing ranges for polyglycols and esters with R-134a. The bulletin reports that both R-134a and R-12 pass the Philipp test for thermal stability with mineral oil, and that the stability of R-134a appears to be better than that of R-12. The bulletin indicates that R-134a does not form flammable mixtures with air under normal conditions, but that flammable mixtures can form above atmospheric pressure if the air fraction exceeds 60%. It warns that mixtures of R-134a with air or oxygen must never be used for leak tests. It notes that R-134a has been found to be at least as safe as R-12 toxically and recommends a workplace exposure limit of 1000 ppm by volume on an eight-hour, time-weighted average basis. A table provides thermodynamic property data including pressure; liquid and vapor specific volumes, densities, enthalpies, and entropies; and the heat of vaporization. These data cover R-134a at saturated (wet vapor) conditions from -60 to the critical point of 101.15 °C (-76 to 214.07 °F). The bulletin concludes with a pressure-enthalpy (Mollier) diagram based on a U.K. Rombusch equation of state. Hoechst Chemical’s product name for R-134a is Hoechst Reclin® 134a.

Thermodynamic Properties of HFC-134a (1,1,1,2-tetrafluoroethane), technical information report T-134a-ENG (H-47751), DuPont Chemicals, Wilmington, DE, January 1993 (36 pages with 1 figure and 2 tables, available from JMC as RDB3427)

This report provides thermodynamic property data for R-134a in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a modified Benedict-Webb-Rubin (MBWR) equation of state and an ideal gas heat capacity equation at constant pressure. It also gives a Martin-Hou (MH) equation of state (EOS), fit from MBWR data, and a corresponding ideal gas heat capacity equation at constant pressure. It supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (pressure and liquid and vapor volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -100 to 101 °C (-148 to 213 °F). A set of tables presents volume, enthalpy, entropy, heat capacity at constant pressure, heat capacity ratio (dimensionless Cp/Cv), and velocity of sound data for superheated vapor at constant pressure for 10-4000 kPa (1-580 psia). The new tables are based on experimental data from the National Institute of Standards and Technology, NIST). The report concludes with a pressure-enthalpy diagram. DuPont’s product names for R-134a are Suva(R) 134a Refrigerant, Suva(R) Cold-MP Refrigerant, Suva(R) Trans-AC Refrigerant, Formacel(R) Z-4 Blowing Agent, Dymel(R) 134a Aerosol Propellant, and Dymel(R) 134a/P Aerosol Propellant.

Thermodynamic Properties of Klea(R) 134a, British Units, bulletin 62025001, ICI Klea, Wilmington, DE, March 1995 (48 pages with 2 tables, RDB6302)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-134a in inch-pound (IP) units of measure. It comprises two tables. The first presents saturation properties by temperature (°F and °R) for
-101 to 100 °C (-150 to 212 °F) and at the critical point, 101 °C (213.80 °F). The tabular data include absolute and gauge pressure; liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second table provides volume, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 14-3790 kPa (2-550 psia) to temperatures as high as 159 °C (318 °F). ICI's product name for R-134a is Klea(R) 134a.

**Thermodynamic Properties of Klea 134a, SI Units, bulletin CP/34421/30371/4ED/33/394, ICI Klea, Runcorn, Cheshire, UK, March 1994 (64 pages with 2 tables, RDB6B29)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-134a in metric (SI) units of measure. It comprises two tables. The first presents saturation properties by temperature (°C and K) for -80 to 101 °C (-112 to 214 °F) and at the critical point, 101 °C (213.8 °F). The tabular data include absolute pressure; liquid and vapor specific volume, density, enthalpy, and entropy; and the latent heat of vaporization. The second table provides volume, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 20-4000 kPa (3-580 psia) to temperatures as high as 218 °C (424 °F). ICI's product name for R-134a is Klea(R) 134a.

R-141b

R-141b, thermodynamic properties, thermophysical data as reported in RDB 7713

thermodynamic properties of R-141b: presents measurements of compressed liquid densities using a vibrating-tube densimeter for 5-96 °C (41-205 °F) and 100-6,000 kPa (14.5-870 psia); also presents vapor pressure measurements with comparative and sapphire ebulliometers for -20 to 82 °C (-4 to 179 °F) and 10-449 kPa (1.5-65 psia); provides correlations of the data and comparisons to published studies by other researchers; thermophysical data

A. R. H. Goodwin and M. R. Moldover (National Institute of Standards and Technology, NIST), *Thermophysical Properties of Gaseous Refrigerants from Speed of Sound Measurements: II. Results for 1,1-Dichloro-1-fluoroethane (CCLF2CH3)*, *Journal of Chemical Physics*, 95(7):5230-5235, 1 October 1991 (6 pages with 5 figures and 4 tables, RDB3105)

thermodynamic properties of R-141b; thermophysical data

R. Malhotra and L. A. Woof (Australian National University, Australia), *Volumetric Measurements for 1,1-Dichloro-1-fluoroethane (R141b) in the Temperature Range 278.15 to 338.15 K and Pressure Range from 0.1 to 380 MPa, Fluid Phase Equilibria*, 92:195-213, 15 January 1994 (19 pages, rdb8936)

measurements of pVT data for R-141b in the form of volume ratios using a vacuum bellows volumometer to obtain for pressures up to 380 MPa (55,000 psia) in the temperature range 5-65 °C (41-149 °F) in the liquid phase: the accuracy of the volume ratios is estimated to be ±0.05-0.1% for the experimental temperatures up to 5 °C (41 °F) and better than ±0.15% for temperatures above the normal boiling point of R-141b; the volume ratios enable accurate predictions of liquid densities along the liquid-vapor coexistence boundary and evaluation of the isothermal compressibilities, isobaric expansivities, internal pressures, and isobaric molar heat capacities

R-141b, equation of state (EOS), thermophysical properties

Genetron(R) 141b Bulletin, document B-525-647, AlliedSignal Incorporated, Morristown, NJ, October 1993 (4 pages with 4 figures and 7 tables, RDB-5A29)
This bulletin supplies information and application data on R-141b in inch-pound (IP) units. R-141b is described as a replacement for R-11 as a blowing agent, for insulation in construction, appliance, and vehicle applications. A table lists data including the appearance, odor, chemical formula, molecular weight, and normal boiling and freezing points. The properties listed include the specific gravity; vapor pressure, density, and thermal conductivity; liquid density; and solubility in and of water at or near 25 °C (77 °F). The bulletin also lists the autoignition temperature, flash point (none), and lower and upper flame limits (LFL and UFL). It briefly mentions compatibility with plastics including polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyvinylidene fluoride, and phenolic coatings. It also addresses elastomers including perfluoroelastomers, but notes unsatisfactory results with nitrile rubber, ethylene propylene rubber, and neoprene. The bulletin compares the flame limits measured by several test methods, and compares the findings to those for R-30, R-140a, and R-1120. It then tabulates representative properties including the vapor pressure, vapor thermal conductivity, liquid viscosity, and liquid density of R-141b at temperatures between -18 and 93 °C (0 and 200 °F). These data are plotted with corresponding curves for R-11 for comparison. AlliedSignal's product name for R-141b is Genetron(R) 141b.

Genetron(R) 141b Bulletin, document B-525-647-SIU, AlliedSignal Incorporated, Morristown, NJ, October 1993 (4 pages with 7 tables, RDB5A30)

This bulletin supplies information and application data on R-141b in metric (SI) units. R-141b is described as a replacement for R-11 as a blowing agent, for insulation in construction, appliance, and vehicle applications. A table lists data including the appearance, odor, chemical formula, molecular weight, and normal boiling and freezing points. The properties listed include the specific gravity; vapor pressure, density, and thermal conductivity; liquid density; and solubility in and of water at or near 25 °C (77 °F). The bulletin also lists the autoignition temperature, flash point (none), and lower and upper flame limits (LFL and UFL). It briefly mentions compatibility with plastics including polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyvinylidene fluoride, and phenolic coatings. It also addresses elastomers including perfluoroelastomers, but notes unsatisfactory results with nitrile rubber, ethylene propylene rubber, and neoprene. The bulletin compares the flame limits measured by several test methods, and compares the findings to those for R-30, R-140a, and R-1120. It then tabulates the vapor pressure, vapor thermal conductivity, liquid viscosity, and liquid density of R-141b at temperatures between -10 and 90 °C (14 and 194 °F). AlliedSignal's product name for R-141b is Genetron(R) 141b.

Genetron(R) 141b Product Brochure, bulletin B-525-648, AlliedSignal Incorporated, Morristown, NJ, November 1993 (6 pages with 5 tables, RDBS5A30)

This bulletin supplies information and application data on R-141b in metric (SI) and inch-pound (IP) units. R-141b is described as an interim replacement for R-11 as a blowing agent, for use in rigid polyurethane foams. The bulletin summarizes these applications and then outlines safety implications. It briefly reviews toxicity testing for R-141b and recommended permissible exposure limits (PEL consistent and WEEL) of 500 ppm. It discusses flammability, compares the flame limits by several test methods, and compares the findings to those for R-30, R-140a, and R-1120. The discussion notes that while R-141b is flammable, it does not exhibit either an open- or closed-cup flash point and is not considered a flammable liquid for transportation. The bulletin discusses environmental aspects of R-141b use including its low ozone depletion potential (ODP) and disposal of wastes. It then reviews stability and compatibility data, and gives tabular test results (weight, hardness, and volume change) for polymers. The plastics include polyvinyl chloride (PVC), polyethylene, polypropylene, polyvinylidene fluoride (Elf Atochem Kynar), vinyl ester (Dow Chemical Derekan), and polyphenylene sulfide (Phillips Petroleum Ryton(R) R-7). The elastomers include DuPont Kalrez(R) and Viton(R) E60C, nitrile, neoprene, silicone, urethane, butyl rubber, and ethylene propylene rubber. The bulletin then addresses reactivity with emphasis on finely divided metals, storage, handling, and safety precautions for equipment maintenance. It lists product specifications and tabulates representative properties including the chemical name and formula, appearance, molecular weight, and normal boiling and freezing points. The property data also include the vapor density, flammability limit, and autoignition temperature. Representative data are provided at or near 25 °C (77 °F) including the liquid density, vapor pressure, specific gravity, and solubility in and of water. AlliedSignal's product name for R-141b is Genetron(R) 141b.

R-142b

thermodynamic properties of R-142b; thermophysical data

K. Kumagai, N. Yada, H. Sato, and K. Watanabe (Keio University, Japan), A Study of PVT Properties of HCFC-142b, Proceedings of the Tenth Japan Symposium on Thermophysical Properties, Shizuoka University, Japan, 67-70, 1989 (4 pages, rdb4224)

thermodynamic properties of R-142b; thermophysical data

Y. Maezawa, H. Sato, and K. Watanabe (Keio University, Japan), Liquid Densities and Vapor Pressures of 1-Chloro-1,1-difluoroethane (HCFC-142b), Journal of Chemical and Engineering Data, 36:149-150, 1991 (5 pages, rdb5466)

thermodynamic properties of R-142b; thermophysical data

Y. Maezawa, H. Sato, and K. Watanabe (Keio University, Japan), Saturated Liquid Densities of HCFC-142b, Proceedings of the Tenth Japan Symposium on Thermophysical Properties, Shizuoka University, Japan, 71-74, 1989 (4 pages, rdb-4227)

thermodynamic properties of R-142b; thermophysical data

S. Nakagawa, H. Sato, and K. Watanabe (Keio University, Japan), Measurement of Isochoric Heat Capacity of Liquid HCFC-142b, Proceedings of the Eleventh Japan Symposium on Thermophysical Properties, 103-106, 1990 (4 pages, rdb3930)

thermodynamic properties of R-142b; thermophysical data

S. Tanikawa, Y. Kabata, H. Sato, and K. Watanabe (Keio University, Japan), Measurements of the Critical Parameters and the Vapor-Liquid Coexistence Curve and Critical Parameters of 1-Chloro-1,1-difluoroethane (HCFC-142b), Journal of Chemical and Engineering Data, 37:74-76, 1992 (3 pages, rdb5466)

thermodynamic properties of R-142b; thermophysical data

N. Yada, K. Kumagai, T. Tamatsu, H. Sato, and K. Watanabe (Keio University, Japan), Measurements of the Thermodynamic Properties of HCFC-142b, Journal of Chemical and Engineering Data, 36:12-14, 1991 (3 pages, rdb5477)

thermodynamic properties of R-142b; thermophysical data

Genetron(R) 142b, technical bulletin B-525-649, AlliedSignal Incorporated, Morristown, NJ, September 1993 (4 pages with 3 tables, RDB3A58)

This bulletin supplies information on R-142b, described as a replacement for R-12 in rigid polyurethane, polystyrene, and polyethylene foam insulation applications for residential and commercial construction as well as process piping. It provides physical property data, in inch-pound (IP) units, including the chemical formula, molecular weight, atmospheric boiling and freezing points and vapor density, flash point, and autoignition temperature. It also indicates the specific gravity and vapor pressure at 21 °C (70 °F) and the vapor thermal conductivity and liquid density at 25 °C (77 °F). It briefly outlines materials interactions citing compatibility with carbon steel, stainless steel, phenolic coatings, polytetrafluoroethylene (PTFE), fluororubber, polyethylene (PE), polypropylene, and polyvinylidenefluoride. The bulletin notes unsatisfactory results with nitrile rubber, ethylene propylene rubber, and neoprene. It then presents flammability information, including a comparison with pentane. It concludes with tabular and plotted vapor pressure, vapor thermal conductivity, liquid viscosity, and liquid density data. AlliedSignal's product name for R-142b is Genetron(R) 142b.

R-143

C. D. Holcomb and L. J. Van Poolsen (National Institute of Standards and Technology, NIST), Coexisting Densities and Vapor Pressures for R143 from 314 to 401 K with new Critical Point Property Estimates, Fluid Phase Equilibria, 100:223-239, 1994 (7 pages with 11 figures and 4 tables, RDB-8247)

presents measured thermodynamic properties of R-143 for 41-128 °C (106-262 °F); compares them to data for R-143a; estimates the critical point as 156.65 °C (313.97 °F), 5.241 MPa (760.1 psia), and 469 kg/m³ (29.3 lb/ft³); fits the data to Carnahan-Starling-DeSantis (CSD) and Dietz equations of state (EOS); compares the findings to published data from other studies; thermophysical data

R-143a

D. Arnaud, S. Maccaudiere, L. Niveau, and S. Wosinski (Atoschem Groupe ELF Aquitaine, France), Propriétés Thermophysiques d’un Nouveau Fluide Frigorigène: le 1,1,1-Trifluoroéthane (HFA-
143a) [Thermophysical Properties of a New Refrigerant: 1,1,1-Trifluoroethane (HFA-143a)], paper 79, New Challenges in Refrigeration (proceedings of the XVIIth International Congress of Refrigeration, Montreal, Quebec, Canada, 10-17 August, 1991), International Institute of Refrigeration (IIR), Paris, France, II:664-668, August 1991 (5 pages with 3 figures and 6 tables, RDB84A39)

R-143a, thermodynamic properties, thermophysical data

M. Fukushima (Keio University, Japan), Measurements of Vapor Pressure, Vapor-Liquid Coexistence Curve, and Critical Parameters of HFC-143a, Nippon Reito Kyokai Ronbunshu [Transactions of the JAR], Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR], Tokyo, Japan, 10:87-93, 1993 (7 pages in Japanese, rdb8252)

thermodynamic properties of R-143a, thermophysical data

G. Giuliani, S. Kumar, P. Zazzini, and F. Polonara (Università degli Studi di Ancona, Italy), Vapor Pressure and Gas-Phase Data and Correlation for 1,1,1-Trifluoroethane, Journal of Chemical and Engineering Data, 40:903-908, 1995 (6 pages, rdb-8257)

thermodynamic properties of R-143a; pressure-temperature relations; thermophysical data

modified Benedict-Webb-Rubin (MBWR) equation of state (EOS) for R-143a: provides coefficients for a 32-term MBWR equation and ancillary equations to calculate the ideal-gas heat capacity and the coexisting densities and pressure along the saturation boundary; MBWR coefficients were determined with a multiproperty fit to measured data including pressure-volume-temperature (PVT) dependence, heat capacities (isochoric, isobaric, and saturated liquid), second virial coefficients, speed of sound, and properties at coexistence; the equation of state accurately represent experimental data from -111 to 73 °C (-168 to 163 °F) and pressures to 35 MPa (5,100 psia) with the exception of the critical region; equation gives reasonable results for extrapolations to 227 °C (440 °F) and 60 MPa (8,700 psia)

C-C. Piao, K. Fujiwara, and M. Noguchi (Daikin Industries, Limited, Japan), Thermodynamic Properties of HFC-143a (1,1,1-Trifluoroethane), Fluid

Phase Equilibria, 150-151:303-312, 1998 (8 pages, rdb8C24)

thermodynamic properties of R-143a; thermophysical data

thermodynamic properties of R-143a; measurements of the gas-phase pressure-volume-temperature (PVT) surface for 3-100 °C (37-212 °F) and pressures up to 6.6 MPa (957 psia) using a Burnett isochoric PVT apparatus; measurements of vapor pressures for -37 to 70 °C (-35 to 158 °F) using a metal ebulliometer; formulations for the second and third virial coefficients; equation for the vapor pressure curve; thermophysical data

thermodynamic properties of R-143a; pressure-volume-temperature relations; second virial coefficients; thermophysical data
R-152a

W. Blanke and R. Weiβ, Isochoric (pVT) Measurements on C₂H₂F₂ (R152a) in the Liquid State from the Triple Point to 450 K and at Pressures up to 30 MPa, Preprints of the 11th Symposium on Thermophysical Properties (Boulder, CO, 23-27 June 1991), American Society of Mechanical Engineers (ASME), New York, NY, 1991; republished in Fluid Phase Equilibria, 80(11):179-190, 1992 (12 pages, rdb4555)

thermodynamic data for R-152a from the triple point to 177 °C (350 °F) and pressures up to 30 MPa (4350 psia)

D. R. Defibaugh and G. Morrison (National Institute of Standards and Technology, NIST), Compressed Liquid Densities, Saturated Liquid Densities, and Vapor Pressures of 1,1-Difluoroethane, Journal of Chemical and Engineering Data, 41(3):376-381, 1992 (6 pages with 6 figures and 3 tables, RDB8239)

thermodynamic properties of R-152a: measurements of the liquid densities using a vibrating-tube densimeter for -30 to 98 °C (-22 to 208 °F) and pressures from near the saturated vapor pressure to 6.5 MPa (943 psia), approaching the critical point; measurements of vapor pressures using an ebulliometer for 7-273 °C (44-524 °F); extrapolating the saturated liquid densities by calculating the compressed liquid isotherms to the saturation pressure; thermophysical data

R-152a, thermodynamic properties, thermophysical data

T. Hozumi, I. Furutsuka, H. Sato, and K. Watanabe (Keio University, Japan), Sound Velocity Measurements in Gaseous HFC-152a, Proceedings of the Third Asian Thermophysical Properties Conference (Beijing, People's Republic of China), 258-363, 1992 (6 pages, rdb5480)

R-152a, physical data

A. Iso and M. Uematsu (Keio University, Japan), Thermodynamic Properties of 1,1-Difluoroethane in the Super-Critical and High Density Regions, Physica A, 156:454-466, 1989 (13 pages, rdb4A53)

thermodynamic properties of R-152a; thermophysical data

R. Krauss (Universität Stuttgart, Germany), V. C. Weiss (University of Maryland, USA, and Universität Bremen, Germany), T. A. Edison, J. V. Sengers (University of Maryland, USA, and K. Stephan (Universität Stuttgart, Germany), Transport Properties of 1,1-Difluoroethane (R152a), International Journal of Thermophysics, 17(4):731-757, July 1996 (27 pages with 12 figures and 8 tables, RDB6408)

equations for the thermal conductivity and viscosity of R-152a for -33 to 167 °C (-28 to 332 °F) including the critical region; thermophysical data

transport properties of R-152a; viscosity; thermophysical data

T. Majima, M. Uematsu, and K. Watanabe (Keio University, Japan), Measurements of PV T Properties of Refrigerant 152a, Proceedings of the Eighth Japan Symposium on Thermophysical Properties, 77-81, 1987 (5 pages, rdb4225)

thermodynamic properties of R-152a; thermophysical data

modified, 32-term, Benedict-Webb-Rubin (MBWR) equation of state (EOS) for R-152a: The EOS is based on experimental property data including single-phase pressure-volume-temperature (PVT), heat capacity, and speed of sound data as well as the second virial coefficient, vapor pressure, and saturated liquid and saturated vapor density. The paper presents coefficients for both the EOS and ancillary equations for the vapor pressure, saturated liquid and saturated vapor densities, and the ideal gas heat capacity. Experimental data used in this work covered temperatures from -111 to -180 °C (-168 to 356 °F) and pressures to 35 MPa (5100 psia). The MBWR equation established in this work may be used to predict thermodynamic properties of R152a from the triple-point temperature of -116.59 to 227 °C (-181.46 to 440 °F) and for pressures up to 60 MPa (8700 psia) except in the immediate vicinity of the critical point.

please see page 6 for ordering information
Refrigerant Database

Z.-Y. Qian, T. Majima, H. Sato, and K. Watanabe (Keio University, Japan), Preliminary Determination of Virial Coefficients for HFC-152a, Proceedings of the Third Asian Thermophysical Properties Conference (Beijing, People’s Republic of China), 346-351, 1992 (6 pages, rdb5463)
thermodynamic properties of R-152a; thermophysical data

thermodynamic properties of R-152a; thermophysical data

M. Uematsu, H. Sato, and K. Watanabe (Keio University, Japan), Saturated Liquid Density of 1,l-Difluoroethane (R152a) and Thermodynamic Properties Along the Vapor-Liquid Coexistence Curve, Fluid Phase Equilibria, 36:167-181, 1987 (15 pages, rdb4122)
thermodynamic properties of R-152a; thermophysical data

transport properties of R-152a; thermophysical data

transport properties of R-152a; thermophysical data

A. van Pelt and J. V. Sengers (University of Maryland), Thermodynamic Properties of 1,1-Difluoroethane (R152a) in the Critical Range, Journal of Supercritical Fluids, 3:81-99, 1995 (19 pages with 16 figures and 4 tables, RDB6403)
R-152a, theoretically-based crossover model to adapt a classical, analytic equation of state (EOS) in the critical region, gives parameters and constants for the crossover model for R-152a, summary of experimental data sets and calculated thermodynamic property data for R-152a

J. M. Yin, J. X. Guo, Z. Y. Zhao, L-C. Tan, and M. Zhao (Xi’an Jiaotong University, China), Thermal Conductivity of HFC-152a, Fluid Phase Equilibria, 80:297-303, 1992 (7 pages, rdb4855)
R-152a, thermophysical properties

Z.-Y. Zhao, J. M. Yin, and L-C. Tan (Xi’an Jiaotong University, China), Measurement of PVT Properties and Vapor Pressure for HFC-152a, Preprints of the 11th Symposium on Thermophysical Properties (Boulder, CO, 23-27 June 1991), American Society of Mechanical Engineers (ASME), New York, NY, 1991; republished in Fluid Phase Equilibria, 80:191-202, 1992 (12 pages, rdb4856)
R-152a, thermodynamic properties, thermophysical data

R-170 (Ethane)

thermodynamic properties of R-170 (ethane); measurement of the viscosity; thermophysical data

thermodynamic properties of R-170 (ethane); thermophysical data

thermodynamic properties of R-170 (ethane); thermophysical data

R. D. Goodwin, H. M. Roder, and G. C. Straty, Thermodynamic Properties of Ethane from 90 to 600 K at Pressures to 700 Bar, NBS Technical Note 684, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS), Gaithersburg, MD, August 1976 (available from GPO, rdb3944)
R-170, equation of state (EOS), thermophysical data

thermodynamic properties of R-170 (ethane); second virial coefficient for -73 to 27 °C (-100 to 80 °F); thermophysical data
R-236fa

S. L. Outcalt and M. O. McInden (National Institute of Standards and Technology, NIST), An Equation of State for the Thermodynamic Properties of R236fa, report for contract N61533-84-F-0152, U.S. Navy, David Taylor Research Center, Annapolis, MD, 1995 (Rdb8915)

presents a modified Benedict-Webb-Rubin (MBWR) equation of state (EOS) for R-236fa: provides coefficients for a 32-term MBWR EOS and for ancillary equations to calculate the vapor pressure, saturated vapor and liquid densities, and ideal-gas heat capacity; describes predictions from an extended corresponding states (ECS) model for regions lacking data; examination of calculated properties indicate that the EOS gives reasonable extrapolation down to the triple point at -93 °C (-136 °F) and up to 227 °C (440 °F) and 40 MPa (5,800 psia)

Hydrofluorocarbons HFC-3236 (R236fa), product bulletin 98-0211-8554-5(HB), 3M Specialty Chemicals Division, Saint Paul, MN, October 1996 (4 pages with 1 figure and 4 tables, available from JMC as RDB8B05)

R-236fa identified as a replacement for R-114 in centrifugal chillers and in high-temperature heat pump and cooling systems; notes planned use by the U.S. Navy in chillers on ships; gives the chemical formula and name, molecular weight, environmental properties, normal boiling point, critical parameters (temperature, pressure, and density), and the saturated liquid and vapor density and specific heat as well as the latent heat of vaporization at the boiling point; lists product specifications; cites an unreferenced study that shows R-236fa with an unidentified polyolester (POE) outperformed R-114 with mineral oil for miscibility, lubricity, stability, and metals and non-metals compatibility; discusses safety and handling; provides a table of thermodynamic properties and a pressure enthalpy chart in inch-pound units of measure

R-245cb

R. L. Shank (Union Carbide Corporation), Thermodynamic Properties of 1,1,1,2,2-Pentafluoropropane (Refrigerant 245cb), Journal of Chemical and Engineering Data, 12(4):474-480, October 1967 (7 pages with 4 figures and 5 tables, rdb2506)

Thermodynamic properties are presented for the saturated liquid and vapor of R-245cb from -40 °C (-40 °F) to the critical temperature, 106.96 °C (224.52 °F); a pressure-enthalpy diagram is included. The critical properties, coefficients for a Benedict-Webb-Rubin (BWR) equation of state (EOS), a vapor-pressure equation, a liquid-density equation, and a heat-capacity equation are given. Data also are provided for the superheated vapor from the saturation temperature to 371 °C (700 °F). The properties listed are volume, enthalpy, entropy, heat capacity at constant pressure, and heat capacity ratio as functions of temperature and pressure. Pressure-volume isotherms are plotted for both the high-density and critical regions. These properties were calculated from measured volumetric and spectral data; the experimental procedures and calculations are described.

R-245ca

R-245ca, CH$_3$F-CF$_2$CHF$_2$, thermodynamic properties, thermophysical data, coefficients for a Carnahan-Starling-DeSantis (CSD) equation of state (EOS)

N. D. Smith, Thermophysical Properties of HFC-245ca, Environmental Research Brief EPA-600/S-92-038, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, August 1992 (4 pages with 5 tables, available from JMC as RDB-3402)

This synopsis summarizes properties of R-245ca (1,1,2,2,3-pentafluoropropane), a potential alternative for R-11 and R-123. It notes that the thermophysical properties of the fluids closely match, and that modeling indicates acceptable performance. The efficiency of R-245ca is indicated as 3-4% less than R-11 and 1-2% less than R-123. Tables, in both inch-pound (IP) and metric (SI) units provide the melting and boiling points, critical properties, heat of vaporization, and liquid heat capacity. Measured liquid densities are given at six temperatures from 22-140 °C (72-284 °F) and vapor pressures for -39 to 26 °C (-38 to 78 °F). Calculated liquid and vapor density as well as vapor pressure and heat of vaporization are tabulated for 5-178 °C (41-353 °F) and the equations used are provided. The ideal gas heat capacity is similarly provided for 27-327 °C (80-620 °F). The methods used and estimated accuracy are indicated.
L. A. Weber and D. R. Defibaugh (National Institute of Standards and Technology, NIST), Vapor Pressure of 1,1,1,2,2-Pentafluoropropane, Journal of Chemical and Engineering Data, 41(4):762-764, 1996 (3 pages with 1 figure and 2 tables, RDB8215)

measurements of the thermodynamic properties of R-245cb for -199 to 53 °C (-326 to 127 °F) and 74-995 kPa (11-144 psia), thermophysical data

R-245fa

thermodynamic properties of R-245fa: briefly reviews the search for replacements for R-11 and R-123 and the flammability and environmental characteristics of R-245fa; compares the performance of R-245fa to R-11, R-123, and R-134a; presents a Martin-Hou (MH) equation of state (EOS) and correlations for the vapor pressure, liquid density, and ideal gas heat capacity of R-245fa; concludes that R-245fa shows considerable promise as a refrigerant in centrifugal chillers at a small increase in pressure and without significant decrease in efficiency; notes that R-245fa could extend the range of low-pressure chillers to higher capacities

HFC-245fa, bulletin G525-513, AlliedSignal Incorporated, Morristown, NJ, October 1995 (2 pages with 3 figures and 1 table, RDB6B20)

This preliminary bulletin introduces R-245fa as a potential replacement for R-141b and other chemicals. It is being developed for use as a blowing agent for rigid insulating foams. The preliminary bulletin presents selected data for R-245fa, described as a nonflammable liquid having a boiling point slightly below room temperature. A table lists physical properties including the molecular formula and weight, boiling point, and water solubility. It indicates the liquid density and vapor pressure at 20 °C (68 °F) and the vapor thermal conductivity at 40 °C (104 °F). It also states that R-245fa exhibits neither a flash point nor flame limits, based on identified tests. A discussion of toxicity notes that R-245fa is not currently listed on the U.S. EPA TSCA, European INEX, or Japanese MiTI inventories, and therefore is classified as a research material that may not be used commercially. While a Permissible Exposure Limit (PEL) has been set, the bulletin cites tests that indicate R-245fa to have low toxicity by both dermal and inhalation routes of exposure. The bulletin reports tests that demonstrate no mutagenic activity in an in vivo micronucleus study and an Ames assay, and only weak activity in an in vitro cytogenetics test. A cardiac sensitization study was negative at concentrations up to 20,000 ppm v/v. Plots show the pressure-temperature relation and miscibility in polyether polyols (BASF Pluracol(R) 824 and 975, Dow Chemical Voranol(R) 390, Bayer Corporation Multanol(R) 4063, and Eastman Chemical Thanol(R) 470X) as well as aromatic polyester polyols (Hoechst Celanese Terate(R) 203, 254, and 2541 and Oxid Teral(R) 235). The bulletin briefly reviews the environmental benefits of the hydrofluorocarbon (HFC) and outlines laboratory stability tests, which showed high thermal and hydrolytic stability. It then indicates that compatibility tests are underway, with favorable results to date for neoprene, EPDM, nylon, polytetrafluoroethylene (PTFE, DuPont Teflon(R)), HIPS, and ABS. It suggests unfavorable findings for fluoropolymers, nitrile, and HNBR. The bulletin concludes with recommendations for storage and handling.

R-C270

R-C270, thermodynamic properties, thermophysical data

R-C270, thermodynamic properties, thermophysical data

R-C270, thermodynamic properties, thermophysical data

R-C270, thermodynamic properties, thermophysical data

R-290 (Propane)

thermodynamic properties of R-290, thermophysical data, hydrocarbons

N. S. Ersova, E. B. Petrunina, and A. V. Kreflection, Equation of State and Thermodynamic Properties of Propane, Kolloidnyi Tekhnika [Refrigeration Technology], 1:30-33, 1981 (4 pages in Russian, rdb5710)

R-290, thermophysical data

R. D. Goodwin, Provisional Thermodynamic Functions of Propane from 85 to 700 K at Pressures to 700 Bar, report NBSIR 77-860, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS), Gaithersburg, MD, July 1977 (available from GPO, rdb9345)

R-290, thermophysical properties, equation of state (EOS)

W. M. Haynes (National Institute of Standards and Technology, NIST), Measurements of Densities and Dielectric Constants of Liquid Propane from 90 to 300 K at Pressures to 35 MPa, Journal of Chemical Thermodynamics, 15:419 ff, 1983 (rdb8248)

thermodynamic and transport properties of R-290 for -183 to -27 (-298 to 80 °F) and pressures up to 35 MPa (5076 psia); thermophysical data

thermodynamic properties of R-290, thermophysical data

thermodynamic properties or R-290, thermophysical data

E. T. Vaskov, Thermodynamic Properties of Propane at Saturation State, Inzhenerno-Fiziches-
kil Zhurnal [Journal of Engineering Physics], Moscow, Russia (then USSR), 46(2):272-275, 1984 (4 pages in Russian, rdb5719)

R-290, thermophysical data

transport properties for R-290; thermophysical data

R-C318

G. Bambach (Technische Universität Karlsruhe, Germany), Octofluorocyclobutane C4F8, Kältetechnik, Germany, 8(1):334-339, 1956 (6 pages, rdb4117)

R-C318 (octafluorocyclobutane), thermophysical properties, toxicity (suggests linkage to delayed deaths to animals exposed at 760,000 ppm as reported and discussed in RDB 5A25)

R. Cipollone (University of L'Aquila, Italy), Thermodynamic Properties of Perfluorocyclobutane (C4F8), paper 351 7, Transactions (Annual Meeting, Indianapolis, IN, 22-26 June 1991), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 97(2), 1991; re-published in Alternative Refrigerants, technical data bulletin 7(3), ASHRAE, 45-50, October 1991 (6 pages with 8 figures and 4 tables, RDB4116)

R-C318 (octafluorocyclobutane), thermophysical data

R-C318 (octafluorocyclobutane), thermodynamic properties, thermophysical data

H. Matthias and H. F. Löfler, Thermodynamische Eigenschaften von Octofluorocyclobutan (C4F8) [Thermodynamic Properties of Octofluorocyclobutane], Kältetechnik, Germany, 6:240-241, 1966 (2 pages in German, rdb4118)

R-C318 (octafluorocyclobutane), thermophysical data

please see page 6 for ordering information
R-338qcc

R-338mccq, CH₂F CF₂ CF₂ CF₃, thermophysical data

R-400

R-12, R-114; vapor-liquid equilibria (VLE) data for R-400 (R-12/114), R-22/114, and R-13/12; R-13B1/114

R-401A

Thermodynamic Properties of Suva(R) MP39 Refrigerant [R-401 (53/13/34)], technical information report T-MP39-ENG (H-47764), DuPont Chemicals, Wilmington, DE, January 1993 (28 pages with 1 figure and 2 tables, available from JMC as RDB3430)

This report provides thermodynamic property data for R-401A, a blend of R-22, R-152a, and R-124 - R-22/152a/124 (53/13/34) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -100 to 99 °C (-148 to 210 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 10-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont's product name for R-401A is Suva(R) MP39.

R-401B

Thermodynamic Properties of Suva(R) MP66 Refrigerant [R-401 (61/11/28)], technical information report T-MP66-ENG (H-47759), DuPont Chemicals, Wilmington, DE, January 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3432)

This report provides thermodynamic property data for R-401B, a blend of R-22, R-152a, and R-124 - R-22/152a/124 (61/11/28) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular satu-

This report provides thermodynamic property data for R-401B, a blend of R-22, R-152a, and R-124 - R-22/152a/124 (61/11/28), in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-401B is Suva® MP66.

Thermodynamic Properties of Suva® MP52 Refrigerant [R-401 (33/15/52)], technical information report T-MP52-SI (H-47770), DuPont Chemicals, Wilmington, DE, February 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3429).

This report provides thermodynamic property data for R-401C, a blend of R-22, R-152a, and R-124 - R-22/152a/124 (33/15/52) - in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-401C is Suva® MP52.

R-402A

Thermodynamic Properties of Suva® HP80 Refrigerant [R-402 (60/2/38)], technical information report T-HP80-ENG (H-47766), DuPont Chemicals, Wilmington, DE, January 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3436).

This report provides thermodynamic property data for R-402A, a blend of R-125, R-290, and R-22 - R-125/290/22 (60/2/38) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a

please see page 6 for ordering information
Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 68 °C (-150 to 154 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-402A is Suva(R) HP80.

Thermodynamic Properties of Suva(R) HP80 Refrigerant [R-402 (60/2/38)], technical information report T-HP80-SI (H-47767), DuPont Chemicals, Wilmington, DE, January 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3437)

This report provides thermodynamic property data for R-402A, a blend of R-125, R-290, and R-22 - R-125/290/22 (60/2/38) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 75 °C (-150 to 167 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-402B is Suva(R) HP81.

Thermodynamic Properties of Suva(R) HP81 Refrigerant [R-402 (38/2/60)], technical information report T-HP81-SI (H-47758), DuPont Chemicals, Wilmington, DE, January 1993 (20 pages with 1 figure and 2 tables, available from JMC as RDB3435)

This report provides thermodynamic property data for R-402B, a blend of R-125, R-290, and R-22 - R-125/290/22 (38/2/60) - in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 75 °C (-150 to 167 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-402B is Suva(R) HP81.

R-402B

Thermodynamic Properties of Suva(R) HP80 Refrigerant [R-402 (60/2/38)], technical information report T-HP80-SI (H-47767), DuPont Chemicals, Wilmington, DE, January 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3437)

This report provides thermodynamic property data for R-402A, a blend of R-125, R-290, and R-22 - R-125/290/22 (60/2/38) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 68 °C (-150 to 154 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont’s product name for R-402A is Suva(R) HP80.

R-403B

Isceon 69-L, information packet, National Refrigerants, Incorporated, Philadelphia, PA, March 1992 (16 pages containing 1 figure and 5 tables, RDB-3A64)

This set of documents includes physical, thermodynamic, and application data on R-403B, a ternary zeotropic blend of R-22, R-218, and R-290 (propane) formulated as R-290/22/218 (5/56/39). This alternative refrigerant is targeted as a "drop-in" replacement for R-502 in existing refrigeration systems. The packet pro-
vides physical property data and saturated vapor pressures, the latter from -62 to 57 °C (-80 to 135 °F), in inch-pound units. It also includes thermodynamic property (pressure, specific volume, density, enthalpy, and entropy as functions of temperature) tables for saturated conditions, from -50 to 89 °C (-58 to 192 °F), and for superheated vapor in metric (SI) units. A pressure-enthalpy diagram, in SI units, is provided. The Information packet gives general guidelines for retrofit of R-502 systems to use the blend, a retrofit checklist, and a theoretical performance comparison for the two fluids. Rhône-Poulenc Chemical's product name for R-403B is Isceon 69-L; National Refrigerants is the exclusive distributor for North America.

R-404A

Forane(R) 404A, technical digest, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1994 (4 pages with 4 tables, available from JMC as RDB4769)

This bulletin supplies information on R-404A, a near-azeotropic blend of R-125, R-143a, and R-134a - R-125/143a/134a (44/52/4). R-404A was formulated to closely match the properties of R-502 for use in medium and low temperature refrigeration in both new systems and applications. A table provides physical and environmental property data for R-404A in inch-pound (IP) units. The table lists the chemical formulation, average molecular weight, normal boiling point, heat of vaporization, vapor and liquid density at the boiling point and 25 °C (77 °F), critical parameters (temperature, pressure, and density), specific heat of the liquid at the same temperature and of the vapor at atmospheric pressure, maximum temperature glide, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP). The table also shows R-404A to be nonflammable at test temperatures up to 100 °C (212 °F). A second table gives the saturated vapor pressures of R-404A and R-502 for -51 to 54 °C (-60 to 130 °F). A third presents the bubble and dew point temperatures and the liquid and vapor densities and enthalpies for R-404A for pressures of 34-2760 kPa (50-400 psia). The document briefly discusses considerations for use of near-azeotropic blends with attention to temperature glide, composition changes, and charging implications. It also reviews performance, lubrication, and materials compatibility considerations for R-404A for new and retrofit systems. It notes immiscibility with mineral oils and the need for their replacement with polyolester lubricant. It also points out that pressure relief devices may need modification due to the higher operating pressures of R-404A compared to R-502. The digest concludes with container identification for R-404A and other alternative refrigerants. Elf Atochem identified R-404A as FX-70 for research and development; its product name for the blend is Forane(R) 404A.

Genetron(R) 404A, technical bulletin B-525-532, AlliedSignal Incorporated, Morristown, NJ, April 1995 (4 pages with 2 tables, RDB6102)

This bulletin supplies information on R-404A, described as a replacement for refrigerants 22 and 502 in low- and medium-temperature, commercial refrigeration applications. The document notes that R-404A is not a "drop in" because a polyolester (POE) lubricant should be used, for miscibility. It also advises that this refrigerant be charged with liquid refrigerant, since vapor charging could result in the wrong composition. The bulletin presents physical property data, in inch-pound (IP) units, including the composition, molecular weight, normal boiling point, corresponding heat of vaporization, critical parameters (temperature, pressure, and density), flammability, and ozone depletion potential. It also indicates the liquid density and specific heats of the liquid and vapor at 30 °C (86 °F). The report provides tabular thermodynamic properties (bubble- and dew-point pressure, liquid density, vapor volume, liquid and vapor enthalpy and entropy, and latent heat of vaporization) for -46 to 71 °C (-50 to 160 °F). AlliedSignal's product name for R-404A is Genetron(R) 404A.

Kältemittel Reclin(R) 404A [Refrigerant Reclin(R) 404A], product bulletin AF2634d, Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, May 1994 (28 pages with 6 figures and 7 tables, in German, RDB4777)

This bulletin provides data for R-404A, identified as a near-azeotropic blend of R-125, R-143a, and R-134a - R-125/143a/134a (44/52/4), in metric (SI) units of measure. The blend is described as a substitute for R-22 and R-502 in low-temperature refrigeration. The introduction reviews the phaseout of chlorine-containing refrigerants and criteria for substitutes. A table summarizes physical and thermodynamic property data for R-404A, including the chemical formulation and name, molecular mass, normal boiling point, freezing range, and critical parameters (temperature, pressure, and density). It also gives the heat of vaporization, liquid and vapor density, specific heat, isentropic exponent, flammability limits (none), thermal conductivity, and dynamic viscosity at selected conditions. The bulletin reviews thermodynamic similarities of R-404A with R-22 and R-502. Four
plots compare their compression ratios, compressor discharge temperatures, volumetric refrigerating effect, and coefficient of performance for evaporating temperatures of -45 to -5 °C (-49 to 23 °F). The bulletin then discusses compatibility with metals, recommending avoidance of zinc, magnesium, lead, and aluminum alloys with more than 2% magnesium. It reports storage tests that showed good stability to hydrolysis and no corrosive attack on cast iron, refined steel, copper, brass, and aluminum. The bulletin provides changes in Shore hardness, elastomer swell, extraction, and elongation data for R-404A with ethylene propylene diene terpolymer (EPDM), fluorinated (FKM), hydrocarbonated nitrile butadiene rubber (HNBR), acrylonitrile-butadiene (NBR), and chloroprene (CR) rubbers. It notes suitability with polytetrafluoroethylene (PTFE, Hostaflon®), polyacetal (POM, Hostaform®), and polyamide (PA) thermoplastics, but cautions that lubricant influences also must be considered. R-404A is indicated as almost completely immiscible with conventional mineral oils and also with some synthetic lubricants such as alkylbenzenes. The bulletin discusses miscibility and considerations for polyalkylene glycol (PAG) and polyol ester (POE) lubricants. A plot shows miscibility of R-404A with an ester lubricant (Fuchs Reniso E 32). The bulletin reports that the absence of chlorine atoms in hydrofluorocarbon (HFC) refrigerants leads to higher thermal stability. The bulletin outlines toxicity testing for R-125 and R-134a, and that recommended exposure limits of 1000 ppm have been set for R-125, R-134a, and R-143a (the components of R-404A), but that exposures should still be kept to a minimum. It also notes that R-134a does not form flammable mixtures with air under normal conditions, but that flammable mixtures can form above atmospheric pressure if the air fraction exceeds 80%. R-143a is indicated as flammable, but R-125 is not. The blend does not burn, even after fractionation by leakage. The bulletin warns that mixtures of R-404A with air or oxygen must never be used for leak or pressure tests. The bulletin discusses leakage, noting that even losses up to 70% by mass have small impacts and that the blend performs nearly the same way as an azeotrope. It also discusses recycling and notes that Hoechst will accept used R-404A for reclaim. Two tables provide thermodynamic property data. The first includes bubble and dew point pressures; liquid and vapor specific volumes, densities, enthalpies, and entropies; and the heat of vaporization. These data cover R-404A at saturated (wet vapor) conditions from -60 to 65 °C (-76 to 149 °F). The second provides specific volume, enthalpy, and entropy data for the superheated vapor from -50 to 200 °C (-58 to 392 °F). The bulletin concludes with a pressure-enthalpy (Mollner) diagram based on a Peng-Robinson-Stryjek-Vera (PRSV) equation of state. Hoechst Chemical's product name for R-404A is Reclim® 404A.

Thermodynamic Properties of Suva(R) HP62 Refrigerant [R-404A (44/52/4)]

Technical information report T-HP62-ENG (H-49744-1), DuPont Chemicals, Wilmington, DE, December 1993 (24 pages with 1 figure and 2 tables, available from JMC as RDB3C04)

This report provides thermodynamic property data for R-404A, a zeotropic blend of R-125, R-134a, and R-134a - R-125/143a/134a (44/52/4) - in inch-pound (IP) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, specific volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -101 to 66 °C (-150 to 150 °F). A set of tables presents specific volume, enthalpy, and entropy data for superheated vapor at constant pressure for 73450 kPa (1-500 psia). The report concludes with a pressure-enthalpy diagram. DuPont's product name for R-404A is Suva(R) HP62.

Thermodynamic Properties of Suva(R) HP62 Refrigerant, technical information report T-HP62-EN (H-49745), DuPont Chemicals, Wilmington, DE, June 1993 (20 pages with 1 figure and 2 tables, RDB3733)

This report provides thermodynamic property data for R-404A, a zeotropic blend of R-125, R-134a, and R-134a - R-125/143a/134a (44/52/4) - in metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, specific volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -100 to 65 °C (-149 to 149 °F). A set of tables presents specific volume, enthalpy, and entropy data for superheated vapor at constant
This report provides detailed thermodynamic property data for R-406A, a zeotropic blend of R-22, R-600a (isobutane), and R-142b - R-22/600a/142b (55/4/41). It presents a tabular comparison of calculated performance of R-12 and R-406A in a simple process cycle, noting almost the same capacity, piping sizes, and power use, but a higher compression ratio and discharge temperature. The report briefly outlines the methods used to measure properties and calculate derived vapor pressures, liquid densities, and ideal gas specific heat capacities. Tables present physical data for the components, the blend, and R-12 for comparison, in metric (SI) and inch-pound (IP) units of measure. They include the normal bubble and dew point temperatures as well as critical parameters (pressure, temperature, density, and specific volume). The report presents a Martin-Hou equation of state (EOS) and a table showing deviations from measured data. It also provides enthalpy and entropy equations for the superheated region and coefficients to calculate the specific enthalpy, entropy, and exergy. The report concludes with a pressure-enthalpy (Mollier) diagram and detailed tabular data for saturated and superheated conditions in metric (SI) units. The former covers -40 to 100 °C (-40 to 212 °F) and the latter pressures from 20 to 3400 kPa (3-493 psia). Solvay’s product name for R-406A is Solkane(R) 406A.

R-406A Vapor Table and Mollier-Diagram, Solvay Performance Chemicals, Greenwich, CT, undated circa 1994 (4 pages with 1 figure and 1 table, available from JMC as RDB5128)

This information packet describes and provides data for R-406A, a zeotropic blend of R-22, R-600a (isobutane), and R-142b - R-22/600a/142b (55/4/41). R-406A is identified as an alternative for R-12 for small, hermetic refrigerating systems such as domestic refrigerators, drink dispensers, and other fixed refrigerating or chilling equipment. The packet includes a table of saturated liquid and vapor data in metric (SI) units of measure for -40 to 100 °C (-40 to 212 °F). It includes liquid (bubble point) and vapor (dew point) pressures as well as liquid and vapor specific volume, density, enthalpy, and entropy. It concludes with a pressure-enthalpy (Mollier) diagram. Solvay’s product name for R-406A is Solkane(R) 406A.

R-407 Series

M. Fukushima, T. Miki, S. Kumano, and S. Ohotoshi (Asahi Glass Company, Limited, Japan), Thermodynamic Properties of HFC-32, HFC-125, and

Please see page 6 for ordering information
HFC-134a Mixture, Proceedings of the 15th Japan Symposium on Thermophysical Properties, Japan, 21-24, 1994 (4 pages, rdb8245)

thermodynamic properties of R-407 series blends; thermophysical data

R-407A

thermodynamic properties of R-407A identified in the paper as the ternary blend R-32/125/134a (25/30/35 molar); gas-phase equation of state (EOS) and ideal-gas heat capacity for 40-180 °C (104-356 °F) and 50-7,700 kPa (711-17 psia); measurements of the gas density with a Burnett apparatus and speed of sound by a cylindrical resonance apparatus; thermophysical data

Klea(R) 60 Data Sheet, bulletin 620250550, ICI Klea, Wilmington, DE, January 1994; republished as Klea(R) 407A (Klea 60) Data Sheet, December 1994 (8 pages with 5 tables, available from JMC as RDB4130)

This bulletin provides summary property data and equations to calculate thermophysical properties for R-407A, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/125/134a (20/40/40) - in metric (SI) units of measure. The bulletin tabulates physical properties including the atmospheric bubble and dew point temperatures, estimated critical temperature, Trouton's constant, and coefficient of thermal expansion. It also indicates the bubble point pressure and latent heat of vaporization at 25 °C (77 °F) and the saturated vapor density at 1 atmosphere (14.7 psia). The bulletin then presents a Martin-Hou equation of state and formulae to calculate the bubble, mid, and dew point temperatures for the saturation envelope. It also provides formulae for the latent heat of vaporization, ideal gas heat capacity, saturated liquid enthalpy, speed of sound, and liquid and vapor density, viscosity, and thermal conductivity. The document concludes with four tables giving calculated values for these properties at representative pressures of 100-3000 kPa (15-435 psia) and temperatures of -50 to 50 °C (-58 to 122 °F). ICI's product name for R-407A is Klea(R) 60.

Thermodynamic Properties of Klea(R) 407A (Klea(R) 60), British Units, bulletin 620250371, ICI Klea, Wilmington, DE, March 1995 (28 pages with 1 figure and 3 tables, limited copies available from JMC as RDB6B30)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-407A - a zeotropic blend containing R-32, R-125, and R-134a; specifically R-32/125/134a (20/40/40) - in inch-pound (IP) units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 6.9-69 kPa (1-10 psi) increments for 70-3000 kPa (10-430 psia). The tabular data include the dew and bubble points as well as the liquid and vapor density, enthalpy, and entropy. The second table provides density, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 70-2960 kPa (10-430 psia) to temperatures as high as 213 °C (415 °F). The last table presents evaporator inlet temperatures as functions of pressure
and enthalpy for 70-690 kPa (10-100 psia). ICI's product name for R-407A is Klea(R) 407A (formerly Klea(R) 60).

Thermodynamic Property Data for Klea 407A, SI Units, bulletin CP/33342/33524/1Ed/R1/43/594, ICI Klea, Runcorn, Cheshire, UK, May 1994 (32 pages with 1 figure and 3 tables, RDB6831)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-407A - a zeotropic blend containing R-32, R-125, and R-134a, specifically R-32/125/134a (20/-40/40) - in metric (SI) units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 0.1 bar (10 kPa, 1.5 psi) increments for 70-3000 kPa (10-435 psia). The tabular data include the dew and bubble points as well as the liquid and vapor density, enthalpy, and entropy. The second table provides density, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 100-3000 kPa (15-430 psia) to temperatures as high as 168 °C (334 °F). The last table presents evaporator inlet temperatures as functions of pressure and enthalpy for 100-560 kPa (15-80 psia). ICI's product name for R-407A is Klea(R) 407A (formerly Klea(R) 60).

R-407B

Klea(R) 61 Data Sheet, bulletin 620250580, ICI Klea, Wilmington, DE, January 1994; republished as Klea(R) 407B (Klea 61) Data Sheet, December 1994 (8 pages with 1 table, available from JMC as RDB4132)

This bulletin provides summary property data and equations to calculate thermophysical properties for R-407B, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/125/134a (10/70/20) - in inch-pound (IP) units of measure. This formulation was selected to replace R-502 in existing, low-temperature refrigeration equipment for which R-407A is unsuitable. The bulletin tabulates physical properties including the atmospheric bubble and dew points, estimated critical temperature, Trouton's constant, and coefficient of thermal expansion. It also indicates the bubble point and latent heat of vaporization at 20 °C (68 °F) and the saturated vapor density at 1 atmosphere (14.7 psia). The bulletin then presents a Martin-Hou equation of state and formulae to calculate the bubble, mid, and dew point temperatures for the saturation envelope. It also provides formulae for the latent heat of vaporization, ideal gas heat capacity, saturated liquid enthalpy, speed of sound, and liquid and vapor density, viscosity, and thermal conductivity. The document concludes with four tables giving calculated values for these properties at representative pressures of 70-2760 kPa (10-400 psia) and temperatures of -51 to 49 °C (-60 to 120 °F). ICI's product name for R-407B is Klea(R) 61.

Klea 61 Physical Property Data Sheet, bulletin CP/33530/1Ed/33/0194, ICI Klea, Runcorn, Cheshire, UK, January 1994 (6 pages with 5 tables, available from JMC as RDB4566)

This bulletin provides summary property data and equations to calculate thermophysical properties for R-407B, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/125/134a (10/70/20) - in metric (SI) units of measure. The bulletin tabulates physical properties including the atmospheric bubble and dew points, estimated critical temperature, Trouton's constant, and coefficient of thermal expansion. It also indicates the bubble point pressure and latent heat of vaporization at 20 °C (68 °F) and the saturated vapor density at 1 atmosphere (14.7 psia). The bulletin then presents a Martin-Hou equation of state and formulae to calculate the bubble, mid, and dew point temperatures for the saturation envelope. It also provides formulae for the latent heat of vaporization, ideal gas heat capacity, saturated liquid enthalpy, speed of sound, and liquid and vapor density, viscosity, and thermal conductivity. The document concludes with four tables giving calculated values for these properties at representative pressures of 100-3000 kPa (15-435 psia) and temperatures of -50 to 50 °C (-58 to 122 °F). ICI's product name for R-407B is Klea(R) 61.

Thermodynamic Property Data for Klea(R) 407B (Klea(R) 61), British Units, bulletin 620250391, ICI Klea, Wilmington, DE, March 1995 (28 pages with 1 figure and 3 tables, limited copies available from JMC as RDB6532)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-407B - a zeotropic blend containing R-32, R-125, and R-134a, specifically R-32/125/134a (10/-70/20) - in inch-pound (IP) units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 7-69 kPa (1-10 psi) increments for 70-2960 kPa
Thermodynamic Property Data for Klea 4078, SI units, available from JMC as RDB6B33 (12 pages with 1 figure and 3 tables, limited copies available from JMC as RDB6B33).

This bulletin provides detailed thermodynamic properties for saturated and superheated R-407B - a zeotropic blend containing R-32, R-125, and R-134a, specifically R-32/125/134a (10/-70/20) - in metric (SI) units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 0.1-0.5 bar (10-50 kPa, 1.5-7 psi) increments for 100-3000 kPa (10-435 psia). The tabular data include the dew and bubble points as well as the liquid and vapor density, enthalpy, and entropy. The second table provides density, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 100-3000 kPa (15-435 psia) to temperatures as high as 207 °C (327 °F). The last table presents evaporator inlet temperatures as functions of pressure and enthalpy for 70-690 kPa (10-100 psia). ICI's product name for R-407B is Klea(R) 407B (formerly Klea(R) 61).

R-407C

This bulletin supplies information on R-407C, a zeotropic blend of R-32, R-125, and R-134a - R-32/125/134a (23/25/52). It was designed to replace R-22 in existing and new equipment including unitary air-conditioners, chillers without flooded evaporators, and commercial refrigeration. The document outlines potential applications and provides physical property information. The data include the chemical name and formula, appearance, molecular weight, normal bubble and dew point temperatures, corresponding heat of vaporization and vapor density, critical parameters (temperature, pressure, specific volume, and density), and flammability. The data also include the bubble and dew point pressure, liquid density, and the vapor and liquid heat capacity, thermal conductivity, and viscosity at 25 °C (77 °F). The bulletin then presents product specifications, provides a pressure-temperature table, and reviews servicing considerations. It describes tests and indicates that R-407C is stable with metals (aluminum, copper, and steel). The text refers inquiries on desiccants to drier manufacturers. It lists suitability indications for 27 elastomers and plastics. The bulletin suggests use of polyol ester lubricants, but indicates that compressor and lubricant manufacturers should be contacted for specific recommendations. It then reviews safety information, addressing general toxicity, inhalation effects, skin and eye contact, responses to leaks, flammability, combustibility, and thermal stability. The bulletin offers guidance for storage, handling, leak detection, retrofit, recycling, reclamation, and disposal. It also provides tabular thermodynamic properties (bubble and dew point pressures, liquid density, vapor volume, liquid and vapor enthalpy and entropy, and latent heat of vaporization) for -30 to 70 °C (-60 to 160 °F). The data are provided in both inch-pound (IP) and metric (SI) units. AlliedSignal's product name for R-407C is Genetron(R) 407C.

Klea(R) 407C (Klea 66) Data Sheet, bulletin 620250610, ICI Klea, Wilmington, DE, December 1994 (8 pages with 1 table, RDBB5B34).

This bulletin provides summary property data and equations to calculate thermophysical properties for R-407C, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/125/134a (23/25/52) - in inch-pound (IP) units of measure. This formulation was selected to replace R-22 in new low temperature refrigeration equipment and also for retrofit in many existing systems. The bulletin tabulates physical properties including the atmospheric bubble and dew points, estimated critical temperature, Trouton's constant, and coefficient of thermal expansion. It also indicates the bubble point pressure and latent heat of vaporization at 21 °C (70 °F) and the saturated vapor density at 1 atmosphere (14.7 psia). The bulletin then presents a Martin-Hou equation of state and formulae to calculate the bubble, mid, and dew point temperatures for the saturation envelope. It also provides formulae for the latent heat of vaporization, ideal gas heat capacity, saturated...
Thermodynamic Properties of Klea(R) 407C (Klea(R) 66), British Units, bulletin 620250411, ICI Klea, Wilmington, DE, January 1994 (28 pages with 1 figure and 3 tables, limited copies available from JMC as RDB4765)

This bulletin provides detailed thermodynamic properties for saturated and superheated conditions for R-407C, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/-125/134a (23/25/52) - in inch-pound (IP) units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 7-69 kPa (1-10 psi) increments for 70-2960 kPa (10-430 psia). The tabular data include the dew and bubble points as well as the liquid and vapor density, enthalpy, and entropy. The second table provides density, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 70-2960 kPa (10-430 psia) to temperatures as high as 2.6 °C (42.0 °F). The last table presents evaporator inlet temperatures as functions of pressure and enthalpy for 70-690 kPa (10-100 psia). ICI's product name for R-407C is Klea(R) 407C (formerly Klea(R) 66).

Thermodynamic Properties of Suva(R) AC9000 Refrigerant, technical information report T-AC-9000-ENG (H-56607), DuPont Fluoroproducts, Wilmington, DE, April 1994 (20 pages with 1 figure and 2 tables, available from JMC as RDB4765)

This report provides thermodynamic property data for R-407C, a zeotropic blend of R-125, R-143a, and R-134a - specifically R-125/143a/134a (23/25/52) - in inch-pound (IP) and metric (SI) units of measure. It provides physical properties including the chemical formula, molecular weight, normal boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Peng-Robinson-Stryjek-Vera (PRSV) equation of state and an ideal gas heat capacity equation at constant pressure. It also supplies equations to calculate vapor pressure and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, specific volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -100 to 79 °C (-150 to 174 °F). A set of tables presents specific volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). The report concludes with a pressure-enthalpy diagram. DuPont's product name for R-407C is Suva(R) AC9000.

Transport Properties of Suva 9000 Refrigerant, product information report ART-26 (H-60081), DuPont Chemicals, Wilmington, DE, November 1994 (26 pages with 22 figures, available from JMC as RDB5129)

This report provides plots and equations for estimation of transport properties for R-407C, a zeotropic blend of R-125, R-143a, and R-134a - specifically R-125/143a/134a (23/25/52) - as functions of temperature. Saturated liquid viscosity, kinematic viscosity, thermal conductivity, and Prandtl number; vapor viscosity and thermal conductivity at atmospheric and high (100-3,000 kPa, 15-450 psia) pressures; vapor heat capacity; and vapor heat capacity ratio (Cp/Cv) are addressed. The plots and equations are repeated in inch-pound (IP) and metric (SI) units. The equations are based on curve fits of measured data. DuPont's product name for R-407C is Suva(R) 9000.

Thermodynamic Property Data for Klea(R) Klea(R) 66, SI Units, bulletin CP/34434/34214/-2Ed/43/3941, ICI Klea, Runcorn, Cheshire, UK,
March 1994 (32 pages with 1 figure and 3 tables, limited copies available from JMC as RDB6B37)

This bulletin provides detailed thermodynamic properties for saturated and superheated conditions for R-407C, a zeotropic blend containing R-32, R-125, and R-134a - specifically R-32/-125/-134a (23/25/52) - in inch-pound (IP) [contrary to the title] units of measure. It comprises three tables, accompanied by notes on system performance with zeotropic blends and instructions to find the evaporator inlet and outlet temperatures based on expansion valve enthalpy and the evaporator pressure. The first presents saturation properties by pressure in 7-69 kPa (1-10 psi) increments for 70-2960 kPa (10-430 psi). The tabular data include the dew and bubble points as well as the liquid and vapor density, enthalpy, and entropy. The second table provides density, enthalpy, and entropy data for superheated vapor at constant pressure. The data span the range of 70-2960 kPa (10-430 psia) to temperatures as high as 216 °C (420 °F). The last table presents evaporator inlet temperatures as functions of pressure and enthalpy for 70-690 kPa (10-100 psia). ICI’s product name for R-407C is Klea® 407C (formerly Klea® 66).

R-408A

Forane® FX-10, technical digest, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1994 (4 pages with 4 tables, available from JMC as RDB4771)

This bulletin supplies information on R-408A, a near-azeotropic blend of R-125, R-143a, and R-22 - R-125/-143a/-22 (7/46/47). R-408A was formulated as a retrofit refrigerant for low and medium temperature refrigeration systems designed for R-502. The bulletin notes that R-404A is recommended to replace R-502 in new equipment. A table compares physical and environmental property data for R-408A and R-502 in inch-pound (IP) units. The table lists the chemical formulation, average molecular weight, normal boiling (bubbling) point, heat of vaporization, critical parameters (temperature and pressure), vapor and liquid density at the boiling point and 27 °C (80 °F) respectively, specific heat of the liquid at the same temperature and of the vapor at atmospheric pressure, maximum temperature glide, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP). The table also shows R-409A to be nonflammable. A second table gives the bubble and dew point pressures of R-409A and saturated vapor pressures of R-12 for -34 to 60 °C (-30 to 140 °F). A third presents the saturated liquid and vapor pressures, densities, and enthalpies for the same range. The document briefly discusses considerations for use of near-azeotropic blends with attention to temperature glide, composition changes, and charging implications. It also reviews performance, lubrication, and materials compatibility considerations for retrofit systems. It notes that R-408A can be used with mineral oil, alkylbenzene, or polyol ester lubricants. It also outlines a nine-step retrofit procedure to convert equipment from R-502 to R-408A. The digest concludes with container identification for R-408A and other alternative refrigerants. Elf Atochem’s product name for R-408A is Forane(R) FX-10.

R-409A

Forane(R) FX-56, technical digest, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1994 (4 pages with 2 figures and 4 tables, available from JMC as RDB4771)

This bulletin supplies information on R-409A, a zeotropic blend of R-22, R-124, and R-142b - R-22/-124/-142b (60/25/15). R-409A was formulated as a retrofit refrigerant for R-12 in low and medium temperature refrigeration systems where removal of mineral oil is difficult. A table summarizes physical and environmental property data for R-409A in inch-pound (IP) units. The table lists the chemical formulation, average molecular weight, normal boiling (bubbling) point, heat of vaporization, critical parameters (temperature and pressure), vapor and liquid density at the boiling point and 27 °C (80 °F) respectively, specific heat of the liquid at the same temperature and of the vapor at atmospheric pressure, maximum temperature glide, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP). The table also shows R-409A to be nonflammable. A second table gives the bubble and dew point pressures of R-409A and saturated vapor pressures of R-12 for -34 to 60 °C (-30 to 140 °F). The document briefly discusses retrofit, lubrication, charging procedures, and performance. It notes that R-409A can be used with mineral oil, alkylbenzene, or polyol ester lubricants. It also notes that while evaporator pressures will be similar to those with R-12, condenser pressures will be 69-138 kPa (10-20 psi) higher. The bulletin then explains terminology associated with near-azeotropic blends, including bubble point, dew point, fractionation, and glide. It then reviews the typical behavior of R-409A in an evaporator, explaining how the composition changes during boiling. The bulletin outlines an eight-step
retrofit procedure to convert equipment from R-12 to R-409A and provides guidance on setting system temperatures with the blend. The digest concludes with container identification for R-409A and other alternative refrigerants. Elf Atochem's product name for R-409A is Forane® FX-56.

R-410 Series

Y. Chernyak (University of Delaware, USA), P. V. Zhelezny (Odessa State Academy of Refrigeration, Ukraine), and M. E. Paulaitis (University of Delaware, USA), Thermodynamic Properties of HFC-32/HFC-125 Mixtures and an Estimation of Its Environmental Impact and Utility in Refrigeration, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 429-434, July 1996 (6 pages with 5 figures and 2 tables, RDB6C19)

R-410A

Genetron® AZ-20 (R-410A) Product Brochure, bulletin G525-012, AlliedSignal Incorporated, Morristown, NJ, October 1996 (16 pages with 4 figures and 7 tables, limited copies available from JMC as RDB7211)

This bulletin supplies information on R-410A, a patented blend of R-32 and R-125 - R-32/125 (50/50) - that behaves like an azeotrope. It was designed to replace R-22 in a variety of new equipment including unitary air-conditioners, chillers, and commercial refrigeration. The document outlines potential applications and provides physical property data including the chemical name and formula, appearance, molecular weight, normal boiling point, corresponding heat of vaporization and vapor density, critical parameters (temperature, pressure, specific volume, and density), and flammability. It also indicates the liquid density, vapor pressure, and the vapor and liquid heat capacity, thermal conductivity, and viscosity at 25 °C (77 °F). The bulletin then presents product specifications and provides both a pressure-temperature table and pressure-enthalpy (Mollier) diagrams. It reviews servicing considerations presents a tabular summary of the stability of R-410A with polyolester lubricants (Mobil EAL 22 and 32, Castrol SW 32) and metals (aluminum, copper, and steel). The text refers inquiries on desiccants to drier manufacturers, but provides a solubility plot for water in R-410A and lists suitability indications for 27 elastomers and plastics. The bulletin suggests use of polyolester lubricants, but indicates that compressor and lubricant manufacturers should be contacted for specific recommendations. It then reviews safety information, addressing general toxicity, inhalation effects, skin and eye contact, responses to leaks, flammability, combustibility, and thermal stability. The bulletin offers guidance for storage, handling, leak detection, retrofit, recycling, reclamation, and disposal. It also provides tabular thermodynamic properties (pressure, liquid density, vapor volume, liquid and vapor enthalpy and entropy, and latent heat of vaporization) for -30 to 70 °C (-60 to 160 °F) [tables cover dissimilar ranges for the two sets of units]. Formulae are presented to calculate thermodynamic properties, including vapor pressure, liquid density, and ideal gas heat capacity correlations. A Martin-Hou equation of state also is presented. The data are provided in both inch-pound (IP) and metric (SI) units. AlliedSignal's product name for R-410A is Genetron® AZ-20.

R-410B

R-410B, critical parameters, vapor pressure, saturated liquid and vapor densities, PVT measurements, Martin-Hou equation of state (EOS)
ceedings of the Fourth Asian Thermophysical Properties Conference (Tokyo, Japan, 5-8 September 1995), 2:327-330, 1995 (4 pages, rdb5265)

thermodynamic properties of R-410B; thermophysical data

Other Zeotropes

This paper presents transport properties for four ternary zeotropic formulations of R-22/152a/-124, namely 53/13/34 (R-401A), 61/11/28 (R-401B), 33/15/32 (R-401C), and 36/24/40. The properties were calculated, using estimation techniques documented in the paper. Correlations and plots summarizing the findings are presented, the latter for -53 to 97 °C (-63 to 207 °F). The paper addresses liquid and vapor thermal conductivity, specific heat, and viscosity. The estimation techniques used were evaluated by computing the properties of R-500 and comparing the results with published data. Potential applications of the four near-azeotropic blends are discussed briefly.

measurements of PVT and critical point parameters for R-218/134a and R-134a/152a using a variable volume apparatus with an optical cell: results are fitted to a cubic equation of state and a Kesselman-type equation; correlations for the coexisting densities and pressure along the saturation boundary; new methods for calculating the saturated vapor density; estimates of the thermodynamic efficiencies of the azeotrope R-218/134a (40.5/59.5) and quasi-azeotrope (a blend with uniform composition of the liquid and vapor phases coexisting in equilibrium within the entire concentration interval) R-134a/152a in vapor-compression cycles; R-134a/152a (20/-80) is a close match for R-12 and indicated to be nonflammable

thermodynamic properties of R-32/134a and R-32/152 blends: thermophysical data

This paper presents isothermal, vapor-liquid equilibrium data for the binary zeotropes of R-23/32, R-23/134a, and R-32/134a. Both tabular data and pressure-composition plots are provided. The apparatus used for the measurements is described and shown schematically. The critical parameters (temperature and pressure) and acentric factors are tabulated for R-23, R-32, and R-134a. Interaction parameters and averaged comparisons to measured data are then compared to measured data for both the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations of state (EOS), for the three binary pairs. Deviations to the bubble and dew point pressures and densities are tabulated for three ternary blends of R-23/32/134a, namely (1.0/29.7/69.3), (2.0/28.0/70.0), and (5.0/28.5/66.5). The paper concludes that the two equations predict the saturated pressure and vapor density with almost the same accuracy, but that the PR equation of state is more accurate for the liquid density.

thermodynamic properties of R-32 blends: thermophysical data

J. S. Gallagher, Thermodynamic Properties of a Geothermal Working Fluid: 90% Isobutane - 10% Isopentane, NBS Technical Note 1234, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS),
thermodynamic properties of R-600a, R-601a, and R-600a/601a (90/10); thermophysical data

thermophysical data

describes a new apparatus that applies gas-flow calorimetry to measure the isobaric specific heat of superheated vapors with high accuracy at temperatures up to 200 °C (392 °F) and pressures up to 10 MPa (1450 psia): estimates the experimental uncertainties in temperature, pressure, and isobaric specific heat as not greater than ±0.005 °C (0.009 °F), ±4 kPa (0.6 psia), and ±0.25%, respectively; presents four isobaric specific heat values of R-22 vapor and compares them with data published by others; presents four isobaric specific heat values of R-134a vapor and compares them to ideal-gas specific heat derived from sound velocity measurements, spectroscopic measurements, and existing equations of state (EOSs) for R-134a

thermodynamic property measurements of R-32/134a blends: presents vapor-liquid equilibria (VLE) were measured by a static method in the temperature range of 10-40 °C (50-104 °F); discusses the temperature dependence of the binary interaction parameter for the Soave-Redlich-Kwong (SRK) and Carnahan-Starling-DeSantis (CSD) equations of state (EOS); summarizes measurements of the vapor-liquid coexistence curve near the critical point by observation of meniscus disappearance; indicates the critical temperatures and densities of R-32/134a (30/70) and (70/30) on the basis of the saturation densities along the coexistence curve in the critical region; presents a correlation of the critical locus as a function of composition for this blend

thermodynamic properties of R-290, R-600a, and R-290/600a blends; thermophysical data

experimental determination of sound velocities of gaseous R-32, R-134a, and R-32/134a blends using a spherical resonator; correlation for the second virial coefficients of R-32/134a covering the entire range of compositions; thermodynamic properties; thermophysical data

crossover equation of state (EOS) model to represent thermodynamic properties of near the critical point

thermodynamic properties of R-14, R-23, and R-14/23 blends: thermophysical data

R-170/744 (ethane/carbon dioxide), mode-coupling theory for the dynamics of critical fluctuations to binary fluid mixtures near the vapor-liquid critical line, compares a proposed crossover model with experimental thermal conductivity data in the critical region, provides constants for the crossover model and critical parameters (temperature, pressure, and density) for 25/75, 26/74, 50/50, and 74/26 mixtures of R-170 and R-744 by mole fraction, compares calculated results with experimental data for thermal diffusivity, thermal conductivity, and viscosity.

R-170/744 (ethane/carbon dioxide), mode-coupling theory for the dynamics of critical fluctuations to fluids near the vapor-liquid critical line, derivation of crossover equations.

thermodynamic properties of blends; thermophysical data

crossover model to represent thermophysical properties near the critical point

thermodynamic properties of R-32/125 (R-410 series blends) and R-32/134a: thermophysical properties

thermodynamic properties of R-290/600 for 10-60 °C (50-140 °F) up to 9.6 MPa (1400 psia); thermophysical data

thermodynamic properties of R-170/290 up to 14 MPa (2000 psia); thermophysical data

C-C. Plao, M. S. Noguchi (Daikin Industries, Limited), H. Sato, and K. Watanabe (Keio University, Japan), Thermodynamic Properties of HFC-32-/HFC-134a Binary System, *Proceedings of the 1994 International Refrigeration Conference at Purdue*, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 37-42, July 1994 (6 pages with 5 figures and 2 tables, RDB4807)

crossover equation of state (EOS) model to represent the thermodynamic properties of R-32/134a (30/70); thermophysical data

A. A. Povodyrev (University of Maryland, USA, and Russian Academy of Sciences, Russia), G. X. Jin (University of Maryland), S. B. Kiselev (Russian Academy of Sciences, Russia) and J. V. Sengers (University of Maryland), Crossover Equation of State for the Thermodynamic Properties of Mixtures of Methane and Ethane in the Critical Region, *International Journal of Thermophysics*, 17(4):909-944, July 1996 (36 pages with 18 figures and 3 tables, RDB7A56)

crossover equation of state (EOS) model to represent the thermodynamic properties of R-50/170 near the critical point; plait point

measurements of the pressure-volume-temperature-composition (PVTx) properties of R-32/134a blends with a constant-volume apparatus and an expansion procedure; presents 260 sets of PVTx data for 47-167 °C (116-332 °F), pressures of 1.5-6.2 MPa (218-900 psi), and densities of 0.183 kg/m³ (3.8-11.4 lb/ft³)

V. G. Skripka et al., Vapor-Liquid Equilibrium of Binary Systems of Natural Gas Components at Low Temperatures, *Gazovaja Promyslennost*, publication date unknown (in Russian, rdb5716)

presents a method to determine the critical density of binary blends and provides an illustration for R-170/600 (ethane/n-butane): method entails an experimental and analytical procedure involving measurement of rectilinear diameters based on measured vapor-liquid coexistence densities along a path of constant overall density and composition; validates the proposed method with comparisons of the results to densities generated with a modified Leung-Griffiths correlation and with extensive vapor-liquid equilibrium (VLE) data from a published study; thermodynamic properties; thermophysical data

D. Vollmer (Forschungszentrum für Kälte- und Umwelttechnik GmbH, FKU, Germany) and E. Findelsien (Foron Hausgeräte GmbH, Germany), Calculation of Thermodynamic and Thermophysical Properties of Binary Mixture Propane/Isobutane, New Applications of Natural Working Fluids in Refrigeration and Air Conditioning (proceedings of the meeting of IIR Commission B2, Hannover, Germany, 10-13 May 1994), International Institute of Refrigeration (IIR), Paris, France, 119-130, 1994 (12 pages with 7 figures and 5 tables, RDB5705)

thermodynamic properties of R-290, R-600a, and R-290/600a blends: Redlich-Kwong-Soave (RKS) and Lee-Kesler-Pickler (LKP) equations of state (EOS), thermophysical data

thermodynamic properties of R-32/134a blends; thermophysical data

FRIGC(R) FR-12(TM) Refrigerant Specifications, InterCool Energy Corporation, Latham, NY, 1996 (2 pages with 1 figure and 2 tables, RDB6C06)

This product specification sheet provides data on a ternary zeotropic blend of R-124, R-134a, and R-600 - R-134a/124/600 (59/39/2) - in inch-pound (IP) and metric (SI) units of measure. The blend is described as a replacement for R-12 in mobile air-conditioning (MAC) applications. The bulletin indicates that the blend operates in the same pressure range as R-12, even at high ambient temperatures, and is compatible the mineral oil used in MAC compressors. A table summarizes selected physical properties including the normal bubble and dew points, corresponding vapor and liquid densities, latent heat of vaporization, and critical parameters (temperature, pressure, and density). It also includes the vapor pressure, solubility in water, and the liquid and vapor thermal conductivities and heat capacities at 25 °C (77 °F). It concludes with the ozone depletion potential (ODP), global warming potential (GWP), and flammability limits (indicated as none). The product sheet then discusses service considerations including charging and recovery. It briefly reviews compatibility findings with plastics, elastomers, metals, desiccants, and lubricants as well as leak detection. A table and plot compare the vapor pressure for the blend at its bubble and dew points to that for R-12 at -7 to 93 °C (20-200 °F). InterCool Energy Corporation's product name for this blend is FRIGC(R) FR-12(TM).

Meforex(R) DI-36, Ausimont S.p.A., Bollate, Italy, undated circa 1996 (2 pages with 1 figure and 2 tables, RDB7202)

This product bulletin provides data on a ternary zeotropic blend of R-22, R-124, and R-600 - R-22/124/600 (50/47/3) - in metric (SI) units of measure. The blend is described as a replacement for R-12, in refrigeration applications where retrofitting to R-134a is not convenient for economic or technological reasons. The bulletin indicates that the blend closely matches the thermodynamic properties of R-12 for evaporation temperatures exceeding -25 °C (-13 °F), and is compatible the mineral oil over a wide range of temperatures. A table summarizes selected physical properties including the normal bubble and dew point temperatures, critical parameters (temperature, pressure, and density), corresponding vapor density and latent heat of vaporization, and the liquid densities and vapor pressures at -25 °C (-13 °F) and 25 °C (77 °F). It also includes the liquid and vapor thermal conductivities, solubility in and of water, and flammability limits (none) at the latter temperature. It concludes with a recommended exposure limit for chronic toxicity (900 ppm w/w) and ozone depletion potential (ODP, 0.034). The product sheet then reviews compatibility findings with plastics, elastomers, metals, desiccants, and lubricants as well as storage recommendations and available packaging. A table and plot compare the vapor pressure for the blend, R-12, and R-134a for -40 to 60 °C (-40 to 140 °F). Ausimont's product name for this blend is Meforex(R) DI-36.

please see page 6 for ordering information
This product bulletin provides data on a tetry zeotropic blend of R-22, R-125, R-143a, and R-260 - R-125/143a/260/22 (42/6/2/50) - in metric (SI) units of measure. The blend is described as a near-azeotropic replacement for R-502 in commercial and transport refrigeration. The bulletin indicates that the blend exhibits a vapor pressure-temperature relationship equivalent to that of R-502 and some miscibility with mineral oils. A table summarizes selected physical properties including the normal bubble and dew point temperatures, critical parameters (temperature, pressure, and density), corresponding vapor density and latent heat of vaporization, and the liquid densities and vapor pressures at -25 °C (-13 °F) and 25 °C (-77 °F). It also includes the liquid and vapor thermal conductivities, solubility in and of water, and flammability limits (none) at the latter temperature. It concludes with a recommended exposure limit for chronic toxicity (1,000 ppm w/w) and ozone depletion potential (ODP, 0.02). The product sheet then reviews compatibility findings with plastics, elastomers, metals, desiccants, and lubricants as well as storage recommendations and available packaging. A table and plot compare the vapor pressure for the blend and R-502 for -50 to 60 °C (-58 to 140 °F). Ausimont’s product name for this blend is Meforex(R) DI-44.

Meforex(R) DI-44, Ausimont S.p.A., Bollate, Italy, undated circa 1996 (2 pages with 1 figure and 2 tables, RDB7203)
January 1997 (16 pages with 4 figures and 8 tables, limited copies available from JMC as RDB7118)

This bulletin supplies information on R-507A, a patented, azeotropic blend of R-125 and R-143a (50/50). It was developed to replace R-502 in low- and medium-temperature commercial refrigeration such as display cases, transport refrigeration, and ice machines. The document outlines potential applications. It provides physical property data including the chemical name and formula, appearance, molecular weight, normal boiling point, corresponding heat of vaporization and vapor density, freezing point range, critical parameters (temperature, pressure, specific volume, and density), and flammability. It also indicates the liquid density, vapor pressure, and the vapor and liquid heat capacity, thermal conductivity, and viscosity at 25 °C (77 °F). The bulletin then presents product specifications, performance data, a pressure-temperature table, and pressure-enthalpy (Mollier) diagrams. The bulletin suggests use of polyolester lubricants and provides a generic miscibility diagram, but indicates that compressor and lubricant manufacturers should be contacted for specific recommendations. A table summarizes the stability of R-507A with polyolester lubricants (Mobil EAL 22 and 32, Castrol SW 32), and metals (aluminum, copper, and steel). The document recommends against mixing R-502 and R-507A, since R-115 from the former and R-125 from the latter may form an azeotrope, making recycling and reclamation very difficult. The bulletin lists suitability indications for 29 elastomers and plastics, provides a solubility plot for water in R-507A, and offers recommendations on desiccant driers. It then reviews safety information, addressing general toxicity, inhalation effects, skin and eye contact, responses to leaks, flammability, combustibility, and thermal stability. The bulletin offers guidance for storage, handling, leak detection, retrofit, recycling, reclamation, and disposal. It also provides tabular thermodynamic properties (pressure, liquid density, vapor volume, liquid and vapor enthalpy and entropy, and latent heat of vaporization) for -30 to 70 °C (-60 to 158 °F). Formulae are presented to calculate thermodynamic properties, including vapor pressure, liquid density, and ideal gas heat capacity correlations. A Martin-Hou equation of state is also presented. The data is provided in both inch-pound (IP) and metric (SI) units. AlliedSignal's product name for R-507A is Genetron® AZ-50.

R-508 Series

R-508 series, R-23/116, composition changes in azeotropic concentration from -93 to 12 °C, thermodynamic properties, thermophysical data

R-508A (R-508)

Klea 5R3 Physical Property Data Sheet, bulletin CP/10051/1Ed/33/994, ICI Klea, Runcorn, Cheshire, UK, October 1994 (6 pages with 3 tables, RDB5A09)

This bulletin provides summary property data and equations to calculate thermophysical properties for R-508A, an azeotropic blend containing R-23 and R-116 - specifically R-23/116 (39/61) - in metric (SI) units of measure. The bulletin tabulates physical properties including the atmospheric bubble and dew points, estimated critical parameters (temperature, pressure, and density), and latent heat of vaporization. It also indicates the bubble point pressure and latent heat of vaporization at -40 °C (-40 °F) and the saturated vapor density at 1 atmosphere (14.7 psia). The bulletin presents a Martin-Hou equation of state and formulae for the latent heat of vaporization, ideal gas heat capacity, saturated liquid enthalpy, and liquid and vapor density, viscosity, and thermal conductivity. The document concludes with three tables giving calculated values for these properties at representative pressures of 100-2000 kPa (15-290 psia) and temperatures of -90 to -10 °C (-130 to 14 °F). ICI's product name for R-508A is Klea® 5R3.

Klea 5R3 Thermodynamic Property Data, SI Units, bulletin CP/10298/1Ed/33/1194, ICI Klea, Runcorn, Cheshire, UK, November 1994 (32 pages with 3 tables, RDB5A10)

This bulletin provides detailed thermodynamic properties for saturated and superheated R-508A, an azeotrope of R-23 and R-116 - specifically R-23/116 (39/61) - in metric (SI) units of measure. It comprises three tables, accompa-
the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. An appendix addresses compliance with the Japanese Industrial Standards (JIS), noting that the quality of R-502 is not covered; JIS K1528-1982 requirements for the quality of R-22 are summarized.

R-503

R-503, thermodynamic properties, equation of state (EOS)

Genetron(R) 503 Refrigerant for Cascade Systems, bulletin RTB-503B (22-5038), AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 1976 (16 pages with 7 figures and 2 tables, rdb4104)

This bulletin presents physical property, performance, and application data for R-503, an azeotropic blend of R-23 and R-13 - R-23/13 (40.1/59.9). A table identifies the composition and lists key physical data including critical parameters, flammability, toxicity, color, and odor. Two tables provide performance data at saturated cycle conditions of -87 °C (-125 °F) evaporating and -34 °C (-30 °F) condensing for R-503, compared to -82 °C (-115 °F) and -29 °C (-20 °F) for R-13, and for both at -84 °C (-120 °F) evaporating and -34 °C (-30 °F) condensing. The bulletin describes use of R-503 as the low stage of a cascade system as an alternative to R-13, R-23, and R-170. It discusses system design and operation as well as lubricant considerations, citing addition of no more than 5-10% pentane to mineral oils for improved miscibility. It briefly covers water solubility, stability, compatibility, handling, charging, leak testing, and safety precautions. A series of figures in inch-pound units compare the vapor pressure and temperature relations or R-13, R-170, and R-503 as well as the compressor displacement, solubility of water, and thermal conductivity of R-13 and R-503. Two final plots show the vapor heat capacity ratio and sonic velocity of R-503.

Genetron(R) 503 Refrigerant, Thermodynamic Properties, AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 1970 (6 pages with 1 figure and 1 table, rdb3a10)

This bulletin presents physical property, performance, and thermodynamic data for R-503, an azeotropic blend of R-23 and R-13 - R-23/13 (40.1/59.9). A table identifies the composition, lists key physical data including critical parameters, flammability, toxicity, color, and odor. A second table provides performance data at saturated cycle conditions of -84 °C (-120 °F) evaporating and -34 °C (-30 °F) condensing. A final table gives thermodynamic (temperature, pressure, vapor volume, liquid density, enthalpy, and entropy) at saturation conditions for -129 °C (-200 °F) to the critical temperature, 19.5 °C (67.1 °F). A pressure-enthalpy diagram is provided in inch-pound units of measure.

R-507 Series

presents bubble-point pressures and saturated-liquid densities for R-125/143a (R-507 series) blends at temperatures from 7-57 °C (44-134 °F); the data were measured with a magnetic densimeter coupled with a variable-volume cell employing a metallic bellows; provides Peng-Robinson (PR) equation for the bubble-point pressures and a modified Hankinson-Brobst-Thomson (HBT) equation for the saturated-liquid densities to estimate the thermodynamic behavior of vapor-liquid equilibria (VLE) of this binary mixture; identifies optimized binary interaction parameters.

R-507A (R-507)

R-507A; R-125/143a, thermophysical data

Genetron(R) AZ-50 Product Brochure, bulletin G-525-030, AlliedSignal Incorporated, Morristown, NJ.

please see page 6 for ordering information
Replacements for R-503: Klea(R) 5R3, bulletin TN06, ICI Klea, Wilmington, DE, undated circa 1995 (6 pages with 2 figures and 3 tables, RDB5A24)

This bulletin provides physical property and performance comparisons between R-503 and R-508A for very low temperature applications, such as medical storage and freeze drying. A table summarizes the compositions, boiling points and densities, latent heats of vaporization, critical parameters (temperature, pressure, and density), isentropic indices, flammabilities, and occupational exposure limits (OELs) for the two azeotropes. Plots compare the vapor pressures and a set of tables contrast performance, based on simulated and experimental data. The bulletin concludes with a discussion of lubricants and materials compatibility, suggesting that R-508A generally can be used with the same materials as R-503. It notes that R-508A may be slightly less soluble than R-503, due to the lower solubility of R-116 compared to R-13, with polyalphaolefin (PAO), alkylbenzene (AB), and mineral oil (MO) lubricants. ICI's product name for R-508A is Klea(R) 5R3.

R-508B

R-23/116 (46/54) [R-508B], PVT data: Martin-Hou equation of state (MH EOS), critical temperature, critical density; correlations for saturated bubble and dew point pressure, saturated liquid density, ideal gas heat capacity, saturated liquid and vapor density, saturated liquid and vapor entropy; experimental procedures

R-23/116 (46/54) [R-508B], viscosity, thermal conductivity, surface tension, correlations, experimental apparatus

Replacements for R-503 and R-13: Properties and Operating Characteristics of Suva(R) 95 Refrigerant, technical information bulletin ART-28 (H-60080-1), DuPont Chemicals, Wilmington, DE, April 1995 (2 pages with 2 tables, RDB5909)

This bulletin introduces R-508B, a 46:54 (by mass) blend of R-23 and R-116 previously identified as R-23/116 (46/54). It identifies potential applications as a replacement for R-13 and R-503 in very low temperature applications using cascaded compressors. The bulletin lists selected physical properties including the normal boiling point, corresponding latent heat of vaporization, critical temperature and pressure, and the saturated vapor density at -73.3°C (-100°F). It also indicates the ozone depletion potential (ODP) as zero, that the blend is non-flammable, and a recommended exposure limit. The bulletin outlines a performance comparison to R-13, R-23, and R-503 and provides a tabular summary of theoretical capacity, efficiency, and key operating parameters. The bulletin concludes by indicating that the components are listed both for TSCA in the United States and EINECS in Europe. DuPont's product name for R-508B is Suva(R) 95.

Thermodynamic Properties of Suva(R) 95 Refrigerant [R-508B (46/54)], technical information report T-95-ENG (H-65138), DuPont Chemicals, Wilmington, DE, October 1995 (24 pages with 2 tables, RDB5C07)

This report provides thermodynamic property data for R-508B, a 46:54 (by mass) blend of R-23 and R-116 previously identified as R-23/116 (46/54). It lists selected physical properties including molecular weight, atmospheric boiling point, and critical parameters (temperature, pressure, density, and specific volume). It then presents a Martin-Hou (MH) equation of state (EOS) and an ideal gas heat capacity equation at constant pressure. It also supplies equations
to calculate the liquid enthalpy, latent enthalpy (heat of vaporization), liquid entropy, vapor pressure, and density of the saturated liquid. The report provides tabular saturation properties (liquid and vapor pressure, volume, density, enthalpy, and entropy as well as latent heat of vaporization) for -123 to 13 °C (-190 to 55 °F). A set of tables presents volume, enthalpy, and entropy data for superheated vapor at constant pressure for 7-3800 kPa (1-550 psia). Most of the data and property equations are presented in both metric (SI) and inch-pound (IP) units of measure, but the detailed saturation and superheat property tables are in IP units only. DuPont's product name for R-508B is Suva(R) 95.

Other Azeotropes

summarizes determinations of the vapor-liquid equilibrium (VLE) compositions of R-22/218, a binary blend of R-22 and R-218, at 50, 60, 70, and 75 °C (122, 140, 158, and 167 °F): measurements were made at each temperature from the vapor pressures of the two pure components to the higher of the azeotropic or critical pressure for the blends; equilibrium ratios were calculated for each component at each temperature from the phase composition data; the azeotropic compositions and pressures were measured at 50, 65, and 70 °C (122, 149, and 158 °F); the critical pressures were determined at 70 and 75 °C (158 and 167 °F)

R-600 (Butane)

R. D. Goodwin, Normal Butane: Provisional Thermodynamic Functions from 135 to 700 K at Pressures to 700 Bar, report NBSIR 79-1621, National Institute of Standards and Technology (NIST), then the National Bureau of Standards, NBS), Gaithersburg, MD, September 1979 (available from GPO, rdb3946)

R-600, n-butane, thermodynamic properties, thermophysical data

R-600, n-butane, thermodynamic properties, thermophysical data

W. M. Haynes and R. D. Goodwin, Thermophysical Properties of Normal Butane from 135 to 700 K at Pressures to 70 MPa, report NBS Technical Note 169, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS), Gaithersburg, MD, 1982 (available from GPO, rdb9131)

thermodynamic properties of R-600 (n-butane) for -138 to 427 °C (-217 to 800 °F) at pressures up to 70 MPa (10,150 psia); thermophysical data; equation of state (EOS)

thermodynamic properties of R-600a (isobutane) for -23 to 327 °C (-10 to 620 °F) and 100-4,000 kPa (15-580 psia); thermophysical data

R-600a, thermophysical data

thermodynamic properties of R-600a for -23 to 327 °C (-10 to 620 °F) and 100-4,000 kPa (15-580 psia); thermophysical data
R-704 (Helium)

R-704 (helium), thermodynamic properties, thermophysical data, equation of state (EOS)

V. Arp, R. D. McCarty, and D. G. Friend, Thermophysical Properties of Helium from 0.8 to 1500 K with Pressures to 2000 MPa, NIST Technical Note 1334 (revised), National Institute of Standards and Technology (NIST), Gaithersburg, MD, August 1976 (available from GPO, rdb7Al8)

R-704 (helium), thermodynamic properties, thermophysical data for -272 to 1227 °C (-458 to 2240 °F) to 2000 MPa (290,000 psia): equation of state (EOS), thermal conductivity, and viscosity

R-704 (helium), transport properties, thermophysical data

R-717 (Ammonia)

J. Ahrendts and H. D. Baehr (Universität Hannover, Germany) Die thermodynamischen Eigenschaften von Ammoniak [The Thermodynamic Properties of Ammonia], research report 596, Verein Deutscher Ingenieure (VDI) [Association of German Engineers] Verlag, Düsseldorf, Germany, 1979 (in German, rdb6C36)

R-717, thermodynamic properties, thermophysical data

R-717, transport properties, thermophysical data

R-717, thermophysical data, equation of state (EOS)

heat transfer of R-717, thermal conductivity, transport properties, thermophysical data

R-717 (ammonia), density, viscosity, thermodynamic properties, thermophysical data

transport properties of R-717 (ammonia): thermophysical data

R-717, equations of state (EOS), thermodynamic properties, thermophysical data

R. Tufeu, Ivanov, Garrabos, and B. Le Neindre (Universidade de Lisboa, Portugal), Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region, Berichte der Bunsengesellschaft für Physikalische Chemie, 88:422-427, 1984 (6 pages, rdb7605)

transport properties of R-717 (ammonia): thermophysical data

transport properties of R-717 (ammonia): thermophysical data
Ammonia Data Book, International Institute of Ammonia Refrigeration (IIAR), Washington, DC, 1993 (204 pages, RDB3635)

This comprehensive reference provides information on R-717 (ammonia) and most facets of its application. It covers general information on ammonia use and production. The book provides detailed thermodynamic, transport, and application data for use of ammonia in refrigeration systems. It also covers safety data, including hazardous and common reactions, compatibility, flammability, safety classifications, identified health hazards, and exposure consequences. The reference book covers environmental cycles for natural production and destruction of ammonia, detection methods, sampling, dispersion, and effects. It also addresses regulations for transportation and use of ammonia and identifies state emergency contacts.

Ammonia Used as a Refrigerant (L'ammoniac utilisé comme frigorigène), International Institute of Refrigeration (IIR), Paris, France, 1994 (available from the IIR for $22.00 plus postage, RDB4201)

R-717, thermophysical data

R-717/718 (Ammonia/Water as Refrigerant/Absorbent)

absorption, R-717, R-717/718, thermophysical data

presents an equation of state for R-717/718 (ammonia-water) mixtures: separate liquid and gas phase equations of state (EOSs) are provided for the pure ammonia and pure water; in the gas phase, the mixture is assumed to behave as an ideal solution, while in the liquid phase, the Gibbs excess energy is used to allow departure from ideal solution behavior; an existing correlation for the liquid Gibbs excess energy is modified to include experimental data at higher temperatures and pressures; the new correlation covers vapor-liquid equilibrium (VLE) pressures of 20 to 11,000 kPa (3-1600 psia) and temperatures of -43 to 327 °C (-46 to 620 °F);

summarizes comparisons to published experimental data

R-717, ammonia, absorption, R-717, R-717/718, thermodynamic properties, thermophysical data

R-717/718 (ammonia-water binary mixture); calculated thermodynamic changes in the vapor phase for isentropic expansion starting at 800 °C (1472 °F) and initial pressures of 2,000, 3,000, 4,000, and 5,000 kPa (290, 435, 580, and 725 psia) with a computer program (ISENEXPR); thermodynamic relations used were obtained in terms of the Gibbs free energy equation for the gas phase of pure components; entropy was held constant; results are presented as diagrams showing the isentropic change of the gas phase mixture

R. A. Macriss, B. E. Eakin, R. T. Ellington, and J. Huebler, Physical and Thermodynamic Properties of Ammonia-Water Mixtures, research bulletin 34, Institute of Gas Technology (IGT), Chicago, IL, 1964 (rdb3232)

absorption, R-717, R-717/718, thermophysical data

J. W. Magee and N. Kagawa (National Institute of Standards and Technology, NIST), Specific Heat Capacity at Constant Volume for \{x\text{NH}_3 + (1-x)\text{H}_2\text{O}\} at Temperatures from 300 to 520 K and Pressures to 20 MPa, Journal of Chemical and Engineering Data, 43(6):1082-1090, October 1998 (9 pages with 6 figures and 3 tables, RDB8C44)

measurements of the specific heat capacity \(C_v\) of R-717/718 (70/30), (80/20), and (90/10) with an adiabatic calorimeter for 27-245 °C (80-476 °F) and pressures of 3-20 MPa (435-2900 psia); measurements were made on both liquid and compressed gaseous samples of high purity; reports density measurements of the initial and final end points for each experiment

Y. M. Park (A-Joo University, Korea) and R. E. Sonntag (University of Michigan), Thermodynamic Properties of Ammonia-Water Mixtures: A Generalized Equation-of-State Approach, paper 3319,
Transactions (Winter Meeting, Atlanta, GA, 10-14 February 1990), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 96(1), 1990 (10 pages with 9 figures and 3 tables, RDB3227)

absorption, R-717, R-717/718, thermophysical data

presents a set of five equations that describe the vapor-liquid equilibria (VLE) properties of R-717/718 (ammonia/water) systems for design of absorption processes; the equations were constructed by fitting critically assessed experimental data to simple functional forms; they cover the region within which absorption cycles commonly operate; they calculate the enthalpy of the gas by an ideal-mixture approximation; presents the results as an enthalpy-concentration diagram

R. Tillner-Roth (Universität Hannover, Germany) and D. G. Friend, Survey and Assessment of Available Measurements on Thermodynamic Properties of the Mixture (Water + Ammonia), Journal of Physical and Chemical Reference Data, 27:45-61, 1998 (17 pages, rdb8C45)

thermodynamic properties R-717/718 (ammonia/water), thermophysical data

thermodynamic properties R-717/718 (ammonia/water), equation of state (EOS), thermophysical data

absorption, R-717, R-717/718 EOS, thermodynamic properties, thermophysical data

The contractor for the project is Kansas State University (KSU) at Manhattan, led by D. L. Fenton; it is sponsored by ASHRAE Technical Committee 10.1, Custom Engineered Refrigeration Systems.

R-718 (Water)

transport properties of R-718 (water); thermophysical data

R-718, water, thermodynamic properties, thermophysical data, equation of state (EOS)

thermodynamic properties of R-718 (water); thermophysical data

A. H. Harvey, A. P. Peskin (National Institute of Standards and Technology, NIST), and S. A. Klein (University of Wisconsin), NIST/ASME Steam Properties, Standard Reference Database (SRD) version 2.1, NIST, Gaithersburg, MD, 1997 (software and documentation available from NIST at srdata@nist.gov; RDB8C36)

thermodynamic properties of R-718 (water); thermophysical data

thermodynamic properties of R-718 (water) for 150-500 °C (302-932 °F); thermophysical data

M. L. V. Ramires, C. A. Nieto de Castro (Universidade de Lisboa, Portugal), Y. Nagasaka (Keio University, Japan), A. Nagashima, M. J. Assael (Aris-

thermodynamic properties of R-718 (water); thermophysical data

R-718 (water): thermodynamic properties for melting to 1000 °C (1832 °F) and pressures up to 25,000 MPa (3.6 million psia), thermophysical data

R-718, water, transport properties, thermophysical data

R-718 (water), thermodynamic properties, thermophysical data, equation of state (EOS)

R-718 (water), thermodynamic properties, thermophysical data, equation of state (EOS)

Surface Tension of Water Substance, International Association for the Properties of Steam, 1975 (rdb3940)

R-718, water, transport properties, thermophysical data

absorption, thermodynamic properties, thermophysical data

absorption, thermodynamic properties, thermophysical data

This report contains a description of and user's guide for the computer program LIMENU for calculating the thermodynamic and transport properties of aqueous solutions of lithium bromide (LiBr).

A. S. Teja, S. M. Jeter, R. J. Lee, R. M. Diguilio, J-L. Y. Lénard (Georgia Institute of Technology), and J. P. Moran (CRS-Sirrine), *Thermophysical Property Data for Lithium Bromide/Water Solutions at Elevated Temperatures*, final report for 527-RP,
American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1991 (rdb4437)
absorption, thermodynamic properties, thermophysical data

This research will catalog existing property data for mixtures of water and lithium bromide. It also will evaluate the feasibility of using these properties for control applications and assess available sensor technologies for them. The contractor for the project is the New Mexico Engineering Research Institute (NMERI) led by R. E. Tapscott; the project is sponsored by ASHRAE Technical Committee 8.3, Absorption and Heat-Operated Machines.

R-729 (Air)

H. D. Baehr and K. Schwier (Universität Hannover, Germany), Die Thermodynamischen Eigenschaften der Luft [The Thermodynamic Properties of Air], Springer-Verlag, Berlin, Germany, 1961 (in German, rdb8469)

thermodynamic properties of R-729 (air); thermophysical data

J. F. Ely and E. W. Lemmon, Thermophysical Properties of Air and Air Component Mixtures (AIRPROPS), Standard Reference Database (SRD) version 1.0, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1997 (software and documentation available from NIST, rdb7A20)

R-728 (nitrogen), R-729 (air), R-732 (oxygen), and R-740 (argon), thermodynamic properties, thermophysical data: equation of state (EOS), thermal conductivity, viscosity, and others

E. W. Lemmon and S. G. Penoncello (University of Idaho), The Surface Tension of Air and Air Component Mixtures, Advances in Cryogenic Engineering, 39:1927-1934, 1994 (8 pages, rdb7A21)

R-728 (nitrogen), R-729 (air), R-732 (oxygen), and R-740 (argon): transport properties, thermophysical data, viscosity

- R-729 (air): thermodynamic and transport properties, thermophysical data, equation of state (EOS), thermal conductivity, viscosity, and others

critical review of experimental data for the thermal conductivity of R-729 (air); recommended values for 100 kPa - 100 MPa (14.5-14,500 psia) and -203 to 727 °C (-334 to 1,340 °F): presents a derived equation of state (EOS), but notes the need for further measurements in the supercritical region; transport properties; thermophysical data

R-744 (Carbon Dioxide)

J. F. Ely, W. M. Haynes, and B. C. Bain, Isochoric (PVT) Measurements on CO$_2$ and on (0.982 CO$_2$ + 0.018 N$_2$) from 250 to 330 K at Pressures to 35 MPa, Journal of Chemical Thermodynamics, 21:879-894, 1989 (16 pages, RDB8C33)

thermodynamic properties of R-744 (carbon dioxide) and R-728/744 (1.8/98.2) for -23 to 57 °C (-10 to 134 °F) at pressures up to 35 MPa (5100 psia); thermophysical data

R-744 (carbon dioxide) thermodynamic data: provides both a modified Benedict-Webb-Rubin (MBWR) equation of state (EOS) and a fundamental equation (FEQ, identified in the report as a Schmidt-Wagner EOS)

thermodynamic properties of R-744 from the triple point to 827 °C (1520 °F) and 800 MPa (116,000 psia), thermophysical data, equation of state (EOS)

please see page 6 for ordering information

transport properties of R-744: thermal conductivity, viscosity; thermophysical data

R-1150 (Ethene)

thermodynamic properties of R-1150 (ethene); thermophysical data

R-1270 (Propene)

thermodynamic properties of R-1270 (propene): equation of state (EOS), thermophysical data

Ethers

This paper reports on measurements and data reduction to provide thermodynamic property data for R-E134, a candidate alternative refrigerant. It summarizes measurements of the refractive index of the saturated liquid and vapor as well as the speed of sound of the dilute vapor. These measurements provide the normal boiling point, critical parameters (temperature, pressure, and density), and ideal gas heat capacity. Vapor pressure measurements using a high-pressure ebulliometer are tabulated; the apparatus is depicted in a figure. Refractive index, speed-of-sound, results of acoustic isotherms,

liquid density, and saturation data are tabulated; deviations with other measurements and data fits are plotted. Coefficients of a Carnahan-Starling-DeSantis (CSD) equation of state and a polynomial representation of the ideal gas heat capacity are derived and presented. The paper notes that samples of R-E134 with impurities were found to be unstable during laboratory measurements. It also notes that an azeotrope of R-E134 and R-143a was discovered during the investigation. Samples of R-E134 were found to be soluble in several elastomers used in the measurement apparatus.

thermodynamic properties of R-E125; gas-phase equation of state (EOS) and ideal-gas heat capacity; measurements of the gas density with a Burnett apparatus and speed of sound by a cylindrical resonance apparatus; thermophysical data

CF₂CF₂OCF₂CF₃, R-CE318 (c-CF₂CF₂CF₂-O-CF₃), R-E218ca12 (CF₂OCF₂OCF₃), R-E227ca2 (CF₂CF₂OCF₃), thermodynamic properties, thermophysical data

M. Salvi-Narkhede, B-H. Wang, J. L. Adcock, and W. A. Van Hook (University of Tennessee), Vapor Pressures, Liquid Molar Volumes, Vapor Non-idealty, and Critical Properties of Some Partially Fluorinated Ethers (CF₃OCF₂CF₂H, CF₃OCF₂H, and CF₃OCH₃), Some Perfluorodethers (CF₂OCF₂OCF₃, CF₂OCF₂OCF₃, and CF₂OCF₂CF₂O), and of CH₂F₂Br and CF₃CHF₂CF₂O, Journal of Chemical Thermodynamics, 24:1056-1075, 1992 (11 pages with 2 figures and 7 tables, RDB3728)

thermodynamic properties of R-22B1, R-227ea, R-E125, R-E143a, R-E218ca, and R-E227ca2; thermophysical data

T. Tsuge, H. Sato, and K. Watanabe (Kiel University, Japan), Thermodynamic Properties and Cycle Performance of a New Alternative Refrigerant, HFE-245mc, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for
thermodynamic properties of R-E245cb1 (identified in the paper as "HFE-245mc"), a proposed replacement for R-114 in high-temperature heat pumps: pressure-volume-temperature (PVT) properties and vapor pressures; thermophysical data; virial equation of state (EOS); performance comparisons with R-114 based on cycle analyses; concludes that use of R-E245cb1 is feasible, though the comparisons show its coefficient of performance (COP) to be 4-10% lower.

Vapor pressures, compressibilities, expansivities, and molar volumes of the liquid phase are presented, based on measurements between room temperature and the critical temperature, for a series of fluorinated ethers. Critical temperatures and pressures and approximate melting and boiling temperatures are tabulated for R-E218ea12 (parfluorodimethoxymethane), R-E227ca2 (2-hydroxyl-F-ethyl F-methyl ether), R-CE216 (F-oxetane), and R-E125 (pentafluorodimethyl ether). These ethers are under investigation as potential refrigerants, blowing agents, and cleaning agents based on their physical and chemical similarity to present refrigerants. Equations are presented for determination of these properties. Vapor-phase nonidealities were measured for each compound, but only for samples of high vapor density. Apparatus calibrations were verified with measurements for R-11 and R-22.

L. A. Weber and D. R. Defibaugh (National Institute of Standards and Technology, NIST), *Vapor Pressure of Pentfluorodimethyl Ether*, *Journal of Chemical and Engineering Data*, 41(3):382-385, 1996 (4 pages with 1 figure and 4 tables, RDB8218)

thermodynamic properties of R-E125; measurements of vapor pressures from -45 to 58 °C (-49 to 136 °F); extrapolations to lower temperatures; determination of the normal boiling point (-35.09 °C, -31.16 °F); thermophysical data

transport properties, thermophysical data

transport properties, thermophysical data

H. D. Baehr and R. Tillner-Roth (Universität Hannover, Germany), Thermodynamische Eigenschaften umweltverträglicher Kältemittel: Zustandsgleichungen und Tafeln für Ammoniak, R 22, R 134a, R 152a und R 123 [Thermodynamic Properties of Environmentally acceptable Refrigerants: Equations of State and Tables for Ammonia, R22, R134a, R152a, and R123], Springer-Verlag, Berlin, Germany, circa 1995 (191 pages in German with English preface, rdb6AA1)

thermodynamic properties of R-22, R-134a, R-152a, and R-717: equations of state (EOS), thermophysical data

transport properties of R-290 (propane) and R-600a (isobutane); thermophysical data

deservable with the second virial coefficients and ideal gas heat capacities form acoustic measurements at -23 to 147 °C (-10 to 296 °F); thermophysical data

A. L. Beyerlein (Clemson University, USA), D. D. DesMarteau (Clemson), K. N. Naik (Xerox Research Center, Canada), and Y. Xie (Clemson University), Physical Properties of Fluorinated Propane and Butane Derivatives and the Vapor Pressure of R-245ca/338mccq Mixtures as R-11 Alternatives, paper 3968, *Transactions* (Winter Meeting, Atlanta, GA, 17-21 February 1996), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 102(1):355-366, 1996 (9 pages with 3 figures and 6 tables, RDB8211)

thermophysical data

R-245eb, R-254ca, R-254fb, R-338mcf (identified in the paper as R-338mcc), R-347mec (R-347mec51), R-356mff (R-356mffm), R-356mcc (R-356mcc51), R-356mffm (R-356mffm51), R-245ca/-338mccq (R-245ca/338mccq51)

thermodynamic properties of R-32, R-143a, and others; virial coefficients derived from pressure-volume-temperature (PVT) measurements; thermophysical data

R-22, R-404A, R-32/125 (60/40), R-32/125/134a (30/10/60), R-32/134a, R-502, thermophysical data

thermophysical data

W. L. Blindenbach, I. G. Economou, P. G. Smits, C. J. Peters, and J. de Swaan (Delft University of Technology, The Netherlands), *Modeling the

presents a model to calculate the vapor pressure and liquid density of single compound refrigerants and the vapor-liquid equilibria (VLE) of binary and ternary mixtures over a wide range of temperature and pressure: it is identified as the Perturbed Anisotropic Chain Theory (PACT) model; it was developed for chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants as well as blends of them or with hydrocarbon (HC) components; demonstrates the model with predictions for nineteen binary and three ternary blends and comparisons to experimental data and to the widely used Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state (EOSs); indicates that the overall deviation between these cubic equations predictions and experimental data is twice the deviation for PACT predictions; also indicates that excellent correlation of the experimental data is obtained using an added temperature-independent, binary adjustable parameter

thermodynamic properties, thermophysical data, design and use of a vibrating tube densimeter measure the properties of R-404A and calibration with R-744 (carbon dioxide)

H. B. Chae, J. W. Schmidt, and M. R. Moldover (National Institute of Standards and Technology, NIST), Surface Tension of Refrigerants R-123 and R-134a, Journal of Chemical and Engineering Data, 35(1):6-8, January 1990 (3 pages with 2 figures and 3 tables, available from NIST as RDB9717)

The surface tensions of two environmentally acceptable refrigerants (R-123 and R-134a) were measured with a differential capillary rise technique. Measurements span the temperature range -25 to 140 °C (-13 to 284 °F) for R-123 and -10 to 95 °C (14 to 203 °F) for R-134a.

Differential capillary rise and refractive index data are reported for five alternative refrigerants: R-123a, R-134, R-141b, R-142b, and R-152a. This paper explains the selection of these fluids, describes the apparatus and analytical methods, and compares the findings with published reports by others. The data extend from approximately 25 °C (77 °F) to the critical point of each fluid and directly yield the critical temperature Tc and the temperature-dependent capillary length. The present data were combined with liquid density data (near ambient temperature) to determine the Lorentz-Lorenz constant. The Lorentz-Lorenz relation is used to estimate the liquid, vapor, and critical densities, and the surface tension. R-141b slowly decomposed when maintained near its critical point (in contact with gold, sapphire, stainless steel, and crown glass).

thermodynamic model based on the Wilson-MHV-2 methodology; property prediction for tetrafl blends of R-32, R-125, R-134a, and a mixed-acid polyol ester (POE) lubricant; vapor-liquid equilibria (VLE) behavior of refrigerant-lubricant mixtures; the effects of the oil are expected to be small, but may increase for those points in the cycle that are close to the dew point line of the oil-free refrigerant

please see page 6 for ordering information
thermodynamic properties of R-32, R-125, and R-143a: fundamental equation (FEQ); thermophysical data

measurements of the liquid pressure-density-temperature behavior, using a vibrating tube densimeter, of R-11, R-22, R-123, R-123a, R-124, R-E125, R-134, R-134a, R-141b, R-143, R-143a, R-152a, R-218, R-227ea, R-245cb, R-245fa R-E245fa1 (identified in the document as E245), and R-290 (propane), thermodynamic properties, thermophysical data, correlations using the modified Benedict-Webb-Rubin (MBWR) equations of state (EOS)

Bubble pressures were measured for 15 binary blends, most consisting of one flammable and one nonflammable component. The refrigerants examined were R-11/601a (R-11/isopentane), R-32/125 (R-410 series), R-32/134a, R-123/-141b, R-125/143a (R-507 series), R-134a/601a (R-134a/isobutane), R-152a/134a, R-C270/134a (cyclopropane/R-134a), R-290/134a (propane/-134a), and R-601a/123. Also studied were mixtures of R-32/152a, R-152a/600, R-152a/600a, R-C270/152a, and R-290/152a which comprise two flammable components. The measurements were made at approximately equimolar compositions using either a vapor-liquid equilibrium (VLE) apparatus, over a range of temperatures, or a static pressure measurement at 0 °C (32 °F). The bubble pressures were used to determine interaction coefficients that characterize the non-ideal behavior of these fluid mixtures. The resulting interaction coefficients were incorporated into REFPROP 4.01 and the calculated bubble pressures were compared to those measured. The interaction coefficients and comparisons are tabulated.

D. D. DesMarteau (Clemson University) and A. L. Beyerlein (Clemson University), New Chemical Alternatives for the Protection of Stratospheric Ozone, report EPA-600/R-95-113, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, 1995 (rdb8216)

R-245cb and others, thermodynamic properties, thermophysical data

D. E. Diller, A. S. Aragon, and A. Laesecke (National Institute of Standards and Technology, NIST), Measurements of the Viscosities of Saturated and Compressed Liquid 1,1,1,2-Tetrafluoroethane (R134a), 2,2-Dichloro-1,1,1-trifluoroethane (R123), and 1,1-Dichloro-1,1,2-trifluoroethane (R141b), Preprints of the 4th Symposium on Thermophysical Properties (Boulder, CO, 23-27 June 1991), American Society of Mechanical Engineers (ASME), New York, NY; republished in Fluid Phase Equilibria, 88:251-262, 1993 (12 pages with 10 figures and 6 tables, RDB3922)

transport properties of R-123, R-134a, and R-141b: presents shear viscosity measurements taken with a torsional crystal viscometer for the saturated and compressed liquids between -103 and 47 °C (-154 and 116 °F) and pressures to 30 MPa (4,350 psia); presents correlations with an empirical fluidity-volume-temperature equation and comparisons to prior studies by other researchers; thermophysical data

D. E. Diller and S. M. Peterson (National Institute of Standards and Technology, NIST), Measurement of the Viscosities of Saturated and Compressed Fluid 1-Chloro-1,2,2,2-tetrafluoroethane (R124) and Pentfluoroethane (R125) at Temperatures Between 120 and 420 K, International Journal of Thermophysics, 14(1):55-66, January 1993 (12 pages with 6 figures and 4 tables, RDB4A60)

measurements of the shear viscosities for R-124 and R-125 at -153 to 147 °C (-244 to 296 °F) with two torsional crystal viscometers; notes that the fluidity (reciprocal of viscosity) increases linearly with molar volume at fixed temperature and weakly with temperature at fixed volume for small molar volumes; provides correlations for the measured data and comparisons to findings in other studies; transport properties, thermophysical data

P. A. Domanski and D. A. Didion, Impact of Refrigerant Property Uncertainties on Prediction of Vapor Compression Cycle Performance, report NBSIR 86-3373, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS), Gaithersburg, MD, December 1986 (54 pages, rdb0922)

This paper presents a sensitivity study of a vapor-compression cycle in the form of a heat pump operating in the cooling mode. The study was performed with the aid of a detailed simulation model; runs were made for different parametric values and the capacity and power input
were compared with results of a run using an unchanged value of the parameters. The effects on evaporator and condenser pressures, and refrigerant mass flow rate are given. The independent variables include thermodynamic and transport properties, as well as the refrigerant flow, heat transfer, and pressure drop coefficients. The parameters which had the most effect on system performance were liquid transport properties, evaporative heat transfer coefficient, and vapor density.

R. Döring (Fachhochschule Münster, Germany), Thermodynamic Properties of the Refrigerants R 134a (CH₂F-CF₃) and R 123 (CHCl₂-CF₃), Thermophysical Properties of Pure Substances and Mixtures for Refrigeration (proceedings of the meeting of IIR Commission B1, Herzlia, Israel, March 1990), International Institute of Refrigeration (IIR), Paris, France, 57-68, 1990 (12 pages with 7 figures, RDB5621)

R-123, R-134a, thermodynamic properties, thermophysical data

R. Döring (Fachhochschule Münster, Germany) and H. Buchwald (Kali-Chemie AG, Germany), Experimentelle und theoretische Untersuchungen der Kältelmittel R 134a (CH₂F-CF₃) und R 123 (CHCl₂-CF₃) [Experimental and Theoretical Investigations of Refrigerants R-134a (CH₂F-CF₃) and R-123 (CHCl₂CF₃)], Kl Klima-Kälte-Heizung, Germany, 18(3):109-112, 1990 (6 pages with 7 figures and 7 tables, in German, RDB5220)

thermodynamic properties, thermophysical data

R. Döring (Fachhochschule Münster, Germany) and H. Buchwald (Kali-Chemie AG, Germany), Thermodynamische Eigenschaften der Kältelmittel R 134a (CH₂F-CF₃) und R 123 (CHCl₂-CF₃) [Thermodynamic Properties of Refrigerants R-134a (CH₂F-CF₃) and R-123 (CHCl₂CF₃)], Bericht über die Kälte-Klima-Tagung [Proceedings of the Refrigeration and Air-Conditioning Conference] (Hannover, Germany, 22 November 1989), Deutscher Kälté- und Klimatechnischer Verein (DKV, German Association of Refrigeration and Air-Conditioning Engineers), Germany, 16:225-246, 1989 (24 pages with 8 figures and 4 tables, in German, rdb5221)

thermodynamic properties, thermophysical data

D. C. Dowdell and G. P. Matthews, Gas Viscosities and Intermolecular Interactions of Replacement Refrigerants HCFC-123 (2,2-Dichloro-1,1,1-trifluoroethane), HCFC-124 (2-Chloro-1,1,1,2-tetrafluoroethane), and HFC-134a (1,1,1,2-Tetrafluoroethane), Journal of the Chem. Society - Faraday Transactions, London, UK, 89:3545-3552, 1993 (8 pages, rdb7559)

R-123, R-124, and R-134a: thermodynamic and transport properties, thermophysical data, Lennard-Jones parameters

measurements of the vapor pressures, liquid densities, and vapor densities were for R-125 and R-141b at temperatures between -93 and 207 °C (-135 and 400 °F) and pressures to (70 MPa (10,000 psia); presents the measured critical temperature and derived critical pressure for each fluid; also presents correlations for the measured properties; summarizes enthalpies and entropies for the saturated liquid, saturated and superheated vapor, and the heat capacities of saturated liquid and vapor derived for R-125 from the PVT behavior and ideal gas heat capacities

single-phase and saturation properties for R-123 and R-134a; equations of state (EOS); thermodynamic properties; thermophysical data

J. F. Ely, A Predictive Exact Shape Factor Extended Corresponding States Model for Mixtures, Advances in Cryogenic Engineering, 35:217-229 (possibly 35:1511-1520), 1990 (13 pages, rdb8902)

transport properties, thermophysical data

transport properties, thermophysical data

G. Ernst and J. Busser, Ideal and Real Gas State Heat Capacities C_p of C_3H_8 and i-C_4H_10, Journal of Chemical Thermodynamics, 6:1027-1037, 1994 (11 pages, rdb5709)
R-290 (propane), R-600a (isobutane), thermodynamic properties, thermophysical data

R-11, R-12, R-22, R-32, R-114, R-115, R-123, R-123a, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-C318, R-502, R-7146; breakdown voltage, dielectric and resistivity data

transport properties of R-123 and others; thermophysical data

equation of state (EOS), thermodynamic properties, thermophysical data

R-32, R-125, thermophysical data: critical parameters (temperature, pressure, and density), vapor-liquid coexistence curve, vapor pressure, PVT properties

R-702 (hydrogen), R-702p (parahydrogen), R-704 (helium), and others, transport data

R-32, R-125, thermophysical data: critical parameters (temperature, pressure, and density), vapor-liquid coexistence curve, vapor pressure, PVT properties

R-11, R-12, R-123, R-134a, thermodynamic properties, thermophysical data

discusses use of the Abdoul-Raury-Peneloux (ARP) equation of state (EOS), which combines a group contribution excess Helmholtz energy model with traditional cubic EOSs, for prediction of refrigerant blends: this EOS, initially developed for petroleum mixtures, has been extended to cover compounds containing chlorine and fluorine, yielding a predictive method for the thermodynamic properties of mixtures; presents 19 general group parameters estimated from experimental data for 31 binary systems with an error not exceeding 5.1%; this result demonstrates the effectiveness of the method, since the traditional mixing rules would have demanded 31 specific interaction parameters for the same number of systems, without the possibility of extending their validity to other mixtures; the ARP EOS also was applied to a ternary blend and to an azeotropic blend, neither of which was included in the estimation procedure, to verify the prediction ability; the results were deviations for calculated pressures of 0.7 and 2.6%, respectively
R-123, R-134a, thermodynamic properties, thermophysical data

This summary presents coefficients to calculate thermodynamic properties for R-123 and R-134a, thermophysical properties of R-123 and R-134a.

This paper presents tabular data for the thermal conductivity and viscosity of R-23 for -103 to 147 °C (-154 to 296 °F) and pressures of 100 kPa to 20 MPa (145-2900 psig). It also presents correlations for thermal conductivity and viscosity of R-22, R-23, R-32, R-134a, R-143a, and R-152a. These estimation methods cover dilute gases, saturated liquids and vapors, and liquids and vapors well removed from saturation conditions. This paper comments on the status of thermophysical and specifically transport property data. It notes that data for R-134a published in other studies differ by more than 20% and that estimates of viscosity by the most reliable methods may deviate from measured data up to 50%. The paper summarizes the experimental methods used, which were based on a modified hot-wire apparatus for thermal conductivity and a modified capillary-tube method for viscosity measurements. A plot shows the correlation between reduced dilute gas velocity and reduced temperature for R-22, R-23, R-32, R-134a, R-143a, and R-152a, to substantiate that deviations in the new experimental data from a regression curve do not exceed 1.5%.

thermodynamic properties for R-50, R-125, and R-134a; relationships between the first three density virial coefficients and the first four acoustic virial coefficients; coefficients for hard-core square-well potential (HCSWP) determination of gas density and ideal-gas molar heat capacity; thermophysical data

measurements of the speed of sound using a cylindrical resonator for R-124, R-125, R-143a, R-152a, R-236ea, R-236fa, and R-245ca for differing temperature ranges between -33 and 127 °C (-28 and 250 °F) and pressures up to 1 MPa (145 psig): presents deduced ideal-gas heat capacities and coefficients for both acoustic and density virial equations; thermophysical data

figures and 1 table, available from JMC as RDB-3712)
thermodynamic properties of R-22 and R-134a;
thermophysical data

A. R. H. Goodwin and G. Morrison (National Institute of Standards and Technology, NIST), Measurement of the Dipole Moment of Gaseous 1,1,1-Trichlorotrifluoroethane, 1,2-Difluoroethane, 1,1,2-Trichlorotrifluoroethane, and 2-(Difluoromethoxy)-1,1,1-trifluoroethane, Journal of Physical Chemistry, 96:5521-5526, 25 June 1992 (6 pages with 4 figures and 3 tables, available from JMC as RDB3710)

R-113a, R-152, R-113, R-218, thermophysical properties, data

A. R. H. Goodwin and M. R. Moldover (National Institute of Standards and Technology, NIST), Thermophysical Properties of Gaseous Refrigerants from Speed of Sound Measurements: III. Results for 1,1-Dichloro-2,2,2-trifluoroethane (CHClF2), and 1,2-Dichloro-1,2,2-trifluoroethane (CHClF-CFClF3), Journal of Chemical Physics, 95(7):5236-5242, 1 October 1991 (7 pages with 4 figures and 4 tables, RDB3106)

R-123, R-123a, thermophysical properties, data

properties of R-32, R-125, R-134a, R-152a, and R-216 as well as some of their binary mixtures: phase equilibrium parameters (boiling and condensing curve, critical point, thermophysical properties at these parameters, and heat of evaporation); isobaric and isochoric heat capacity, enthalpy, and entropy in the gas and liquid state; speed of sound, thermal conductivity, viscosity, and density in the gas and liquid state; dielectric properties and surface tension; compatibility with materials inside the refrigerant circuit; and solubility in lubricants

J. J. Grebner and R. R. Crawford (University of Illinois at Urbana-Champaign), Measurement of Pressure-Temperature-Concentration Relations for Mixtures of R12/Mineral Oil and R134a/Synthetic Oil, paper 3650, Transactions (Winter Meeting, Chicago, IL, January 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 99(1):380-386, 1993 (7 pages with 4 figures and 3 tables, RDB6C35)

properties of refrigerant-lubricant mixtures: R-12 with two mineral oils, one naphthenic and one paraffinic, at concentrations from 1-100% m/m R-12; R-134a with a polyalkylene glycol (PAG) and with a one polyolester (POE) synthetic lubricants at 5-100% m/m R-134a; empirical relations to predict the solubility behavior; comparisons to predictions based on Raoult's rule and Flory-Huggins theory; thermophysical data

J. J. Grebner and R. R. Crawford (University of Illinois at Urbana-Champaign), The Effects of Lubricant on Evaporator Capacity for Systems Using Mixtures of R12/Mineral Oil and R-134a/Synthetic Oil, paper 3659, Transactions (Winter Meeting, Chicago, IL, January 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 99(1):387-396, 1993 (10 pages with 9 figures and 6 tables, RDB-6C23)

properties of refrigerant-lubricant mixtures: R-12 with two mineral oils, one naphthenic and one paraffinic, at concentrations from 1-100% m/m R-12; R-134a with a polyalkylene glycol (PAG) and with one polyolester (POE) synthetic lubricants at 5-100% m/m R-134a; empirical relations to predict the solubility behavior for -46 to 121 °C (-50 to 250 °F); comparison of measured evaporator performance to that predicted using calculated, theoretical enthalpies and pressure-temperature-concentration relations at lubricant concentrations of 1, 5, and 10% m/m; found that effects of oil solubility on evaporator capacity reduction were greater for R-12/mineral oil than for R-134a/synthetic oil

R-32 and R-125; thermodynamic properties, thermophysical data

R-123, R-134a, R-152a; thermodynamic properties, thermophysical data
U. Groß, Y. W. Song, J. Kallweit, and E. Hahne (Universität Stuttgart, Germany), Thermal Conductivity of Saturated R-123 and R-134a, Transient Hot Wire Measurements, Thermophysical Properties of Pure Substances and Mixtures for Refrigeration (proceedings of the meeting of IIR Commission B1, Herzlia, Israel, March 1990), International Institute of Refrigeration (IIR), Paris, France, 103-108, 1990 (6 pages with 5 figures and 3 tables, RDB3921)

transport properties, thermophysical data

V. A. Gruzdev and A. I. Shumskaya, Experimental Investigation of Isobaric Specific Heats of Vapors of Freons: F-11, F-12, F-13, F-21, F-22, and F-23, Teplofizicheskie Svoistva Veshchestv i Materialov [Thermophysical Properties of Substances and Materials], Izdatel'stvo Standartov, Moscow, Russia, 8:108-129, 1975 (22 pages in Russian, rdb-4A59)

R-11, R-12, R-13, R-21, R-22, R-23, thermodynamic properties, thermophysical data

R-116, R-132B2, R-C318, R-329, R-23/116, R-33/116, thermodynamic and transport properties, thermophysical data

transport properties of R-123 and others; thermophysical data

physical and transport properties of R-123, R-134a, R-141b, and R-142b; thermophysical data

thermal conductivity of R-22, R-123, R-152a, and others; transport properties; thermophysical data

thermodynamic properties of R-12 and R-22, thermophysical data

This report summarizes measurements with high accuracy of primary thermodynamic data for one ternary and nine binary as potential replacements (or binary constituents of potential replacements) for R-22 or R-502. They include R-32/125, R-32/125/134a, R-32/134a, R-32/143a, R-32/290, R-125/134a, R-125/143a, R-125/290, R-143a/134a, and R-290/134a. Measurements also were made for R-41 and R-41/744 (a blend to reduce the flammability of neat R-41) as potential replacements for R-13. The report discusses the characteristics of each of the blends and measurements made of both vapor-liquid-equilibrium (VLE) and near-satura-
This report presents raw and smoothed data for the thermophysical properties of R-143a and R-152a. It also provides modified Benedict-Webb-Rubin (MBWR) equations of state and transport property models. The objective of the study was to fill gaps in current data and resolve problems and uncertainties that exist in and between such data. The report summarizes the measurement methods used and estimated precision. The apparatus included a Burnett apparatus for pressure-volume-temperature (PVT) relations; an isochoric apparatus for liquid density; an ebulliometer and Burnett apparatus for vapor pressure; an optical cell for refractive index, capillary rise, and indirectly the critical density; a cylindrical acoustic resonator for speed of sound; an adiabatic calorimeter for molar heat capacity; and low- and high-temperature transient hot-wire instruments for thermal conductivity; a torsionally oscillating quartz crystal viscometer for shear viscosity; and a capillary viscometer for liquid viscosity. The ranges of measurements, representative data, and deviations from the MBWR equation and ancillary equations for vapor pressure and saturated liquid and vapor densities are plotted. An appendix presents the extensive measured data in a series of tables along with the equations of state (EOS), critical parameters, ideal gas heat capacity equations, and derived thermodynamic properties for both R-143a and R-152a. Except for the equations and critical parameters, all of the data are provided in both metric (SI) and inch-pound (IP) units. Derived tables give the pressure, liquid density, vapor specific volume, specific heat ratio for the vapor, and liquid and vapor enthalpy, entropy, specific heat, and velocity of sound from the triple to the critical points at 10 °C and 20 °F intervals. Equations and tabular data also are provided for thermal conductivity and viscosity. A second appendix describes a correlation technique used with the transient hot wire measurements.

Y. Higashi (Iwaki Meisei University, Japan), Survey of the Critical Parameters for HFC Refrigerants, report for IEA HPC Annex 18, International Energy Agency (IEA) Heat Pump Center (HPC), Sittard, The Netherlands, 1996 (rdb8973)

thermodynamic properties for R-32, R-125, and others; critical temperature, pressure, and density; thermophysical data

R-32/125 (R-410 series) blends, thermodynamic data, thermophysical properties, interaction parameters for the Carnahan-Starling-DeSantis (CSD), Peng-Robinson (PR), and Redlich-Kwong-Soave (RKS) equations of state (EOS)

R-32, R-125, R-134a

Y. Higashi (Iwaki Meisei University, Japan) and M. Okada (Tsukuba College of Technology, Japan), Measurement of the Surface Tension for CFC Alternatives, paper 83, New Challenges in Refrigeration (proceedings of the XVIIIth International Congress of Refrigeration, Montreal, Quebec, Canada, 10-17 August 1991), International Institute of Refrigeration, Paris, France, II:675-679, August
Refrigerant Database

1991 (5 pages with 12 figures and 2 tables, RDB-4B22)

R-123, R-134a, R-142b, R-152a, R-225ca, R-225cb, surface tension, transport properties, thermophysical data

presents measurements of the vapor pressures and coexisting densities of R-32 and R-152a from 27 °C (80 °F) to near their respective critical point temperatures; also presents analyses of the density data to determine an internally consistent critical densities using the critical liquid volume fraction method; provides correlations of the measured data and compares them to findings from other studies; thermodynamic properties; thermophysical data

outlines experimental methods used to investigate the properties of alternative refrigerants; they include a continuously weighed pycnometer, an isochoric apparatus, a Burnett apparatus, and a visual cell for determining critical temperatures; presents results of measurements for R-125, R-134a, and R-141b along with compressed liquid densities for R-32

thermodynamic properties of R-704, R-7131, and R-704/7131 blends; equation of state (EOS) for 40-180 °C (104-356 °F) and 50-7,700 kPa (7,117 psia); measurements of the gas density with a Burnett apparatus and speed of sound by a cylindrical resonance apparatus; thermophysical data

M. Ibraghith, M. Fleblg, A. Leipertz, and G. Wu, Thérmal Diffusivity of the Alternative Refrigerants R123, R134a, R142b, and R152a in the Liq-

transport properties of R-123, R-134a, R-142b, and R-152a: thermophysical data

provides equations for consistent and reliable calculation of thermodynamic properties; separate equations calculate vapor pressure, gas phase pressure, volume and temperature (PVT) properties, saturated liquid densities, and the specific heat capacity in the ideal gas domain; the structure of these equations is simple because the critical region is excluded; few experimental data points are required for parameter regression, which makes the equations suitable for new refrigerants; presents derived relationships for enthalpy and entropy; gives examples for R134a and R162a

thermodynamic properties for R-32 and R-125; equations of state (EOS); thermophysical data

transport properties of R-123 and others; thermophysical data

thermodynamic properties of hydrocarbons, R-717 (ammonia), R-718 (water), R-744 (carbon dioxide); vapor-liquid equilibria (VLE); thermophysical data

M. Kleemü, thesis, Universität Hannover, Hannover, Germany, 1994 (rdb9969)

thermodynamic properties of R-32/134a; thermophysical data

M. Kleiber (Technische Universität Braunschweig, Germany), Vapor-Liquid Equilibria of Binary Re-

please see page 6 for ordering information
refrigerant Mixtures Containing Propylene or R134a, Fluid Phase Equilibria, 92:149-194, 15 January 1994 (46 pages, rdb8934)

presents experimental vapor-liquid equilibria data for R-12/134a, R-13/1270, R-13b1/1270, R-23/1270, R-116/134a, R-116/1270, R-134a/142b, R-134a/152a, R-290/134a, R-1270/12, R-1270/22, R-1270/114, R-1270/115, R-1270/134a, R-1270/142b, and R-1270/152a obtained at temperatures between -22 to 25 °C (-8 to 77 °F) and pressures up to 2 MPa (2900 psia); shows the consistency of the data by a maximum-likelihood method; correlates the data by various forms of generalized equations of state (EOSs); comments on addition of the CCIF-group to the UNIFAC parameter matrix.

describes a method to determine the thermal diffusivity, sound velocity, and dynamic viscosity of refrigerants; presents experimental results for the thermal diffusivity, sound velocity of saturated R-142b from 5 °C (41 °F) to the critical point and for the dynamic viscosity of R-123 at 100 kPa (14.5 psia) for 15-24 °C (59-75 °F); the method involves a time-resolved analysis of the laser light scattered from hydrodynamic modes in a transparent sample or from seed particles dispersed in it.

M.J. Lee and H-C. Sun (National Taiwan Institute of Technology, Taiwan), Thermodynamic Property Predictions for Refrigerant Mixtures, Industrial and Engineering Chemistry Research, 31(4):1212-1216, April 1992 (5 pages, rdb8965)

presents correlations of vapor-liquid equilibrium (VLE) data of refrigerant blends by Soave, Patel-Teja, and Iwai-Margerum-Lu equations of state (EOSs) with one adjustable binary interaction constant, k12; indicates that the Patel-Teja equation is slightly better than others; introduces a generalized equation for k12 is that enables the Patel-Teja equation to predict the VLE properties for mixtures; predicts the bubble and dew point pressures for 55 binary blends containing R-22, R-32, R-123, R-124, R-125, R-134a, R-142b, R-143a, R-152a, R-1243, and R-E170 (dimethyl ether) at -40 to 90 °C (-40 to 194 °F) over their entire composition ranges; the predictions show that the near-azeotropic blends R-124/142b and R-134a/E170 are promising.

compares eight cubic equations of state (EOSs) for calculation of thermodynamic properties, for 28 chlorofluorocarbons (CFCs) and alternatives; recommends the modified Du-Guo EOS for accuracy; presents a method to develop optimized blends compositions as CFC alternatives by minimizing deviations between the vapor pressures of CFCs and alternative mixtures of interest; demonstrates the approach for R-22/142b, R-22/R152a, and R-22/R152a/142b as replacements for R-12; deviations for the heat of vaporization are within 10 percent; concludes that the three blends examined behave as near-azeotropes and show promise as R-12 replacements based on thermodynamic properties alone.

presents generalized correlations for the saturated vapor pressure, liquid and vapor densities, and heat of vaporization formulated on the three-parameter principle of corresponding states with acentric factor for 12 gases: they include R-50 (methane), R-170 (ethane), R-290 (propane), R-600 (n-butane), R-600a (isobutane), R-728 (nitrogen), R-732 (oxygen), R-734 (hydrogen sulfide), R-740 (argon), R-744 (carbon dioxide), R-784 (krypton), and R-7131 (krypton); the generalized correlations for the vapor pressure predicts the experimental data within ±1.0% for reduced temperatures (temperature divided by the critical temperature) greater than 0.4; the generalized correlation for the saturated liquid density predicts the experimental data within ±1.0% for reduced temperatures from the triple point to the critical point; the generalized correlation for the saturated vapor density predicts the experimental data within ±2.0% for reduced temperatures greater than 0.5; the Clapeyron equation estimates the heat of vaporization within ±2.0% for reduced temperatures greater than 0.5 using the vapor pressure, saturated liquid density, and saturated vapor density from the proposed correlations; the reliability of the correlations was confirmed by comparison with experimental data for R-22 and R-114.
This report outlines development of version 6.0 of the NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP). It identifies the three equations of state (EOS) used, which include a Modified Benedict-Webb-Rubin (MBWR), a Helmholtz energy, and an Extended-Corresponding-States (ECS) model. It describes use of the Lemmon-Jacobsen model for mixtures, mixing parameters determined from fits to experimental data, a predictive approach for mixtures lacking measured data, and 29 predefined mixtures. The report also presents fluid-specific correlations and an extended corresponding states model, used to represent the transport properties of refrigerants. It then describes a suite of FORTRAN subroutines and calling programs integrated into a main program with a graphical user interface for the Windows® operating system. The single-compound (identified as "pure") refrigerants include R-11, R-12, R-13, R-14, R-22, R-23, R-32, R-41, R-113, R-114, R-115, R-116, R-123, R-124, R-125, R-134a, R-141b, R-142b, R-143a, R-152a, R-170, R-227ea, R-236ea, R-236fa, R-245ca, R-245fa, R-290 (propane), R-C318, R-600 (n-butane), R-600a (isobutane), R-717 (ammonia), R-744 (carbon dioxide), and R-1270 (propylene). REFPROP implements different equations of state (EOS) selected by fluid to provide the most accurate thermodynamic properties, including Modified Benedict-Webb-Rubin (MBWR), Helmholtz energy, and Bender equations as well as an Extended-Corresponding-States (ECS) model for fluids with limited data. Mixture calculations employ a new model, which applies mixing rules to the Helmholtz energy of the mixture components based on departure from ideal mixing. Viscosity and thermal conductivity are modeled with either fluid-specific correlations or a new ECS method. Properties can be calculated in user-selected units of measurement; they include temperature, pressure, density, specific volume, internal energy, enthalpy, entropy, speed of sound, specific heats at constant volume and pressure, compressibility, quality, composition, fugacity, viscosity, thermal conductivity, and surface tension. Data tables and plots (the latter as bitmaps) can be copied into other applications for subsequent analyses or use. REFPROP also provides information on single-compound refrigerants, including the ASHRAE Standard 34 designation (R number), chemical name, Chemical Abstract Service registry number, molar mass, triple-point temperature, normal boiling point (NBP) temperature, critical parameters (temperature, pressure, and density),acentric factor, and dipole moment at the NBP. It also indicates the range of applicability and provides literature references for the EOS and for the viscosity, thermal conductivity, and sur-
face tension data used. This update replaces version 5.0 (see RDB6C15).

M. L. Huber (National Institute of Standards and Technology, NIST) and J. F. Ely (Colorado School of Mines), Prediction of Viscosity of Refrigerants and Refrigerant Mixtures, Fluid Phase Equilibria, 80(11):299-248, 1992 (10 pages with 4 figures and 2 tables, available from JMC as RDB3706)

transport properties; thermophysical data; extended corresponding states (ECS) model using a Benedict-Webb-Rubin (BWR) equation for R-134a, as a reference fluid; coefficients for R-11, R-12, R-13, R-22, R-23, R-113, R-114, R-115, R-123, R-141b, and R-152a

M. L. Huber (National Institute of Standards and Technology, NiST) and J. F. Ely (Colorado School of Mines), Prediction of the Thermal Conductivity of Refrigerants and Refrigerant Mixtures, Fluid Phase Equilibria, 80(11):249-261, 1992 (13 pages with 3 figures and 2 tables, available from JMC as RDB3707)

thermophysical data; extended corresponding states (ECS) model using a Benedict-Webb-Rubin (BWR) equation for R-134a, as a reference fluid

I. Iwata, C-C. Piao, and M. Noguchi (Daikin Industries, Limited, Japan), An Experimental Study of PVTx Properties of HCFC-22 Alternatives, Proceedings of the 29th Japanese Joint Conference on Air Conditioning and Refrigeration (Tokyo, Japan, 18-20 April 1995), 1996 (rdb7952)

thermodynamic property measurements for the superheated vapor and compressed liquid phases of R-31/125/134a (R-407 series) blends; thermophysical data

A. Kamei, C-C. Piao, H. Sato, and K. Watanabe (Kelo University, Japan), Thermodynamic Charts and Cycle Performance of [H]FC-134a and [H]FC-152a, paper 3319, Transactions (Winter Meeting, Atlanta, GA, 10-14 February 1990) American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 96(1):141-145, 1990; republished in CFC Alternatives, technical data bulletin 6(1), ASHRAE, 10-18, June 1990 (9 pages with 13 figures and 5 tables, RDB3110)

thermodynamic properties and cycle performance for R-134a and R-152a

R. F. Keyser (National Institute of Standards and Technology, NIST), Thermophysical Properties, report DOE/DE/23810-16, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, April 1993 (242 pages, including 23 figures and 75 tables, available from JMC as RDB3830)

This report summarizes experimental measurements to provide highly accurate, thermophysical property data for R-32, R-123, R-124, and R-125. The report reviews the methods and apparatus used to complete data measurements, resolve problems and uncertainties that existed in prior data sets, fit equations of state (EOS), and develop transport property models for these fluids. Figures show the ranges of measured data, comparisons between the data and deviations from equation of state or regression values, and comparisons of the findings to results reported by other researchers. An appendix presents measured thermodynamic and transport data, in both metric (SI) and inch-pound (IP) units. The data addressed include measurements of Burnett vapor-phase pressure-volume-temperature (PVT) relations, vibrating-tube compressed liquid density, liquid PVT data, vapor pressures using both Burnett apparatus and an ebulliometer, saturated vapor and liquid densities, vapor pressure, liquid and two-phase heat capacity, viscosity, speed of sound, and derived ideal-gas heat capacity and acoustic virial coefficients. Coefficients are provided for modified Benedict-Webb-Rubin (MBWR) equations of state for the four refrigerants. A second appendix outlines a generalized correlation developed for thermal conductivity data. Conductivity data, measured with a transient hot-wire device, and correlation parameters are provided for R-32 and R-123.

thermodynamic properties of methane- and ethane-series refrigerants based on three reference fluids, namely R-152a, R-600 (butane), and R-740 (argon): presents a new four-parameter generalized equation-of-state (EOS) based on critical temperature, critical pressure, acentric factor, and polarity factor; provides an estimation method using the group contribution method for use when the four cited parameters are not available for refrigerants of interest; thermophysical data

Y. Kim and R. E. Sonntag (University of Michigan), Estimation of Transport Properties of Refrigerants, paper 94-WA/HT-7 (Winter Annual Meeting, Chicago, IL, 6-11 November 1994), American Society of Mechanical Engineers (ASME), New York, NY, 1994 (rdb8907)

transport properties, thermophysical data

vapor-liquid equilibrium (VLE) predictions for R-32/125/134a (R-407 series) and R-125/143a/134a (R-404 series); measurements of the equimolar binary mixture interaction coefficients for R-32/125, R-32/134a, R-125/134a, R-125/143a, and R-143a/134a; thermodynamic properties, thermophysical data

extended corresponding states (ECS) method using R-134a as the reference fluid to calculate the viscosity of refrigerants; data and deviations for R-11, R-12, R-22, R-32, R-113, R-123, R-125, R-143a, R-152a, R-290 (propane), R-600 (n-butane), and R-600a (isobutane); modifications for mixtures; comparisons to published data for R-32/134a (25/75) and (33/67), R-32/125/134a (30/20/60), R-125/134a (53/47), R-402A, R-402B, and R-404A

thermodynamic properties of R-143a and others; thermophysical data

thermodynamic properties of R-32, R-125, R-134a, R-143a, and blends of them; thermophysical data

presents 300 measurements of thermal diffusivity each for R-22 and R-134a by dynamic light scattering; measurements were carried out along the critical isochore, both coexisting phases, and up to seven isotherms within a range of state for reduced pressure of 0.5-3.0 and reduced densities of 0.2-2.3; provides an equation of state (EOS) determine isobaric heat capacity

transport properties, thermophysical data

R-152a and others for 0-80 °C (32-176 °F), transport properties, thermophysical data

presents measurements of the critical temperatures and densities R-32, R-123, R-125, R-134, R-134a, R-142b, and R-152a: The critical point determined by visual observation of the disappearance of the meniscus at the vapor-liquid coexistence for the seven alternative refrigerants; the data for R-32 and R-125 are new; those for R-123, R-134, R-134a, R-142b, and R-152a are reassessed values converted from the IPTS-68 into the ITS-90 temperature scale; presents a nondimensional correlation for the vapor-liquid coexistence curve of each of the cited refrigerants

S. D. Labinov (Thermodynamic Center, Ukraine) and J. R. Sand (Oak Ridge National Laboratory, ORNL, USA), An Analytical Method of Predicting Lee-Kesler-Plocker Equation of State Binary Interaction Coefficients, International Journal of Thermophysics, 16(6):1393-1411, November 1995 (18 pages with 10 figures and 4 tables, RDB5C01)

This paper presents a method to calculate binary interaction coefficient (IC) values for hy-
hydrocarbon mixtures for the Lee-Kesler-Plöcker (LKP) equation of state (EOS). The method is based on solving simultaneous equations from Plöcker's mixing rules, for pseudocritical parameters of a mixture, and the Lee-Kesler equation for the saturation line. This approach allows determination of binary ICs for both polar and nonpolar substances, with a maximum deviation of 0.4%. The calculations require the critical parameters of the components and their normal boiling temperatures, but no experimental data for the mixtures. A table summarizes the interaction coefficients published in other studies for R-22/114, R-22/142b, and R-22/152a for the LKP equation of state. A second table compares experimental and calculated coefficients for R-170 (ethane) mixed with R-290 (propane), R-600 (n-butane), n-pentane, n-hexane, n-heptane, n-octane, and n-nonane. A figure compares calculated and experimental values of these coefficients. A second figure compares the experimental and calculated compressibility factors against the acentric factor for methane through n-decane (alkanes with 1-10 carbon atoms). A third figure compares reduced properties (normalized to critical parameters) for boiling temperature for the pure substances and mixtures of ethane with nonane and ethane with propane. The paper also presents a method to determine ICs for mixtures of polar substances such as the homologs of methane and ethane, which include the primary alternative refrigerants and blend components. The basic physical properties (molecular mass, normal boiling and critical point temperatures, critical pressure, critical molar volume, and dipole moments) needed are tabulated along with basic data for 12 mixtures. They include R-22/114, R-22/124, R-22/142b, R-22/152a, R-23/114, R-23/134a, R-23/22, R-32/134a, R-134a/124b, R-134a/134, R-152a/124, and R-152a/134. Calculated and experimental LKP ICs are plotted for these mixtures to show the inadequacies of the algorithm without consideration of polarity. A similar plot compares the calculated ICs, obtained by including parameters indicative of polarity based on component data, to measurements. The paper concludes with an equation that approximates this approach, and yields errors of less than 5%. The results allow thermodynamic property calculations for mixtures of polar substances with a minimum of experimental property information, which can be estimated from the chemical structures of the components when necessary.

transport properties of R-227ea, R-245ca, and R-245fa for -25 to 75 °C (-13 to 167 °F): comparisons to extended-corresponding states (ECS) predictions; thermophysical data

A. Laesecke and D. R. Defibaugh (National Institute of Standards and Technology, NIST), Viscosity of 1,1,1,2,3,3-Hexafluoropropane and 1,1,1,3,3-Hexafluoropropane at Saturated Liquid Conditions from 262 K to 353 K, Journal of Chemical and Engineering Data, 41(1):59-62, 1996 (4 pages with 4 figures and 2 tables, RDB8228)

reports viscosity data for R-236ea and R-236fa; measurements were made in a capillary viscometer at -11 to 80 °C (12 to 176 °F) with an estimated uncertainty of ±3%; presents correlations to the Batschinski free-volume model and comparisons to predictions from an extended corresponding states (ECS) model; transport properties; thermophysical data

prediction methods for thermal conductivity for refrigerant blends in their saturated liquid states and in the subcooled regions; methods using mixing rules and treatment of azeotropic mixtures as single compounds; thermodynamic properties; thermophysical data; citations of data sources for validation of R-22/134a, R-22/142b, R-22/152a, R-32/135, R-32/134a, R-123/141b, R-402a, R-402b, R-404a, and R-407D; deviations between experimental and predicted data

correlation based on physical properties to estimate the liquid dynamic viscosity of refrigerants in the methane-ethane (C1-C2) series: R-10, R-11, R-12, R-13, R-13B1, R-20, R-21, R-22, R-23, R-30, R-32, R-40, R-114, R-115, R-123, R-123a, R-124, R-125, R-133a, R-134a, R-141b,
R-142b, R-143a, R-152a, and R-160, transport properties, thermophysical data

correlation to estimate transport properties, thermophysical data

correlation to estimate transport properties, thermophysical data

correlation to estimate thermophysical data

presents bubble pressures and saturated liquid molar volumes at several temperatures for R-23/22, R-23/114, R-23/114/113, and R-142b/113; the measurements were made using a variable volume cell and static isothermal equilibrium method; data were modeled with several cubic equations of state; concludes that either the regular or the generalized Trebble-Bishnoi-Salim (TBS) equation of state (EOS) yields the best representation

equation of state (EOS) for refrigerant blends based on a Helmholtz free-energy model for mixtures (HMX) of hydrocarbons and simple inorganic compounds: employs binary interaction parameters and a generalized mixture function based on experimental data for 28 pairs of components: R-32/125, R-32/134a, R-125/-134a, R-50/-134a, R-50/-170 (methane/ethane), R-50/290 (methane/propane), R-50/600 (methane/n-butane), R-50/600a (methane/isobutane), R-50/728 methane/nitrogen, R-50/744 (methane/carbon dioxide), R-50/1150 (methane/ethene), R-170/290, R-170/600, R-170/744, R-290/600, R-290/600a, R-600a/600, R-720/744 (neon/carbon dioxide), R-728/170, R- 728/290, R-728/600, R-728/732 (nitrogen/oxygen), R-728/740, R-728/744, R-740/50 (argon/methane), R-740/732, R-740/744, and R-744/-290; this model differs from the more general Lemmon-Jacobsen (LJ) model by addition of two terms specific to R-32/125

R-702 (hydrogen), R-702p (parahydrogen), R-704 (helium), R-720 (neon), R-728 (nitrogen), R-729 (air), R-732 (oxygen), R-740 (oxygen), R-1150 (ethylene), R-1270 (propylene), and others: ALLPROPS properties model, thermodynamic properties, thermophysical data

M. Lisal and V. Vacek (Academy of Sciences, Czechoslovakia), Effective Potentials for Liquid Simulation of the Alternative Refrigerants HFC-32 (CH₂F₂) and HFC-23 (CHF₃), *Fluid Phase Equilibria*, 118(1):61-76, 15 April 1996 (16 pages, rdb6B06)

site-site potentials for use in liquid simulations of R-23 and R-32 are constructed using effective interactions; these rigid molecules have interaction centers at the atomic sites coinciding with gas-phase monomer geometries; atomic interactions consist of van der Waals and Coulombic parts; the potential functions are adjusted to give simulated liquid properties for reduced temperatures (T/µo) of 0.5-0.9 on the saturated liquid curves; proposed potentials are used in constant pressure and constant temperature and in constant temperature molecular dynamics simulations of the saturated liquids; the results are compared with experimental data

T. O. Luddecke and J. W. Magee (National Institute of Standards and Technology, NIST), Molar Heat Capacity at Constant Volume of Difluoromethane (R32) and Pentfluoroethane (R125) from the Triple-Point Temperature to 345 K at Pressures to 35 MPa, *International Journal of
measurements of the molar heat capacities at constant volume (Cv) of R-32 and R-125 with an adiabatic calorimeter; temperatures ranged from their triple points to 72 °C (161 °F) and pressures up to 35 MPa (5,100 psia); measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples; calorimetric results were obtained for two-phase saturated liquid and single-phase gas and liquid; these data were used to estimate vapor pressures for values less than 0.3 MPa (44 psia) by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure; the triple-point temperature and the enthalpy of fusion also were measured for each substance; principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment.

Y. Maezawa, H. Sato, and K. Watanabe (Keio University, Japan), Liquid Densities and Vapor Pressures of 1,1,2,2-Tetrafluoroethane (HCFC-134) and 1,1-Dichloro-1-fluoroethane (HCFC-141b), Journal of Chemical and Engineering Data, 36:151-155, 1991 (5 pages, rdb4553)

thermodynamic properties of R-134 and R-141b; thermophysical data

Y. Maezawa, H. Sato, and K. Watanabe (Keio University, Japan), Saturated Liquid Densities of HCFC-123 and HCFC-134a, Journal of Chemical and Engineering Data, 35(3):225-228, 1990 (4 pages, rdb4360)

thermodynamic properties of R-123 and R-134a; thermophysical data

R-116, R-125, R-134, R-134a, R-143a, R-152a, R-170, and others

V. Marx, A. Pruß, and W. Wagner, Neue Zustandsgleichungen für R12, R22, R11 und R113. Beschreibung des thermodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Drücken bis 200 MPa [New Equations of State for R-12, R-22, R-11, and R-113. Description of the Thermodynamic Property Data for Temperatures up to 252 °C (486 °F) and Pressures up to 200 MPa (29 psia)], report series 19 number 57, Verein Deutscher Ingenieure (VDI) (Association of German Engineers) Verlag, Düsseldorf, Germany, 1992 (in German, rdb5493)

thermodynamic properties of R-11, R-12, R-22, R-113; thermophysical data

thermodynamic properties of R-225ca, R-225cb, and R-141b; thermophysical data

R-50 (methane), R-170 (ethane), R-290 (propane), R-600 (n-butane), R-600a (isobutane), and others: hydrocarbon blends, LNG, thermophysical data

summary of models to calculate the thermodynamic properties of refrigerants: addresses virial, cubic, Martin-Hou (MH), Benedict-Webb-Rubin (BWR), and Helmholtz energy equations of state (EOS) as well as an extended corresponding states (ECS) model; recommends high-accuracy formulations for 16 refrigerants including R-11, R-12, R-22, R-32, R-113, R-123, R-124, R-125, R-134a, R-143a, R-152a, R-290, R-600, R-600a, R-717, and R-744; discusses extension of these models for blends through use of mixing rules; also discusses models of blends as pseudo-pure fluids; of them, the paper recommends the mixture Helmholtz energy model of Lemmon and Jacobsen as the best available; presents a survey of data available for mixtures of R-32, R-125, R-134a, R-143a, R-152a, R-290, R-600, R-600a, R-717, and R-744; identifies further data needs; summarizes the status of Annex 18 to the Heat Pump Programme of the International Energy Agency (IEA) and provides an extensive list of references

F. Ely, and M. L. Huber (National Institute of Standards and Technology, NIST), Measurement and Formulation of the Thermodynamic Properties of Refrigerants 134a (1,1,1,2-Tetrafluoroethane) and 123 (1,1-Dichloro-2,2,2-trifluorooethane), paper 3282 (588-RP), Transactions (Annual Meeting, Vancouver, BC, 24-28 June 1989), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 95(2):263-283, 1989 (21 pages with 11 figures and 4 tables, RDB-0913)

Thermodynamic properties of R-134a and R-123 are formulated using a modified Benedict-Webb-Rubin (MBWR) equation of state fit to experimental measurements of the critical point, vapor pressure, saturated liquid and vapor volumes, superheated pressure-volume-temperature (PVT) behavior, and second virial coefficients derived from PVT and sound speed measurements. The heat capacity of the ideal gas reference state is determined from sound speed measurements on the low-density vapor. Surface tensions are also presented. The experimental methods and results are summarized, compared to the property formulation, and compared to other sources in the literature. Tables and diagrams of the thermodynamic properties of R-123 and R-134a, prepared using the MBWR equation of state (EOS), are presented. While the various measurements cover different ranges of temperature and pressure, the MBWR formulation is applicable in both the liquid and vapor phases at pressures up to 10,000 kPa (1500 psia); the applicable temperature range is 233 to 450 K (-40 to 350 °F) for R-134a and 255 to 450 K (0 to 350 °F) for R-123. This paper summarizes the results of ASHRAE research project 588-RP.

physical properties

C. W. Meyer and G. Morrison (National Institute of Standards and Technology, NIST), Dipole Moments of Seven Partially Halogenated Ethane Refrigerants, *Journal of Physical Chemistry*, 95(9):3860-3866, 1991 (7 pages with 5 figures and 6 tables, available from JMC as RDB8969)

R-124, R-125, R-134, R-134a, R-143, R-143a, R-152a, R-740 (argon), thermodynamic properties, thermophysical data, dielectric constant, molar polarization, refractive index

C. W. Meyer and G. Morrison (National Institute of Standards and Technology, NIST), Dipole Moments of Seven Refrigerants, *Journal of Chemical Engineering Data*, 36(4):409-413, 1991 (5 pages with 2 figures and 5 tables, RDB4970)

R-22, R-32, R-114, R-123, R-123a, R-E134, R-141b, thermodynamic properties, thermophysical data, dielectric constant, molar polarization, refractive index

thermodynamic properties, thermophysical data

R-50 (methane), R-290 (propane), R-600 (n-butane), R-600a (isobutane), and others: hydrocarbon blends, thermophysical data

R-50 (methane), R-170 (ethane), R-290 (propane), R-600 (n-butane), R-600a (isobutane), and others: hydrocarbon blends, liquified natural gas, thermophysical data

thermodynamic properties of R-124a and others; thermophysical data

role of the phase diagram in visualization, design, and analysis of refrigeration cycles: shape variation is a consequence of molecular structure; relationships to estimate the slope of the vapor branch of the T-S diagram; demonstrates

please see page 6 for ordering information
This paper presents a method to predict the existence of binary azeotropes, noted as attractive "because they behave very nearly as pure materials." The paper presents data for 25 selected refrigerants, from which the existence of 65 azeotropes is predicted in 300 binary mixtures examined. Extensive compilations of information exist for 23 of them. The authors suggest that there may be promise for the remainder, for which no experimental information was found. The paper notes that the azeotropes found in the literature also were predictable by the method presented. The refrigerants examined include R-11, R-12, R-13B1, R-14, R-21, R-23, R-32, R-113, R-114, R-115, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143, R-143a, R-152a, R-218, R-C270, R-C318, and isopentane-2-methylbutane. The predicted azeotropes are categorized as shallow expected near the boiling point of the more volatile component, azeotropy extending to higher temperatures, and one associated with a Bancroft Point (in which the vapor pressures of the components at a particular temperature are identical).

describes correlations of isobaric specific heat data for liquid R-123 and R-134a as functions of temperature and pressure using previously measured data; indicates that the liquid enthalpy surface derived from these correlations offers high accuracy.

presents measured coexisting densities and vapor pressures for R-22, R-124, and R-134a from 27 °C (80 °F) to near their respective critical points; also presents measurements of the compressed liquid and supercritical densities for R-22 and compares them to published data; reports that considerable discrepancies were found in the literature for the coexisting densities and vapor pressures of R-124 and R-134a.

R-22/134a, VLE, thermodynamic properties, thermophysical data

thermodynamic properties for the binary and ternary mixtures of R-32, R-125, R-134a with measurements for R-32/125 (75/25), R-32/-125/134a (23/25/52), R-32/125/134a (30/25/-45), and R-125/134a (25/75); thermophysical data; fits to the Carnahan-Starling-DeSantis-Morrison (CSDM) equation of state (EOS)

R-23, R-744A (nitrous oxide), R-1270 (propene, propylene), thermodynamic properties, thermophysical data

measurements of the surface tension of R-32, R-124, R-125, R-141b, R-142b, and R-152a: measurements were conducted under equilibrium conditions between the liquid and its saturated vapor; data were taken using the differential capillary-rise method (DCRM) for two glass capillary tubes in the temperature range from -3 to 67 °C (26-152 °F); the temperature dependence of the data were successfully represented by van der Waal correlations; compares the results to published data form other studies; transport properties, thermophysical data

M. Okada and Y. Higashi, Surface Tension Correlation of HFC-134a and HCFC-123, CFCs, the Day After (proceedings of the IIR meeting, Padova, Italy, 21-23 September 1994), International Institute of Refrigeration (IIR), Paris, France, 541-548, September 1994 (8 pages, rdb7A09)

R-123 and R-134a: surface tension, transport properties, thermophysical data

R-124 and R-141b: transport data

R-142b and R-152a: thermodynamic and transport data

M. Okada (Nagaoka University of Technology, Japan), T. Umayahave, M. Hattori, and K. Watanabe (Keio University, Japan), Measurements of the Surface Tension for R-123 and R-134a, Proceedings of the Tenth Japan Symposium on Thermophysical Properties, Shizuoka University, Japan, 60-62, 1989 (3 pages, rdb9957)

R-123 and R-134a: thermodynamic and transport data

M. Okada (Nagaoka University of Technology, Japan) and K. Watanabe (Keio University, Japan), Surface Tension Correlations for Several Fluorocarbon Refrigerants, Heat Transfer - Japanese Research, Scripta Technica, Incorporated (Wiley Company), 17:35-52, 1988 (18 pages, rdb7956)

R-11, R-12, R-113, R-114, R-115, and others: transport properties, thermophysical data

M. Okada, M. Uematsu, and K. Watanabe (Keio University, Japan), Orthobaric Liquid Densities of Trichlorofluoromethane, Dichlorodifluoromethane, Chlorodifluoromethane, 1,1,2- Trichlorotrifluoroethane, and 1,2-Dichlorotetrafluoroethane between 203 and 463 K, Journal of Chemical Thermodynamics, 18:527-543, 1985 (17 pages, rdb7C37)
R-11, R-12, R-22, R-113, and R-114: thermodynamic properties, thermophysical data

R-32, R-125, thermophysical properties, transport data

thermophysical properties, transport data

experimental and theoretical property data for R-23, R-32, R-116, R-125, R-134a, R-152a, and their binary mixtures; azeotropes of R-218/134a, R-134a/152a, and R-23/116; thermodynamic properties, thermophysical data; fits to virial equations of state (EOS)

presents modified Benedict-Webb-Rubin (BWR) equations of state (EOSs) for R-32 and R-125; reports coefficients for the 32-term EOSs and for ancillary equations used to fit the ideal-gas heat capacities and the coexisting densities and pressures along the saturation boundaries; the MBWR coefficients were fitted to measured pressure-volume-temperature (PVT) data, liquid heat capacities, second virial coefficients, and properties at coexistence; tabulates the prior studies by other investigators used as data sources to develop these equations; compares the predicted data to experimental values; indicates that the equations for R-32 and R-125 are accurately represent the data for -113 to 120 °C (-172 to 248 °F) and -99 to 175 °C (-147 to 347 °F), respectively, and for pressures up to 35 MPa (128 psia) and 68 MPa (9900 psia), respectively, with exception of the critical regions; also indicates that the EOSs give reasonable results for extrapolations to 227 °C (440 °F) and 60 MPa (8700 psia)

presents mixing rules for Soave's equation of State (EOS) based on excess enthalpy for binary blends; casts the Soave-Kwong-Redlich (SRK) EOS in a form that separates the constants from the pressure, volume, and temperature parameters, yielding an equation with two volume parameters and one energy-volume parameter; derives an expression for the binary excess enthalpy; determines a limit for infinite pressure to provide an expression with explicit composition and temperature terms using conventional linear mixing rules; uses the mixing rules with published excess enthalpy data to predict vapor-liquid equilibrium (VLE) properties for eleven binary systems comprised of simple aliphatic and halogenated hydrocarbons

summarizes the objectives and activities of the International Energy Agency (IEA) Heat Pump Programme Annex 18: reviews three equations of state (EOS) for R-123 and four for R-134a by independent researchers in Germany, Japan, and the United States; presents the formulations selected based on accurate representation of experimental data and thermodynamic consistency

R. A. Perkins, A. Laesecke (National Institute of Standards and Technology; NIST, USA), and C. A. Nieto de Castro (Universidade de Lisboa, Portugal), Polarized Transient Hot Wire Thermal Conductivity Measurements, *Fluid Phase Equilibria*, 80:275-286, 1992 (12 pages with 5 figures and 3 tables, available from JMC as RDB3709)

thermodynamic properties of R-134a and R-142b; thermophysical data

thermodynamic properties of isobutene; thermophysical properties, thermophysical data

thermodynamic properties of R-32/125/134a (R-407 series) blends, thermophysical data

18 coefficient, modified Benedict-Webb-Rubin (BWR) equations of state (EOS) and critical parameters (density, pressure, and temperature) for R-32, R-125, and R-134a; mixing rule equations for the superheated gaseous phase of R-32/125, R-32/134a, and R-32/134a blends; Peng-Robinson (PR) EOS for their two-phase pressure-volume-temperature-concentration (PVTx) properties; modified Hankinson-Brobst-Thomson (HBT) to represent the vapor-liquid equilibrium (VLE) and saturated liquid densities; summary thermodynamic property tables for R-32/134a (30/70), R-407C [R-32/125/134a (23/25/52)], and R-410A [R-32/125 (50/50)]; derived performance in ideal cycles at representative conditions for air conditioning shows performance to decline from R-32/134a (30/70) to R-407C and R-410A by 4.5 and 10.7%, respectively, while capacity increases by 1.2 and 44%, respectively, for constant volumetric flow (compressor displacement); equations are valid for the cited blends for -33 to 98 °C (-28 to 350 °F) and pressures up to 8 MPa (1200 psia)

thermodynamic properties of isobutene; thermophysical data

W. Rathjen and J. Straub, Surface Tension and Refractive Index of Six Refrigerants from the Triple Point up to the Critical Point, Proceedings of the Seventh Thermophysical Properties Symposium, American Society of Mechanical Engineers (ASME), New York, NY, 839 ff, 1977 (rdb8235)
thermodynamic properties, thermophysical data

widely cited reference on physical, thermodynamic, and transport properties; thermophysical data

R-23, R-41, physical properties

D. Ripple and D. R. Defibaugh (National Institute of Standards and Technology, NIST), Viscosity of the Saturated Liquid Phase of Three Fluorinated Ethanes: R152a, R143a, and R125, Journal of Chemical and Engineering Data, 42:360-364, 1997 (5 pages with 5 figures and 5 tables, RDB8263)
transport properties for R-125, R-143a, and R-152a; viscosity measurements with a straight capillary viscometer constructed of stainless steel and sapphire for -18 to 50 °C (-1 to 122 °F); describes the apparatus and free-volume model used to correlate the data; compares the measured results to those found in other studies; notes that systematic effects, such as surface tension influences in capillary viscometers or adsorption effects in vibrating wire viscometers, may be as important in accounting for differences as impurities in the samples measured

thermodynamic properties of R-601 (pentane), R-602 (hexane), and larger hydrocarbons; thermophysical data

liquid specific heat, thermodynamic properties, thermophysical data

V. Ruzicka, Jr., and E. S. Domalski, Estimation of the Heat Capacities of Organic Liquids as a

liquid specific heat, thermodynamic properties, thermophysical data

B. Saager and J. Fischer (Ruhr-Universität, Germany), *Construction and Application of Physically Based Equations of State, Part III. Correlative and Predictive Application to the Refrigerants R22 and R152a*, *Fluid Phase Equilibria*, 93:101-140, 11 February 1994 (40 pages, rdb8935)

applies a set of equations of state (EOSs) with four or five parameters, for which the Helmholtz energy is given as the sum the of the hard body contribution and the influences of attractive dispersion forces and polar interactions, to R-22 and R-152a

measurements of the normal boiling point and critical properties (temperature, pressure, and density) of hydrofluoroether (HFE) and fluorinated amine candidates for refrigerant use; comparisons to prediction methods; provides data for R-E134, R-E227ea1, R-E245ca2, R-E329mcc2, R-E338mmz1, and R-E356mmz1 as well as NCH3(CF3)2, NCHF2(CF3)2, and NCH3-CH2(CF3)2; concludes that the Lydersen method provides a good estimation for critical properties, but that several group contribution methods examined are inadequate to estimate the normal boiling point; thermodynamic properties; thermophysical data

thermodynamic properties of R-E245cb1 and other fluoroether (FE) and hydrofluoroether (HFE) candidates for refrigerant use; thermophysical data

thermodynamic properties of fluoroether (FE) and hydrofluoroether (HFE) candidates for refrigerant use; thermophysical data

Estimates of interaction coefficients (ICs) are provided for binary refrigerant blends for both the Carnahan-Starling-Desantis (CSD) and Lee-Kesler-Plöcker (LKP) equations of state (EOS). These IC values characterize the non-ideal behavior of mixtures, and are useful in calculating thermodynamic properties. The estimates were determined by least-squares fits of the CSD and LKP equations to previously measured, saturated vapor pressure (bubble point) data. 70 mixtures of 8 different refrigerants in 18 binary combinations were analyzed. The combinations included R-12/152a, R-22/124, R-22/134, R-22/142b, R-22/152a, R-23/124, R-23/134, R-124/142b, R-134/124, R-134/142b, R-134a/124, R-134a/134, R-134a/142b, R-134a/152a, R-152a/124, R-152a/134, and R-152a/142b. The paper describes the use of IC values, experimental apparatus used to measure the data, presents the resulting ICs, and discusses variances found with previously determined values. Good agreement was found for several known blends, but poor agreement resulted for the well characterized R-22/142b blend; further experimental verification is recommended. Comparisons between experimental ICs and those calculated from physical properties or critical constants of the components suggest that refinement of the property calculation algorithms may be desirable.

describes a database to consolidate experimental data, source and executable computer programs, and more than 700 scientific papers
Refrigerant Database

on thermodynamic properties; pressure-volume-temperature (PVT) properties, isobaric specific heats, sound speeds, virial coefficients, and ideal gas heat capacities for R-32, R-125, R-134a, and blends of R-92/125 and R-32/134a

G. Scalabrin, L. Garavello (Università di Padova, Italy), and R. Camporese (Consiglio Nazionale della Ricerca, CNR, Italy), Prediction of the Thermal Conductivity of Pure Refrigerants Through an Extended Corresponding States Model, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 415-422, July 1996 (6 pages with 11 figures and 5 tables, RDB6C17)

extended corresponding states (ECS) model [used in REFPROP 4.01] for prediction of thermodynamic properties of single-compound refrigerants and blends; density and thermal conductivity; comparisons of experimental and predicted data for R-32, R-125, R-134a, R-143a, and R-152a

thermodynamic and transport properties of R-32 and R-125: reports refractive index and capillary rise for 23 °C (73 °F) to their critical points along with the critical temperatures and the temperature-dependent capillary lengths; combines the refractive index with liquid density data at 30 °C (86 °F) to determine the Lorentz-Lorenz constant; this constant and the data were used to estimate the liquid, vapor, and critical densities and the surface tensions up to the critical points

This paper presents measured vapor pressure data for R-142b between -48 and 12 °C (-55 and 53 °F) and for R-152a between -53 and 0 °C (-64 and 32 °F). It describes a comparative ebulliometer used for the measurements. The paper shows and tabulates deviations of the measured data from fits to an Antoine equation and, for R-152a, also to a Wagner equation. It compares the findings to those published by others, some of which were used in fitting the new data. The results offer a means to predict the vapor pres-
sure of R-142b from -73 to 27 °C (-100 to 80 °F) and of R-152a from -58 to the critical temperature, near 113 °C (-73 to 235 °F).

This paper provides a summary of thermodynamic data for the vapor, compressed liquid, and saturated regions of R-32, R-125, and R-32/125 (60/40). Correlations based on measured data and the Martin Hou equation of state are given for vapor pressure, liquid density, and ideal gas heat capacity. The paper briefly describes a pseudo-isochoric (constant mass) pressure-volume-temperature (PVT) apparatus; this new, automated apparatus was used to obtain some of the data presented. Tables present the boiling point temperature; critical point temperature, pressure, and density; and molecular mass. Pressure-enthalpy (Mollier) diagrams also are provided for the two single-compound refrigerants and their 60/40 blend.

K. H. U. Ström and U. B. Grén (Chalmers University of Technology, Sweden), Liquid Molar Volume of CH₂FCF₃, CH₂CCIF₂, and CH₂CHF₂, and the Mixtures CHF₂Cl + CH₂CCIF₂ and CH₂Cl + CH₂CHF₂, Journal of Chemical and Engineering Data, 38(2):254-256, 1993 (3 pages with 2 figures and 2 tables, rdb7105)

thermodynamic properties of R-134a; thermophysical data

L-Q. Sun, M-S. Zhu, L-Z. Han, and Z-Z. Lin (Tsinghua University, China), Thermal Conductivity of Gaseous Difluoromethane and Pentafluoroethane near the Saturation Line, Journal of Chemical and Engineering Data, 42(1):179-182, 1997 (4 pages with 8 figures and 3 tables, RDB-8C21)

measured conductivity measurements of R-32 for -19 to 69 °C (-2 to 155 °F) and of R-125 near the saturation line for -22 to 61 °C (-7 to 141 °F): the thermal conductivities were measured with a transient hot-wire instrument with an estimated uncertainty of 3%; the paper presents correlations of the data to temperature and comparisons of the results to data in published findings from other studies

L-Q. Sun, M-S. Zhu, L-Z. Han, and Z-Z. Lin (Tsinghua University, China), Viscosity of Difluoromethane and Pentafluoroethane along the Saturation Line, Journal of Chemical and Engineering Data, 41(2):292-296, 1996 (5 pages with 6 figures and 5 tables, RDB8C20)

measurements of the viscosity of R-32 for -40 to 60 °C (-40 to 140 °F) and of R-125 along the saturation line for -40 to 55 °C (-40 to 132 °F) in a calibrated capillary viscometer; presents correlations of the data to temperature and compares the result to published findings by other investigators; concludes that the uncertainty of the results is no more than 3%
[Please see page 6 for ordering information]
existence density data and critical density values; concludes that the resulting critical density values, namely 523.65 ± 1.07 kg/m³ for R-22, 559.76 ± 1.54 kg/m³ for R-124, and 513.02 ± 1.98 kg/m³ for R-134a are in good agreement with published values and with values calculated from published coexistence density data

B. P. Vladimirov and Y. F. Shvets, Saturated Vapor Pressure of R-218 and R-329 and Azeotropic Mixtures of R-116 and R-23, Teplofizicheskie Svistva Veshchestv i Materialov [Thermophysical Properties of Substances and Materials], Izdatel'stvo Standartov, Moscow, Russia, 25:24-27, 1989 (4 pages with 1 figure and 4 tables, in Russian, RDB3C11)

thermodynamic properties of R-218, R-329, R-23/116 (35.79/63.76 + 0.45 impurities) [R-508 series]: property measurements and regression equations for vapor pressure calculations; thermophysical data

measurements of the vapor-liquid coexistence curve in the critical region for R-22/152a (20/80), (50/50), and (80/20) by observation of meniscus disappearance at the vapor-liquid interface within an optical cell: reports 31 data points for saturated vapor and liquid in the critical region at 99-112 °C (210-233 °F); determines the critical temperatures and densities and critical locus of temperature-density; correlates the critical temperature and density to composition R-22/152a blends

R-245ca, R-338mcc (identified in the paper as R-338mcc), the azeotropic blend R-245ca/R-338mcc, calculated dew and bubble curves for 27-102 °C (80-215 °F) and pressures of 98-970 kPa (14-141 psia), thermodynamic properties, thermophysical data; the azeotropic composition of R-245ca/338mcc ranges from 56/44 to 79/21 for the temperature and pressure ranges indicated

presents thermodynamic property measurements for R-32/134a and R-143a/22 taken with a new, high-pressure, metal ebulliometer; compares the results to calculations with a Peng-Robinson (PR) equation of state (EOS) and to published data for R-32/134a; concludes that use of the Wilson activity coefficient model provides a good description of the liquid-phase activity coefficients for systems of organic fluorochemicals, but notes discrepancies among published studies in the data for R-32/134a; thermophysical data

L. A. Weber and A. M. Silva (National Institute of Standards and Technology, NIST), Model for Calculating Virial Coefficients of Natural Gas Hydrocarbons with Impurities, Fluid Phase Equilibria, 111(1):15-26, October 1995 (12 pages with 7 figures and 1 table, RDB7050)

This paper applies a model for calculating second and third virial coefficients to systems of natural gas hydrocarbons and their common impurities, namely carbon dioxide, carbon monoxide, hydrogen sulfide, nitrogen, and water. The model was originally developed to describe the behavior of polar halocarbon refrigerants and their mixtures. It can be used to correlate thermophysical data, identify probable errors, and provide data predictions. It also can be used to calculate gas-phase densities, thermodynamic properties, fugacities, and input data for global equations of state. The paper gives examples for some of the pure components and for the binary systems R-170/H₂S (ethane, hydrogen sulfide) and R-50/718 (methane/water).

presents measurements of the vapor pressures of R-32 for -38 to -3 °C (-37 to 17 °F), R-124 (2-chloro-1,1,1,2-tetrafluoroethane) for -53 to 13 °C (-64 to 55 °F); and R-125 for -55 to 13 °C (-67 to 55 °F): measurements were made in ebulliometers, one of an Ambrose type made of glass and one of all-metal construction for pressures exceeding 260 kPa (38 psia); also pre-
sents calculated vapor pressures for R-125 for temperatures down to -103 °C (-154 °F); examines the azeotropic mixture of R-125/115 and describes an adjustment to the R-125 data to correct for a small impurity of R-115; thermophysical data

measurements of the vapor pressures of R-123 and R-141b by comparative ebulliometry technique for -3 to 39 °C (26 to 102 °F) and 25-129 kPa (4-19 psia); descriptions of the apparatus used; tabulated raw data and comparisons to published data; thermodynamic properties; thermophysical data

R-32/125, R-32/125/134a, R-32/134a, R-125-134a, binary interaction coefficients for a Peng-Robinson (PR) and the modified Hankinson-Brobst-Thomson (HBT) equations of state (EOSs), thermodynamic properties, thermophysical data

J. V. Widiatmo and K. Watanabe (Keio University, Japan), Saturated-Liquid Densities and Vapor Pressures of 1,1,1-Trifluoroethane, Difluoromethane, and Pentfluoroethane, Journal of Chemical and Engineering Data, 39:304-308, 1994 (5 pages, rdb0256)

thermodynamic properties of R-32, R-125, and R-143a; thermophysical data

J. V. Widiatmo, H. Sato, and K. Watanabe (Keio University, Japan), Saturated-Liquid Densities and Bubble Point Pressures of the Binary System HFC 32 + HFC 125, High Temperatures - High Pressures, 25:677-683, 1993 (7 pages, rdb7680)

thermodynamic properties R-32/125 (R-41 series); thermophysical data

J. V. Widiatmo, H. Sato, and K. Watanabe (Keio University, Japan), Measurement of Vapor Pressures and Liquid Densities of HFC-32 and HFC-125, Proceedings of the Third Asian Thermophysical Properties Conference (Beijing, People's Republic of China), 364-369, 1992 (6 pages, rdb5456)

thermodynamic properties of R-32 and R-125; thermophysical data

H-W. Xiang, Theoretical Studies on the Equations of Thermophysical Properties of Fluids and Experimental Measurements of Vapor Pressure of R32 and PVTx of R32/R152a, MS thesis, Xi'an Jiaotong University, China, 1993 (in Chinese, rdb8948)

thermodynamic properties of R-32 and R-32/152a; thermophysical data

R. Yamamoto, O. Kitao, and K. Nakanishi (Kyoto University, Japan), Monte Carlo Simulation of Fluoropropane, Proceedings of the 1st International Conference on Molecular Thermodynamics and Molecular Simulation (Kyoto, Japan, 9-13 January 1994); republished in Fluid Phase Equilibria, 104:349-361, March 1995 (13 pages, rdb8923)

summarizes Monte Carlo (MC) simulations for R-218, R-236fa, R-245ca, R-245cb, and R-290 using a transferable potential model; notes that the quantitative agreements are not satisfactory even though the results show qualitative agreement with the experimental data; presents a modification involving use of an empirical scaling factor into the potential function; concludes that the agreement are clearly improved with the new factor; compares the carbon-carbon pair distribution functions obtained from the MC simulations with experimental x-ray scattering data for propane

thermal conductivity of R-123, R-134a, and R-141b: transport properties, thermophysical data

R-141b, R-142b, R-152a: thermophysical data

R-22, R-134a, transport properties, thermophysical data

J. Yata, C. Kawashima, M. Hori, and T. Minamiyama, Thermal Conductivity of R123 and
R134a in Liquid Phase, Proceedings of the Second Asian Thermophysical Properties Conference (Sapporo, Japan), 201-205, 1989 (5 pages, rdb-4B44)

R-123, R-134a, thermodynamic data

...agreement with published data and that the calculation method holds practical value

thermodynamic properties, thermophysical data, R-32/125 and R-125/143a (R-410 and R-507 series) blends

Dymel(R) Aerosol Propellants, product information bulletin (240881 D), DuPont Fluorochemicals, Wilmington, DE, August 1995 (10 pages with 1 figure and 3 tables, RDB6210)

R-134a, R-152a, R-E170 (DME), applications, properties, environmental impacts, stability, solubility, safety, toxicity, flammability, compatibility

Thermophysical Properties of Alternative Refrigerants, proposed research project 861-WS, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH0861)

This research project is sponsored by ASHRAE Technical Committee 3.1, Refrigerants and Brines.

Thermophysical Properties of Environmentally Acceptable Fluorocarbons - HFC-134a and HCFC-123, Nippon Reito Kyokai [Japanese Association of Refrigeration, JAR] and Japan Flon Gas Association (JFGA), Tokyo, Japan, 1991 (304 pages with 83 figures and 99 tables, in both Japanese and English, RDB2235)

This comprehensive volume summarizes critical, thermodynamic, transport, physical, chemical, compatibility, and other data available on R-123 and R-134a. Included are tabular data and/or plots for solubility, refractive index, dielectric constant, dielectric strength, PVT properties and equations of state (EOS), enthalpy, entropy, isobaric and isochoric specific heat capacity, isentropic expansion exponent, speed of sound, surface tension, viscosity, kinematic viscosity, and thermal conductivity. Data on thermal and chemical stability are summarized, including weight and length changes with polypropylene, polystyrene, polyethylene, polyvinylchloride; polyamide, polyimide, chlorinated and chlorosulfonated polyethylene, nitrite butadiene rubber, Butyl(TM) rubber, fluorocarbon rubber, ethylene propylene diene terpolymer (EPDM), urethane rubber, and polychloroprene. Safety data, including toxicity and
flammability, are summarized. The volume contains an extensive list of references as well as discussion of the ranges and differences among property sources identified. An introductory section outlines conversions among several metric systems, including SI, and inch-pound units. It also reviews the environmental concerns with chlorofluorocarbon (CFC) refrigerants.

Thermophysical Properties of Refrigerants 123 and 134a, proposed research project 655A-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH0655A)

This project is sponsored by ASHRAE Technical Committee 3.1, Refrigerants and Brines.

Thermophysical Properties of Refrigerants 125 and 141b, proposed research project 655B-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH0655B)

This project is sponsored by ASHRAE Technical Committee 3.1, Refrigerants and Brines.

Transport Properties of Suva(R) Refrigerants: Suva(R) Cold-MP (HFC-134a), Suva(R) Trans A/C (HFC-134a), and Suva(R) Centri-LP (HFC-123), product information report ART-1 (H-43855-1), DuPont Chemicals, Wilmington, DE, September 1992 (24 pages with 18 figures, available from JMC as RDB3438)

This report provides plots and equations for estimation of the transport properties of R-123 and R-134a. Liquid viscosity, liquid thermal conductivity, saturated liquid heat capacity, vapor viscosity at atmospheric pressure, vapor thermal conductivity at atmospheric pressure, vapor heat capacity, and vapor heat capacity ratio (C_v/C_p) are addressed. Corresponding data are plotted for R-11 and R-12 for all but the vapor heat capacity data for comparison. The plots and equations are repeated in inch-pound (IP) and metric (SI) units. The equations are based on curve fits of measured data. DuPont's product names for R-402A, R-402B, and R-404A are Suva(R) HP80, Suva(R) HP81, and Suva(R) HP62, respectively.

Transport Properties of Suva(R) Refrigerants: Suva(R) MP39, Suva(R) MP52, and Suva(R) MP66, product information report ART-10 (H-45949), DuPont Chemicals, Wilmington, DE, January 1993 (32 pages with 24 figures, available from JMC as RDB3440)

This report provides plots and equations for estimation of the transport properties of R-401A, R-401B, and R-401C. These refrigerants are zeotropic blends of R-22, R-152a, and R-124, namely R-22/152a/124 (53/13/34), (61/11/28), and (33/15/52), respectively. Saturated liquid viscosity, thermal conductivity, and heat capacity; vapor viscosity at atmospheric pressure; vapor thermal conductivity at atmospheric pressure; vapor heat capacity; and vapor heat capacity ratio (C_v/C_p) are addressed. Plots provide correction factors for vapor viscosity at higher pressures for vapor densities to 110 kg/m³ (7 lb/cf). The plots and equations are repeated in inch-pound (IP) and metric (SI) units. The equations are based on curve fits of measured data. DuPont's product names for R-401A, R-401B, and R-401C are Suva(R) MP39, Suva(R) MP52, and Suva(R) MP66, respectively.

MATERIALS COMPATIBILITY

T. Akiya, T. Shimazaki, M. Oowa (National Institute of Materials and Chemical Systems, Japan, M. Pont Chemicals, Wilmington, DE, May 1993 (40 pages with 34 figures, RDB3C03)

This report provides plots and equations for estima-
Matsuo, and Y. Yoshida (Matsushita Electric Industrial Company, Limited, Japan), Formation Conditions of Clathrates between HFC Alternative Refrigerants and Water, Preprints of the 13th Symposium on Thermophysical Properties (Boulder, CO, 22-27 June 1997), 1997 (18 pages with 7 figures and 1 table, available from JMC as RDB8202)

examines conditions under which R-32, R-125, R-134a, R-407C, and R-410A combine with water to form clathrates: uses phase diagrams to determine the critical decomposition temperatures and pressures; concludes that clathrate compounds can form with water in the low-pressure side of air-conditioners and heat pumps at evaporating temperatures lower than approximately 14 °C (57 °F) for R-407C and 20°C (68 °F) for R-410A

This report identifies processing fluids known to be used in the manufacture of compressors and other components for air-conditioning and refrigeration equipment. The objective was to investigate whether these fluids contribute to formation of acids that might corrode metals or other materials that may block capillary tubes, expansion valves, filters, and deaerators. 64 fluids were tested for compatibility with R-134a and a dried, pentaerythritol ester mixed acid lubricant (ICI EmkarateTM RL 32H), indicated as containing no additives. Solutions or suspensions of the process fluid residues in the polyolster (POE) lubricant were heated for 14 days at 175 °C (347 °F) in evacuated, sealed glass tubes containing polished valve steel (Sandvik) coupons. The report outlines the methods used to prepare the residues or solutions of the fluids. Miscibility tests were performed in a 90/10 mixture by weight of R-134a and the POE with the fluid residue contaminants, and then scanned in 10 °C (18 °F) increments from -40 °C (-40 °F) for signs of turbidity, haze formation, or oil separation. Their observation was deemed a sign of immiscibility. Tables report the visual condition of the POE, soluble iron, total acid number (TAN), and critical miscibility of the aged mixtures for uncured and uncured sealants and the other fluids. No interpretations or conclusions are given for the data presented. The brazing fluxes tested were Lucas-Milhaupt Incorporated Handy Flux D, J. W. Harris Stay Silv White, and Novamex No Rez 65. Machining coolants included Solene Industrial Lubricants 1000, Cincinnati Milacron Cimstar 3700T and 40 Pink, Castrol Industrial Central Incorporated Safety Cool 800 / Syntilo 9954, Chemtool CT500, Oakite Controlant 127S and 3000ss, and Diversey-Dubols Lubricoolant Tec. The detergents, degreasers, and cleaners examined included Brulin Corporation 815GD and 815CR; Solvox Manufacturing Company Special 474; Florida Chemical Company D-Limonene; Oakite Okenclean, Improclean 1300, Rustripper, LSD, 31, and 77; Parker-Amohani Parco 142; and Diversey-Dubols Super Teri and JSW-29. Iron phosphatizers included Oakite Crysoct 747, 1727, 2147, and Ultra Seal (Rinse). Tested lubricants were Schrad-Rells F4422 Oil, Castrol Honilo 480, Etna Products Master Draw 566 and 1969A1, Wito Suniso 160 and 3GS, Oakite Formula 59, Benz Pol Company Rex Draw 176, and Oak International 11-B and Oil 50-5. Rust inhibitors and preventatives included Birchwood Casey Dri-Touch IRP1, Castrol Rustillo DW924, Research Metal Fluids Resco Oxy Kleen 4926A, Koate Syn, and Ultra Koate XP, Almco 2420, Novamex R44, Diversey-Dubols E-314 and ICS-123, Quaker Chemical Ferracote 368, Chemical Technologies Protech 1300, Chem Tool CT625, Oakite impro-tect 600 and 670, Renovator, and Special Protective Oil, Puma Technologies Meca Lube, and Met-Chem 211. Tested sealants were Loclite 510, 640, and RC 1620 as well as Oakite Renovator. Eight appendices tabulate the published compositions and working concentrations for these fluids.

R. C. Cavestri (Imagination Resources, Incorporated, IRI), Compatibility of Refrigerants and Lubricants with Engineering Plastics, report DOE/CE/23810-15, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, September 1993 with December 1993 revisions (182 pages with 7 figures and 106 tables, available from JMC as RDB4103; type on page 74 is small and may be difficult to read)

This report provides extensive compatibility information on 23 engineering plastics with 10 refrigerants; 7 lubricants, and 17 refrigerant-lubricant combinations. An introduction notes the complexities of both materials selection and application-specific influences, such as changes in environmental conditions and residual molding stresses. A narrative outlines the experimental methods used, including modifications to standard test procedures. Six figures depict the apparatus used in the different tests. The report then presents significant findings. 23 summaries provide generic and trade names for the plastics, the molecular structure if published, a description, and tabular findings for total acid number (TAN), tensile change, and elongation change. The report concludes that the refriger-
The refrigerants tested included R-22, R-32, polyethylene glycol (PAG), namely polypropylene glycol diol (Dow P-425), and a modified polyglycol (AlliedSignal BRL-150); and three polyolesters (POEs), namely pentaerythritol butadiene-styrene terpolymer (ABS, GE Cycolac® GPM 4700), acetal (DuPont Delrin® II 11500), phenolic (Hooker Durez®), polyvinylidene fluoride (Atochem Kynar® 720), polycarbonate (GE Lexan® 161), modified polyphenylene oxide (Amoco Amodel® AD-1000 HS), acrylic (Amoco Vistex® CR-100), liquid crystal polymer (LCP, Amoco Xydar® MG450), and polyparaphenylenesulfide (PPS, GE Super® 2003). The plastics included polyethyleneterephthalate (PET, DuPont Rynite® 530), polyphenylene sulfide (PPS, GE Super® 401), polytetrafluoroethylene (PTFE, DuPont Teflon®), high strength polyamide-imide (PAI, Amoco Torlon® 4203L), 12% graphite polyamide-imide (PAI, Amoco Torlon® 4301), polyetherimide (PEI, GE Ultem® 1000), modified polyetherimide (PEI, GE Ultem® CRS 5001), polyaryletherketone (PAEK, BASF Ultrapeek®), polybutylene terephthalate (PBT, GE Valox® 325 PBT), polyimide-DF (PI-DF, DuPont Vespel® DF), polyimide-DF-ISO (PI-DF-ISO, DuPont Vespel® DF-ISO), poly(aryl ether ketone) (PEEK, ICI Victrex®, PEEK 450 G), liquid crystal polymer (LCP, Amoco Xydar® MG450), and polyparaphenylene with acrylic (Filosam 326.52-11), composite of mica, glass threads, and polyester film with impregnated with epoxy (Filosam 328.52-11), and polyester film with impregnated with epoxy (Filosam 328.52-30).

This paper presents materials compatibility data for motor insulation materials with hydrofluorocarbon (HFC) refrigerants R-32, R-125, and R-134a and a neopentyl polyolester lubricant (ICI Emkarate™), a mixed acid pentaerythritol ester. An introduction and table explain the need for HFCs to replace R-22 and R-502 and the associated need to change lubricants from traditional mineral oils. The tests performed gauged changes in appearance, volume, hardness, and weight following autoclave tests at 130 °C (266 °F) for 14 days at autogenous pressures; moisture content also was determined prior to the tests. The paper outlines the test procedures, provides details (composition and application) on the materials tested, and present the findings. The tested materials included a composite of polyethylene terephthalate (PET) between two polyester felts impregnated with resin (Myoflex PV5), a composite of PET between two pieces of polyamide paper impregnated with resin (Myoflex N), glass fiber tape impregnated with epoxy varnish (Vetroflex 253.1), glass fiber tape impregnated with polyurethane varnish (Vetroflex 250.10), composite of mica paper and glass fabric impregnated with epoxy resin (Samicatherm 366.26), polyester fleece tape impregnated with pigments and flexible epoxy resin (Epoxyfilm 215.01), composite of mica, glass threads, and polyester film with impregnated with acrylic (Filosam 326.52-11), composite of mica, glass threads, and polyester film with impregnated with epoxy (Filosam 326.52-30), composite of mica and glass fabric impregnated with polyester-imide (Samicatherm 366.58 with resin 3030), composite of mica and glass fabric and polyester film impregnated with polybutadiene resin (isomica 326.54), and composite of mica and glass fabric and polycarbonate film impregnated with polybutadiene resin (isomica 326.95-66) insulations. They also included unsaturated polyester-imide resin containing styrene as a thinner (resin 3316), solventless unsaturated polyester-imide resin (resin 3305), unsaturated polyester-imide resin without styrene (resin 3350), modified epoxy resin with little solvent (resin 3405), and modified unsaturated polyester-imide without styrene (resin 3360) winding resins. They also included modified cross-linked polyolefin (Exar-500) and diacetylene fibers, PET film, and polyamide paper coated with polyester/polyurethane (2MN-180) lead wires; silicone rubber and synthetic yarn braid impregnated with polyurethane (Siwo-Kul) cable; stabilized rayon impregnated with resin (RTB) tyng tape; impregnated polyester braid (Siligaine) cable sleeving; polyester nonwoven fleece impregnated with carbon particles conductive tape; polyester fabric impregnated with silicone carbide and epoxy resin semiconductive tape; woven glass cloth laminated with epoxy resin (G11 dielectric laminate); and woven glass cloth laminated with polyester resin (GP03) laminate for terminal boards. They also included THEIC modified polyester (Thermex 180 PZ/2), polyester-imide coated with polyamide-imide (Thermex 200 PZ/2), two modified polyamide-imide (Thermex 305-1 and 305-2), modified polyester-imide coated with polyamide-imide (Thermex 306), two self bonding, modified polyamide-imide (Thermobond 158 and 164) enamelled motor winding wires; hard Phenolic resins (Varnih 2005 HFP), modified alkyd polyester resin (Varnih 2005 HFP), and modified polyamide-imide resin (Varnih 2053 HFP) winding varnishes; glass filament fused with synthetic yarn (Daglas) for use with enamelled wire; polytetrafluoroethylene (PTFE) for gaskets, seals; and insulation; polyamide (nylon 6,6) molding material; and polybutyl terephthalate (PBT) for electrical terminal blocks. These 40 materials were tested with neat R-22, R-32, R-134a, and R-32/134a (30/70); R-22 with mineral oil (MO, Witco Suniso® 3GS); R-32 and R-32/134a with two ester lubricants (ICI Emkarate™ 68S and 32S); and R-22 with an ester (ICI Emkarate™ 32S).

Eight tables present subjective observations ("OK" or "X") after exposures. 16 figures then show the weight, volume, and hardness changes as percentages. A final chart present three conclusions: 1) the materials generally performed as well or better in the hydrofluorocarbon (HFC)/ester exposures than in R-22/MO, 2) HFCs and esters appear compatible with many motor materials, and 3) accelerated thermal aging can be harsher than actual application.
Refrigerants and Lubricants

This report presents the findings of retrofit compatibility tests on materials used in motors, for hermetic compressors, with refrigerants and lubricants. These materials were tested in accordance with UL Standard 2171, by exposures first to "original" refrigerant-oil mixtures and then to alternative refrigerant-lubricants mixtures. The sequential, 500-hour exposures simulate the effects of retrofit. Some samples were exposed to the original refrigerant-oil mixture for a total of 1000 hours, as a control. The report identifies the materials used, test procedures, sample preparation, and results. The original and retrofit combinations were R-11/paraffinic mineral oil (MO, Penreco Sontex 300LT) and R-123/MO (Penreco Sontex 300LT), R-11/MO (Penreco Sontex 300LT) and R-245ca/polyester (POE, CPI® Soltest® 68), R-12/naphthenic MO (Witco Suniso® 3GS) and R-134a/POE (CPI® Soltest® 68), R-22/MO (Suniso® 3GS) and R-407C/POE mixed acids (ICI Emkarate® TM RL 32H), R-123/mineral oil (Penreco Sontex 300LT) and R-245ca/POE (CPI® Soltest® 68), and R-502/MO (Suniso® 3GS) and R-404A/POE branched acid (Castrol Isomeric® SW32). The low-pressure refrigerants (Involving R-11, R-123, and R-245ca were tested at 100 °C (212 °F), and the high-pressure refrigerants were tested at 127 °C (260 °F). The magnet wire insulations tested were a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a polyester imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical), and a modified polyester base overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical), and a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000). They were tested for dielectric breakdown and burnout strength. The varnishes included a water-base epoxy phenolic (Schenectady Iso- epoxy® 800), a solvent epoxy phenolic (P. D. George 923), and a solvent epoxy (Sterling® U-475 EH). Coated helical coils tested for bond strength. The sheet insulations tested were a polyethylene terephthalate film (DuPont Mylar® 990 MO), a low oligomer PET film (ICI Melinex® 228), a PET composite (Westinghouse Dacron-Mylar-Dacron®, DMD), an aramid fiber mat (DuPont Nomex® 410 10 mil), an aramid fiber mica mat (DuPont Nomex® Mica 418), and a composite of aramid mat and PET film (Westinghouse Nomex-Mylar-Nomex®, NMN). These insulation sheets were tested for tensile strength, elongation, and dielectric breakdown:

The spiral-wrapped sleeving materials tested were a PET film (Insulations Sales Mylar®) and a composite of aramid mat and polyester film (Insulations Sales Nomex-Mylar®). The lead wires tested were a polyester composite (A. O. Smith DMD) and a polyester, fluoropolymer composite (A. O. Smith Dacron-Teflon-Mylar-Dacron®, DMTD). The sleeving and lead wires were tested for dielectric breakdown. Other materials tested were a polyester tie cord (Ludlow Textiles): braided polyester, acrylic binder...
assembly tape; and polyester mat assembly tape. They were tested for tensile strength and elongation. Assembled motorettes with the three wire types were tested for their ability to withstand applied voltages. In addition, all materials were inspected visually. The tests performed found the exposed materials to be compatible with the refrigerants and lubricants tested with exception of delamination and blistering of the Nomex sheet insulation, especially after removal of absorbed refrigerant. This effect was attributed to solution of the adhesive used. PET embrittlement was observed, but found to be due to moisture and not the refrigerants and lubricants. The nitrile tested was deemed incompatible with R-123 and the neoprene with R-245ca.

This report presents the measured data for high-pressure refrigerants from retrofit compatibility tests of R-134a for R-12, R-407C for R-22, and R-404A for R-502 on materials used in motors, for hermetic compressors. The original and retrofit combinations were R-12/naphthenic mineral oil (MO, Witco Suniso® 3GS) and R-134a/polyester (POE, CPI® Soltest® 68), R-22/MO (Suniso® 3GS) and R-407C/POE mixed acids (ICI Emkarate™ RL 32H), and R-502/MO (Suniso® 3GS) and R-404A/POE branched acid (Castrol Icematic® SW32). The magnet wire insulations tested were a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a polyester imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical), and a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000). They were tested for dielectric breakdown and burnout strength. The varnishes included a water-base epoxy phenolic (Schenectady Isopox® 800), a solvent epoxy phenolic (P. D. George 923), and a solvent epoxy (Sterling® U-475 EH). Coated helical coils tested for bond strength. The sheet insulations tested were a polyethylene terephthalate film (DuPont Mylar® 900 MO), a low oligomer PET film (ICI Melinex® 228), a PET composite (Westinghouse Dacron-Mylar-Dacron®, DMD), an aramid fiber mat (DuPont Nomex® 410 10 mil), an aramid fiber mica mat (DuPont Nomex® Mica 419), and a composite of aramid mat and PET film (Westinghouse Nomex-Mylar-Nomex®, NMN). These insulation sheets were tested for tensile strength, elongation, and dielectric breakdown. The spiral-wrapped sleeving materials tested were a PET film (insulations Sales Mylar®) and a composite of aramid mat and polyester film (insulations Sales Nomex-Mylar®). The lead wires tested were a polyester composite (A. O. Smith DMD) and a polyester, fluoropolymer composite (A. O. Smith Dacron-Teflon-Mylar-Dacron®, DMD). The sleeving and lead wires were tested for dielectric breakdown. Other materials tested were a polyester tie cord (Ludlow Textiles); braided polyester, acrylic binder assembly tape; and polyester mat assembly tape. They were tested for tensile strength and elongation. Assembled motorettes with the three wire types were tested for their ability to withstand applied voltages. In addition, all materials were inspected visually. See RDB6C07 for discussion of the test methods and conclusions.

This report presents the measured data for high-pressure refrigerants from retrofit compatibility tests of R-123 for R-11, R-245ca for R-11, and R-245ca for R-123 on materials used in motors, for hermetic compressors. The original and retrofit combinations were R-11/paraffinic mineral oil (MO, Penreco Sontex 300LT) and R-123/MO (Penreco Sontex 300LT), R-11/MO (Penreco Sontex 300LT), and R-245ca/polyester (POE, CPI® Soltest® 68), and R-123/mineral oil (Penreco Sontex 300LT) and R-245ca/POE (CPI® Soltest® 68). The magnet wire insulations tested were a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a polyester imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical), and a modified polyester base overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical), and a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000). They were tested for dielectric breakdown and burnout strength. The varnishes included a water-base epoxy phenolic (Schenectady Isopox® 800), a solvent epoxy phenolic (P. D. George 923), and a solvent epoxy (Sterling® U-475 EH). Coated helical coils tested for bond strength. The sheet insulations tested were a polyethylene terephthalate film (DuPont Mylar® 900 MO), a low oligomer PET film (ICI Melinex® 228), a PET composite (Westinghouse Dacron-Mylar-Dacron®, DMD), an aramid fiber mat (DuPont Nomex® 410 10 mil), an aramid fiber mica mat (DuPont Nomex® Mica 419), and a composite of aramid mat and PET film (Westinghouse Nomex-Mylar-Nomex®, NMN). These insulation sheets were tested for tensile strength, elongation, and dielectric breakdown. The spiral-wrapped sleeving materials tested were a PET film (insulations Sales Mylar®) and a composite of aramid mat and polyester film (insulations Sales Nomex-Mylar®). The lead wires tested were a polyester composite (A. O. Smith DMD) and a polyester, fluoropolymer composite (A. O. Smith Dacron-Teflon-Mylar-Dacron®, DMD). The sleeving and lead wires were tested for dielectric breakdown. Other materials tested were a polyester tie cord (Ludlow Textiles); braided polyester, acrylic binder assembly tape; and polyester mat assembly tape. They were tested for tensile strength and elongation. Assembled motorettes with the three wire types were tested for their ability to withstand applied voltages. In addition, all materials were inspected visually. See RDB6C07 for discussion of the test methods and conclusions.
This report presents photographic records of retrofit compatibility tests on materials used in motors, for hermetic compressors, with refrigerants and lubricants. The original and retrofit combinations were R-11/paraffinic mineral oil (MO, Penreco Sontex 300LT) and R-123/MO (Penreco Sontex 300LT), R-11/MO (Penreco Sontex 300LT) and R-245ca/polyolester (POE, CPI(R) Soltest(R) 68), R-12/naphthenic MO (Witco Suniso(R) 3GS) and R-134a/POE (CPI(R) Soltest(R) 68), R-22/MO (Suniso(R) 3GS) and R-407C/POE mixed acids (ICI Emkarate(TM) RL 32H), R-123/mineral oil (Penreco Sontex 300LT) and R-245ca/POE (CPI(R) Soltest(R) 68), and R-502/MO (Suniso(R) 3GS) and R-404A/POE branched acid (Castrol Icematic(R) SW32). The low-pressure refrigerants (involving R-11, R-123, and R-245ca were tested at 100 °C (212 °F), and the high-pressure refrigerants were tested at 127 °C (260 °F). The magnet wire insulations tested were a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a polyester imide overcoated with polyamide-imide (Phelps Dodge / Sche nectady Chemical), and a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000). They were tested for dielectric breakdown and burnout strength. The varnishes included a water-base epoxy phenolic (Schenectady Isophony(R) 800), a solvent epoxy phenolic (P. D. George 923), and a solvent epoxy (Sterling(R) U-475 EH). Coated helical coils tested for bond strength. The sheet insulations tested were a polyethylene terephthalate film (DuPont Mylar(R) 900 MO), a low oligomer PET film (ICI Melinex(R) 228), a PET composite (Westinghouse Dacron-Mylar-Dacron(R), DMD), an aramid fiber mat (DuPont Nomex(R) 410 10 mil), an aramid fiber mica mat (DuPont Nomex(R) Mica 418), and a composite of aramid mat and PET film (Westinghouse Nomex-Mylar-Nomex(R), NMN). These insulation sheets were tested for tensile strength, elongation, and dielectric breakdown. The spiral-wrapped sleeving materials tested were a PET film (Insulations Sales Mylar(R)) and a composite of aramid mat and polyester film (Insulations Sales Nomex-Mylar(R)). The lead wires tested were a polyester composite (A. O. Smith DMD) and a polyester, fluoropolymer composite (A. O. Smith Dacron-Teflon-Mylar-Dacron(R), DMD). The sleeving and lead wires were tested for dielectric breakdown. Other materials tested were a polyester tie cord (Ludlow Textiles); braided polyester, acrylic binder assembly tape; and polyester mat assembly tape. They were tested for tensile strength and elongation. Assembled motorettes with the three wire types were tested for their ability to withstand applied voltages. In addition, all materials were inspected visually. See RDB6C07 for discussion of the test methods and conclusions.

R. G. Doerr and T. D. Waite (The Trane Company), Compatibility of Refrigerants and Lubricants with Motor Materials Under Retrofit Conditions, report DOE/CE/23810-63 volume IV, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, October 1996 (52 pages with 90 photographs and 3 tables, available from JMC as RDB6C10; color copies available for $52 additional)

This paper summarizes tests conducted on six electrical sheet materials used in hermetic motors for refrigeration compressors, to determine whether prior exposure to an original refrigerant and mineral oil would affect compatibility with an alternative refrigerant and lubricant after retrofit. The materials were exposed first to the original refrigerant and lubricant and then to the alternatives, for 500 hours at elevated temperature for each refrigerant-lubricant system. R-11, R-12, R-22, and R-502 were tested as original refrigerants; R-123, R-134a, R-245ca, R-404A, and R-407C were tested as retrofit alternatives.
This article summarizes a detailed investigation (see RDB3857) of the effects of 11 refrigerants and 17 refrigerant-lubricant combinations on 24 insulating materials for hermetic compressor motors. The introduction identifies absorption, extraction, and/or chemical dissolution as the primary deterioration mechanisms. It notes that absorption may change the dielectric strength or physical integrity or cause excessive swelling, softening, or decreased strength. Rapid desorption may cause blisters, crazing, surface craters, delamination, or bubbles within the insulating materials. Extraction of materials may result in a range of effects from embrittlement to complete dissolution. Extraction and dissolution, in turn, may cause other components to stick or lead to clogging of passage such as capillary tubes. Three tables classify motor materials as compatible, indicating a concern, or incompatible with pure refrigerants or refrigerant/lubricant mixtures. The effects of the pure refrigerants generally were greater than in combination with lubricants. The article notes that absorption of R-123 was higher than for other refrigerants by most motor materials. However, absorption of R-22, R-32, R-134, and R-152a followed by desorption, at higher temperatures, resulted in greater damage. These results suggest that high internal pressures and the desorption rate are as important as the amount of refrigerant absorbed. These changes decreased bond strength by as much as 55%, dielectric strength by as much as 70%, and decreased the physical integrity of the materials. Magnet wire with polyester-glass serving showed the highest burnout resistance and was influenced less by the refrigerants. Of the refrigerants tested, R-22 produced the greatest effects on the motor materials. Because R-22 has an excellent reliability history with many of them, the article concludes that the alternative refrigerants tested are expected to be compatible with most materials. The refrigerants tested included R-22, R-32, R-123, R-124, R-125, R-134a, R-142b, R-143a, R-152a, and R-245ca. The lubricants included napthenic mineral oil (Witco Suniso(R) 3GS), alkylbenzene (Shrieve Zerol(R) 150), polyolester (POE) mixed acid (ICI Em-karate(TM) RL 22H, formerly RL 244), POE branched acid (Henkel Emery(R) 2927), a polyalkylene glycol (PAG) butyl monooether (ICI Em-karox(R) VG32), PAG modified with a fluoroalkyl group (AlliedSignal BRL-150), and a PAG diol (Dow Chemical P425). The varnishes included two solvent epoxies (P. D. George Sterling(R) U-475 EH and 923), a solvent epoxy phenolic (Sterling(R) Y-390 PG), 93% solids epoxy (Sterling(R) ER-610), and 100% solids VPI epoxy (Sterling(R) Y-833), and water-borne epoxy (Schenectady Isopoxy(R) 800). The magnet wires included a modified polyester base over-

coated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000), and polyester imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical). The sheet insulations tested were Westinghouse Nomex-Mylar-Nomex(R), Westinghouse Dacron-Mylar-Dacron(R), DuPont Mylar(R) 900 MO, DuPont Nomex(R) 410, DuPont Nomex(R) Mica 418, and ICI Melinex(R) 228. The spiral-wrapped sheet insulations tested were Insulations Sales Nomex(R), Mylar(R), and Nomex-Mylar(R). The lead wires tested were A. O. Smith Dacron-Mylar-Dacron(R) and Dacron-Teflon-Dacron(R). Other materials tested were woven glass tape (Carolina Narrow Hot Cleaned Fiberglass), heat shrinkable braided polyester tape (Electrolock), and glass-acrylic tape (Essex Permacel P247), and polyester tie cord (Ludlow Textiles).

This report presents very detailed compatibility information for 24 materials used in hermetic compressor motors with 11 refrigerants and 17 refrigerant-lubricant combinations. Volume I outlines the project, documents the test procedures, identifies the materials tested, discusses the findings, and provides both compatibility charts (yes, concern, incompatible) and summary tables of measured results. Companion volumes (see RDB3658 and RDB3659) supply the recorded data (approximately 40,000 measurements) for the exposures, and an unpublished volume contains photographs of the motor materials after exposures. The report concludes that the alternative refrigerants tested are expected to be compatible with most materials. This finding is based-on comparisons to R-22, which produced the greatest effects on motor materials, but has an excellent reliability history with many of them. The report notes that absorption of R-123 by most motor materials was higher than for other refrigerants. However, absorption of R-22, R-32, R-134, and R-152a followed by desorption, at higher temperatures, resulted in greater damage. These results suggest that high internal pressures and the desorption rate are as important as the amount of refrigerant absorbed. Desorption caused blisters, cracks, internal bubbles, and delamination in some materials. These changes decreased bond strength by as much as 95%, dielectric strength by as much as 70%, and decreased the physical integrity of the materials. Magnet wire with polyester-glass serving showed the highest burnout resistance and was influenced less by the refrigerants. The refrigerant-lubricant combinations generally had less effect on the motor materials than the pure refrigerants. The refrigerants tested included R-22, R-32, R-123, R-124, R-125, R-134, R-142b, R-143a, R-152a, and R-245ca. The lubricants included mineral oil (Witco Sunlos(R) 3GS), alkylbenzene (Shrieve Zeroil(R) 150), polyolester (POE) mixed acid (ICI Emkarate(TM) RL 22H, formerly RL 244), POE branched acid (Henkel Emery(R) 2927), a polyalkylene glycol (PAG) butyl monooether (ICI Emkarox(R) VG32), modified PAG (AlliedSignal BRL-150), and a PAG diol (Dow Chemical P425). The varnishes included two solvent epoxies (P. D. George Sterling(R) U-475 EH and 923), a solvent epoxy phenolic (Sterling(R) Y-390 PG), 93% solids epoxy (Sterling(R) ER-610), and 100% solids VPI epoxy (Sterling(R) Y-833), and water-borne epoxy (Schenectady Isopoxy(R) 800). The magnet wires included a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a modified polyester base overcoated with polyamide imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Daglass 2000), and polyester imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical). The sheet insulations tested were Westinghouse Nomex-Mylar-Nomex(R), Westinghouse Dacron-Mylar-Dacron(R), DuPont Mylar(R) 900 MO, DuPont Nomex(R) 410, DuPont Nomex(R) Mica 418, and ICI Melinex(R) 228. The spiral-wrapped sheet insulations tested were Insulations Sales Nomex(R), Mylar(R), and Nomex-Mylar(R). The lead wires tested were A. O. Smith Dacron-Mylar-Dacron(R) and Dacron-Teflon-Dacron(R). Other materials tested were woven glass tape (Carolina Narrow Hot Cleaned Fiberglass), heat shrinkable braided polyester tape (Electrolock), and glass-acrylic tape (Essex Permacel P247), and polyester tie cord (Ludlow Textiles).

This report provides detailed compatibility information for 24 materials used in hermetic compressor motors with 11 refrigerants and 17 refrigerant-lubricant combinations. Volume II contains the recorded measurements before exposures, after exposures to the pure refriger-
ants, and before and after a subsequent 24-hour bake out, at 150 °C (302 °F), to remove absorbed refrigerant. The refrigerants tested included R-22, R-32, R-123, R-124, R-125, R-134a, R-142b, R-143a, R-152a, and R-245ca. All exposures were at 90 °C (194 °F) except for R-32 and R-125 at 60 °C (140 °F) and R-245ca at 121 °C (250 °F). The effects of heat alone were gauged by similar exposure to nitrogen (R-728) at both 60 and 90 °C (140 and 194 °F). The data are organized into 13 appendices for nitrogen at each exposure temperature and for each refrigerant. Each appendix contains 18 detailed tables providing measurements before and after exposures and before and after bake out; visual observations also are indicated. Triplicate measurements, except for weights, and average results are indicated for each test. Bond strength is compared to unexposed values for dipped coats of each of six varnishes on each of three magnet wires. The magnet wires included a modified polyester base overcoated with polyamide imide (Phelps Dodge Armored Poly-Thermaleze 2000), a modified polyester base overcoated with polyamide-imide and epoxy saturated glass (Phelps Dodge Armored Poly-Thermaleze Dagglass 2000), and polyester-imide overcoated with polyamide-imide (Phelps Dodge / Schenectady Chemical). The varnishes included two solvent epoxies (P. D. George Sterling® U-475 EH and 923), a solvent epoxy phenolic (Sterling® Y-390 PG), 93% solids epoxy (Sterling® ER-610), and 100% solids VPI epoxy (Sterling® Y-833), and waterborne epoxy (Schenectady Isopoxy® 800). Burnout resistance and dielectric strength are compared to unexposed values for each varnish on each of the magnet wires and also to unvarnished specimens. Weight change is reported for exposed disks of the varnishes. Weight, tensile strength, elongation, and dielectric strength are compared to unexposed values for six sheet Insulations (Westinghouse Nomex-Mylar-Nomex®), Westinghouse Dacron-Mylar-Dacron®, DuPont Mylar® MO, DuPont Nomex® 410, DuPont Nomex® Mica 418, and ICI MelineX® 228). Weight change is tabulated for Insulations Sales Nomex®, Mylar®, and Nomex-Mylar® spiral-wrapped sleeving insulation. Changes in weight and dielectric strength are presented for A. O. Smith Dacron-Mylar-Dacron® and Dacron-Teflon-Dacron® lead wire insulations. Weight and breaking load changes are supplied for woven glass tape (Carolina Narrow), heat shrinkable braided polyester tape (Electrolock), glass-acrylic tape (Essex Permacel P247), and polyester tie cord (Ludlow Textiles). [see RDB-3857 for a summary and RDB3859 for data on exposures to the refrigerant-lubricant combinations]
for exposed disks of the varnishes. Weight, tensile strength, elongation, and dielectric strength are compared to unexposed values for six sheet insulations (Westinghouse Nomex-Mylar-Nomex(R), Westinghouse Dacron-Mylar-Dacron(R), DuPont Mylar(R) MO, DuPont Nomex(R) 410, DuPont Nomex(R) Mica 418, and ICI Melinex(R) 228). Weight change is tabulated for Insulations Sales Nomex(R), Mylar(R), and Nomex-Mylar(R) spiral-wrapped sleeve insulation. Changes in weight and dielectric strength are presented for A. O. Smith Dacron-Mylar-Dacron(R) and Dacron-Teflon-Dacron(R) lead wire insulations. Weight and breaking load changes are supplied for woven glass tape (Carolina Narrow), heat shrinkable braided polyester tape (Electrolock), glass-acrylic tape (Essex Permacel P247), and polyester tie cord (Ludlow Textiles). [see RDB-3857 for a summary and RDB3858 for data on exposures to the neat refrigerants]

This paper outlines a project and presents selected data from a study of the compatibility of bead and molded-core desiccants with 13 refrigerant-lubricant combinations. The investigation used sealed-tube tests with aluminum, copper, and steel catalysts to gauge desiccant changes. The paper introduces the test materials generically and briefly outlines the methods used. A table compares the results for R-12 and R-134a, showing total acid number (TAN) as well as fluoride, chloride, and organic acid content after aging for eight desiccants. The same data are plotted. The 16 desiccants include samples from two suppliers for each of eight types, namely: 3Å and 4Å molecular sieves, alumina, silica gel, and four core types. They include 10-25% molecular sieve and alumina with carbon and 15-30% molecular sieve and alumina without carbon, each with type 3Å and 4Å molecular sieves. The lubricants include a naphthenic mineral oil (MO), alkylbenzene (AB), and two classes of polyol ester branched acid (POE-BA) and pentaerythritol ester mixed acid (POE-MA). The refrigerant lubricant combinations examined included R-11, R-12, R-22, and R-123 with MO; R-32, R-125, and R-134a with both POE-BA and POE-MA; R-124 with AB; R-143a with POE-BA; and R-152a with AB (or with POE-MA). The paper concludes that R-22 and R-32 decomposed at nearly the same levels and that the polylester (POE) lubricant decomposed more than did the mineral oil. The paper notes that 3Å molecular sieves performed slightly better than 4Å except in the presence of R-32.

This report presents data necessary to assess the compatibility of bead and molded-core desiccants with 13 refrigerant-lubricant combinations. It is based on sealed-tube tests with aluminum, copper, and steel catalysts. The report generically identifies the test materials, outlines the preparation and analysis methods, and summarizes the desiccant specifications for as-received samples. The moisture content and contaminants of the refrigerant specimens and the moisture content, total acid number (TAN), and ion content of the lubricants are tabulated. A table for each desiccant summarizes findings before and after aging, with both 50 and 1000 ppm of added moisture. These results include liquid and desiccant colors, copper plating, solids formation, steel corrosion, crush strength, fraction of reacted refrigerant based on gas chromatography, TAN, fluoride and chloride ion content in the liquid phase and retained in the desiccant, and organic acid retained in the desiccant. Additional tables detail the crush strength results and the acid anion and gas chromatographic analyses. The 16 desiccants include samples from two suppliers for each of eight types, namely: 3Å and 4Å molecular sieves, alumina, silica gel, and four core types. They include 10-25% molecular sieve and alumina with carbon and 15-30% molecular sieve and alumina without carbon, each with type 3Å and 4Å molecular sieves. The lubricants include a naphthenic mineral oil (MO), alkylbenzene (AB), and two classes of polyol ester (POE) lubricants - pentaerythritol ester branched acid (POE-BA) and pentaerythritol ester mixed acid (POE-MA). The report presents compatibility data for each of the desiccants with the following refrigerant-lubricant combinations: R-11, R-12, R-22, and R-123 with MO; R-32, R-125, and R-134a with both POE-BA and POE-MA; R-124 with AB; R-143a with POE-BA; and R-152a with AB (or with POE-MA). It also presents a number of conclusions: Addition of 1000 ppm moisture produces no significant difference. The desiccant solid phase contains most of the chloride and fluoride ions for molecular sieves, but not always with alumina and silica gel desiccants.

please see page 6 for ordering information
All of the desiccants tested contained chloride, fluoride, and - for most - sulfate and other ions when received, and they do not perform as well in retaining organic anions as they do for inorganic anions. The crush strength was reduced approximately 20% after aging. None of the desiccants tested are compatible with R-32, and steel corrosion seems to be prevalent with the core-type desiccants when aged with POE lubricants. The report notes, however, that the elevated test temperatures may have induced reactions that would not occur in actual systems at lower temperatures.

This report provides extensive data on the swell behavior of 95 elastomeric gasket and seal materials in 10 refrigerants and 7 lubricants. It also details tensile strength, hardness, weight, and dimensional changes for 25 selected elastomers after thermal aging in refrigerant-lubricant mixtures. The report describes the selections as well as sample verifications for the elastomers, refrigerants, and lubricant. It then discusses resistance to solvent uptake - and resultant swell - based on the degree of crosslinking, the degree of interaction with a solvent (based on the Flory-Rehner equation), the roles of cure level and filler content, and tradeoffs with hardness and brittleness. R-123 generally resulted in the greatest swell, but EPDM/PP/TPE, butyl rubber/PP TPE, and several vendor-supplied compositions swelled little in this refrigerant. The HFCs generally gave much less swelling than the HCFCs, though the fluoroelastomers and fluorosilicones exhibit high swelling in them. Some vendor compositions are identified that resisted swelling in all refrigerants and lubricants tested. The refrigerants tested included both hydrochlorofluorocarbons (HCFCs R-22, R-123, R-124, and R-142b) and hydrofluorocarbons (HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a). The lubricants included a raphanitic mineral oil (MO, Witco Suniso(R) 3GS), alkylbenzene (AB, Shrieve Zerol(R) 150), and three polyalkylene glycols (PAGs), namely a polypropylene glycol butyl monooether (ICI Emkarox(R)), a polypropylene glycol dioctyl (Dow P425), and a modified polyglycol (AlliedSignal BRL-150). Two polyol esters (POE) lubricants also were included, namely a pentadecyltriol ester branched acid (Henkel Emery(R) 2927-A) and a pentadecyltriol ester mixed acid (ICI Emkarate(TM) RL 22H, formerly RL 244). Appendices describe the test methodology and identify the elastomer formulations. They include polysisoprene (Nat-syn(TM) 2200), polychloroprene (Neoprene(TM) W), isobutyl isoprene (Polysar Butyl), bromobutyl (Polysar X2), chlrobutyl 1068, styrone butadiene rubber (SBR 1502 and Stereon 730A and 840A), nitrile (Chemigum(TM) N206, N300, N615B, and N917), hydrogenated nitrile (Polysar Tomac(TM) A350 and A4555), fluoroelastomers (DuPont Viton(TM) A, B, and GF), fluorinated/chlorinated rubber (KEL-F(TM) 3700), epichlorohydrin homopolymer (Hydrin(TM) H-65), epichlorohydrin copolymer (Hydrin(TM) C-65 and T-75), methyl vinyl silicone (SE-33(TM)), dimethyl silicone (SE-435U(TM)), methyl vinyl phenyl silicone (SE-65U(TM)), silicone (SE-380U(TM)), fluorinated silicone (LS-63U(TM)), EPDM/polypropylene thermoplastic elastomer (TPE, Advanced Elastomer Systems Santoprene(TM) 201-73, 201-87, 203-40, and 203-50), nitrile/polypropylene TPE (Geostat(TM) 701-87, 701-80, and 701-40), copolyester TPE (Hytrel(TM) 4056, 5526, G6356, and 7246), polysulfide rubber (FA(TM) and ST(TM)), polyurethane (Airthane(TM) PET-55A and PET-60D, Cyanprene(TM) A-8 and D-55, Millathane(TM) 76 and E-34), chlorosulfonated polyethylene (Hyapol(TM) 20, 40, and 4085), ethylene propylene (EPDM, Vistalite(TM) 404 and 707), ethylene acrylic (Vamac(TM) G and B-124MB), chlorinated polyethylene (Dow CM0136(TM) and 4211P(TM)), ethylene propylene diene (EPDM, Royalene(TM) 552, 525, and 369), and EPDM/butyl TPE (Trefsin(TM)). Another appendix identifies ten gasket materials supplied by ARTI including filled chloroprene (Precision Rubber 2167), acrylonitrile (Precision Rubber 7507), neoprene (Garlock 2930), non-asbestos (Armstrong N-8092, Specialty Paperboard NI-2085G, Victopac 69, and Klinger C-4401), nitrile-aramid (Specialty Paperboard 2009), fluorocarbon (Parker V747-75), and neoprene (Greene, Tweed and Company 956). 95 tables present data on swell after immersions of 1, 3, and 14 days, weight change after 14 days, diameter and weight after removal, and shore hardness after 1 day of drying. 18 figures for each refrigerant and lubricant illustrate diameter changes for the exposed elastomers. Oscillating disk rheometer (ODR) curves are provided for 68 curable elastomers and thermogravimetric analysis (TGA) plots for 94 elastomers. Physical property data before exposures also are given, including modulus, tensile strength elongation at break, and hardness. Infrared (IR) and gas chromatographic (GC) analyses are summarized for the refrigerants and lubricants. A set of tables then identifies the specific refrigerant-lubricant combinations tested and changes in weight, width, thickness, tensile strength, and hardness after aging; the changes in tensile strength also are plotted.
R. Hawley-Fedder, D. Goerz, C. Koester, and M. Wilson (Lawrence Livermore National Laboratory, LLNL), *Products of Motor Burnout*, report DOE/CE/23910-74, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, 30 March 1996 (50 pages with 17 figures and 5 tables, available from JMC as RDB8402; included photographs of the test apparatus are not clear)

This report identifies and quantifies the products of motor failures in hermetic and semihermatic refrigeration compressors. The decomposition products were determined by discharging electrical pulses through refrigerant-lubricant (RL) mixtures at temperatures up to 200 °C (392 °F) and pressures up to 1380 kPa (200 psia). Tests also were performed with high electrical stress (arching) to simulate full-scale motor failures. The three tested RL combinations were R-22 with a mineral oil, R-134a with a polyolester (POE) lubricant, and R-507A also with a POE. Comparisons showed that fewer breakdown products were found with tests at high temperatures and pressures that at room test conditions, but the main products and the total amount of breakdown products were the same. The data presented show that the bench-scale electrical breakdown test does not duplicate motor failure conditions. Moreover, published information from other studies indicates that the bench test does not accurately predict the results of motor failure from alternating-current (AC) carryover. The report documents difficulties encountered in performing breakdown tests in hermetic motors, the test approaches used, and the findings of a literature search on breakdown products of refrigerants.

evaluation of R-22, R-134a, and R-507A under simulated alternating current (AC), direct current (DC), and pulsed breakdown conditions; energy deposition into each fluid; major breakdown products after electrical testing under ambient and elevated pressure and temperature and after an AC carryover arc condition in hermetic motors

T. Iizuka, A. Ishiyama, H. Hata, and T. Sugano (Hitachi Limited, Japan), *Study of Technology for Refrigerant Applications 1. Materials Compatibility for HCFC-22 Alternative Refrigerants*, presented at the Fifth International Refrigeration Conference (Purdue University, West Lafayette, IN), July 1996; published as a late paper in *Proceedings of the 1996 International Refrigeration Conference at Purdue*, edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 515-520, July 1996 (6 pages with 6 figures and 5 tables, limited copies available from JMC as RDB4866)

This paper presents the findings of materials compatibility tests of R-32, R-125, and R-134a with basic fabrication materials for refrigerators, air conditioners, and other refrigeration systems. A table compares the minimum chemical bond strength, ozone depletion potential (ODP), global warming potential (GWP), and flammability of the three refrigerants and R-22, R-134a (30/70), and R-407C [R-32/125/134a (23/25/52)]. Based on these data, the paper notes that all hydrofluorocarbons (HFCs) are thermally more stable than R-22. A second table gives the viscosity at 40 and 100 °C (104 and 212 °F), pour point, and lower critical solution temperature (LCST) in R-32, R-125, and R-134a for eight polyesterester (POE), two carbonate or polycarbonate, and one mineral oil lubricants. The POEs include trimethylolpropane (TMP), pentaerythritol, and neopentylglycol types. Their miscibilities with the cited HFCs and total acid number (TAN) values are plotted, the latter as functions of water and epoxy additive contents. Tables summarize the results of sealed-tube tests of R32, R-125, and R-134a in the presence of aluminum, copper, and iron catalysts. The paper then discusses hydrolysis of the POEs into carboxylic acid and alcohol. It also discusses prevention methods, including drying and use of epoxy-type catchers. Plots show the relative oligomer extraction and tensile strength change of polyethylene terephthalate (PET) motor insulating films. Two tables summarize tests of modified ester-imide, polyamide imide, double coated magnet wires and of six molecular sieve desiccants (UOP 4A-NRG, XH-5, XH-6, XH-7, XH-9, and XH-10C). The paper concludes that TMP ester with epoxy-type acid catcher offers good miscibility with HFCs and improved hydrolytic stability. Further, motor materials for insulating film and magnet wires for R-22 can be used in HFC systems without modification. Developmental molecular sieve XH-10C is the indicated as the best choice at low temperatures with R-32, and drop-in tests with the cited materials yielded satisfactory results.

A. Ishiyama, T. Iizuka, K. Kawashima, K. Sekigami, H. Hata, and T. Sugano (Hitachi Limited, Japan), *Study of Technology for Refrigerant Applica-
tions 2. Lubrication of Rotary Compressors in HFC-Based Alternatives, unpublished paper presented at the Fifth International Refrigeration Conference (Purdue University, West Lafayette, IN), July 1994 (6 pages with 6 figures and 5 tables, limited copies available from JMC as RDB4867)

compares results for R-134a with polyolester lubricant to results for R-22 with mineral oil

This paper presents compatibility tests of polyethylene terephthalate (PET) insulating materials with R-32, R-125, and R-134a with mixed-acid, polyolester (POE) lubricants (ICI Emkarate(TM) RL 22H and 32S). Comparative data also are presented for R-12 and R-22 with mineral oils (MO, Shell Clavus 32 and Witco SunisoW) 3GS). The tests examined both standard and low oligomer PET films (ICI Melinex(R) 226 and 228, respectively), used as insulation materials in motors for hermetic compressors. The paper outlines autoclave tests at 140 °C (284 °F) for 14 and 28 days at autogenous pressures (approximately 4 MPa, 600 psig) followed by tensile testing and oligomer extraction analysis. The results indicate that the R-134a/POE mixture is considerably more aggressive in terms of oligomer extraction than R-12/MO or R-22/MO mixtures. However, low oligomer PET films show similar behavior for the same refrigerant/lubricant systems. Two figures compare oligomer extraction for standard and low oligomer films in R-12/MO, R-22/MO, R-32/POE, R-125/POE, and R-134a/POE. A table summarizes changes in tensile strength and extension to break for the two PET types for R-32, R-125, and R-134a with POEs.

R-123, R-134a

S. G. Sundaresan (Copeland Corporation), Characterization of Solid Contaminants in Air-Conditioning Systems and their Effect on Compressor Reliability, Proceedings of the 1984 International Compressor Engineering Conference at Purdue (11-13 July 1984), Purdue University, West Lafayette, IN, 408-417, July 1984 (10 pages with 9 figures and 3 tables, RDB8814)

describes the devices and techniques to trap solid contaminants in operating systems; summarizes a laboratory evaluation to characterize the weight, size distribution, and elemental analysis of solid residue particles; comments on current protection methods and their use to achieve system cleanliness; outlines contaminant effects on clogging, stiction, wear, and chemical breakdown; identifies a combination of contaminants found in refrigerants and lubricants from field samples, including iron oxide, rust, stainless steel, copper oxide, aluminum alloy, copper chloride, brass, polytetrafluoroethylene (PTFE, DuPont Teflon(R)), formulated as a standard test, to enable durability testing

develops Corrosion Data with Metals of Construction and New Refrigerant/Lubricants at Various Moisture and Organic Acid Levels, research project 887-RP, American Society of Heat-
This research project will determine the corrosion rates for selected metals in the presence of low molecular weight, organic acids. These acids result from hydrolysis of polyolester lubricants and subsequent reactions. The study also will quantify the concentrations of reacting acids and reaction products as functions of exposure times. The contractor for the project is Spauschus Associates, Incorporated, led by J. E. Field; it is sponsored by Technical Committee 3.2, Refrigerant System Chemistry.

This bulletin presents the uses of and considerations for rubber in mobile air-conditioning (MAC) applications, noting that all applications are static. It illustrates the sealing mechanisms of o-rings and outlines the temperatures encountered - as high as 149 °C (300 °F) - in representative systems. It then identifies R-12 and R-134a as the refrigerants used by original equipment manufacturers, but notes that R-22 or other refrigerants are used in some truck and trailers systems. It suggests three refrigerant-lubricant combinations as the most common, namely R-12 with mineral oil (MO), R-134a with polyalkylene glycol (PAG), and for retrofit of existing systems R-134a with polyolester (POE). The remainder of the brochure discusses compatibility for them with three rubber materials that account for almost all rubber used in automotive applications: nitrile butadiene rubber (NBR, nitrile or Buna-N), hydrogenated nitrile butadiene rubber (HNBR also including highly saturated nitrile, HSN), and chloroprene rubber (CR including neoprene, neoprene W, and poly-chloroprene). The bulletin lists the ingredients of a simple NBR, but points out that there are thousands of compounds tailored for different applications. After discussing seal force, the bulletin compares the three rubbers after aging at 100 and 148 °C (212 and 300 °F) for 70 hours. The bulletin describes ASTM D395 compression test (heat aging), ASTM D471 fluid immersion, and Santech internal QP409 refrigerant-lubricant immersion test methods. It then presents test results for sample o-rings made of HNBR (Santech ST7470), HNBR (Santech ST4470), and CR (an unidentified neoprene compound). The bulletin also discusses comparative costs of the three elastomers and outlines rubber uses by major automobile and MAC compressor manufacturers. The bulletin concludes with recommendations for rubber material selections.

R-123

This paper summarizes a study to determine the parameters that influence absorption of R-11 and R-123 by varnishes and the effect of the absorbed refrigerants on chemical and physical properties. These varnishes hold motor windings together and act as secondary electrical insulation, filling in voids created during the winding process. Interest in the subject stems from observations that motor varnishes can absorb considerable amounts of R-123 with varying effects. The effects of cyclic and continuous exposures at high temperature and pressure, relative rates of absorption and desorption, existence of an equilibrium absorption value, and effects of temperature on the rate of absorption and the equilibrium are discussed. The experimental procedure, based on weight gain during thermal aging followed by drying, is outlined. Four varnishes were tested; they are identified as a recently introduced solventless type, a common solvent-based type, a 100% solids type, and a water-borne epoxy. The paper concludes that absorption is the same for cyclic and continuous exposures, that desorption is extremely slow to nonexistent at 21 °C (70 °F), and that full desorption would require in excess of 1000 hours at 121 °C (250 °F). It also notes that absorption increases until an equilibrium is established; while the rate differs widely for different varnishes, the rate is more rapid at higher temperatures. The equilibrium value is linearly dependent on temperature, with greater absorption at lower temperatures, for R-123, but relatively independent of temperature for R-11. The paper outlines two key implications for compatibility testing: 1) low temperature and pressure may be a more severe environment for materials than high temperature and pressure, and 2) tests must be continued long enough to be certain that equilibrium is reached at lower temperatures.

H. B. Ginder, Compatibility Test - 15# Carbon Bursting Disk (2.5"), York International Corpora-
tion. York, PA, July 1989 (1 page, available from JMC as RDB00011)

A 64 mm (2½") carbon bursting disk was immersed in R-123 at room temperature for 16 days. Subsequent testing for leaks and porosity, using R-22, indicated that the disk did not develop leaks.

H. B. Ginder, Compatibility Test - O-Rings, Gasket, Oil Filter, Etc., York International Corporation, York, PA, July 1989 (1 page with 1 table, available from JMC as RDB0009)

A table summarizes the swelling of various materials immersed in R-123 and R-11. The materials include elastomeric (DuPont Viton™, Buna™ N, and neoprene) o-rings, a Buna™ N bushing, and components of a Kaydon oil-line filter (cork and Buna™ N gaskets, pleated paper, and adhesive). Quantitative results are presented after a two week exposure at room temperature in a mixture of 90% refrigerant and 10% naphthenic oil. The R-123 test samples swelled considerably more than the R-11 samples. The Buna N bushing swelled 79% in R-123, as compared to 7.1% in R-11. The document concludes that Buna N formulations are not too compatible with R-123, but that Viton and neoprene appear to be acceptable. Compatibility concerns also are cited for the gaskets and adhesive in the oil filter.

T. P. Gross, Compatibility Test - Green-Colored Viton O-Ring, York International Corporation, York, PA, July 1989 (1 page, available from JMC as RDB0012)

Swell data are presented for green-colored fluoroelastomeric (DuPont Viton™) o-rings immersed in R-123 and R-11 for three weeks at room temperature. The o-rings showed initial linear swell of 19.8% in R-123, which changed to 4.4% after drying overnight. Samples exposed to R-11 showed initial linear swell of 3.0%. The elastomers exhibited no significant loss in physical properties in either fluid.

T. P. Gross, Compatibility Test - Loctite Sealants (Pipe Sealant with Teflon, Grade AV), York International Corporation, York, PA, July 1989 (1 page, available from JMC as RDB0010)

Two, Loctite™ compounds (pipe sealant with DuPont Teflon™ and Grade AV) were applied to threaded fittings and tested with liquid R-123. The report indicates that they appear to be compatible with R-123, based on a seven-day period of exposure and curing. The test procedure and curing considerations for sealants are discussed.

Decomposition Rates of R-11 and R-123, Carrier Corporation, Syracuse, NY, September 1989 (3 pages with 3 figures, available from JMC as RDB0019)

The fraction of R-123 that decomposes in solution with alkylbenzene lubricant after 14 days is plotted as a function of temperature. Less than 1% decomposition was measured at 82 and 121 °C (180 and 250 °F), but this increased to 6.2% at 177 °C (350 °F). Decomposition of R-11 and R-123 after 4 and 14 days, respectively, at 121 °C (250 °F) is compared for mixtures of 5% lubricant by weight. One alkylbenzene (Zerol™ 300) and four mineral oils (Mobil DTE Heavy Medium, Mobil DTE 26, Rando HD-68, and Witco Suniso™ 4GS) were tested.

Results are summarized for immersion tests of 13 elastomers in R-123 for up to seven days at 75 and 130 °F (24 and 54 °C). Quantitative results of the linear-swell tests are provided, including intermediate and final changes in length and weight as well as the fraction of extractables. Qualitative changes in appearance and physical properties of the elastomers and in the appearance of the liquid are tabulated. The tested elastomers were two urethane rubbers (Uniroyal Adiprene™ C and Adiprene™ L), a hydrocarbon rubber (DuPont Nordel™ R), a fluoroelastomer (DuPont Viton™ A), a silicone rubber (General Electric SE-361), a nitrile silicone rubber (NSR-X5602), a synthetic rubber (DuPont Hypalon™ 40), natural rubber, poly-sulfide rubber (Thiokol™ FA), Buna™ N, Buna™ S, chloroprene (neoprene W), and Butyl™. Of those tested, only Thiokol FA appears suitable for use and prolonged contact with R-123.

This report presents measured and observed findings for sealed-tube tests varnishes used as insulation for motors in hermetic compressors. Results are tabulated before and after thermal aging in air, R-11, and R-123 for P. D. George Sterling™ 364, water-borne epoxy (Schenectady Isopoxy™ 800), Schenectady 8620, Epoxy-lite 477, and solvent epoxy (Sterling™ 923) varnishes. The exposures were made at 121 °C (250 °F) for 168 hours (1 week). Changes to the pre-exposure conditions are reported immedi-
Material Compatibility of Alternative Refrigerants: Usability/Compatibility of R-123 Received from Refrigerant Suppliers, report NIST-2, Chemistry Laboratory, The Trane Company, La Crosse, WI, 15 April 1988 (2 pages with 1 table, available from JMC as RDB0023)

This report of chemical analyses addresses the compatibility of R-123 samples from AlliedSignal and DuPont Chemicals with red neoprene 2337 elastomer material. Test rings were exposed to R-123 in both vapor and liquid phases for 168 hours at 77 °C (170 °F) using Trane Standard Test Method 3.7-04. Control samples were similarly exposed to R-11. Cross-sectional diameter, volume swell, and durometer hardness are tabulated before and after exposures. Some extraction of processing and/or base oils was observed with all three refrigerant samples. No precipitation of waxlike materials, cracks, or blisters were evident in any of the refrigerants. The increases in diameter and volume and decreases in durometer hardness were lower in R-123 than in R-11. The differences between results from the two R-123 samples were minor.

Material Compatibility of Alternative Refrigerants: Usability/Compatibility of R-123 Received from Refrigerant Suppliers, report NIST-3, Chemistry Laboratory, The Trane Company, La Crosse, WI, 15 April 1988 (4 pages with 2 tables, available from JMC as RDB0024)

Swell tests of elastomeric compounds in R-11 and R-123 at 77 °C (170 °F) for 72 hours are reported. The elastomers included yellow nitrile 7507, red neoprene 2337, and green neoprene 2167. Quantitative data are presented for volume swell, cross-sectional diameter, and durometer hardness. Nitrile swelled 400-600% more in R-123 than in R-11. The neoprene samples exposed to R-123 exhibited less or comparable swelling to those exposed to R-11.

Material Compatibility of Alternative Refrigerants: Usability/Compatibility of R-123 Received from Refrigerant Suppliers with Elastomer Materials, report NIST-4, Chemistry Laboratory, The Trane Company, La Crosse, WI, 10 May 1988 (3 pages with 2 tables, available from JMC as RDB0025)

Swell and durometer test data are tabulated for yellow nitrile 7507, red neoprene 2337, and green neoprene 2167 test rings exposed to 50/50 mixtures of R-11 and R-123 with 250 SUS white oil. The tests were repeated for separate samples of R-123 from AlliedSignal and DuPont Chemicals. Samples were aged in stainless steel test vessels for 3 days (72 hours) at 77 °C (170 °F). Cross-sectional diameter, volume swell, and durometer hardness were measured both before and after exposures, for both the vapor and liquid phases of the refrigerants, and compared. The hardness measurements were repeated after 2-3 days of drying to allow off-gassing.

Material Compatibility of Alternative Refrigerants: Compatibility of R-123 Received from Refrigerant Suppliers with Proposed Elastomer Materials, report NIST-5, Chemistry Laboratory, The Trane Company, La Crosse, WI, 6 June 1988 (2 pages with 1 table, available from JMC as RDB0026)

Measurements of weight, volume, density, dimensions, and durometer hardness are reported for polysulfide rubber (Morton Thiokol(R) ST). Data are compared before and after exposures to both the vapor and liquid phases of R-123. Aging was performed in stainless steel test vessels for 3 days (72 hours) at 77 °C (170 °F). The tabulated data summarize measurements for tests in the refrigerant alone and in a 50/50 mixture with 250 SUS white oil. The tests were repeated for separate samples of R-123 from AlliedSignal and DuPont Chemicals. Data for exposures to the AlliedSignal R-123 refrigerant without lubricant were lost, due to an experimental problem, and were not remeasured. The document concludes that this rubber formulation would not be acceptable as an elastomer for use in a R-123 environment, but it does not rule out use of other polysulfide rubbers. The test data suggest that this rubber compound is affected more severely by 100% R-123 than by the mixture of R-123 and lubricant.

Material Compatibility of Alternative Refrigerant 123: Elastomer Chemistry of and Specifications for Chloroprene, report NIST-8, Chemistry Laboratory, The Trane Company, La Crosse, WI, 10 November 1988 (2 pages with 1 table, available from JMC as RDB0029)
This document compares the elastomer chemistry of chloroprene rubber for use in R-123. The formulations tested included 2337 (red dot), 2167 (green dot), and 2347 (new compound) o-rings as well as 2167 (green dot) cord ring. Chemical properties obtained from infrared spectra, volumetric swell, and durometer hardness were compared as received, after heat aging in air for 168 hr at 100 °C (212 °F), and after thermal aging at the same conditions in ASTM #3 oil, 250 SUS white oil, and R-123 vapor. Tests also were performed after immersion in R-11 liquid, R-11 vapor, and R-123 liquid for neoprene 2347. The resulting data are tabulated.

The tensile strength, elongation, and fluid resistance of neoprene 2347 (size 222) o-rings were tested. Measured values were compared for materials as received, after heat aging in air for 168 hr at 100 °C (212 °F), and after thermal aging at the same conditions in ASTM #3 oil, 250 SUS white oil, R-11, and R-123. Heat aging was performed and fluid resistance was measured in accordance with ASTM D573 and D471, respectively. The tabulated data indicate less change for R-123 than for R-11, and that the decrease in tensile strength and elongation for R-123 is similar to that after immersion in ASTM #3 oil.

Material Compatibility of Alternative Refrigerant 123: Short Term Suitability of Chloroprene Sheet Gasket Material, report NIST-6, Chemistry Laboratory, The Trane Company, La Crosse, WI, 7 October 1988 (1 page, available from JMC as RDB-0027)

Results are qualitatively summarized for compression and flexibility tests of Reinz chloroprene sheet gasket material exposed to R-123. The exposures were for 24 hour at 25 °C (77 °F) and at 100 °C (212 °F). All samples (hot and cold) failed when folded before reaching a 180° angle.

Compatibility results of R-123 and distilled water with cold-rolled steel 1020, stainless steel 304, nickel, monel, copper, aluminum 2S, zinc, and magnesium alloy FS-1 are reported for dry and wet conditions. Results are tabulated at the liquid boiling point after exposure for 100 hours and after 100 days at 55 °C (130 °F). Decomposition of the R-123, metal corrosion rates, and the appearances of the liquid and metal are presented. R-123 was judged suitable with all of the metals under dry-test conditions, but suitable only with the stainless steel after 100-day wet exposure. Additionally, only the stainless steel, nickel, and monel showed no corrosion after the 100-day wet-exposure test.

Motor Insulations in R-123 and R-134a, Carrier Corporation, Syracuse, NY, September 1989 (2 pages with 2 figures, available from JMC as RDB-0015)

Two charts show the effects of R-123 and R-134a on cured motor insulations. XV-572, XV-587, water-borne epoxy (Schenectady Isopox(R) 800), solvent epoxy (P. D. George Sterling(R) U-475), and polyester (Dolphon) varnishes were tested for weight change, percent extractables, and Shore D hardness loss. Quantitative data, after aging for ten days at 93 °C (200 °F) for R-123 and at 38 °C (100 °F) for R-134a, are given.

Mutual Solubilities of Water with Fluorocarbons and Fluorocarbon-Hydrate Formation, report NIST-12, E. I. duPont de Nemours and Company, Incorporated, Wilmington, DE, undated (16 pages with 4 figures and 7 tables, available from JMC as RDB0308)

Test procedures and results are described for an investigation of the mutual solubility of water and of solid hydrate formation with R-123, R-124, and R-125. Measured and calculated solubility data are tabulated in the temperature range of 77-167 °C (171-333 °F) for R-123 and R-124 and 77-138 °C (171-280 °F) for R-125. Regression equations and plots of the data are provided to compare the data to prior measurements for R-22, R-113, and an unidentified fluid. Solubility coefficients are plotted for these fluorocarbons in water for 0-120 °C (30-250 °F) at saturated vapor pressure conditions. The fraction of fluorocarbon by weight in water are similarly presented and plotted at saturated vapor and atmospheric pressures. The results coupled with those of earlier work indicate that R-125, R-134a, R-142b, and R-152a form solid water hydrates, but that R-123 and R-124 do not. The document discusses Implications of the findings on specifications for water content in the refrigerants examined.

Results of compatibility tests are presented for 13 plastics, after immersion for four hours at 24 °C (75 °F) and after thermal-aging for 100 hours at 54 °C (130 °F) in R-123. The plastics included linear polyethylene (Alathon® 7050), polypropylene (Alathon® 9140), cast methylacrylate resin (Lucite®), nylon (DuPont Zytel® 101), tetrafluoroethylene (TFE, DuPont Teflon® type 1), polycarbonate resin (GE Lexan®), ABS polymer (Kralastic®), polyurethane (Styron® TF 475), epoxy (G-10-3675), ethyl cellulose, acetal resin (DuPont Delrin® 500X), polyvinyl alcohol, and unplasticized polyvinyl chloride. Quantitative data are presented for length change, weight change, and for percent extractables. The appearances of the plastic and liquid R-123 are described. The linear polyethylene, nylon, epoxy, acetal, and polyvinyl chloride plastics tested were judged to be compatible with R-123.

Polymer/Elastomer Performance in R-123 and R-134a, Carrier Corporation, Syracuse, NY, September 1989 (4 pages with 3 figures, available from JMC as RDB0018)

Two graphs compare swell for polymers and elastomers in R-11 and R-123 at room temperature and at 93 °C (200 °F). The materials include a nitrile copolymer, fluoroelastomer (DuPont Viton® A), isoprene (neoprene), nylon, phosphazene (Eypel-F), polytetrafluoroethylene (PTFE, Gylon), polyolefin (Alcryn), polypropylene, olefinic thermoplastic (Geolast®), and polyester thermoplastic (DuPont Hytrel®). R-123 produced much greater swelling than did R-11. Quantitative values are given for swell and extractables of elastomeric materials in R-134a at 93 °C (200 °F) for ten days. These materials include Gylon, neoprene, nitrile, nylon 6/6, polypropylene, and Viton A.

Refrigerant Breakdown Voltage, AlliedSignal Incorporated, Buffalo, NY, 1 May 1990 (1 page with 1 table, available from JMC as RDB0012)

Refrigerant breakdown voltages, as determined by ASTM D-2477-84, are tabulated for R-11, R-12, R-22, R-123, and R-134a at 21 °C (70 °F) and 93 °C (200 °F).

Sealed-Tube Stability Test Results: Alternative Refrigerants, Carrier Corporation, Syracuse, NY, September 1989 (1 page with 1 table, available from JMC as RDB0020)

A table summarizes the decomposition fraction of R-11, R-12, R-123, and R-134a with Witco Suniso® 3GS and Mobil DTE 26 mineral oils and with Zerol® 150 and Zerol 300 alkylbenzene lubricants. No decomposition was detected for R-134a; some R-12 decomposed into R-22. R-123 decomposed less than R-11 for all four lubricants.

Stability of CFC-11 and HCFC-123, report NIST-12, Chemistry Laboratory, The Trane Company, La Crosse, WI, 17 April 1989 (3 pages with 1 table, available from JMC as RDB0033)

Sealed-tube test results are compared for R-11 and R-123 after exposure to 250 SUS white mineral oil and metallic catalysts (aluminum, copper, and steel). Qualitative and quantitative decomposition effects are presented after 168 hours at 100 °C (212 °F), 121 °C (250 °F), and 150 °C (302 °F). The thermal stability of R-123 and oil was judged to be greater than the thermal stability of R-11 and oil.

Teflex O-Rings, Size 214, Sealmore Industries, report NIST-10, Chemistry Laboratory, The Trane Company, La Crosse, WI, 27 January 1989 (1 page with 1 table, available from JMC as RDB0031)

A table compares the swell properties of Teflex o-rings in R-11, R-123, and in 250 SUS white oil with each refrigerant in a 50% refrigerant mixture. Quantitative results are presented after a 70-hour exposure at 77 °C (170 °F). The R-123 samples exhibited a volume change three-times higher than those of the R-11 samples. However, the o-ring density changes were comparable for the R-11 and R-123 refrigerant-lubricant mixtures.

Viton O-Ring and Cord Ring Swell Data in Both R-11 and HCFC-123, report NIST-14, Chemistry Laboratory, The Trane Company, La Crosse, WI, 13 September 1989 (1 page with 1 table, available from JMC as RDB0035)

Comparisons are presented for immersion of fluoroelastomer (DuPont Viton®) o-rings and cord rings in R-11 and R-123. Data are tabulated for 70-hour exposures at 77 °C (170 °F). The volume change of the Viton materials in R-123 was found to be approximately three times that for R-11.

UL 984 Tests with R-123 and Oils, Carrier Corporation, Syracuse, NY, undated circa September 1989 (1 page with 1 table, available from JMC as RDB0016)

A table summarizes modified UL 984 tests of motor materials aged at 82 °C (180 °F) for 60 days. Control results are compared to those after separate exposures to R-11 and R-123 mixed with 5% Mobil DTE 26 mineral oil, Zerol® 150 alkylbenzene oil, and Rando HD-68. Insulation failures (1 ma current leakage to ground after 1 minute at 1.5 kV) and breakdown voltages are reported. Results are summarized for
polyester-imide magnet wire, Dacron-Valox(R) lead wire, DuPont Teflon(R) wire sleeving, DuPont Mylar(R) end cap, Mylar-Dacron(R) thermosleeve, Mylar(R) and Melinex(R) slot liners, and Mylar and Melinex phase separators. Breakdown voltages of 2.7-17.0 kV, but no current leakage failures, are indicated.

R-124

recommends use of alkylbenzene (AB) lubricants for R-124, since petroleum-based refrigeration oils have limited miscibility with this refrigerant; chemical stability of R-124 with AB is significantly better than that of R-114 with mineral oil (MO) and the tendency for copper plating is greatly reduced; stability of R-124/AB mixtures is excellent even in the presence of high (1,000 ppm) moisture levels; while the failure load for R-124/AB lubricity is lower than that of R-114/MO, additives based on butylated triphenyl phosphate (BTP) raise the failure load above that for R-114/MO without significant degradation of stability

P. R. Reed (DuPont Chemicals) and H. O. Spauschus (Spauschus Associates, Incorporated), HCFC-124 Applications and Properties: Comparisons with CFC-114, presentation charts prepared by Spauschus Associates, Incorporated, for E. I. duPont de Nemours and Company, Incorporated, Wilmington, DE, undated (22 pages with 9 figures and 1 table, available from JMC as RDB2523)

The stability, miscibility, and lubricity of R-124 are compared to those of R-114. Qualitative data are presented for sealed-tube tests with metals (copper and steel) and unspecified 300 SUS mineral oils (paraffinic and naphthenic) and with an alkylbenzene lubricant after 14 days at 175 °C (350 °F). The effects of high moisture content and of lubricant additives on refrigerant stability also are discussed. Alkylbenzene lubricants were judged to be the most suitable for use with R-124.

R-134a

This paper reviews the compatibility of nonmetallic materials with R-134a and associated lubricants, based on sealed-tube tests as well as analytical investigations of compressor life tests and field evaluations. The test and analytical methods used also are reviewed. The materials addressed include ethylene propylene dimer monomer (EPDM) rubber, fluorinated polymer, natural rubber, nitrile rubber, nylon, and polyethylene terephthalate (PET). Data on weight, volume, tensile-strength, and elongation change as well as on hardness are compared to those for R-12 with naphthenic mineral oil. The paper notes that while an enormous amount of information has been developed by industry for compatibility of alternative refrigerants with associated lubricants and materials, most of it has not been published.

This paper reviews requirements for use of R-134a in chillers with centrifugal compressors. The paper compares the thermodynamic properties of R-134a to those of R-12 and R-500. Data are tabulated to substantiate 4% lower mass flow, but higher isentropic lift requirements. Heat transfer characteristics also are compared, noting an overall improvement of 12% in condensers for R-134a over R-12 and 2-10% in evaporators. A plot compares the film coefficients for pool boiling for a range of typical heat fluxes. Scaling opportunities through di-
The chemical and thermal stability of R-123 and R-134a with Witco Suniso\textregistered 4GS mineral oil in the presence of ferrous and nonferrous metals were compared to that of R-12 and R-500 under the same conditions. Stability was gauged using sealed-tube tests for 14 days at 175 °C (350 °F); test results are compared by gas chromatography, to identify decomposition products, and by visual analysis. The metals used for the tests were Sandvik valve steel, OFHC copper wire, and aluminum 85 bearing material. R-134a was found to be superior to R-12 and R-500 in stability and reactivity, but immediate decomposition was evident for R-123.

E. D. Lawler, HFC-134a and Mineral Oil Materials Compatibility with Hermetic Motor Insulation System for McQuay PEH048/050 Centrifugal Water Chillers, McQuay International (then SnyderGeneral Corporation), Staunton, VA, 29 August 1990 (2 pages with 4 tables, available from JMC as RDB0901)

The compatibility of R-134a and mineral oils (both naphthenic and paraffinic) with the hermetic motor insulation materials used in centrifugal water chillers are examined. Baseline tests were run with R-12 and naphthenic oil for comparison purposes. Results are presented for varnish bonding for amide-imide-polyester film and dielectric retention of copper magnet wire with and without varnish treatment. Results also are summarized for retention of flexibility for DuPont Mylar\textregistered, DuPont Nomex\textregistered, and Dacron(R)-Mylar(R)-Dacron(R) sheet insulation, as well as for dielectric retention of flexible hermetic lead wire. The materials were generally unaffected. One exception was a weakening of epoxy varnish in the presence of R-134a and naphthenic oil (reduced 13.5% compared to the mixture of R-12 and naphthenic oil). Flexibility of film insulation was adequately maintained and retained dielectric was acceptable.

E. D. Lawler, Compatibility of Various Elastomers in Refrigerant HFC-134a with Several Lubricants, McQuay International (then SnyderGeneral Corporation), Staunton, VA, 5 September 1990 (3 pages with 3 tables, available from JMC as RDB0903)

Results of materials compatibility testing of o-rings with R-134a and naphthenic mineral oil, alkylbenzene, and polyalkylene glycol (PAG) lubricants are presented. The elastomers evaluated were nitrile HSN, nitrile ASM 3215, and neoprene ASM 3209. Thermal aging tests were conducted separately for the refrigerant and lubricants and for refrigerant-lubricant mixtures. Changes are noted for hardness, tensile strength, elongation, and volume. The property changes experienced by the elastomers were no greater than, and generally less than, those experienced when aged in the presence of either R-12 or R-22. Nitrile, however, appears to shrink slightly when soaked in alkylbenzene. The neoprene swelled slightly when subjected individually to either R-134a or the PAG, and there was an unacceptable amount of shrinkage when aged in a mixture of R-134a and 5% PAG.

Investigation of 20 refrigeration systems from 7 R-134a and 3 R-12 dual-circuit refrigerators/freezers after 5 years of field use; comparisons of water uptake for the XH7, molecular sieve (probably UOP XH-7 desiccants) driers used found no difference in water absorption
capacity or deterioration; analysis of refrigerant samples by gas chromatography found no deterioration; examination of the capillary tubes found no solid materials, but a small amount of precipitated material in the R-134a systems; this substance was identified as a lubricant from a plastic component of the compressors that was investigated before production, deemed tolerable, but since discontinued; compressor calibrator and noise tests found performance within tolerances; examination of lubricant samples found no significant hydrolysis of the polyalcohol (POE) used with R-134a, negligible system influence on the water content, and acceptable viscosity; disassembly of the compressors found no signs of wear or copper plating of concern; the paper concludes that both the R-12 and R-134a systems were in excellent condition and that no difference in condition or expected lifetime was found.

Miscibility and pressure-temperature solubility diagrams are presented for R-134a with polyglycol (butyl monoether, polyoxyethylene-propylene, and polyoxypropylene glycol) and polyalcohol (dibasic acid ester and neopentyl ester) lubricants. The effects of R-134a on two magnet-wire insulations (polyester-imide and polyalcohol enamel overcoated with amide-imide), two unidentified anaerobic adhesives, three elastomeric o-rings (chloroprene, ethylene propylene rubber, and nitrile), and a type 4A molecular-sieve desiccant are addressed. Compressor and refrigerator-freezer tests with R-134a and selected lubricants are described.

An investigation of polyethylene terephthalate (PET) embrittlement mechanisms with lubricants is summarized. PET is widely used as an insulating material in motors for hermetic compressors. The paper reviews related studies and summarizes both the experimental approach and findings. Degradation was measured after...
thermal-aging in sealed tubes at 130, 150, and 175 °C (166, 302, and 347 °F) for 7, 14, and 28 days. The effects of drying the PET film and lubricants were evaluated. Three polyalkylene glycols (PAGs) were studied including monol, diol, and end-capped (modified) polypropylene glycols. A pentaerythritol (PE) ester and a blend of PAG-monol and PE-ester also were investigated. All five lubricants were ISO 32 (150 SUS) viscosity for use with R-134a. The effects of moisture content, temperature, and lubricant structure were examined. The results were compared to those of PET in R-12 with mineral oil. The study confirmed earlier findings that PET films must be dried, to less than 0.1% moisture content by weight, to minimize embrittlement by moisture. Residual water in the PET, even after drying, may exceed ten times that contributed by the lubricant and has a greater effect. The extent of embrittlement increases with the number of free hydroxyl groups in PAGs, and neither the monol nor diol was found to be acceptable. The end-capped PAG and ester lubricants showed no adverse reaction with dried PET film.

S. G. Sundaresan and W. R. Finkenstadt, (Copeland Corporation), Evaluation of Polyalkylene Glycol Candidates with HFC-134a in Refrigeration Compressors, unpublished presentation at ASHRAE's CFC Technology Conference, National Institute of Standards and Technology, Gaithersburg, MD, September 1989 (22 pages with 2 figures and 6 tables, available from JMC as RDB-04305)

This paper summarizes miscibility, compatibility, and stability data for R-134a with a series of four unidentified, polyalkylene glycol (PAG) lubricants for refrigeration systems. It also addresses the findings of compressor durability testing with them. The paper outlines both the tests procedures and findings. A table summarizes viscosity, miscibility, moisture content, and acid number measurements; a figure compares the miscibility profiles of the PAGs as functions of temperature and concentration in R-134a. A second table reports the effects of metals on chemical stability of R-134a/lubricant mixtures for two of the PAGs at four moisture levels, both with and without test coupons of aluminum, copper, and steel. No refrigerant or lubricant degradation was detected by gas chromatography or visual appearance, and there was no sign of metal corrosion, rusting, or copper plating. The findings of sealed tube tests at 175 °C (347 °F) are reported for several materials used in system construction. They include magnet wires, polyethylene terephthalate (PET) insulating materials, polyamide (nylon 6,6), polyimide, polyetherketone (PEK), a nitrile-based nonasbestos gasket, and a chloroprene o-ring. Of the findings, the most negative observation involved PAG effects on PET films, attributed both to hydrolysis and alcoholysis (or glycolysis) degradation and to PET embrittlement by hydrolytic cleavage. The paper then reports on tests of lubricity, including both bench and compressor-life tests. The latter comprised a regimen of break-in, normal loading, start/stop, high load, high compression ratio, and flooded start tests. The lubricity and durability findings are tabulated and discussed, noting failures and evidence of component distress for all four PAGs. The authors state that the results are more indicative of early development than of the true potential for R-134a/PAG systems. They conclude that the screening tests have delineated the key issues as: 1) the effects of PAGs on the stability of PET, epoxy varnishes, and polyamide-based polymers; 2) the effects of PAGs on aluminum corrosion and/or wear; and 3) the effects of moisture on PET films and fibers and on aluminum corrosion and/or wear.

Miscibility is shown for 55-100% R-134a with four unidentified polyalkylene glycol (PAG) lubricants (150-180 SUS). Compatibility of the refrigerant-polyglycol mixtures with metals, motor materials, and structural polymers is qualitatively presented. The metals include copper, aluminum, and stainless steel. The motor materials include two magnet-wire insulations (epoxy coated and polyester enamel overcoated with polyamide-imide), a polyethylene terephthalate (PET) slot liner, and an unspecified lead wire insulation. The structural polymers include a chloroprene seal, nonasbestos gasket (nitrile binder and clay silicates as filler), nylon 6/6, polyetherketone (PEK), and polyimide. Effects of the refrigerant-lubricant mixtures on compressor durability were quantitatively reported for test conditions of break-in, normal load, start/stop, high load, high compression ratio, and flooded start.

R-134a, materials compatibility

Laboratory data on the compatibility of R-134a with lubricants and the compatibility of the refrigerant-lubricant mixtures with elastomers and other materials are reviewed. Miscibility of R-134a in three polyglycols, a dihydroxy and two butyl-capped monohydroxy polyalkylene glycols (PAGs), and solubility for R-134a with the first of these are discussed. Stability, dry and with moisture present, also is addressed by comparing copper plating at 149 °C (300 °F) for the systems with R-134a and PAGs to R-12 with mineral oil. Tests of fluoride-ion production in sealed-tube tests, to determine the effects of air and water, are presented. Hose permeability with the refrigerant alone and with the refrigerant-lubricant mixtures, lubricity test using pin and v-block (Falex machine) tests, and swell tests with elastomers are described. The elastomers tested include three nitriles, epichlorohydrin, two neoprenes, a chlorosulfonated polyethylene, and a chlorinated polyethylene. The basic finding is that the combination of R-134a and PAGs is workable.

Compatibility of Elastomers with HFC-134a and/or Ucon(R) 50HB660 (RO-W-6602) Plus Additives, report ARTD-18 (H-26845), DuPont Chemicals, Incorporated, Wilmington, DE, 12 July 1990 (16 pages with 12 tables, available from JMC as RDB2112).

This report summarizes an investigation of the compatibility of 11 elastomers at 25 and 80 °C (77 and 176 °F) with a polyalkylene glycol (PAG) lubricant, R-134a, and with a 50/50 refrigerant-lubricant mixture. The data presented were taken after 27 days of immersion ("temporary") and also after subsequent drying in air at 25 °C (77 °F) for 14 days ("final"). The elastomers also are rated on a scale of 0 ("no change") to 5 ("severe, unacceptable change") based on the "temporary" data. The "final" data are suggested as a guide for seal replacement after equipment tear down. The report outlines the experimental approach and presents a table with the ratings.

Eleven subsequent tables present measured changes in length, weight, and Shore A hardness as well as elasticity and visual (both the liquid and the polymer) ratings. The lubricant is identified as Ucon(R) 50HB660 (RO-W-6602) with a proprietary additive. The elastomers tested include urethane (Uniroyal Adiprene(R)), Buna N and S, butyl rubber, chlorosulfonated polyethylene (DuPont Hypalon(R) 48), natural rubber, neoprene W, hydrocarbon rubber (DuPont Nordel(R)), silicone, polysulfide (Morton Thiokol(R) FA), and fluoroelastomer (DuPont Viton(R) A). A figure shows the scale used for swell and hardness ratings. The report cautions that the effects of refrigerants on elastomers depend on the nature of the polymer, the compounding formulation used, the curing or vulcanizing condition, the presence of plasticizers or extenders, and other elastomer variables. While the data serve as a guide, generalizations from the results are difficult to make.

Compatibility of [H]F-134a with Refrigeration System Materials, report NIST-4, Freon(R) Products Laboratory, E. I. duPont de Nemours and Company, Incorporated, Wilmington, DE, 14 De-

Refrigerant Database

Compatibility tests of elastomers with R-134a and a naphthenic mineral oil (Witco Suniso® 5GS) are summarized. Duplicate samples of two neoprene W samples, National O-Ring and Parker, were exposed for 18 days. Lengths and weights were measured before exposure, immediately after removal, and after storage in ambient air for an additional 15 days. No color change or particulate residue were noted. Temporary and final linear swelling by 4.43-5.76% and 3.07-4.37% was measured. Weight changes of -0.77 to 1.86% were noted upon removal, but they changed to -3.71% to -1.01% after drying.

The Compatibility of Polymeric / Elastomeric Materials with Klea™ 134a and Polyalkylene Glycol (PAG) Based Lubricants, technical note 1, ICI Americas Incorporated, New Castle, DE, USA, August 1990 (8 pages with 5 tables, RDB2515)

Test results are tabulated to summarize changes in weight, volume, length, thickness, strength, elongation to break, and hardness for polymeric and elastomeric materials exposed to refrigerants and lubricants for 14 days. These tests are based on immersions at 130 °C (266 °F) with 50 ppm water for R-12 and mineral oil and at 85 °C (185 °F) with 200 ppm water for R-134a with Emkarate® RL 68 PAG. The materials tested include chloroprene (chlorinated isoprene, neoprene W), chlorinated rubber (neoprene), ethylene propylene diene monomer (EPDM), fluorinated propylene monomer (FPM) copolymer, FPM terpolymer, hydrogenated nitrile (HN) rubber N grade, HN rubber E grade, HN butyl rubber, HN green rubber, natural rubber, nitrile butyl rubber (Buna® N), butadiene-acrylonitrile copolymer (Buna® N), polyethylene terephthalate (PET), polyimide (DuPont Kapton®), polyphenyl sulfone (PPS), and fluorinated copolymer of vinylidene fluoride and hexafluoropropylene (DuPont Viton®). Additional data are provided for R-134a and Emkarate® RL 15S (formerly RLE DE 212) with 180 ppm water for EPDM, natural, and nitrile rubbers as well as for nylon, PBT, and Viton. The experimental approach is briefly outlined.

Polyglycol Sealed-Tube Tests, Carrier Corporation, Syracuse, NY, September 1989 (1 page with 1 table, available from JMC as RDB0021)
A table summarizes UL 984 tests of motor materials aged at 110 °C (230 °F) for 60 days. Control results are compared to those after separate exposures to R-12 mixed with mineral oil (Wilco Suniso\textregistered 3GS) and R-134a mixed with the same oil and with alkylbenzene oil (Zerol\textregistered 150). Insulation failures (1 ma current leakage to ground after 1 minute at 1.5 kV) and breakdown voltages are reported. Results are summarized for polyester-imide magnet wire, Dacron-Valox\textregistered lead wire, DuPont Teflon\textregistered wire sleeving, DuPont Mylar\textregistered end cap, Mylar-Dacron\textregistered thermosleeve, Mylar\textregistered and Melinex\textregistered slot liners, and Mylar\textregistered and Melinex\textregistered phase separators. Breakdown voltages of 0.7-15.5 kV are indicated; current leakage failures resulted only for the polyester-imide magnet wire.

R-717 (Ammonia)

This paper reviews bench tests and field experience with synthetic lubricants. The first part addresses semi-synthetic, high-viscosity index (HVI), hydrocracked lubricants for improved performance with ammonia. These lubricants also are referred to as "hydrocracked paraffinic oils" and as "restructured, semi-synthetic lubricants" to distinguish them from hydrogen finned oils. The miscibility of hermetic systems with hydrocarbons: lower mutual solubility, low foaming and volatility, excellent low-temperature fluidity, high viscosity, and good demulsibility. The hydrotreating process also removes nearly all aromatics, including carcinogenic polynuclear aromatics found in some lubricants. The second part addresses polyalphaolefin (PAO) lubricant for a range of pressure ratios. Plots of viscosity and antioxidant level, as functions of time in use, are provided for the lubricants discussed. Solubility with ammonia, volatility, and viscosity are plotted for the hydrocracked oils. The miscibility of two complex esters are shown for R-134a, and the viscosity-temperature relationships are graphically compared for R-22 with a complex ester and a naphthenic oil. A figure compares the isentropic efficiency of complex esters with R-22 to that for a polyalphaolefin (PAO) lubricant for a range of pressure ratios.

R-717, lubricants

Others

R-290 (propane), R-600a (isobutane), R-290/600a (50/50), materials compatibility, reliability of hermetic systems with hydrocarbons: no signs of mechanical thermal degradation were found in the refrigerant or lubricant (an unidentified mineral oil) after 8,000 hr of accelerated test; compressor wear was deemed acceptable

S. Takubo (Research Institute of Innovative Technology for the Earth, RITE, Japan), Y. Mochizuki (RITE), and A. Sekiya (National Institute of Materials and Chemical Research, NIMC, Japan), Thermal Stability of HFE-245mc as a Refrigerant of the Next Generation, *Reito [Refrigeration]*, Japan, 73(847):11-14 also numbered 417-420, May 1995 (4 pages with 4 tables in Japanese with English summary, RDB8702)

thermal stability tests of R-E245cb1 ("HFE-245mc") at 125, 150, and 175 °C (257, 302, and 347 °F) for 10, 30, and 60 days in sealed glass
tubes; concludes that R-245cbl is sufficiently stable for use as a refrigerant despite formation of "minute" amounts of methyl trifluorocacetate (MTFA, CH$_3$CO$_2$CF$_3$); indicates that prototype testing in a heat pump is underway.

Blends

R-22, R-32, R-125, R-134a, and R-407C; alkylbenzene, polyolester, and carbonate lubricants, compatibility

This set of presentation charts addresses the effects of air as a refrigerant contaminant, with emphasis on hydrofluorocarbon (HFC) refrigerants. The introduction indicates that air raises the system pressure, reduces efficiency, causes oxidation of lubricants and metallic components, and interacts with water to enhance reactions. A figure schematically shows a vessel with gas and liquid sample cylinders and a stirrer, used to measure pressure variations. A plot illustrates the variation of pressure with air concentrations of 0-4% at 10 and 20 °C (50 and 68 °F); the influence is more pronounced at the higher temperature. A chart notes an earlier study by H. M. Parmelee in 1951. It found the solubility of air to obey Henry's Law for R-12 and R-22, with similar solubility coefficients. A plot combines new data for R-134a with Parmelee's for R-12 and R-22. It suggests that the solubility coefficient is a linear or near-linear function of temperature. The authors conclude that chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and HFC refrigerant behave similarly with respect to air, based on the three representative refrigerants. They also show more detailed data for R-507A, and conclude that it behaves like a single-compound refrigerant with regard to air solubility. AlliedSignal's product name for R-507A is Genetron(R) AZ-50.

This project will investigate the solubility, viscosity, and density of R-410a with polyolester (POE) lubricants for -40 to 125 °C (-40 to 257 °F). The contractor for the project was Imagination Resources, Incorporated (IRI), led by R. C. Cavestri; it is sponsored by ASHRAE Technical Committees 8.1, Positive Displacement Compressors, and 3.4, Lubrication.

This project will measure the solubility of water in R-23, R-32, R-125, R-143a, and R-152a at temperatures of -73 to 71 °C (-100 to 160 °F), or 8 °C (15 °F) below the critical temperature. It also will investigate the solubility of water in mixtures of these compounds and verify the projections with measurements on three or more ternary blends of them. The contractor for the project is Imagination Resources, Incorporated (IRI), led by R. C. Cavestri; it is sponsored by ASHRAE Technical Committee 3.3, Contaminant Control in Refrigerating Systems.

LUBRICANTS AND TRIBOLOGY

measurements of lubricant concentrations in circulating R-134a using a high accuracy, density flow meter of the straight vibrating tube type: measurements for calibrated concentrations of 0-6% oil by mass over the range from -9.4 to 5.9 °C (15-43 °F) were correlated to the density, temperature, and liquid compressibility with an average error of 0.09% by mass, with a 95% confidence limit of 0.21%; a simplified
method, not requiring calibration tests, was developed for industrial application of the density flow meter to any refrigerant-lubricant (RL) mixture combination; the method yields an average error of 0.22% by mass with a 95% confidence limit of 0.67%.

A narrative summary and presentation charts summarize a study of lubricant movement for R-407C with two mineral oil (MO, Witco Suniso(R) 1GS and 3GS) and two branched acids polyolester (Castrol Icematic(R) SW32 and SW68) lubricants. R-22 also was tested with the MO (3GS) for comparison. The charts describe a dynamic test facility, used to measure flow and oil movement in a split system, residential heat pump in both the cooling and heating modes. The charts introduce the project, summarize miscibility data for the tested fluids, describe the test facility and its operating range, discuss the instrumentation used, and explain circuiting features used to allow a range of flow conditions. Two charts illustrate the data taken, and a table summarizes oil return problems found and potential causes. A further table summarizes the minimum flow velocities with and without oil return problems. Concluding charts present the conclusions and recommendations. The flow velocity at which the worst-case lubricant management was found was approximately 0.5 m/s (100 ft/min) for heating, for which low oil concentrations of 0.25-0.5% are normal. Minimum flow velocities of 1.8-1.9 m/s (350-375 ft/min) were required for cooling. The report recommends these velocities as the minimums for oil return, and notes that R-22 and R-407C require approximately the same minimum velocities with miscible refrigerants. An unexpected finding was that R-407C exhibited good, if not better, oil return with the immiscible MO lubricants and could operate with even lower flow velocities. See RDB6C05 for test data.

This report contains the test data as taken from laboratory tests for a study to determine lubricant circulation characteristics. R-407C was tested as a representative hydrofluorocarbon (HFC) refrigerant with two mineral oil (MO, Witco Suniso(R) 1GS and 3GS) and two branched acids polyolester (Castrol Icematic(R) SW32 and SW68) lubricants. R-22 also was tested with the MO (3GS) for comparison. The report describes a dynamic test facility to measure performance, flow, and oil movement in a split system, residential heat pump in both the cooling and heating modes. The report reviews available data on the miscibility of refrigerants and lubricants and on oil return practices. It then presents the design of the test apparatus and instrumentation, data collection and analysis, test results, conclusions, and recommendations. The flow velocity at which the worst-case lubricant management was found was approximately 0.5 m/s (100 ft/min) for heating, for which low oil concentrations of 0.25-0.5% are normal. Minimum flow velocities of 1.8-1.9 m/s (350-375 ft/min) were required for cooling. The report recommends these velocities as the minimums for oil return, and notes that R-22 and R-407C require approximately the same minimum velocities with miscible refrigerants. An unexpected finding was that R-407C exhibited good, if not better, oil return with the immiscible MO lubricants and could operate with even lower flow velocities. See RDB6C05 for test data.

This report introduces, describes, the test facility, summarizes results, and recommends further research for an experimental and analytical study to determine lubricant circulation characteristics. R-407C was tested as a representative hydrofluorocarbon (HFC) refrigerant with two mineral oil (MO, Witco Suniso(R) 1GS and 3GS) and two branched acids polyolester (Castrol Icematic(R) SW32 and SW68) lubricants. R-22 also was tested with the MO (3GS) for comparison. The report describes a dynamic test facility to measure performance, flow, and oil movement in a split system, residential heat pump in both the cooling and heating modes. The report reviews available data on the miscibility of refrigerants and lubricants and on oil return practices. It then presents the design of the test apparatus and instrumentation, data collection and analysis, test results, conclusions, and recommendations.

This report contains the test data as taken from laboratory tests for a study to determine lubricant circulation characteristics. A table summarizes the test runs, and two schematics show the cooling and heating mode operation and instrumentation points. The data cover tests of R-407C with two mineral oil (MO, Witco Suniso(R) 1GS and 3GS) and two branched acids polyolester (Castrol Icematic(R) SW32 and SW68) lubricants. R-22 also was tested with the MO (3GS) for comparison. The tests measured the flow velocities and oil movement in a split system, residential heat pump in both the cooling and heating modes. See RDB6C04 for a description of the tests, discussion of results, conclusions, and recommendations.

J. Bougard and R. Jadot (Polytechnique de Mons, France), Modelisation des Equilibres Refrigérant-Huile [Modeling of Refrigerant-Oil Equilibria], En-
ergy Efficiency and Global Warming Impact (proceedings of the meetings of Commissions B1 and B2, Ghent, Belgium 12-14 May 1993), International Institute of Refrigeration (IIR), Paris, France, 149-156, 1993 (8 pages with 9 figures and 1 table, in French, RDB5311)

R-22 with mineral oil and unidentified synthetic lubricant, R-134a with polyalkylene glycol (PAG) lubricant, solubility, vapor pressure

- Review of the miscibility, antiwear, and hydrolytic properties of a range of polyolester (POE) lubricants for use with hydrofluorocarbon (HFC) and hydrocarbon (HC) refrigerants: representative properties for neopentylglycol (NPG), trimethylene diol-propane (TMP), pentaerythritol (PE), and dipentaerythritol (DPE), esters; influence of acid and alcohol structure on miscibility and viscosity; laboratory tests of compressors in a test rig with examination of aluminum, copper, silicon, and sodium deposits on filter driers; field retrofit tests of R-134a with POE lubricants for R-12 and naphthenic mineral oils (MO) in centrifugal and reciprocating piston chillers, R402A with POE and sodium deposits on filter driers; field retrofit tests of R-502 with an alkylbenzene (AB) oil; and R-404A with POE for R-404A with MO and AB MO lubricants with differing flushing approaches; comparison of MO, poly alphaolefin POE, and a diester with R-600a in hermetic compressors; conclusions that synthetic lubricants may offer advantages

M. Burke, S. Carre, and H. H. Kruse (Universität Hannover, Germany), Oil Behavior of the HFCs R32, R125, and R-134a and One of Their Mixtures, CFCs, the Day After (proceedings of the IIR meeting, Padova, Italy, 21-23 September 1994), International Institute of Refrigeration (IIR), Paris, France, 89-98, September 1994 (10 pages, rdb-8429)

- Refrigerant-lubricant properties for R-32, R-125, and R-134a

M. Burke and H. H. Kruse (Universität Hannover, Germany), Solubility and Viscosity of New Oil-Ammonia Systems, Energy Efficiency and Global Warming Impact (proceedings of the meetings of Commissions B1 and B2, Ghent, Belgium 12-14 May 1993), International Institute of Refrigeration (IIR), Paris, France, 133-139, 1993 (7 pages with 4 figures and 1 table, RDB5309)

- R-717, polyolester (POE), polyalkylene glycol (PAG), ethylene oxide (EO) and propylene oxide (PE) compositions, additives

M. Burke and H. H. Kruse (Universität Hannover, Germany), Das Ölverhalten der chlorfreien Kältewellen R23, R134a, und R152a [Oil Retention in Chlorine-Free Refrigerants R-23, R-134a, and R-152a], Klima-Kälte-Heizung, Germany, 19(9):348-351, September 1991 (4 pages in German, rdb-4531)

- Refrigerant-lubricant miscibility

- Results of a literature search and discussion of lubricant additives; lists sources, functional properties, and chemical data for additives; focus includes antioxidant, antiwear, antifriction, antiseize, antimalfunction additives as well as corrosion inhibitors and stabilizers for synthetic, polyolester (POE) lubricants; discusses the modes of action, additive chemistry, and thermal stability for additives used in refrigeration compressor lubricants

- Results of a literature search; discussion of additives known to be used in refrigeration compressor lubricants, their modes of action, additive chemistry, thermal stability; antioxidant, antiwear, and antiseize additives for synthetic, polyolester (POE) lubricants

This paper presents data on the equilibrium gas solubility, viscosity, and density of R-134a in polyalkylene glycol (PAG) lubricants. It covers dissolved gas ranges of 1% to more than 70% by weight for pressures up to 3445 kPa (500 psia). The two lubricants tested were a 32 ISO viscosity grade, polypropylene glycol monobutyl ether (ICI EmkaroxR VG32) and an 80 cSt, polyoxypropylene diol (Dow Chemical P1200). The paper briefly outlines the experimental approach used and presents plots based on fits of the measured data to an equation of state. Two pairs of figures present viscosity and pressure data for mixtures of R-134a and the isothermal viscosity and density curves. A final plot shows the kinematic viscosities of both lubricants for the same temperature range.

This report summarizes measurements of viscosity, density, and solubility for mixtures two 32 ISO VG, polyolester (POE) lubricants with three refrigerant blends and with the components of those blends. They included R-32, R-125, R-134a, R-143a, R-404A, R-407C, and R-507A. They were tested with branched- and mixed-acid POEs (Henkel EmeryR 2968A and ICI EmkarateR RL 32S, respectively). Data on R-22 and R-502 with a napthenic mineral oil (MO, Witco SunisoR 3GS) are included for comparison. The report describes the measurement methods and schematically illustrates the oscillating body viscometer, blend sampling apparatus, and hydraulic cylinder (to assure uniform composition) used. The results for each refrigerant-lubricant pair are summarized with three figures. They show viscosity as a function of temperature for representative isobars, viscosity and pressure at constant concentrations as functions of temperature in modified Daniel plots, and density as a function of temperature at constant concentrations. Each series is supported by an appendix that contains a table of raw viscosity, density, and solubility data as well as plots of the density and gas solubility at representative temperatures. Gas fractionation also is shown for the blends. Additionally, the plots for R-407C are repeated.

This paper presents data on the equilibrium gas solubility, viscosity, and density of R-134a in branched acid, pentaerythritol polyol ester (POE) lubricants. It covers dissolved gas ranges of 2% to more than 65% by weight for pressures up to 3445 kPa (500 psia). The two lubricants tested were 32 and 100 ISO viscosity grade POEs (Henkel EmeryR 2927-A and Castrol IcematicR SW-100). The paper reviews prior research of refrigerant-lubricant properties, noting that little is known about the hydrodynamic lubricant film-forming qualities of synthetic lubricants with refrigerant mixtures. It describes and schematically illustrates the oscillating-body viscometer used. This apparatus accurately determines density as well as viscosity, under identical elevated pressure and temperature conditions. Two pairs of figures present smoothed viscosity and pressure data, in modified Daniel plots, and density as a function of temperature at constant concentrations. Each refrigerant-lubricant pair is summarized with three figures. They show viscosity as a function of temperature in modified Daniel plots, along with and density and pressure data for the two PAGs. These plots cover temperatures of -25 to 125°C (-13 to 257°F). The paper discusses the enhancements made to the conventional form for the Daniel charts. Additional plots show the miscibility ranges of R-134a and the isothermal viscosity and density curves for each lubricant. A final plot shows the kinematic viscosities of both lubricants for the same temperature range.

with and without use of the zero-head, hydraulic injection cylinder; it was introduced to minimize composition changes with successive sampling from a single container. The report findings show the reduction in lubricant viscosity due to gas dissolved in the lubricant. An appendix describes selection of the fluids based on miscibility evaluations for R-32/125 (60/40), R-32/125/134A (30/10/60), R-32/125/290/134A (20/55/5/20), R-32/134A (30/70), R-125/143A (45/55), and R-404A. Their miscibilities are plotted for five lubricants, including two branched-acid POEs (Castrol IcematicR SW92 and Henkel EmeryR 2968A), two mixed-acid POEs (ICI EmkarateTM RL 32S and Mobil ArcticR EAL 224R), and an alkylbenzene (AB, Shrieve ZerolR 150).

R. C. Cavestri (Imagination Resources, Incorporated, IRI), Measurement of the Solubility, Viscosity, and Density of Synthetic Lubricants with R-134a, final report for 716-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 17 April 1993 (72 pages with 58 figures and 4 tables, RDB64618)

This report presents data on the equilibrium gas solubility, viscosity, and density of R-134a in synthetic polyolester (POE) and polyalkylene glycol (PAG) lubricants. It covers dissolved gas ranges of 2% to more than 65% by weight for temperatures of -25 to 125 \(^\circ\)C (-13 to 257 \(^\circ\)F) and pressures up to 3445 kPa (500 psia). The POEs tested included 32 and 100 ISO VG branched acid, pentaerythritol (Henkel EmeryR 2927-A and Castrol IcematicR SW-100). The PAGs were a 32 ISO viscosity grade, polypropylene glycol monobutyl ether (ICI EmkaroxR VG32) and an 80 cSt, polyoxypropylene diol (Dow Chemical P1200). The introduction briefly reviews the role of lubricants, noting that little is known about the hydrodynamic lubricant film-forming qualities of synthetic lubricants with refrigerant mixtures. It also reviews prior research of refrigerant-lubricant properties. The report then describes the oscillating-body viscometer used, provides a schematic for it, and details the experimental procedures. This apparatus accurately determines density as well as viscosity, under identical elevated pressure and temperature conditions. The pressure-viscosity-temperature relationships are presented for R-134a with each lubricant at its individual isothermal measurement temperatures. These modified Daniel plots detail the composition of the equilibrium gas solubility, vapor pressure, concentration, and viscosity in both metric (SI) and inch-pound (IP) units of measure. An appendix shows the miscibility ranges of R-134A with the 100 ISO POE and the two PAGs. A second appendix presents plots of the kinematic viscosities of both lubricants. Four final appendices show the isothermal viscosity and concentration curves and tabulate the raw data for measurements at -25, -15, -7, 0, 20, 40, 60, 80, 100, and 125 \(^\circ\)C (-13, 5, 19, 32, 68, 104, 140, 176, 212, and 257 \(^\circ\)F).

refrigerant-lubricant mixture properties

thermophysical properties of a new synthetic lubricant, XMPA-1, that is miscible with R-717 (ammonia); tests with R-717 in a domestic refrigerator using a hermetic compressor

S. Corr, S. Randles, and A. Stewart (ICI Chemicals and Polymers, Limited), Synthetic Lubricants for R134a - A Replacement Gas for R12, Lubricants of the Future and Environment, Brussels, September 1993 (rdb5124)

R-12, R-134a

S. Corr, P. D. Guy, A. A. Lindley, F. T. Murphy, G. Tompsett (ICI Chemicals and Polymers, Limited), and T. W. Dekleva (ICI Americas, Incorporated), The Effect of Miscibility on Performance of R-134a and Alternative Lubricants, seminar presentation at the ASHRAE Annual Meeting (Indianapolis, IN), ICI Americas Incorporated, New Castle, DE, 24 June 1991 (20 pages with 24 charts, RDB2521)

S. Corr (ICI Chemicals and Polymers, Limited), Solubility and Miscibility - Relevance to KleaTM 134a Refrigeration Systems, ICI Americas Incorporation, please see page 6 for ordering information
This document explains the meaning and relevance of solubility and miscibility within refrigeration systems. It notes that the solubility of refrigerant gas in the lubricant usually is an important lubricant feature. In general, lubricants that display miscibility with the refrigerant liquid over a wide range of conditions will also have good refrigerant gas solubilities, but the reverse is not necessarily true. Although the solubility of refrigerant gas in liquid lubricant is important in determining the viscosity of fluid at the evaporator outlet, other factors also are likely to have an effect. An example is the lubricant structure (e.g., polarity or hydrogen bonding). The viscosity of the circulating liquid phase and the velocity of the driving gas are the two most important considerations for lubricant return to the compressor. Lubricant viscosity and the solubility-related viscosity of the refrigerant-lubricant mixture would be expected to govern lubricant holdup, a measure of the lubricant quantity available to interfere with heat transfer. Experience indicates that the concentration of lubricant in the liquid refrigerant phase is below 1% over the majority of the evaporation process, so lubricant miscibility actually appears to be significant in determining oil holdup. Separate liquid phases for the refrigerant and lubricant will be present only over a very short length of the evaporator. Plots and tabular data are provided for low-temperature miscibility for ester lubricants (EmkarateTM RL) in R-134a. The fraction of lubricant in refrigerant also is plotted for the evaporator length.

This paper reviews tests of antwear additives with synthetic ester lubricants, for use with R-134a in automotive and stationery compressors. The lubricants addressed are polyol-carboxylic acid condensation products. The additive screening and tests focused on suitability for wear protection of aluminum on steel, steel on steel, and bronze on steel. The advantages of R-12 lost in conversion to R-134a are outlined; they include inherent antwear properties, associated with formation of metal-chloride boundary layers, and miscibility with mineral oils. The R-134a additives, specifically avoidance of ozone depletion and high relative stability, also are noted. A need for a balanced additive approach, respecting both protection of contacting surfaces and low aggressivity toward copper and aluminum design components, is cited. The paper notes that the issue of copper plating is a selection constraint, in light of its prominence with R-134a and use of polar, potentially active lubricants. The paper reviews a screening protocol based on Falex pin and v-block tests. Results are plotted for R-12 with mineral oil, R-134a with the ester, and the latter pair with six unidentified additive systems. The most promising of the additive packages was further tested with three polyolester lubricants for viscosities of 15-130 cSt. This additive is described as carefully balanced for multi-metal compatibility, namely sufficiently active for antiwear protection yet relatively inactive toward aluminum and copper-containing components. The findings of the compressor tests, including visual examination for distress, deposit formation, and copper plating are reviewed. A figure qualitatively compares the Falex and compressor results. The figure show the Falex test to be a good predictor, though it indicates greater bronze-on-steel concern for the optimized additive than was experienced in the compressor tests.

This paper presents experiments to investigate factors that govern polyolester (POE) lubricant stability. It also discusses stabilization of additized POEs at extreme temperatures. Duplicate sealed-tubes containing the lubricant specimens were aged at 130 or 180 °C (266 or 356 °F) for 1-3 weeks. The samples then were assayed for water, via the Karl Fischer method, and total acid number (TAN). The lubricants comprised conventional and hindered base esters, formulated esters, and each of them with an antwear additive, a hydrolysis inhibiting agent, and both of these additives. Plots compare the hydrolytic stability of the unadditized and five formulated...
POEs alone, with added desiccant, with the hydrolysis inhibitor, and with the desiccant and inhibitor for both conventional and hindered POEs. The paper presents the sample preparation, test procedures, and discussion of the results. It concludes that the hindered POE is more resistant to hydrolysis than the conventional counterpart, even with additives present. Further, both the molecular sieve desiccant and hydrolysis inhibiting chemical markedly enhance the stability of unadditized and additized lubricants. Their combined effect produced a substantial enhancement, particularly for the hydrolytically less stable, conventional POE. While the paper shows differences in hydrolysis potential among the different formulations, the desiccant-inhibitor combination held acidity to very low levels with all of the additives tested.

F. Espinoux, G. Bardy, B. Constans, P. Sanvi, and N. Genet (Elf Centre de Recherche de Solaize, France),

R-134a

R-22 with a naphthenic mineral oil (MO, Witco Suniso® 3GS, 4GS, and 5GS), refrigerant-lubricant properties, viscosity, foaming

K. F. Fung (Tyler Refrigeration Corporation) and S. G. Sundaresan (Copeland Corporation), Study of Oil Return Characteristics in a Display Case Refrigeration System - Comparison of Different Lubricants for a HFC-Blend Refrigerant, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 121-128, July 1994 (8 pages with 4 figures and 6 tables, RDB4815)

R-404A, R-502, naphthenic mineral oil, polyol

R-32, R-125, R-410B, polyolster (POE) lubricant, vapor pressure, density, viscosity

R-32, R-134a, R-404A, R-407C, R-410A or R-410B, and R-507A, polyolster (POE) lubricant, vapor pressure, density, fluidity, viscosity, viscometer

V. Z. Geller, M. E. Paulaitis (University of Delaware), D. B. Bivens, and A. Yokozeki (DuPont Fluoroproducts), Viscosities for R22 Alternatives and Their Mixtures with a Lubricant Oil, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 49-54, July 1994 (6 pages with 3 figures and 5 tables, RDB4809)

R-32, R-125, R-134a, R-143a, polyolster lubricant

R-32, lubricants, properties

This bulletin reviews the market for, functions of, and types of lubricant additives. It covers diverse applications, but portions also apply to air conditioning and refrigeration. The document summarizes consumption statistics for formulated lubricating oils, noting total annual demand of 34 million metric tons on a worldwide basis. It also discusses uses and the specifications set for key applications. It presents lubricant functions, including contaminant containment, heat removal, and friction reduction. It

please see page 6 for ordering information
then discusses additive types including detergents, dispersants, inhibitors, pour point depressants, foam inhibitors, and viscosity modifiers. It also reviews additive types used in automotive transmissions as well as industrial oils and associated additive groups.

conversion of an open, Bitzer screw compressor from R-502 with an alkylbenzene (AB, Barelf AL 100) lubricant to R-404A with a polyolester (POE, Planetel ACD 100 LT) lubricant: experimental conditions; solubility with attention to the influences of pressure, temperature, and superheat; viscosity; concludes that the solubility of R-404A in the POE lubricant varies from 12 to 13% depending on conditions and that the resulting viscosity of the refrigerant-lubricant mixture exceeds 11 cSt; no degradation of the lubricant was found after 2,000 hr of operation.

This paper examines the rate of absorption of refrigerants by lubricants, the rate at which the refrigerant is desorbed following a pressure drop, and the foaming characteristics of the refrigerant-lubricant (RL) mixture as the refrigerant leaves the solution. It presents measured absorption and desorption rates of R-32, R-125, R-134a, R-143a, R-404A, R-407C, and R-410A in polyolester (POE) lubricants (Witco Suniso® SL68 and ICI Emkarate® RL68H); comparative tests for R-12 and R-22 with a naphthenic mineral oil (MO, Witco Suniso® 3GS and 4GS); dynamic surface (interfacial) tension reduction; characteristics of the foam formed when the refrigerant leaves the refrigerant-lubricant mixture, following a pressure drop, including foamability and foam stability; found that none of the HFC blends tested favor the foaming process from an interfacial standpoint; concludes that slow absorption rates correspond to a smaller reduction in surface tension, lower foamability, and higher desorption rate; R-134a/POE is an example of a mixture with a fast absorption rate and slow desorption rate, while R-143a/POE exemplifies slow absorption and rapid desorption; paper also concludes that the foamability and foam stability for HFC/POE mixtures are lower than for R-12 or R-22 with mineral oil.

absorption and desorption rates of R-32, R-125, R-134a, R-143a, R-404A, R-407C, and R-410A in polyolester (POE) lubricants (Witco Suniso® SL68 and ICI Emkarate® RL68H); comparative tests for R-12 and R-22 with a naphthenic mineral oil (MO, Witco Suniso® 3GS and 4GS); dynamic surface (interfacial) tension reduction; characteristics of the foam formed when the refrigerant leaves the refrigerant-lubricant mixture, following a pressure drop, including foamability and foam stability; found that none of the HFC blends tested favor the foaming process from an interfacial standpoint; concludes that slow absorption rates correspond to a smaller reduction in surface tension, lower foamability, and higher desorption rate; R-134a/POE is an example of a mixture with a fast absorption rate and slow desorption rate, while R-143a/POE exemplifies slow absorption and rapid desorption; paper also concludes that the foamability and foam stability for HFC/POE mixtures are lower than for R-12 or R-22 with mineral oil.

B. D. Greig, A. M. Smith, and A. P. Swallow (Castrol International), Household Compressor Manufacturers Adopting HFC Refrigerants; Compressor Lubricants and Manufacturing Fluids Compatibility, Stratospheric Ozone Protection for the 90’s (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC, October 1993), Alliance for Responsible CFC Policy, Arlington, VA, 100-108, October 1993 (9 pages with 10 tables, RDB3A32)

This paper discusses the compatibility and performance of polyolester (POE) lubricants with R-134a as well as compatibility issues arising from manufacturing residues and moisture. It specifically addresses Castrol Icematic SW, a family of synthetic POE lubricants formulated with a low treat, ashless additive package. The additives improve hydrolytic stability, inhibit copper plating, and reduce compressor component wear. The paper notes that tests, including field trials, have found wear comparable or lower than with R-12 and mineral oil, but that problems remain. One source identified is
residual mineral oil lubricants from manufacturing processes, which act as contaminants. These residues contain paraffins that form insoluble flocs when mixed with liquefied R-134a in condensers. The flocs cause system blockage, especially in capillary tubes. The paper cites efforts with equipment manufacturers to identify compatible alternatives, nonchlorinated cleaners, and corrosion preventives. They include an ester wax to replace paraffinic wax as the motor winding lubricant, a multipurpose lubricant that functions as a hydraulic oil for automated post-cleaning assembly equipment, compressor oil for air compressors supplying dried air to the factory, and a component assembly lubricant. The paper notes that POE lubricants were successfully employed for many years in several applications involving high temperatures. New POEs were synthesized for miscibility with R-134a. A table presents the viscosities, pour points, flash points, and critical solution temperatures with R-134a for three viscosity grades. The paper then discusses inhibition of copper plating. A table compares the condition of aluminum, copper, and steel specimens following sealed-tube tests at 175 °C (347 °F) for 14 days for both a nonformulated base stock and fully formulated Icematic SW22 with 50, 250, and 500 ppm of water. The results suggest that plating increases with moisture, but can be partially or fully inhibited with additives depending on the moisture level. The paper notes the need to dry POE lubricants, typically to 50 ppm or even 20 ppm, and that care is required to minimize exposures to atmospheric moisture. The paper then discusses hydrolytic stability, noting that ester base stocks are produced by a reversible reaction of acid(s) and alcohol(s) to yield an ester and water. A table provides total acid number (TAN) data from turbine and oxidation stability tests (TOST) for selected POEs, including a neat base stock. The discussion indicates that the true level of breakdown is likely to be higher, due to losses from the volatility of many of the acid breakdown products. The paper then addresses compressor wear, noting that chlorinated additive compounds and chlorine from refrigerants have historically provided excellent anti-wear properties. Falex pin and v-block wear data are tabulated for naphthenic mineral oil alone and with R-12 as well as for ester base stock and formulated POEs alone, with R-12, and with R-134a. The data suggest that R-134a with the formulated POE results in the lowest wear. A separate table compares compressor efficiency for R-134a with POE in three viscosity grades and for R-134a with an unidentified naphthenic oil. Discussion of the data suggests that the lower viscosities will be preferred for higher compressor efficiency. The paper then reviews chemical cleaners and corrosion preventives used in the manufacture of compressors. Data are provided for Castrol Careclean MP and Rustilo DWX; Rustilo DWX 30 is designed as an ester-based corrosion preventive for compatibility with R-134a and POEs. The paper similarly discusses effects of residual honing oils for compressor component machining and hydraulic oils for assembly. Tabular data show the reduction in lower solution temperature with ester honing and hydraulic oils, such as Castrol CareTech and Hyspin SW32, compared to mineral oils. The paper concludes that system compatibility with R-134a involves consideration of the motor winding wax, corrosion preventives, honing and hydraulic oils, and cleaners in addition to the selection and additives for the POE lubricant.

T. Hamada and N. Nishiura (Mitsubishi Oil Company, Limited, Japan), Refrigeration Lubricant Based on Polyolester for Use with HFCs and Prospects or Its Application with R-22 (Part 2) Hydrolytic Stability and Compressor Endurance Test Results, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 279-284, July 1996 (6 pages with 11 figures and 3 tables, RDB6917)

tribological behavior for a pentaerythritol type polyol ester (POE) base and formulated oils as a lubricant for use with both R-22 and hydrofluorocarbon (HFC) refrigerants including R-134a, R-404A and R-407C; hydrolytic and thermal stability; moisture removal effect; reliability tests; compressor endurance tests; roles of additives including epoxy type, antiwear (aryl phosphate and sulfur phosphorous), and others

R-410A; synthetic carbonate lubricants containing a β-hindered alkyl and alkylbenzene groups; miscibility with R-410A; thermal stability; lubricity; drop-in test in a rotary, rolling-piston compressor; properties

D. R. Henderson (Spauschus Associates, Incorporated), Solubility, Viscosity, and Density of Refrigerant/Lubricant Mixtures, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 419424, July 1994 (6 pages with 12 figures and 1 table, RDB-4856)

Density is plotted as a function of temperature for R-32 with ISO 100 POE-BA, R-125 with ISO 22 POE-MA and with ISO 32 POE-BA, and R-152a with ISO 68 AB. Daniel Charts are provided for R-32 with ISO 100 POE-BA, R-124 with ISO 68 AB, R-134a with ISO 22 POE-MA, R-143a with ISO 32 POE-BA, and R-152a with ISO 68 AB.

D. R. Henderson (Spauschus Associates, Incorporated), Solubility, Viscosity, and Density of Refrigerant/Lubricant Mixtures, report DOE/CE/23810-34, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, April 1994 (150 pages with 142 figures and 77 tables, available from JMC as RDB4889)

This report presents the findings of a study of the solubility, viscosity, and density of 35 refrigerant-lubricant mixtures. It addresses low (0, 10, 20, and 30% by weight) and high (60, 90, and 100%) refrigerant concentrations. It summarizes results for R-12, R-22, R-32, R-123, R-124, R-125, R-134a, R-142b, R-143a, and R-152a with mineral oil (MO), alkylbenzene (AB), polyalkylene glycol (PAG), and two classes of polycloster (POE) lubricants - pentaerythritol ester branched acid (POE-BA) and pentaerythritol ester mixed acid (POE-MA). Data are provided for the following combinations: R-12 with ISO 32 and 100 MO; R-22 with ISO 32 MO; R-32 with ISO 22 and 68 POE-MA and with ISO 32 and 100 POE-BA; R-123 with ISO 32 and 100 MO and with ISO 32 and 68 AB; R-124 with ISO 32 and 68 AB; R-125 with ISO 22 and 68 POE-MA and with ISO 32 and 100 POE-BA; R-134a with ISO 68 PAG, ISO 22, 68, and 100 POE-BA, and ISO 22, 32, 68, and 100 POE-MA; R-142b with ISO 32 and 78 AB; R-143a with ISO 22 and 68 POE-MA and ISO 32 and 100 POE-BA; and R-152a with ISO 32 and 68 AB and with ISO 22 and 68 POE-MA. Equations and regression coefficients are tabulated for solubility (expressed as vapor pressure), dynamic and kinematic viscosity, and density for each mixture. These results also are shown as plots of density versus temperature and as Daniel Charts, showing kinematic viscosity and solubility versus temperature. The measurements for the low refrigerant concentrations covered 0-100 °C (32-212 °F), except that measurements for R-32, R-125, and R-143a were capped at 75, 65, and 70 °C (167, 149, and 158 °F), respectively. Those for high concentrations covered -40 to 40 °C (-40 to 104 °F), except for R-32, R-123, and R-143a for which the low end of the ranges were changed to -50, -20, and 45 °C (-58, -4, and 49 °F). An appendix explains the experimental technique. It also outlines the theoretical basis for corrections made for vapor space volume in the test apparatus. A second appendix summarizes the lubricant purities, including moisture content, total acid number (TAN), and iron and copper contents. A final appendix identifies the specific lubricants tested, including AB (Shriive Chemical Zerol(R) 150 and 300), naphthenic MO (Wilco Suniso® 3GS and 5GS), PAG (ICI Emkarox® DGPL 103), POE-BA (Henkel Emery® 2966A, 2968A, 2942A, and 2928A), and POE-MA (Mobil EAL Arctic® 22 and 32; Castrol Icematic® SW32, SW68, and SW100; and ICI Emkarate® RL-375). The report includes an interpretive discussion of the findings by refrigerant.

refrigerant-lubricant (RL) effects, impacts of lubricants on heat transfer and efficiency

refrigerant-lubricant (RL) effects on system performance: R-12 and R-22 with mineral oil; R-22, R-134a, and R-407C with polycloster (POE); deterioration in evaporator heat transfer; method of predicting the concentration of the circulating lubricant; notes that R-407C is more soluble in the tested POE than R-134a despite its high R-134a content, and suggests that the difference may be due to the presence of R-125

N. J. Hewitt, J. T. McMullan, N. E. Murphy, and N. Shafaghian (University of Ulster, UK), A Solubility Equation for R22-Oil Mixtures, International Journal of Energy Research (IJER), 15(9):763-768, De-

discusses lubricant selection with focus on a polyolester (POE) and polyvinyl ether (PVE) for use with R-22, R-407C, and R-410A; summarizes materials selections for key wear components in a scroll compressor including the journal bearing and Oldham ring; provides comparative data for lubricants and discusses shortcomings in conventional durability tests

naphthenic mineral oil, alkylbenzene, polyolester, ether, and carbonate lubricants, additives, lubricity, rotary rolling-piston compressor

D. F. Huttenlocher (Spauschus Associates, Incorporated), Chemical and Thermal Stability of Refrigerant-Lubricant Mixtures with Metals, report DOE/CE/23810-5, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, 9 October 1992 (126 pages with 75 figures and 27 tables, available from JMC as RDB3608; several of the figures, specifically the IR spectra, are difficult to read)

This report presents stability data, based on sealed tube tests, for 21 mixtures of refrigerants and lubricants in the presence of a valve steel strip, as catalyst. Tables present results for R-11 with mineral oil (MO) and with a white naphthenic MO; R-22 with MO; R-32 with pentaerythritol ester mixed acid and with polypropylene glycol (PPG) butyl monoether; R-123 with MO and with white naphthenic MO; R-124 with alkylbenzene (AB); R-125 with PPG butyl monoether, modified polyglycol, and pentaerythritol ester mixed acid; R-134 with pentaerythritol ester mixed acid; R-134a with PPG butyl monoether, PPG diol, modified polyglycol, three pentaerythritol esters (two of them mixed acids); R-142b with alkylbenzene; R-143a with pentaerythritol ester mixed acid; and R-152a with AB. Each test mixture was aged at three temperature levels, generally 150, 175, and 200 °C (221, 302, and 347 °F); tests were performed at other temperatures when warranted. The information provided includes the specific materials and aging conditions for each combination tested, visual observations on the aged sealed tubes, and results of chemical analyses. The last includes gas chromatograms of the vapor-phase contents as well as chloride and fluoride ion contents for mixtures containing hydrochlorofluorocarbons (HFCs) and hydrofluorocarbon (HFCs), respectively. Total acid number (TAN) values and infrared analyses (IR) are presented; size exclusion chromatography (SEC) is summarized for mixtures including polyalkylene glycol (PAG) lubricants. The findings indicate that the HFCs tested and R-22 are very stable and do not undergo measurable chemical reactions or thermal decomposition, even in the presence of lubricants, for the conditions tested. R-124 and R-142b have stability properties intermediate between the HFCs and R-12. R-123 is more reactive, but offers stability improvement by a factor of ten over R-11. All of the pentaerythritol ester and PAG fluids showed changes in chemical structure after exposures at 200 °C (347 °F), and in some cases at 150 °C (302 °F) and 175 °C (347 °F). An appendix summarizes the test results, including tabulated findings and gas chromatograms. A second presents IR spectra and SECs of the lubricants before and after aging. A third appendix recaps the refrigerants and lubricants tested as well as purity measurements taken. Gas chromatograms are provided for each of the refrigerants. Acidity, water content, and metal content are tabulated for each of the lubricants. The MOs tested were Witco Suniso® 3GS (ISO VG32) and Freezene Naphthenic Heavy white oil (ISO VG46). The AB was Shreve Zerol® 150. The PAGs included ICI Emkarox® PPG butyl monoether (ISO VG32) and Dow Chemical P245 PPG diol (ISO VG22). The pentaerythritol esters (PES) included Castrol Icematic® SW92 branched acid (ISO VG32), ICI Emkarate® RL mixed acids (ISO VG22), and Henkel Emery® 4078X (2928 ISO VG100) 100 cSt.

Page 140

Refrigerant Database

Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 147-152, July 1994 (6 pages with 6 figures and 2 tables, RDB-4819)

R-32, R-125, R-134a, R-143a, tetraesters, pentaerythritol, polyolesters

B. Jacobson (SKF Engineering & Research Centre B.V, Nieuwegein, The Netherlands), Lubrication of Screw Compressor Bearings Used in the Presence of Refrigerants, Proceedings of the 1994 International Compressor Engineering Conference at Purdue, edited by W. Soedel, Purdue University, West Lafayette, IN, 1:115-120, July 1994 (6 pages with 3 figures and 3 tables, RDB5A03)

R-22 and naphthenic mineral oil; R-134a and polyol ester lubricant, EHL theory

Investigation of moisture impacts with use of polyol ester (POE) lubricants; potential for acid contamination of systems using hydrofluorocarbon (HFC) refrigerants and POEs from the lubricant and additive hydrolysis; water potential and role of desiccants in refrigeration systems; bench and accelerated compressor testing shows that hydrolysis increases, as evidenced by a decrease in water and increase in total acid number (TAN); role of the carboxylic acid from POE hydrolysis over a 5000 hr test; experiments show that moisture can be transferred from desiccants to lubricants and that the water content of lubricants reaches an equilibrium with other parts of the system; capillary tube blockage tests with wet and dry systems, each with and without a desiccant show low blockage in dry systems, but a quick increase when doped with carboxylic acid; the paper concludes that moderate water contamination of refrigeration systems may be less of a long-term problem than perceived; it further concludes that while POEs can undergo hydrolysis with sufficient water, the combination of desiccant use and affinity of refrigerants to associate with water reduce its contact with the lubricant; finally, that use of POEs prepared with α-branched acids and use of hydrolysis inhibiting additives further reduce the potential for lubricant degradation

S. T. Jolley, The Performance of Synthetic Ester Lubricants in Mobile Air-Conditioning Systems, unpublished presentation at the Society of Automotive Engineers (SAE) Passenger Car Meeting and Exposition (Nashville, TN, 16-19 September 1991); unpublished presentation repeated at the International CFC and Halon Alternatives Conference (Baltimore, MD, 3-5 December 1991); Lubrizol Corporation, Wickliffe, OH, 1991 (14 pages with 3 figures and 6 tables, available from JMC as RDB2C07)

The publication reviews polyol ester chemistry and the reactions of alcohol and carboxylic acid to produce them. The variety of lubricants that can be produced from neopentylglycol (NPG), glycerine (GLY), trimethylolpropane (TMP) and pentaerythritol (PER) polyols (alcohols with multiple hydroxyl reaction sites) is illustrated. A table demonstrates the influence of the alcohol type on viscosity and miscibility using the same carboxylic acid. A second table shows that when similar lubricants, with the same viscosity are prepared, differences occur in miscibility with R-134a. GLY and NPG fluids exhibit the poorest and highest solubility, respectively. Tabulated results of sealed-tube tests of R-134a and lubricant in the presence of iron, copper, and aluminum show high thermal stability for a number of polyolesters, generally superior to that of R-12 with mineral oil. The more reactive systems tended to be those with high water content or residual carboxylic acid. Data are presented on the same refrigerant-lubricant pairs with addition of controlled amounts of water, to examine hydrolytic stability. Resultant increases in acid number are discussed, but caveted that higher acid levels might occur with additives instead of the base lubricants tested. A figure summarizes elastomer swell for mineral oil as well as NPG, TMP, and PER esters for NBR, H-NBR, EPDM, nitrile, neoprene, and Butyl; the paper notes that further testing is needed. It then discusses miscibility with mineral oil, a concern for retrofit of automobile air conditioners with R-134a and esters. TMP and PER esters are indicated to be fully compatible with both residual R-12 and mineral oil. Compressor tests are summarized, to address the influence of viscosity on durability and the role of unidentified additives. The paper indicates that equivalent performance to R-12 and mineral oil can be obtained with polyesters and appropriate additive packages. The paper concludes that polyesters appear ideal for use in automobile air conditioner systems, and that they can be tailored for specific needs.
S. Kitaichi, S. Sato, R. Ishidoya, and T. Machida (Toshiba Corporation, Japan), Tribological Analysis of Metal Interface Reactions in Lubricant Oils/CFC-12 and HFC-134a System, Proceedings of the 1990 USNC/IIR-Purdue Refrigeration Conference and ASHRAE-Purdue CFC Conference, edited by D. R. Tree, Purdue University, West Lafayette, IN, 153-162, July 1990 (10 pages with 13 figures and 3 tables, RDB4C23)

R-12, R-134a

R-134a, polyolester (POE) lubricants

polyalkylene glycol (PAG) polyolester (POE) lubricants

S. Komatsuzaki and T. Iizuka (Hitachi Limited, Japan), Miscibility and Lubricity of Polyol Esters-based Refrigerant Lubricants, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 92-99, October 1993 (8 pages with 9 figures and 1 table, available from JMC as RDB3A31)

This paper provides data on the miscibility and lubricity of mixtures of R-134a with polyolester (POE) lubricants, including neopentyl glycol (NPG), pentaerythritol (PE), and trimethylpropane (TMP) esters. It briefly reviews the rationale for transition to hydrofluorocarbon refrigerants and the accompanying introduction of new lubricants and other materials. It cites the dependence on hydrogen bonding between the refrigerant and lubricant for miscibility, and discusses the influence of the lubricant's molecular structure on miscibility. The paper reviews the manufacture of esters from reactions of alcohols with fatty acids. Figures show the miscibility of R-134a with TMP and PE esters as well as with fatty acids as functions of temperature and lubricant fraction for straight- and branched-chain acids. The paper then discusses and shows plots of the upper critical solution temperature (UCST) dependence on the number of carbon atoms in the acids for NPG, PE, and TMP esters. The paper discusses the anticipated use of R-32 in blends and tabulates the viscosity of eight POEs and their UCSTs with R-32 and R-134a. It discusses lubricity tests and notes that measured results were entirely different in refrigerant and air environments. It describes lubricity tests with refrigerant lubricant mixtures and gives plots for R-12 with alkylbenzene and for R-134a with an unidentified, additized, TMP ester. A final plot shows the seizure load dependence of these mixtures on the refrigerant-lubricant ratio. The paper concludes that better miscibility can be achieved with branched acids and that higher lubricity is needed with R-134a than with R-12, since the refrigerant offers no lubricity itself. Further, the use of extreme pressure (EP) additives allows R-134a/POE mixtures to match the lubricity of R-12 with mineral oils or alkylbenzenes. The paper notes, however, that the lubricity of R-134a/POE drops sharply when the refrigerant exceeds 50% of the mixture by volume.

R-134a, PAG

polyolester, POE

polybasic ester (PBE) lubricants resulting from reactions of acrylate esters with malonate-esters (malonate-acrylate Michael adducts)

K. C. Lilje and M. Sabahi (Albermarle Corporation), A Novel Class of Synthetic Lubricants Designed for HFC Compressors, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference,
polybasic ester (PBE) lubricants resulting from reactions of acrylate esters with malonate esters; physical properties, role of additives, chemical and hydrolytic stability, Falex wear tests, hygroscopicity, compressor testing

W. L. Martz (Ford Motor Company), C. M. Burton, and A. M. Jacobi (University of Illinois at Urbana-Champaign), Vapor-Liquid Equilibria for R-22, R-134a, R-125, and R-32/125 with a Polyol Ester Lubricant: Measurements and Departure from Ideality, Transactions (Winter Meeting, Atlanta, GA, 17-21 February 1996), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 102(1):367-374, 1996 (9 pages with 10 figures and 1 table, RDB7A25)

presents the effects of a polyolester (POE) lubricant on equilibrium pressure, liquid density, and viscosity for R-22, R-125, and R-134a at varying temperatures and concentrations; also presents preliminary vapor-liquid equilibrium (VLE) data and miscibility observations for R-410A with the ISO 68 POE; summarizes modeling of real-gas behavior using the vapor-phase fugacity and accounting for the vapor pressure effects on liquid fugacities with the Poynting effect; positive, negative, and mixed deviations from the Lewis-Randall rule are observed in the activity coefficient behavior; departures from ideal behavior are related to molecular size differences, intermolecular forces in the mixture, and other factors

W. L. Martz (Ford Motor Company), C. M. Burton (University of Illinois at Urbana-Champaign), and A. M. Jacobi (Ford), Local Composition Modeling of the Thermodynamic Properties of Refrigerant and Oil Mixtures, International Journal of Refrigeration (IJR), 19(1):25-33, January 1996 (9 pages with 5 figures and 2 tables, RDB7A26)

describes six local composition models for the thermodynamic behavior of refrigerant-lubricant mixtures; compares the predictive abilities of the models for R-12, R-22, R-125, and R-134a with various oils; published data; concludes that the Wilson (an extension of Flory-Huggins theory) and Heil (semi-empirical) equations provide the most consistent results, with the Heil equation providing a modest improvement over the Wilson model; other models addressed include nonrandom, two-liquid theory (NTRL), Tsuboka and Katayama, Wang and Chao, and universal, quasi-chemical theory (UNIQUAC)

T. Matsuzaki and M. Akei (Calsonic Corporation), The Friction and Wear Behavior in Refrigerant

S. Macaudiere, A. Giraud, P. Weiss (Elf Atochem S.A., France) and P. Sanvi (Elf Centre de Recherche de Solaise, France), Experimental Assessment of Oil Return with CFC and HCFC Alternatives, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 115-123, November 1997 (9 pages with 7 figures and 2 tables, RDB8334)

discusses factors that influence lubricant selections including refrigerant-lubricant miscibility, refrigerant solubility in the oil, and fluidity; presents a test device to measure oil-return; plots miscibility for R-12, R-134a, R-409A, and 2 unidentified blends with a napthenic mineral oil (Witco Suniso(R) 3GS); plots and tabulates solubility and plots oil-return rates for the same combinations; compares miscibility for R-22 and R-407C with a mineral oil, alkylbenzene (AB), polyolester (POE), and polyvinyl ether (PVE) lubricants; concludes that oil return is more related to miscibility at low temperature than at medium or high temperatures

presents a two-parameter model to predict the liquid viscosity of refrigerant-lubricant mixtures: model is described as similar to the Wohl [n] suffix expansion for nonideal liquid mixtures; model is compared to the Arrhenius, Frenkel, Grunberg-Nissan, Kendall, McAllister (3- and 4-body), and Yokozeki models; paper presents plots of the viscosity as a function of the refrigerant mass fractions for R-22 with an alkylbenzene (AB), R-134a with a polyolester (POE), and R-410A with a polyvinyl ether (PVE); these plots show the comparative abilities of the identified models to represent the full range, including refrigerant-rich and lubricant-rich mixtures; concludes that the new model is adequate for most engineering applications, but notes that further studies with multicomponent mixtures and other refrigerant-lubricant combinations are underway

lubricant performance

R-407C; carbonate, ester, and ether synthetic lubricants; hindered and nonhindered carbonates; lubricity, viscosity, miscibility, stability with metals

M. Muraki, K. Takagawa (Mitsubishi Oil Company, Limited, Japan), and D. Dong (Sanseki Techno Company, Limited, Japan), *Refrigeration Lubricant Based on Polyolster for Use with HFCs and Prospect or Its Application with R-22 (Part 1) Tribological Considerations*, Proceedings of the 1996 International Refrigeration Conferences at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 273-278, July 1996 (6 pages with 10 figures and 3 tables, RDB56916)

tribological behavior for a pentaerythritol type polyolster (POE) base and formulated oils and an alkylbenzene having a branched alkyl substituent with R-22, R-134a, R-404A, and R-407C effects of refrigerants and additives; surface observations and analysis

miscibility, hydrolytic stability, tribology, wear, rotary rolling-piston compressor, R-32/125/124a

R-134a, polyolster

This report provides detailed miscibility data for 10 alternative refrigerants with 14 lubricants, based on experiments conducted in two phases. The first involved screening using refrigerant concentrations of 10, 50, and 95%. The second entailed further measurements at 20, 35, 65, 80, and 90%. The report presents the methods, apparatus based on test cells in temperature-controlled baths, and significant results. Ten tables summarize the miscibility data for each refrigerant by nominal concentration in each of 14 lubricants. 72 plots show the miscible and immiscible regions by mass fraction (0.0 to 1.0) and temperature (-50 to 60 °C, -58 to 140 °F); plots are omitted for combinations exhibiting full miscibility. The refrigerants are R-22, R-32, R-123, R-124, R-125, R-134a, R-142b, R-143a, and R-152a. The lubricants include two napthenic mineral oils (Witco Suniso© 3GS and 4GS) and two alkylbenzenes (Shrieve Ze-rol© 150 and 300). They also included five polyalkylene glycol (PAG) samples: two polypropylene glycol butyl monoethers (ICI Emka-rox© VG32 and VG58), two polypropylene gly-
polycols (Dow Chemical P425 and P1200), and a modified polyglycol (AlliedSignal BRL-150).

Five polyolesters (POE) were tested, all pentaerythritol esters: three mixed acids (ICI Emkarate™ RL 22H, formerly identified as RL 244, and Castrol Icematic(R) SW32 and SW100) and two branched acids (Henkel Emery(R) 2E2927 and 2E2928). Each of the refrigerants tested is miscible with at least one of the lubricants, with the exception of R-143a, which exhibits partial miscibility with each of the lubricants. The moisture, iron, and copper contents as well as acid numbers are tabulated for the test lubricants. An appendix comprising 140 tables provides a summary of qualitative observations (two phase, clear, slightly hazy, or hazy) by nominal temperature and concentration as well as the precise measurements of the mass fractions and actual temperatures.

lubricant recovery, disposal and reuse of oils

polyester (POE) lubricants, storage, handling, safety, additives, disposal and reuse of oils

summary of bench test evaluations of enhanced naphthenic mineral oil (MO) lubricants for hydrochlorofluorocarbon (HCFC) refrigerants; comparisons to polyester (POE) lubricants; compatibility; stability; lubrication performance; wear; viscosity; heat transfer; properties; retrofit

This paper presents an experimental study to evaluate oil return in domestic refrigerator-freezers using R-134a. A refrigerant immiscible, naphthenic mineral oil (MO, Witco Suniso(R) 1GS) was tested in a 0.6 m³ (20 cf) side-by-side refrigerator and in a 0.4 m³ (14.6 cf) top-mount unit for 22 months. The aim was to demonstrate suitability of the lubricant and that proper oil return results. The same lubricant type was compared to a fully miscible polyester (POE, Suniso(R) 1GS SL-10) in a test stand, designed with a difficult oil-return configuration. Tabular data are presented to compare the cabinet and freezer temperatures for drop-in evaluation of the mineral oil with R-12 and R-134a and to compare the typical properties of the mineral oil and POE. A third table summarizes the test conditions for the oil-return test stand. Plots show the gas solubility and viscosity curves for each lubricant in R-134a at -23 and 0 °C (-10 and 32 °F). The experimental procedures and findings are discussed. The paper concludes that oil return to the compressor is very similar for both lubricants at typical suction conditions similar for domestic refrigerators. Refrigerant gas velocity is noted as playing an important role in lubricant return for poor oil return configurations. The results also show that differences in cabinet and freezer temperatures, between the two refrigerant/lubricant systems, are not due to oil trapping in the heat exchangers.

J. L. Reyes-Gavilán (Witco Corporation), Lubricants for Refrigeration Compressor Applications, seminar presentation charts (Annual Meeting of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, ASHRAE, Denver), Witco Corporation, Oakland, NJ, June 1993 (19 pages with 3 figures and 9 tables, available from JMC as RDB3A01)

These charts summarize an unpublished presentation on possible lubricant choices for use with hydrochlorofluorocarbon (HCFC) refrigerants. The provide bench test and performance evaluation findings on polyester (POE), dibasic acid ester, and naphthenic mineral oil (MO) lubricants. Two charts summarize typical properties of seven POEs (Witco Suniso(R) SL10, SL15, SL22, SL32, SL46, SL68, and SL100) and three dibasic acid esters (Witco R-72-0A, R-72-0B, and R-83-0). Stability test results in the presence of R-134a, steel, copper, and aluminum at 175 °C (347 °F) for up to 56 days and Falex wear evaluations are presented for four base and four additized POEs and the three dibasic acid esters. Hydrolytic stability test findings also are tabulated. A table summarizes
miscibility ranges for four of the POEs with R-125, R-134a, R-404A, R-125/143a (45/55), R-32/125 (60/40), and R-32/125/134a (formulation unspecified). Viscosity and solubility with R-134a are plotted for SL10 and SL32 at 125 °C (257 °F) and for a mineral oil (Witco Sunisol® 1GS) at 0 °C (32 °F).

J. L. Reyes-Gavilán (Witco Corporation), Performance Evaluation of Naphthenic and Synthetic Oils in Reciprocating Compressors Employing R-134a as the Refrigerant, paper 3656, Transactions (Winter Meeting, Chicago, IL, 23-27 January 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 99(1):349-360, 1993 (12 pages with 12 figures and 6 tables, limited copies available from JMC as RDB4C35)

Lubricating ability and materials compatibility of naphthenic mineral oil (MO), alkylbenzene, polyalkylene glycol (PAG), and polyolester (POE) lubricants; wear, copper plating, discoloration.

Properties of polyalkylene glycol (PAG) and polyolester lubricants are examined, with emphasis on inherent thermal stability and suitability for use with R-134a in refrigeration compressors. The PAGs addressed include diols, monoethers, ester-ethers, and diethers, all stabilized with 200 ppm BHT. Plots of hygroscopicity and miscibility of PAGs with mineral oils are provided. The decomposition kinetics, based on sealed-tube tests, are tabulated. The effects summarized include temperature (177-260 °C, 350-500 °F), presence of metals (steel, copper, and aluminum) or R-134a, and PAG type. Problems of hygroscopicity, incomplete miscibility with mineral oils, and incompatibility with chlorinated solvents exist, but they can be handled by proper housekeeping procedures. Lack of thermal stability, even in the absence of metals, at 177-204 °C (350-400 °F) is identified as a key shortcoming for the PAG candidates. The effects of time, metal catalysts, and initial moisture are tabulated for polyolesters, again at elevated temperatures (204-260 °C, 400-500 °F). Pentaerythritol tetraester is emphasized due, in part, to its better miscibility with R-134a compared to other neopentyl esters. Decomposition also was observed, but only in the presence of steel. A metal passivator specific to steel was found to provide a simple remedy.

PEK

T. K. Shereitov and C. Cusano, Tribological Evaluation of Compressor Contacts - Retrofitting and Materials Studies, report TR-46, Air-Conditioning and Refrigeration Center (ACRC), University of Illinois at Urbana-Champaign, Urbana, IL, July 1993 (149 pages, rdb4C41)

lubricants, test methods

Overview of synthetic lubricants including alkylbenzene (AB), carbonates, fluorosilicones, mineral oil, perfluoroethers, polyalphaolefin (PAO), polyalkylene glycol (PAG), polyolester (POE), PAG-ester blends, and other esters; table showing use of these lubricants for R-22, R-23, R-123, and R-134a; miscibility, solubility, viscosity, stability, system cleanliness, and wear and compressor durability tests with hydrofluorocarbon (HFC) refrigerants; reviews options for R-717 (ammonia) and hydrocarbons; miscibility of difunctional PAGs of differing average molecular weight (AMU) with R-134a; miscibility changes of POEs from different starting alcohols (dipentaerythritol, pentaerythritol, and trimethylol propane bases); comparative miscibility of three experimental lubricants with R-23, R-134a, R-404A, and R-410A; Daniel Plots with R-134a and R-404A; relative dilution of three POE lubricants with R-404A.

This paper provides an update on lubricants for use with hydrofluorocarbon (HFC) refrigerants and HFC blends. It also summarizes evaluations of several synthetic lubricants and the
tests necessary to insure that a lubricant will provide expected durability and performance with refrigerants. The paper identifies near-term alternatives for common chlorofluorocarbon (CFC) refrigerants, and provides tabular summaries of both candidate refrigerants and recommended lubricant types for use with R-22, R-23, R-123, and R-134a. The paper describes the derivation, applications, characteristics, and experience with several lubricants. They include polyol ester (POEs), polyalkylene glycols (PAGs), modified PAGs, diesters, PAG esters, carbonates, fluoroethers, fluoroolefins, and alkybenzenes. Tables provide recommended viscosity ranges for different compressor types, refrigerant-lubricant miscibility data for R-22 and replacement candidates, lubricity findings (based on Falex pin and v-block tests) for ester lubricants and mineral oil with steel on steel, and the effects of additives on lubricant stability. The paper discusses miscibility, viscosity dilution, lubricity tests, chemical and thermal stability, and compatibility of refrigerant-lubricant combinations with other materials. Four figures illustrate the viscosity-temperature-pressure relations for R-22 with a 32 ISO alkylbenzene, R-134a with a 68 ISO PAG, R-134a with a 68 ISO POE, and R-134a and R-12 with a 46 ISO POE. The paper briefly cites findings with retrofits and field experience of PAGs and POEs, and notes that neither are suitable for use with R-717 (ammonia). The paper concludes that POEs appear to be the choice for HFCs and dialkylbenzenes with HCFC-123 and HFC/HCFC blends. It notes that POEs are preferred over PAGs for retrofit due to their miscibility and their compatibility with residual chlorine.

This paper describes the development of high-viscosity (ISO 68 and above), modified polyol ester lubricants and their interactions with refrigerants. Typical properties are presented for 11 conventional and modified pentaerythritol (PE) esters, including several di- and tri-PEs, as well as for a modified trimethylolpropane (TMP) ester. Data are reported with R-123, R-134a, R-152a, R-134, and R-224. The apparatus used to measure viscosity and density is described. The viscosity of a modified, high-viscosity ester with R-134a is presented for evaluation of the hydrodynamic lubrication and sealing of compression areas. Chemical and thermal stability and lubricity test results are provided for durability considerations.

G. D. Short (CPI Engineering Services, Incorporated) and R. C. Cavestri (Imagination Resources, Incorporated, IRI), Selection and Performance of Synthetic and Semi-Synthetic Lubricants for Use with Alternative Refrigerants in Refrigeration Applications, Proceedings of the 1990 USNC/IIAR/Purdue Refrigeration Conference and ASHRAE/Purdue CFC Conference, ed. by D. R. Tree, Purdue University, West Lafayette, IN, 163-172, July 1990 (10 pages with 10 figures, RDB2220)

This paper reviews the requirements and use of synthetic fluids as lubricants for refrigeration systems. R-12, R-13, R-22, R-114, R-134a, R-502, R-503, propane (R-290), and ammonia (R-717) are addressed. Requirements are discussed for thermal and chemical stability, miscibility, solubility, and viscosity. Failure mechanisms including improper viscosity, dilution, loss or breakdown of lubricant, failure of hydrodynamic lubrication, foaming, and starvation related to solubility and miscibility characteristics are reviewed for rotary screw, reciprocating piston, and rotary vane (both fixed and rotating) compressors. Petroleum-based, including both naphthenic and high-viscosity index (HVI) paraffinic mineral oils, and synthetic lubricants are discussed. The synthetics are grouped as polyalphaolefin (PAO), alkylbenzene, and polyalkylene glycol (PAGs) synthetic hydrocarbon (SCH) oils. They also include esters such as diesters (or dibasic acid esters), neopentyl (or polyol) esters, and modified complex esters. The chemical structures and characteristics of these lubricants are reviewed, and viscosity and miscibility plots are provided for representative refrigerant-lubricant systems. Typical properties are tabulated for complex esters of ISO 150 and 320 viscosity. The unique requirements for R-134a, propane (R-290), and ammonia (R-717) are outlined, concluding that the synthetic lubricants described offer a major contribution for system advancement.

PAO lubricants; review of polyolester (POE) lubricants made by combining neopentyl alcohols with organic acids; alcohols include neopentyl...
glycol (NPG), trimethyl propane (TMP), pentaerythritol (PE), and dipentaerythritol (Di-PE) types

This paper addresses differences in interactions between R-134a with synthetic lubricants and chlorofluorocarbons (CFCs) with mineral oils. The discussion notes the importance of refrigerant-lubricant solubility for oil return to the compressor. The consequence role of the refrigerant as a lubricant contaminant, and specifically reduction in viscosity and hydrodynamic lubrication, is examined. The effect of rapid refrigerant vapor release, called foaming, is explained. A plot compares the vapor pressure of R-134a in a polyol (POE) to R-12 in a mineral oil (MO) at 77 and 79 °C (160 and 174 °F) with 6-70% refrigerant. The nature of the resultant foams are characterized, that for R-12/MO as a stable froth and that of R-134a/POE as an unstable or quick breaking foam. Comparative foam heights are plotted and contrasted for oil-rich conditions, as in compressor crankcases, and oil-lean conditions, as in evaporators of centrifugal chillers. Significant differences are noted for the former. Desorption dynamics of the two refrigerant-lubricant pairs are discussed and plotted under driving temperature differences of 37 and 171 °C (67 and 308 °F). R-134a is shown to desorb more rapidly at common thermal gradients. The paper concludes that vapor-venting needs to be altered in R-134a compressors. While the change can be readily dealt with in new designs, the difference in venting must be considered in equipment conversions. The paper notes a need to examine effects of different foaming characteristics on heat transfer.

L. I. Sjöholm (Teknikgruppen AB) and G. D. Short (CPI Engineering Services, Incorporated), Twin-Screw Compressor Performance and Complex Ester Lubricants with HCFC-22, Proceedings of the 1990 International Compressor Engineering Conference at Purdue, edited by W. Soedel, Purdue University, West Lafayette, IN, 724-732, July 1990 (9 pages with 8 figures, RDB2222)

L. I. Sjöholm (Teknikgruppen AB) and G. D. Short (CPI Engineering Services, Incorporated), Twin-Screw Compressor Performance and Suitable Lubricants with HFC-134a, Proceedings of the 1990 International Compressor Engineering Conference at Purdue, edited by W. Soedel, Purdue University, West Lafayette, IN, 733-740, July 1990 (8 pages with 7 figures (8 pages, RDB2223)

This paper addresses differences in interactions between R-134a with synthetic lubricants and chlorofluorocarbons (CFCs) with mineral oils. The discussion notes the importance of refrigerant-lubricant solubility for oil return to the compressor. The consequence role of the refrigerant as a lubricant contaminant, and specifically reduction in viscosity and hydrodynamic lubrication, is examined. The effect of rapid refrigerant vapor release, called foaming, is explained. A plot compares the vapor pressure of R-134a in a polyol (POE) to R-12 in a mineral oil (MO) at 77 and 79 °C (160 and 174 °F) with 6-70% refrigerant. The nature of the resultant foams are characterized, that for R-12/MO as a stable froth and that of R-134a/POE as an unstable or quick breaking foam. Comparative foam heights are plotted and contrasted for oil-rich conditions, as in compressor crankcases, and oil-lean conditions, as in evaporators of centrifugal chillers. Significant differences are noted for the former. Desorption dynamics of the two refrigerant-lubricant pairs are discussed and plotted under driving temperature differences of 37 and 171 °C (67 and 308 °F). R-134a is shown to desorb more rapidly at common thermal gradients. The paper concludes that vapor-venting needs to be altered in R-134a compressors. While the change can be readily dealt with in new designs, the difference in venting must be considered in equipment conversions. The paper notes a need to examine effects of different foaming characteristics on heat transfer.

L. I. Sjöholm (Teknikgruppen AB) and G. D. Short (CPI Engineering Services, Incorporated), Twin-Screw Compressor Performance and Complex Ester Lubricants with HCFC-22, Proceedings of the 1990 International Compressor Engineering Conference at Purdue, edited by W. Soedel, Purdue University, West Lafayette, IN, 724-732, July 1990 (9 pages with 8 figures, RDB2222)

L. I. Sjöholm (Teknikgruppen AB) and G. D. Short (CPI Engineering Services, Incorporated), Twin-Screw Compressor Performance and Suitable Lubricants with HFC-134a, Proceedings of the 1990 International Compressor Engineering Conference at Purdue, edited by W. Soedel, Purdue University, West Lafayette, IN, 733-740, July 1990 (8 pages with 7 figures (8 pages, RDB2223)

S. G. Sundaresan (Copeland Corporation), Compressor Tribology and Other System Requirements for POE Lubricants with HFC Refrigerants, paper 6.5, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 156-161, December 1994 (6 pages with 5 tables, available from JMC as RDB5429)

tribology, polyolester lubricants, oil return, heat transfer

low viscosity alkylbenzene (AB) lubricants, solubility with refrigerants, oil return, miscibility at high temperatures, effects of impurities, chemical stability, lubricity

M. Sunami, K. Takigawa, and S. Suda (Nippon Oil Company Limited, Japan), Optimization of POE Type Refrigeration Lubricants, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 153-158, July 1994 (6 pages with 6 figures and 9 tables, RDB-4820)

M. Sunami, K. Takigawa, and S. Suda (Nippon Oil Company Limited, Japan), New Non-Ester Type Lubricants for Alternative Refrigerants, paper 6.5, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 113-118; December 1994 (6 pages with 6 figures and 3 tables; in Japanese with abstract, figures, and tables in English; RDB5421)

R-22 with mineral oil, R-134a with new non-ester synthetic lubricant, lubricity, contamination, stability with metals

R-717, miscible polyalkylene glycol (PAG) lubricant; stability; lubricity; comparisons to alkylbenzene (AB), naphthenic mineral oil, and polyolester (POE) lubricants; properties

K. Takahata, M. Tanaka, T. Hayashi, K. Mizui, and N. Sakamoto (Mitsui Petrochemical Industries, Limited, Japan), New Lube Oil for Stationary Air Conditioner, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 141-146, July 1994 (6 pages with 4 figures and 7 tables, RDB4818)

carbonated lubricants, R-407C

measurements of the solubilities for mixtures of R-32 and a Kyodo Oil polyolester lubricant; apparatus is described and shown schematically; concludes that R-32 and POE are partially miscible

Y. Takaishi, M. Izumi, and K. Oguchi (Kanagawa Institute of Technology, Japan), Measurements of the Solubility for the System of HFC-125 and Polyol Ester Lubricant, CFCs, the Day After (proceedings of the IIR meeting, Padova, Italy, 1994), International Institute of Refrigeration (IIR), Paris, France, 99-105, September 1994 (7 pages, RDB6526)

R-125, polyolester (POE) lubricant, properties

Y. Takaishi and K. Oguchi (Kanagawa Institute of Technology, Japan), Solubility of the Solutions of HFC-134a and Polyol Ester Based Oil, Energy Efficiency and Global Warming Impact (proceedings of the meetings of Commissions B1 and B2, Ghent, Belgium 12-14 May 1993), International Institute of Refrigeration (IIR), Paris, France, 141-148, 1993 (8 pages with 5 figures and 2 tables, RDB5310)

R-134a, polyolester (POE) lubricant

solvent; stability; lubricity; comparisons to alkylbenzene (AB), naphthenic mineral oil, and polyolester (POE) lubricants; properties

Solubility and miscibility data are presented for R-134a with two polyalkylene glycol (PAG) lubricants (AP-150 and AP-500) and three modified PAGs (BRL-150, BRL-300, and BRL-500). Solubility was determined by measuring the equilibrium vapor pressure of mixtures of 10-90% refrigerant (by weight) in the lubricants for 10-70°C (50-158°F). Miscibility was determined by visual observation of a sealed sample immersed in a thermostatted bath for a range of -60 to 70°C (-76 to 158 °F). Differences in miscibility curve characteristics are contrasted to mineral oils. The paper examines occurrence of lower critical solution temperatures (LCSTs). Similarities of refrigerant-oil systems to solvent-polymer solutions are addressed, leading to correlations of the solubility data using the Flory-Huggins theory. While further analysis is indicated, Flory-Huggins type plots allow deduction of composition in a refrigerant-lubricant system, given the temperature and pressure and assuming equilibrium.

This paper provides solubility data on a mixture of 60.32% R-32 and 39.68% R-125, by weight, with two synthetic lubricants. This nonsegregating refrigerant blend is proposed as a candidate replacement for R-22 in medium- and high-temperature applications, with evaporator temperatures of -23 to 4°C (-10 to 40 °F). The lubri
cants examined were a modified polyalkylene glycol (PAG) and a PAG diol, BRL-150 and AP150 respectively. Tests also were made with mineral oils and alkylbenzene lubricants, but the refrigerant mixture was found to be immiscible with them. By contrast, the refrigerant was found miscible in the two PAGs from -60 to at least 55 °C (-76 to 131 °F). The same lubricants also are suitable for use with R-134a. The miscibility of the refrigerant-lubricant mixture was determined by sealing samples in thermostated glass tubes and visually observing the contents. The solubility was studied by determining the equilibrium vapor pressure at constant compositions as a function of temperature. The experimental apparatus and procedure is described. Measured vapor-pressure are tabulated, compared to earlier data, and extrapolated using Flory-Huggins theory. The relative pressure is tabulated at different temperatures for fixed fractions of lubricant by volume for verification. Plots are provided for both pressure and relative pressure versus volume fraction of lubricant, from 0.0 to 1.0, for R-32/125 in the modified PAG. The text observes that the solubility for the PAG diol is of the same order.

The solubilities and viscosities of mixtures of R-134a with two modified polyalkylene glycol (PAG) lubricants are reported. The piston-cylinder type viscometer and apparatus for measuring solubility are described. The solubility of R-134a in BRL-150 (150 SUS experimental lubricant) is plotted for 10-70 °C (50-158 °F) in concentrations of 0-100%. Its viscosity in BRL-150 and BRL-300 (300 SUS) is plotted both as functions of temperature for -20 to 80 °C (4 to 176 °F) and pressure. Analysis of the solubility shows that it can be described by the Flory-Huggins theory.

S. I. Tseregounis (General Motors Corporation), Wear and Galling of 356-T6 Aluminum-on-Steel in Low Amplitude Reciprocating Sliding in the Presence of Synthetic Lubricants in HFC-134a Atmosphere, paper 95-AM-1C-1 (50th Annual Meeting, Chicago, IL, 14-19 May 1995), Society of Tribologists and Lubrication Engineers (STLE), 1995 (12 pages with 15 figures and 4 tables, RDB-5A08)

This paper presents bench tests of wear and galling of aluminum (A356-T6) against steel (SAE 4620 carburized) in refrigerant-lubricant atmospheres. The tests were performed using a Falex test machine, modified to provide low-amplitude reciprocating motion with 5° oscillation, in a block-on-ring test arrangement. R-12 was examined with a mineral oil (GM M100), containing minimal antioxidant, as a reference. R-134a was tested with seven lubricants including the same mineral oil, five polyalkylene glycols (PAGs), and a polyolester (MO2D) containing tricresyl phosphate (TCP) and antitrust and extreme pressure (EP) additives. The PAG lubricants included a 50/50 ethylene oxide/propane oxide, butanediol initiated polyglycol (50HB); the same base stock with phosphate and triazole-derivative antitrust additives and amino corrosion inhibitors (U8); an esterified polypropylene oxide glycol (D1); and additized version (G551) of it; and a blended polyglycol (B0354). Of these, M100 and U8 are indicated to be the factory fill used in production of R-12 and R-134a automotive air conditioners, respectively. The paper summarizes background studies, wear mechanisms, preventive measures, and the experimental details. The test arrangement is shown schematically. The paper then identifies the materials tested in tables and presents the investigation. The extents of galling and wear are shown in plots, photographs, SEM analyses, and electron microprobe (EMP) analyses. The R-12/M100 case resulted in the lowest wear and almost no galling, attributed to formation of halide (mainly chloride) antitrust and EP films that protect the aluminum surface. The R-134a/M100 case also
resulted in low wear and galling, possibly because the low solubility of R-134a in the oil prevented removal of the lubricant film. High wear and galling with R-134a is attributed to the absence of oil or antiwear films. The paper notes that fluorine-containing films do not offer any protection against wear and galling under the conditions examined. It concludes that the presence of a lubricant film and/or EP or antiwear films (chlorides primarily) prevent metal-to-metal contact and damage of the aluminum surface.

S. I. Tseregounis and M. J. Riley (General Motors Corporation), Solubility of HFC-134a Refrigerant in Glycol-Type Compounds: Effects of Glycol Structure, AIChE Journal, 40:726 ff, 1994 (rdb7643)

R-134a/PAG, polyalkylene glycol, refrigerant lubricant properties

solubility and viscosity of R-22 with a commonly-used, 150 SUS, naphthenic mineral oil (MO) and a 150 SUS alkylbenzene lubricant: presents measurements for mixtures of 10-40% R-22 by mass for 38-149 °C (100-300 °F); provides empirical correlations of these data and compares the findings to previously published data

N. A. Van Gaalen, S. C. Zoz, and M. B. Pate (Iowa State University of Science and Technology), The Solubility and Viscosity of Solutions of HCFC-22 in Naphthenic Oil and in Alkylbenzene at High Pressures and Temperatures, Transactions (Annual Meeting, St. Louis, MO, 9-13 June 1990), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 96(2):100-108, 1990 (9 pages with 15 figures and 2 tables; rdb2232)

laboratory measurements of the solubility and viscosity for R-22 with two commonly-used 150 SUS lubricants: reports results for liquid mixtures of 10-40% m/m R-22 in a naphthenic mineral oil (MO) and in an alkylbenzene (AB) for 38-149 °C (100-300 °F); presents a nonlinear regression analysis that provides empirical correlations of these data; reports reasonable agreement with the limited published data

polyester (POE), synthetic ester, thermal stability, wear, hydrolytic stability, desiccant compatibility, capillary tube blockage, endurance capillary tube flow, miscibility, antiwear, load bearing

R-22 and naphthenic mineral oil; R-134a and two polyolester lubricants

This paper reviews the lubrication parameters that influence rolling-bearing performance and examines the effect of refrigerant on the lubricant film thickness and performance. It briefly reviews the differences in lubrication requirements for hydrodynamic and rolling bearings. The paper then outlines the operating characteristics of rolling bearings, with attention to the stresses induced at contacting surfaces and fatigue life. The latter is presented as a ratio of minimum film thickness to composite surface roughness. The paper discusses the rheological properties of lubricants, addressing the dependence of viscosity on both temperature and pressure. A formula is presented for lubricant film thickness based on dimensionless speed, materials, load, and surface size parameters. The paper then describes a test rig built to simulate bearing operating conditions in a screw compressor; the apparatus and a detail of the bearing test head are shown schematically. The paper presents and discusses typical refrigerant concentration in the rig's lubricant "bath" (sump), the refrigerant concentration normalized to the equilibrium concentration based on pressure-temperature-solubility data, and the comparative viscosity of a naphthenic mineral oil and R-22/oil mixture as a function of pressure. It then explains the effect of refrigerant on the pressure-viscosity coefficient and on the viscosity of the lubricant. The effective viscosity is plotted for R-22 with a mineral oil and for R-134a with an unidentified polyol ester lubricant, as functions of the refrigerant concentrations. The paper concludes that the thickness of lubricant films can be predicted at the highly-stressed contacts in rolling bearings. For oil rich (less than 20% refrigerant by weight) solutions, the primary effect of the refrigerant is viscosity reduction. The reduction in the pressure-viscosity coefficient becomes progressively more significant as the refrigerant concentration increases. Performance also depends on whether a single or multiple phases are present, the refrigerant-lubricant temperature, and the pressure.

S. Yokoo, K. Doi, T. Takano (Nissan Motor Company, Limited, Japan), and T. Kaimai (Kyodo Oil Technical Research Center Company, Limited, Japan), Development of a Lubricant for Retrofitting Automotive Air Conditioners for Use with HFC-134a, Climate Control and Automotive Cabin Air Filtration, publication SP-1040, Society of Automotive Engineers (SAE), Warrendale, PA, 57-61, 1994; republished as paper 940594 (SAE International Congress and Exposition, Detroit, MI, 28 February - 3 March 1994), SAE, 1994 (8 pages with 4 figures and 5 tables, RDB4B01)

This paper introduces a new lubricant for use with R-134a, for retrofit of mobile air-conditioning (MAC) systems originally designed for R-12 with mineral oils. The lubricant is described as a block polymer polyalkylene glycol (PAG). The paper briefly reviews the introduction of R-134a for use in new and retrofit MAC applications. It notes that the chlorine in R-12 helps to lubricate compressors, by acting as an extreme pressure (EP) agent. Consequently, retrofit with chlorine-free R-134a requires a lubricant with high enough lubricity to compensate for this lack of a lubricating agent. Moreover, the lubricant must be suitable in the retrofit environment. The paper indicates that antwear additives in the retrofit lubricant may transfer to residual mineral oil, thereby reducing lubricity since the mineral oil would be insoluble in R-134a. Further, residual R-12 or moisture may degrade the chemical stability of PAG lubricants. Metal chlorides formed from prior operation with R-12 may be hydrolyzed by moisture from the lubricant, producing hydrochloric acid and resultant chemical attack. The paper outlines the development of the new lubricant specifically for wobble-plate, variable displacement compressors. A table compares the structures, lubricity, hygroscopicity, and R-134a miscibility of three PAG classes comprising alkyl, propylene oxide, and ethylene oxide groups. It also discusses use of a benzo triazole (BTA) derivative, as an antwear additive and corrosion preventive agent to protect copper alloys. The antwear effect is attributed to adsorption of the BTA element on copper surfaces and to the friction-reducing action of the long-chain alkyl groups, which form the oil film. Figures show pin and bearing wear as functions of the BTA quantity added in Falex pin and v-block tests and compressor tests. Oiliness and phosphate additives, to protect aluminum anti-rotation mechanisms, also are discussed. The use of an organic molybdenum compound as an EP agent was tested, but not selected to avoid degradation of the lubricant stability. Acceptance criteria and data on compatibility with
organic materials, based on sealed-tube and autoclave tests, are tabulated for the new lubricant.

B. Yudin, M. Bolarski, and C. S. Munday, Influence of HCFC and Hydrocarbon Components in Blend Refrigerants on Oil-Refrigerant Miscibility, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 106-114, November 1997 (9 pages with 8 figures and 1 table, RDB-8333)

analysis of the quantity and nature of lubricant-miscible components on blend miscibility with mineral oil based on liquid-liquid equilibrium: presents comparisons for blends incorporating R-134a, including R-416A, with a naphthenic mineral oil (MO, Witco Suniso(R) 4GS); InterCool Energy's product name for R-416A is FRIIC(TM) FR-12, marketed as a replacement for R-12 in mobile air conditioning (MAC) systems

R-134a/152a (80/20 mol/mol), near-azeotropic blends, refrigerant-lubricant properties with a polyether oil (X4-22c-16) and a synthetic polyoxyalceleneglycolic lubricant (X0-134), thermodynamic properties, thermophysical data

S. C. Zoz and M. B. Pate (Iowa State University of Science and Technology), Critical Solution Temperatures for Ten Different Non-CFC Refrigerants with Fourteen Different Lubricants, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 431-436, July 1994 (6 pages with 3 tables, RDB-4856)

S. C. Zoz, L. J. Berkenbosch, and M. B. Pate (Iowa State University of Science and Technology), Miscibility of Seven Different Lubricants with Ten Different non-CFC Refrigerants, paper 3802, Transactions (Annual Meeting, Orlando, FL, 25-29 June 1994), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 100(2):197-207, 1994 (11 pages with 2 figures and 11 tables, RDB4715)

miscibility data for R-22, R-32, R-123, R-124, R-125, R-134, R-142b, R-143a and R-152a with naphthenic mineral oil (MO), alkylbenzene (AB), and polyalkylene polyol (PAG), and polyester (POE) lubricants; refrigerant-lubricant (RL) properties

Moisture Content and Emkarate(TM) RL Ester Lubricants, bulletin 62-0170-160, ICI Americas Incorporated, Wilmington, DE, January 1994 (8 pages with 3 figures, RDB638)

introductory discussion of the hygroscopicity (affinity for moisture) of ester lubricants; plot of typical water absorption rate for polyolester (POE), polyalkylene glycol (PAG), modified PAG, and mineral oils; ways water enters refrigeration systems; water uptake; consequences including loss of performance, ice deposition, corrosion of metals, blockage of expansion devices, copper plating, and poor lubrication; hydrolysis; water pull-down (drying) rates for ester and PAG lubricants with driers; handling and housekeeping recommendations

This project will evaluate three means of measuring the concentration of lubricants circulating in refrigeration systems. The apparatus to be addressed include a viscometer, a densimeter, and an acoustic velocity sensor. The project is a follow-up to a prior project, Real Time Determination of Concentration of Oil Dissolved in Refrigerant Flow Stream Without Sample Removal (365-RP, see ASH0365), completed in January 1988. Three alternative refrigerants will be evaluated, including R-123, R-134a, and a third to be determined. Each will be tested with two lubricants in concentrations of 0-6% at temperatures representative of condenser outlets, namely 24-49 °C (75-120 °F). The contractor for the project is Imagination Resources, Incorporated (IRI), led by R. C. Cavestri; it is sponsored by ASHRAE Technical Committee 1.2, Instruments and Measurements.

Refrigeration Compressor Lubrication with Synthetic Fluids, publication 801201, Mobil Oil Corporation, Fairfax, VA, 1980 (40 pages with 28 figures and 4 tables, RDB3510)

This bulletin reviews the fundamentals of refrigeration systems, discusses the roles of lubricants, identifies benefits of synthetic lubricants, and provides data on Mobil lubrication products. The introduction discusses the attributes sought in a lubricant and comparative qualities

please see page 6 for ordering information
Solubility of R-123 and R-134a in Oils, Carrier Corporation, Syracuse, NY, September 1989 (3 pages with 3 figures, available from JMC as RDB-0014)

Two figures summarize the solubility of R-123 with Mobil DTE 26 and Mobil DTE Heavy Medium mineral oils for -29 to -23 °C (-20 to -10 °F). Critical solution temperatures are shown for solutions of 70-95% R-134a in unidentified 300 and 750 SUS polyglycol lubricants.

Solubility data for R-134a are presented for a range of lubricants based on tests run from -50 to 93 °C (-58 to 199 °F). Mixtures of 30, 60, and 90% refrigerant by weight were tested with the lubricants in air-free sealed tubes. Solubility was determined, following a minimum of 15 minutes with agitation at each temperature; the blends were considered immiscible when they acquired and retained schlieren lines, formed floc, or formed two liquid layers. The lubricants include a polychlorotrifluoroethylene (Halocarbon blend 700/95-6.7/93.3 500 SUS), four perfluorinated polyalkyl ether oils (Krytox® GPL 150 and 480 SUS and Fomblin® Y 25/5 and Z-15, both 417 SUS), and Daikin Demnum® S-65 300 SUS, dipentaerythritol esters of fatty acids (Hercules 240 and 290 SUS), PEG esters of fatty acids (CPI Engineering 144, 620, and 830 SUS), napthenic oils (Witco Suniso® 5GS 500 SUS 38% aromatic, Witco 500 SUS and two experimental oils at 520 SUS 47% aromatic and 529 SUS 75% aromatic), paraffinic oil (BVM-100N 500 SUS), three alkylbenzenes (Zero® 300 SUS, Conoco DN600 125 SUS, and Nippon Oil Atmos HAB15F 78 SUS), and three silicone oils (Union Carbide L-45 163, 231, and 462 SUS).

Study of the Segregation or Fractionation of Refrigerant Blends in Contact with Lubricants and Measurement of Viscosity, Solubility, and Density, research project 779-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1995 - April 1996, extended to 1998 (ASH0779)

This project will measure the solubility, viscosity, and density of refrigerant blends comprising hydrofluorocarbons (HFCs) with a representative lubricant. An additional objective is to determine the influence, if any, of the lubricant on segregation and fractionation of the refrigerant mixtures. R-32, R-134a, R-32/134a (30/70), and R-32/134a (70/30) will be examined with a 32 IS0 polyolester lubricant in compositions of 0-100%, vapor pressures of 70-2350 kPa (10-500
APPLICATION DATA

This popular handbook provides a general review of refrigerants and application data. It briefly outlines the history, nomenclature, manufacture, and applications of fluorocarbon refrigerants and then covers refrigeration, refrigerant properties, and mixtures (including azeotropes). It continues with the effects of water including solubility, drying, and hydrolysis; solubility of air and other gases; oil relationships including solubility and viscosity; the effects on polymers including both elastomers and plastics; and stability. It also addresses leak detection, solar applications (as heat transfer fluids), conversion factors, shipping data, and safety parameters and classifications. A final chapter provides pressure-enthalpy (Mollier) diagrams for R-11, R-12, R-13, R-13B1, R-14, R-21, R-22, R-113, R-114, R-115, R-C318, R-502, and R-503. It also provides equations to calculate liquid density; vapor pressure; pressure-volume-temperature (PVT) data (equations of state); heat capacity, enthalpy, and entropy of the vapor; velocity of sound; and latent heat of vaporization for R-11, R-12, R-13, R-14, R-21, R-22, R-23, R-113, R-114, R-C318, R-502, and R-503.

R-134a

Fractonation, Leakage, and Detection

F. R. Biancardi, H. H. Michels, T. H. Sienel, and D. R. Pandy (United Technologies Research Center, UTRC), *Investigation into the Fractonation ofRefrigerant Blends*, report DOE/CE/23810-75 (also identified as UTRC R95-970566-5), Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, January 1996 (244 pages with 98 figures and 6 tables, available from JMC as RDB7650; some of the figure and table headings are partially cut off)

This report summarizes analyses and measurements of composition changes in hydrofluorocarbon (HFC) refrigerant blends. It presents a model (NISC), verified by laboratory data, to predict the fractionation effects of HFC blends exposed to selected polyolester (POE) lubricants, during system charging from large liquid containers, and for selected leakage modes. The model is based on nonideal, Wohl solution theory for lubricant-solubility effects. The model also predicts the effects of system startup, operation, and shutdown for system components where two-phase refrigerant exists, notably the heat exchangers, expansion valve, and compressor sump. The report notes that blend fractionation can increase hazards if the more or most volatile component is flammable and a leak occurs. Fractionation also can change component or system performance and cause unacceptable, higher system pressures. The work comprised four tasks, namely to investigate lubricant solubility effects, fractionation ef-
fects from successive charges, fractionation within system components, and fractionation during leaks. Findings are presented for R-32/134a (25/75), identified in the report as Blend A and for R-407C [R-32/125/134a (23/25/52)]. The report notes that R-407C is much less sensitive to fractionation than R-32/134a (25/75) and that the latter zeotrope has a greater potential for flammable concentrations when the system is idle at low temperatures and during startup. Such leakage impacts performance even when losses are replaced with the original composition, due to preferential leakage of R-32. Both modelled and experimental findings indicate that the circulating composition changes when there is a significant quantity of refrigerant in the accumulator or elsewhere in the refrigerant circuit. The findings also indicate that the oil absorbs some of the refrigerant and contributes to fractionation by preferential absorption of R-134a, but that no extremes in temperature or pressure result from fractionation within the system; similarly, capacity and performance change only slightly.

thermodynamic model to simulate a slow vapor leak, comparison to experimental data for R-401A, R-404A, R-407C, R-125/143a (45/55); comparison to NIST REFLEAK model for R-401A and R-407C

prediction of maximum refrigerant concentrations from leakage of R-290/600a (50/50) into cars

D. Clodic and M. Ben Yahia (École des Mines de Paris, France), New Test Bench for Measuring Leak flow Rate of Mobile Air Conditioning Hoses and Fittings, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 385-391, November 1997 (7 pages with 4 figures and 3 tables, rdb8353)

laboratory test method to determine the leak rate of hoses, crimped connections between the hose and fitting, and fittings for mobile air-conditioning (MAC) and transport refrigeration systems: estimates annual losses for MAC systems to be 0.15-0.40 kg/yr (0.3-0.9 lb/yr) for MAC systems with approximately 300 million in service and half that number in the United States

S. Esslinger, The True Cost of Refrigerant Leaks, ASHRAE Journal, 30(11):27-29, November 1988 (3 pages with 1 figure and 2 tables, RDB4237)

analysis of efficiency losses resulting from refrigerant leaks in supermarket refrigeration systems; identifies vibration transmitted by piping, movement of compressors, and pressure pulsations as the most frequent causes; recommends design and preventative maintenance measures to minimize losses

C. L. Gage (U.S. Environmental Protection Agency, EPA) and E. F. Troy (HEC, Incorporated), Reducing Refrigerant Emissions from Supermarket Systems, ASHRAE Journal, 40(11):32-33 and 35-36, November, 1990 (5 pages with 1 figure and 1 table, RDB8C02)

presents data on and measures to reduce refrigerant losses from commercial refrigeration systems: notes that the average annual loss rates in 1993 for 36 stores from a sample of 41 was 14% for R-12 and 13% for R-502 and that approximately 25% had annual losses exceeding 20%; also presents a summary of service data for a supermarket chain with 110 stores; the tabulated data identify the component or subsystem requiring service and resulting refrigerant losses; identifies options in design, construction, operations, maintenance, and corporate policies and practices to reduce total charge and loss rates

M. R. Harrison (Radian Corporation), R. C. Keeney (Jones Nuese), and T. P. Nelson (Radian Corporation), Pilot Survey of Refrigerant Use and Emissions from Retail Food Stores, paper 3835, Transactions (Winter Meeting, Chicago, IL, 28 January - 1 February 1995), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 101(1):25-33, 1995 (9 pages with 6 tables, RDB5231)

R-12, R-22, R-502
N. J. Hewitt, J. T. McMullan, and B. Mongey (University of Ulster, UK). The Replacement of HCFC 22 in Refrigeration Systems, CFCs, the Day After (proceedings of the IIR meeting, Padova, Italy, 1994), International Institute of Refrigeration (IIR), Paris, France, 231-237, September 1994 (7 pages with 6 figures, RDB8446)

tests of R-407C and R-32/125/134a (30/10/60) as R-22 replacements; concludes that manufacture of R-22 systems with polyolster (POE) lubricants in anticipation of future conversion to hydrofluorocarbon (HFC) refrigerants is undesirable since the high solubility of R-22 in POE lubricants lowers the oil viscosity, hampers its lubricating ability thereby, and reduces the overall system performance; shows that the differential solubility of the individual components of the R-407 series blends [and implied thereby also the R-410 series and potentially others] may shift the composition closer to or into the flammable range of the vapor refrigerant; illustrates the composition shift with a change for R-407C with a POE from R-32/125/134a (23/25/52) to R-32/125/134a (23.8/24.9/51.3), leading to a 5% loss in evaporator capacity and a vapor composition of (36/35/29) at the evaporator inlet for typical conditions based on a simplified analysis

M. S. Kim (Seoul National University, Korea) and D. A. Dillen (National Institute of Standards and Technology, NIST), Simulation of Isothermal and Adiabatic Leak Processes of Zeotropic Refrigerant Mixtures, HVAC&R Research, 1(1):3-20, January 1995 (18 pages with 17 figures, RDB5201)

This article presents a study of the composition shifts of zeotropic blends during refrigerant leaks. The simulations addressed cover both slow and fast leaks, characterized by isothermal and adiabatic processes, respectively. The article summarizes interest in zeotropic blends and concerns such as fractionation to or of a flammable composition. Leak modes from container tops and bottoms, representing initial vapor and liquid leaks, are presented. The model is described as a quasi-steady state process with finite time increments, in each of which mass escapes and a new thermodynamic equilibrium is reached. The model uses the NIST REFPROP program to calculate refrigerant properties. The model is presented along with schematic diagrams of pressure and composition changes for both isothermal and adiabatic leaks. The results are illustrated with plots of mass fraction by component as a function of mass percentage lost. Results are shown for R-32/134a (30/70) and R-32/125/134a (30/10/60) for both vapor and liquid leaks. A sensitivity study shows the influence of temperature on leakage of the ternary mixture. The remaining fraction of the more or most volatile component decreases for either a vapor or liquid leak in the isothermal process. Also, the mass fraction changes at low temperature are greater than those at high initial temperature. The mass fraction of the more volatile component increases in the vapor and decreases in the liquid for the adiabatic process in both the vapor and liquid loss modes. The results show that the refrigerant left in the container remains nonflammable for both blends in isothermal vapor leaks, but could become flammable in the adiabatic process, since the R-32 fraction is highest in the final state. The authors note that the refrigerant charging process is close to the adiabatic process addressed, and that the model can be used to estimate the amount of refrigerant leaked from a system by measuring the pressure and using the equations presented.

measurements and modeling of concentration shifts caused by internal fractionation of zeotropic blends: tests of R-407C and R-23/152a (20/80) in an air conditioner and water chiller, respectively; concentration shifts were analyzed for R-404A, R-407C, R-23/152a (20/80), and R-32/134a; influences of lubricant solubility on circulating concentration were examined for R-410A and R-507A with an ester oil without and with vapor leakage; concludes that while temperature glide causes a concentration shift only for zeotropic blends, differential lubricant solubility also leads to concentration changes for near-azeotropic and zeotropic blends; a computer model is under development to predict the concentration shift and resulting changes in performance

azeotropes, zeotropes, glide, differential leakage, R-407A, R-407B, R-407C
I. L. Maclaine-cross (University of New South Wales, Australia), Refrigerant Concentrations in Car Passenger Compartments, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 403-412, November 1997 (10 pages with 3 figures and 4 tables, RDB9356)

prediction of maximum refrigerant concentrations from leakage of R-290/600a (50/50) into cars: discusses failure modes leading to leaks and compares predicted and measured leaks into a car; examines ventilation rates and consequent peak concentrations; concludes that it is physically possible but still improbable that leaks will result in concentrations above the lower flammability limit (LFL) for four of ten cars tested; suggests precautions to reduce such risks

J. R. Parsnow, Monitoring Instruments for HCFC-123, publication 819-060, Carrier Corporation, Syracuse, NY, April 1992 (8 pages with 2 figures and 1 table, RDB9215)

R-123, leak detection

T. C. Sorensen (Thermal Gas Systems, Incorporated), Seeking Out Chiller Leaks, Refrigerating Service and Contracting (RSC), July 1995 (3 pages with 1 figure, limited copies available from JMC as RDB9509)

This article provides an overview of refrigerant leak detection devices and their application. It cites the requirement for them in ANSI/ASHRAE Standard 15-1994, identifies data sources for detection levels, and outlines factors that facility managers, suppliers, and technicians need to know for installations. The article then describes common monitoring technologies including ceramic metal oxide semiconductor (CMOS) and infrared (IR) devices. It describes both and gives typical cost ranges. It then reviews instrument sensitivity, selectivity, speed of response, and location. It also describes two approaches, one that locates sensors where refrigerants are likely to concentrate and another that draws air samples to the sensor. The article concludes with recommended installation, calibration, and service practices.

R-407C, performance, leakage, fractionation: laboratory tests in a 10.6 kW cooling (3 ton) single-speed, split-system heat pump found a 3-4% decrease in capacity and performance in the cooling mode and 4-9% increase in capacity and 3-4% loss in efficiency in the heating mode; when 50% of the refrigerant charge was leaked by a simulated slow, isothermal leak and recharged to the nameplate amount, the capacity dropped 3-4% and efficiency by 5% due to a significant change in composition; the leaked gas is noted as rich in R-32, which is flammable; performance, service, design, manufacturing, and safety issues are outlined issues

theoretical analysis to predict the circulating composition of a zeotropic blend based on local equilibrium gas- and liquid-phase compositions: comparisons to experimental data for R-32/-134a (30/70) show good agreement and that the more volatile component reaches a minimum composition fraction near the center of the evaporator; examination of capacity modulation by varying the amount of refrigerant in the accumulator concludes that it is possible for this blend without notable degradation in efficiency

R-404A, R-407C, R-410A, fractionation of refrigerant blends during secondary calorimetry testing

refrigerant leak detection

Glide Matching and Lorenz Cycles

R-22, R-142b, R-23/142b, R-23/22/142b, Lorenz cycle

R-23/142b, R-23/22/142b, Lorenz cycle

Heat Transfer

heat transfer

measurements of critical heat flux on the outside of a vertical plain tube for R-113, R-718 (water), and an aqueous isopropanol mixture

Z. H. Ayub and S. K. Krewitz, Limited Inventory Ammonia Falling-Film Spray Evaporator, Techni-
Refrigerant Database

R-717, heat transfer

heat exchangers, heat transfer

heat transfer

heat transfer

T. Berntsson, K. M. Berntsson, and H. Panholzer (Chalmers University, Sweden), Heat Transfer of Nonazeotropic Mixtures in a Falling Film Evaporator, Transactions (Annual Meeting, Honolulu, HI, 23-26 June 1985), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 91(2B):1337-1350, 1985 (14 pages, RDB6416)

zeotropic blends

heat and mass transfer, blends

blends, heat transfer

heat transfer enhancement for R-23/134a

procedures for computing the transfer during condensation of R-32, R-124, R-125, R-134a, R-152a, and blends of them in plain and microfin tubes; comparison of published models; proposal for a new model

measurements and correlations of local heat transfer coefficients inside horizontal tubes for R-502 with a mineral oil (MO, Witco Suniso(R) 3GS) and R-717 with Capella W/68 oil; effect of lubricants; concentrations of 0-10% lubricant decreased heat transfer

heat transfer

C-B. Chiou (National Chiao Tung University, Taiwan), C-C. Wang, Y-J. Chang (Industrial Technology Research Institute, ITRI, Taiwan), and D. C. Lu (National Chiao Tung University, Taiwan), Experimental Study of Heat Transfer and Flow Friction Characteristics of Automotive Evaporators, paper OR-94-2-1, Transactions (Annual Meeting, Orlando, FL, 25-29 June 1994), American Society of Heating, Refrigerating, and Air-Conditioning Engi-

survey of two-phase flow and heat transfer

heat transfer

J. C. Conklin (Oak Ridge National Laboratory, ORNL) and E. Granryd (Kungl Tekniska Högskolan, KTH, Sweden), *Thermal Performance Analysis for Heat Exchangers Having a Variable Overall Heat Transfer Coefficient*, paper 91-WA-NE-7 (ASME Winter Annual Meeting, Atlanta, GA), American Society of Mechanical Engineers (ASME), New York, NY, December 1991 (6 pages with 5 figures and 4 tables, RDB2341)

heat transfer

J. C. Conklin and E. A. Vineyard (Oak Ridge National Laboratory, ORNL), *Tubeside Evaporation of Nonazeotropic Refrigerant Mixtures from Two Enhanced Surfaces*, paper 90-WA-HT-8 (ASME Winter Annual Meeting, Dallas, TX), American Society of Mechanical Engineers (ASME), New York, NY, November 1990 (7 pages with 9 figures, RDB2342)

heat transfer

R-113; mechanisms of nucleate boiling on the outside of a horizontal tube differ fundamentally from those on a flat plate; variations at the base, top, and sides; influences of bubble formation

heat transfer

heat transfer

measurement of local heat transfer for R-744 in smooth tubes at -10 °C (14 °F)

heat transfer coefficients for two-phase boiling R-134a/lubricant mixtures; the tested lubricants are experimental oils (CPI b275 and 0323)

droplet entrainment and deposition in the annular flow regime: presents simulations for annular flow that model the turbulence and temperature fields formed at the interface of annular films; addresses the shortcomings of current models for forced convective boiling inside plain tubes

heat transfer

nucleate pool boiling heat transfer coefficients on plain tubes: review of published methods by Stephan and Abdelsalam, Westwater, Cooper, Danilova, Gorenflo, Bier and Lambert, and Leiner; proposed method based on heat flux, the thermophysical properties of the fluid, properties of the heating surface, and surface geometry

I. Golobic and B. Gaspersic (University of Ljubljana, Slovenia), Method of Predicting the Pool Boiling Critical Heat Flux Based on Thermodynamic Similarity, Proceedings of the Tenth International Heat Transfer Conference, Institution of Chemical Engineers, Rugby, UK, 36-ff, 1994 (rdb7810)

nucleate pool boiling heat transfer coefficients on plain tubes, method based on heat flux, the thermophysical properties of the fluid, properties of the heating surface, and surface geometry

heat transfer; pool boiling correlations by a reduced pressure method; heat transfer coefficients for R-22, R-123, R-134a, R-717 (ammonia), and others

zeotropic blends, heat transfer

measurement of local heat transfer for R-744 in smooth tubes at -25 and -10 °C (-13 and 14 °F)

correlation to predict heat transfer coefficients (HTCs) for binary zeotropes with validation for R-22/12 and R-22/114, binary zeotropes

M. K. Huen, Performance and Optimization of Microchannel Condensers, PhD thesis (Department of Mechanical Engineering), University of Illinois at Urbana-Champaign, 1995 (rdb8518)

Gnielinski relation for heat transfer in microchannel heat exchangers

This article presents a study of the heat transfer coefficient (HTC) and pressure drop of refrigerant mixtures. Predicted HTCs and pressure drops are reported for blends under consideration as R-12 and R-22 alternatives. The article reviews heat transfer correlations with measured data, and conceptually illustrates the dependence of HTC on heat flux and quality in the nucleate boiling regime, and on quality in the convective evaporation regime. The results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mecha-

nism. The article then reviews the pressure drop correlation used and discusses alternative comparisons for mixtures to pure fluids. It concludes that equivalent cooling capacity offers a more meaningful basis than equivalent mass flow rates. Differences in respective volatilities of the mixture components are discussed. Predicted HTC values are tabulated for R-12, R-22, R-32, R-123, R-141b, R-142b, and R-152a and given as ratios to the HTC of R-12 over a quality range of 20-90% at evaporator temperatures of -10, 0, and 10 °C (14, 32, and 50 °F). Similar data are presented for R-12 alternatives including R-22/123 (60/40), R-22/141b (70/30), R-22/142b (50/60), R-22/152a (20/80), R-32/141b (20/80), and R-32/152a (10/90) and for R-22 substitutes, R-32/142b (50/50) and R-32/152a (40/60). Predicted pressure drops are plotted for the same fluids. A table compares the overall HTC for mixtures of R-22/123 (50/40) and R-12 in air and water systems. A figure illustrates the predicted pressure drop of the cited blends and of R-12 and R-22 at -10, 0, and 10 °C (14, 32, and 50 °F). The paper notes that HTC values are sensitive to liquid viscosity and thermal conductivity; 10% uncertainty in them results in a 6% change in HTC. The paper concludes that nucleate boiling is fully suppressed for pure and mixed refrigerants and that HTC increases monotonically with quality in the evaporating range discussed. Further, while some mixtures exhibit as much as 90% higher HTC than R-12 and R-22 at uniform mass flow rates, mixtures containing R-32 and R-152a show only 8-10% increase for the same cooling capacity because of reduced mass flow rates. Mixtures of components with large volatility differences show up to 55% HTC reduction. The significance depends on the heat transfer fluid; the overall reduction is less than 1.5% in air-to-refrigerant heat exchangers, but as much as 20% in water-to-refrigerant exchangers. The pressure drops of all the mixtures examined are smaller due to the lower mass flows.

flow boiling of zeotropic blends inside smooth tubes; prediction correlations

This report documents a study of horizontal, convective, boiling heat transfer, including experiments to measure two-phase heat transfer coefficients of refrigerant mixtures. The report reviews the properties of mixtures, including those unique to azoetropes, and associated heat transfer. It then describes experimental apparatus designed to simulate evaporator conditions in heat pump and refrigeration systems. Measurement approaches are presented both for heat transfer and composition determination. Measured data are summarized for zeotropic mixtures of R-12 and R-114, both an azoetropic and zeotropic mixtures R-12 and R-152a, and their pure components for ranges of heat flux and mass flow rates. Differences in bubble growth are discussed between pure and mixed fluids. The results indicate two distinct regions of heat transfer, namely partial boiling and convective evaporation, the former governed by suppression of nucleate boiling. The report reviews analytical studies to predict the transition quality. Measured, local heat transfer coefficients were as much as 36% lower than the weighted average of the components for mixtures in the convective region. The study attributes this reduction to observed differences in composition in the annular liquid film for mixtures with large difference in component volatilities, such as R-22/114. An approach is proposed to account for mixture effects based on phase-equilibrium information.

M. A. Kedzierski, Effect of Inclination on the Performance of a Compact Brazed Plate Condenser and Evaporator, report NISTIR 5767, National Institute of Standards and Technology (NIST), Gaithersburg, MD, November 1995 (38 pages with 10 figures and 6 tables, available from NTIS, RDB6433)

This report summarizes tests to measure performance changes associated with tilting a compact brazed plate heat exchanger (CBE) from a vertical orientation. It summarizes tests, using R-22 in a CBE (SWEP B15x36) rotated in clockwise and counterclockwise directions, to assess the influence of gravity. The report recaps published studies of performance and growing use of CBEs in refrigeration. It describes and schematically illustrates the test apparatus used, outlines the analysis methods, and presents the findings. The study found a substantial performance penalty when the evaporator was rotated past 30° from the vertical. The capacity in the horizontal position was 62-74% of the vertical value. For a rotation angle of 30°, the degradation performance was within 5% of the vertical value. Rotation direction and entering refrigerant state had little effect on performance for rotation less than 60°. Only when the evaporator was rotated to the horizontal position did rotation direction and refrigerant state have much effect. At the horizontal position, a subcooled entering refrigerant and a counterclockwise rotation both tended to lessen the capacity degradation. Rotation of the CBE condenser to the horizontal position improve the overall heat transfer coefficient by approximately 25%. Rotation direction had a negligible effect on the performance of the condenser. No mention is made of lubricant presence or interactions for these tests.

This report presents a calorimetric and visual investigation of nucleate flow boiling of R-12 and R-134a inside horizontal tubes. Mixtures of R-134a with 0.9% polyolester lubricant (Castrol Icematic® SW100) and 0.9 and 2.3% neopenty polyolester (ICI Emkarate™ 213b, a developmental lubricant) also were investigated. The report documents both calorimetric measurements of the local two-phase heat transfer coefficients and simultaneous visual measurements, using high-speed photography. Derived bubble diameters and densities are presented. The test apparatus, instrumentation procedures, and calorimetric and visual results are described. Plots are provided of the heat transfer coefficient measurements for a range of heat fluxes.
for Reynolds numbers of zero to approaching 10,000. Good agreement was achieved with the Borishanskil-Minchenko equation. For both R-12 and R-134a, an increase in either the heat flux or Reynolds number of the flow increases the heat transfer coefficient, though the former has a larger effect. Visual observations of the bubble density and size are used to explain the heat transfer trends. Faster bubble formation by R-134a correlated with superior heat transfer. The authors offer a probable explanation for observed heat transfer enhancement of neopentyl polyolester mixture over pure R-134a. They attribute it to canceling effects of drastic reduction in bubble diameters and significant increase in site density. Boiling appeared to occur from lubricant-rich clouds, acting like porous surfaces, on the heater portion of the tube.

A mechanistic method to predict the transition from stratified to unstratified flow during boiling

experimental methods and key findings for three studies of heat transfer for the Alternative Refrigerants Evaluation Program (AREP): R-32/-125 (60/40) offered the best performance of the R-22 alternatives followed by R-134a, but both dropped with the presence of lubricants

X. Liu (Carrier Corporation), LMTD Applications in Two-Phase Heat Transfer and Two-Phase Heat Exchangers, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 145-150, July 1996 (6 pages with 1 table, RDB6828)

J. R. Lloyd and P. J. Marto, A Predictive Model to Describe the Pool Boiling Behavior of Refrigerant-Oil Mixtures, technical report NPS ME-90-07, Naval Postgraduate School, Monterey, CA, 31 December 1990 (42 pages with 4 figures, RDB3B26)

P. Lundqvist (Kungl Tekniska Hogskolan, KTH, Sweden), Analysis of Plate Type Heat Exchangers with Zeotropic Refrigerant Blends, proceedings (Winter Annual Meeting, San Francisco, CA), American Society of Mechanical Engineers (ASME), New York, NY, AES-34:37-58, 1995 (22 pages, rdb4759)

heat transfer coefficient (HTC) analyses of refrigerant-lubricant (RL) influences

presence of lubricants in circulating refrigerants raises the boiling point; refrigerant-lubricant (RL) properties
effects of compressor lubricants on performance and specifically the degradations from reduced heat transfer and increased pressure drop in the evaporator: tests on R-12 with two solvent-refined, naphthenic mineral oils (MO, Shell Clavus 32 and 68) and an alkylated benzene and solvent extracted MO (Shell SO) at concentrations of 0, 1, and 3% m/m on the tube-side of shell-and-tube evaporators; shows that the addition of oil changes the two-phase flow regime inside the evaporator; use of a low viscosity oil yields better results for a stratified flow regime and inferior results for annular flow; concludes that the performance degradation can be minimized by selecting a low viscosity lubricant if the oil fraction is small or a high viscosity oil if the fraction is high.

This paper summarizes a study of the heat transfer mixtures of R-134a with a polyester lubricant (ICI Emkarate™) using an electrically-heated platinum wire. The dependence of the heat transfer coefficient on the heat flux density was measured for temperatures varying between -16 and 32 °C (3 and 90 °F) and lubricant concentration from 0 to 15% by mass. The results are compared to those for R-12 with a mineral oil (Shell Clavus 129).

N. E. Murphy, Effects of Lubricating Oil on Evaporator Performance, D.Phil. thesis, University of Ulster, Coleraine, Northern Ireland, UK, 1985 (rdb8441).

lubricant influences on heat transfer
Meeting, Chicago, IL, January 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 99(1):1237-1243, 1993 (11 pages with 5 figures, RDB3112)

M. B. Pate (Iowa State University of Science and Technology), Evaporation and Condensation Heat Transfer Coefficients for HCFC-124/HCFC-22/HFC-152a, Proceedings of the 1990 USNC/IIR-Purdue Refrigeration Conference and ASHRAE-Purdue CFC Conference, edited by D. R. Tree, Purdue University, West Lafayette, IN, July 1990 (RDB2240)

R-32/134a

Test results are presented for three refrigerant blends in an exhaust-air heat pump, with a heating capacity of 1050-1450 W (3600-4950 Btu/hr). Such heat pumps are used, widely in Sweden, to recover heat from exhaust air to heat service hot water, particularly for large multifamily residential buildings. Heating coefficients of performance (COPs), capacities, and local heat transfer coefficients in the evaporator are compared to those for R-12. Data for R-22/-152a/124 (36/24/40) and two blends of R-22/-142b (45/65 and 60/40) are plotted and discussed. The experiments indicate that use of these zeotropic mixtures can increase both the COP and capacity despite a large reduction in the local heat transfer coefficient. The reduction is large with the binary mixtures and is compounded by suppression in nucleate boiling, also observed by other referenced investigations. Both the experimental apparatus and analytical methods used are described.

R-13B1, R-152a, R-13B1/152a (18/82), (58/42), and (37/63), (58/42), and (30/20), experimental determination of heat transfer coefficients (HTCs): blends yielded sharply lower HTCs than either component tested as a single-compound refrigerant, attributed to circumferential gradient in concentration and interfacial temperature, data suggest that full suppression of nucleate boiling is easier to achieve with mixtures than single compounds

H. D. Ross, An Investigation of Horizontal Flow Boiling of Pure and Mixed Refrigerants, report NBSIR 86-3450, National Institute of Standards and Technology (NIST, then the National Bureau of Standards, NBS), Gaithersburg, MD, August 1986 (376 pages with 68 figures and 13 tables, available from NTIS, rdb4727)

heat transfer, blends

heat transfer in vertical heat exchangers for refrigerant blends assuming one-dimensional flow

R-22

R-290 (propane), R-602 (n-hexane), steel tube, heat transfer, surface enhancement

lubricant influences on heat transfer; R-22; refrigerant-lubricant (RL) properties

flow during boiling in a horizontal tube: measurements and observations of R-717 with an immiscible lubricant (Mobil Arctic(R) 300 mineral oil); lubricant decreases heat transfer; high lubricant concentrations result in flow appearance described as "a tar-like sludge"

W. Shao and E. Granryd (Kungl Tekniska Högskolan, KTH, Sweden), Flow Condensation of Pure and Oil Contaminated Refrigerant HFC-134a in a Horizontal Tube, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 317-322, July 1994 (6 pages with 5 figures, RDB4840)

R-134a, Castrol ester-based lubricant

nucleate pool boiling of R-134a, R-152a, and R-134a/152a on a platinum wire; scaling of the heat transfer coefficients to tubes; comparison to prior data for R-12

measurement of convective heat transfer coefficients (HTCs) for R-22, R-32, R-134a, R-290, R-32/125, R-32/134a, R-290/600a in a smooth, stainless steel tube with an inside diameter of 7.7 mm (0.30") at 12 °C (54 °F); concludes that HTCs depend strongly on heat flux at low qualities, but become independent as the quality increases; also concludes that both the Gungor and Winterton correlation and the Thome-Shakil modification to it overestimate the HTCs

R-22, R-32, R-125, R-134a, R-290, R-32/134a, R-290/600a, modification to Chen's correlation to predict heat transfer coefficients (HTCs)

R-123 exhibits excellent response to electrohydodynamic (EHD) enhancement of heat transfer: tests in a tube-in-tube heat exchanger with hot water flowing in the outer tube and the test refrigerant flowing in the inner tube; experiments utilized a stainless steel cylindrical electrode of 3 mm (0.12") outside diameter placed coaxially in a smooth, stainless steel tube of 9.4 mm (0.37") inside diameter and 1.22 m (4') long; parametric tests with varying inlet quality, heat flux, and
mass flux; EHD increased the heat transfer coefficient (HTC) as much as 550%; electrical power needed was less than 0.27% of the heat transfer rate.

The applicability of electrohydrodynamic (EHD) enhancement of in-tube boiling heat transfer of R-123 in a tube-in-tube heat exchanger with hot water flowing in the outer tube and the test refrigerant flowing in the inner tube: experiment used a stainless steel cylindrical electrode with an outer diameter (OD) of 3 mm (0.118") placed coaxially in the test section, which was a 1.22 m (4') long, smooth, stainless steel tube with an inner diameter of 9.4 mm (0.37"); tests examined the effects of inlet quality, heat flux, and mass flux; concludes that R-123 exhibits an excellent response to the EHD effect, yielding a significant increase in the heat transfer coefficient (HTC) as high as 550%; the electrical power consumption penalty was found to be less than 0.27% of the corresponding test section's heat transfer rate.

electrohydrodynamic enhancement, evaporation, heat transfer

P. Sokol; H. Schömann, W. Rott, and D. Gorenflo (Universität Paderborn, Germany), Heat Transfer During Nucleate Boiling of New Refrigerants, DKV-Tagungsberichte (Heldelberg, Germany, November 1990), Deutscher Kälte- und Klimatechnischer Verein (DKV, German Association of Refrigeration and Air-Conditioning Engineers), Germany, 17(2):323-339, 1990; translated by Quest Technology, Incorporated (file QU0467), Arlington Heights, IL. (24 pages with 8 figures and 4 tables, RDB3A18)

R-12, R-22, R-113, R-114, R-123, R-134a, R-227ea

comparative heat transfer of R-12 and R-134a

R-717

K. E. Starner, Summary of Pool Boiling Test Results for R-134a, R-22, and R-12 with Oils, York International Corporation, York, PA, 22 July 1992 (1 page, available from JMC as RDB2808)

This document summarizes tests to compare heat transfer characteristics of R-12, R-22, and R-134a, with and without lubricants, for Wolverine Turbo-B(R) enhanced-surface tubes. Turbo-B(R) tube is enhanced on both the inside and outside surfaces to increase the overall heat transfer coefficient; its primary use is as a boiling tube for evaporators in chillers. Quantitative results are presented for a heat flux of 17.3 kW/m2 (5500 Btu/hft2) for nominal 19 mm (3/4") outside-diameter tubes in a 60 cm (2'), 8-tube bundle at 4.4 °C (40 °F). Differences are presented between the wall temperature and the refrigerant saturation temperature at the measured pressure. Results are compared between refrigerant-lubricant mixtures, with 1.5% mineral oil by volume, and those for pure refrigerants. Additional data are provided for R-134a with miscible lubricants, including an unidentified polyalkylene glycol (PAG) and ester. For pure refrigerants, the measured temperature difference is 0.14 °C (0.25 °F) lower for R-22 and 0.06 °C (0.1 °F) higher for R-12 compared to that for R-134a. The document reports penalties, compared to pure refrigerants, of 0.53, 0.31, 2.78, 0.19, and 0.33 °C (0.95, 0.55, 5.00, 0.35, and 0.60 °F) for mixtures with 1.5% lubricant for R-12 with mineral oil, R-22 with mineral oil, R-134a with mineral oil (nonmiscible), R-134a with PAG, and R-134a with ester, respectively. Additional penalties of 0.17 and 0.39 °C (0.30 and 0.70 °F) are reported for mixtures of 0.08 and 0.15% mineral oil with 1.5% ester-based lubricant above that for the refrigerant-ester mixture alone.

please see page 6 for ordering information
review of heat transfer research for refrigerant boiling and evaporation based on a literature review and assessment, with emphasis on publications since 1995: covers in-tube and shell-side boiling of single-compound ("pure") refrigerants, azeotropic and zeotropic blends, and refrigerant-lubricant (RL) mixtures; addresses plain tubes, internally finned (microfin) tubes with conventional and cross-grooved fins, corrugated tubes, both conventional low fin and enhanced geometries of externally finned tubes, and falling-film evaporation; this survey focuses on experimental studies, the accuracy of the tests, comparisons to similar studies, and reduction to design methods; report includes suggestions to improve experimental procedures, shortcomings of existing design methods, recommendations for their improvement, and future research needs; report is divided into discussion of previous literature surveys, nucleate pool boiling of single compounds and azeotropic blends, nucleate pool boiling of zeotropic blends, boiling on tube bundles, flow boiling of single compounds and azeotropic blends inside tubes, flow boiling of zeotropic blends inside tubes, flow boiling of RL mixtures inside tubes, and falling film evaporation; recommends development of a database on flow boiling, further tests of shell-side boiling of zeotropic mixtures, investigation of two-phase flow patterns for in-tube evaporation, study of two-phase pressure drops, and further tests of boiling on low-finned tubes; among the refrigerants addressed are R-11, R-12, R-22, R-32, R-113, R-114, R-123, R-124, R-125, R-134a, R-142b, R-143a, R-290 (propane), R-404A, R-407C, R-410A, R-502, R-507A, R-11/113, R-22/114, R-22/123, R-22/142b, R-22/152a, R-23/134a, R-32/134a, R-32/134a, R-52/152a, R-125/22, and R-143a/124.

J. R. Thome (John Thome Incorporated), Conden-

review of heat transfer research for refrigerant condensing based on a literature review and assessment: covers in-tube and shell-side condensing of single-compound ("pure") refrigerants, azeotropic and zeotropic blends, and refrigerant-lubricant (RL) mixtures; addresses plain tubes, internally finned (microfin) tubes with conventional and cross-grooved fins, and both conventional low fin and notched or otherwise enhanced geometries of externally finned tubes; also addresses research of two-phase pressure drop for in-tube condensation and developments in theoretical and empirical thermal design methods; this survey focuses on experimental studies, the accuracy of the tests, comparisons to similar studies, and reduction to design methods; report includes suggestions to improve experimental procedures, shortcomings of existing design methods, recommendations for their improvement, and future research needs; report is divided into discussion of previous literature surveys, tests of condensation on single tubes, analytical studies of condensation on single tubes, condensation with vapor shear and tube-row effects, condensation of blends on tubes and tube bundles, condensation of single-compounds and azeotropes inside tubes, condensation of zeotropes inside tubes, condensation of RL mixtures inside tubes; and two-phase pressure drops for in-tube condensation; recommends further tests of shell-side condensation of zeotropic mixtures, development and analysis of a database on tube-side condensation, modeling of local condensing coefficients and flow patterns in plain and microfin tubes, development of a generalized model to predict in-tube condensation for zeotropic blends, modeling of two-phase pressure drops, and preparation of algebraic equations to calculate the temperature-enthalpy-qualities (THX) relationships for zeotropes; among the refrigerants addressed are R-11, R-12, R-22, R-32, R-113, R-114, R-123, R-124, R-125, R-134a, R-142b, R-143a, R-290 (propane), R-404A, R-407C, R-410A, R-502, R-507A, R-11/113, R-22/114, R-22/123, R-22/142b, R-22/152a, R-23/134a, R-32/134a, R-52/152a, R-125/22, and R-143a/124.

falling-film heat exchanger fabricated of stainless steel

K. Yamashita and A. Yabe (Toshiba Corporation, Japan), EHD Enhancement of Falling Film Evaporation Heat Transfer and Durability of EHD Heat Exchanger, Proceedings of the ASME/JSME Thermal Engineering Joint Conference (Maui, HI, 19-24 March 1995), American Society of Mechanical Engineers (ASME), New York, NY, and Japan Society of Mechanical Engineers (JSME), Tokyo, Japan, 4:253-260, 1995 (8 pages, rdb6225)

electrohydrodynamic (EHD) enhancement of heat transfer for evaporation of R-123 in a falling-film heat exchanger fabricated of stainless steel: of the five electrodes, rolled punched plates with vertically-arrayed, offset slits provided the maximum enhancement effect; the improvement in heat transfer was six times that for a smooth tube without EHD; tests for durability, based on 1,000 hr of operation followed by careful examination of the test section, found that the EHD falling film evaporator and the EHD condenser can be suit for industrial use

use of the electrohydrodynamic (EHD) technique to enhance heat transfer: analysis of a condenser after 1,000 hr of continuous operation with found no negative effects on the working fluid, the electrode, or heat transfer surface

evaporative heat transfer of R-22 inside smooth copper tubes; measurement of average and local heat transfer coefficients (HTCs) for R-717 sprayed onto a 19 mm (3/4") low-fin, horizontal, steel tube at saturation temperatures from -23.3 to 10 °C (-10 to 50 °F); effects of heat flux, saturation temperature, spray flow rate, nozzle spray angle, and nozzle height; comparisons to heat transfer coefficients (HTCs) for plain and corrugated tubes

X. Zeng (Valvo Climate Control), M. C. Chyu (Texas Tech University), and Z. H. Ayub (ThermalFluid International), Performance of Nozzle-Sprayed Ammonia Evaporator with Square-Pitch Plain-Tube Bundle, paper 4059 (725-RP), Transactions (Annual Meeting, Boston, MA, 28 June - 2 July 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 103(2):68-81, 1997 (14 pages with 17 figures and 1 table, RDB8522)

heat transfer of R-717 in spray evaporation on a horizontal bundle composed of 19.1 mm (3/4"), plain, stainless steel tubes at -23.3 to 10 °C (10 to 50 °F) and 164-615 kPa (23.7-89.2 psia): experiment was conducted using commercial nozzles distributing R-717 on a 3x3, square pitch, configuration with a pitch ratio of 1.25; heat transfer coefficients (HTCs) were determined for heat fluxes of 3.2 to 35 kW/m² (1,000-11,000 Btu/h-ft²); examines effects of heat flux, saturation temperature, spray flow rate, nozzle height, and nozzle type (standard or wide angle); compares heat transfer performance for spray evaporation and pool boiling; presents a correlation developed for the spray evaporation data; includes discussion by S. A. Moeykens (The Trane Company)

effects of heat flux, saturation temperature, spray flow rate, and nozzle height on boiling heat transfer for R-717: tests were conducted on a horizontal, plain, stainless steel tube at 23.3 to 10 °C (-10 to 50 °F) for heat fluxes of 6-60 kW/m² (2,500-19,000 Btu/h-ft²); both standard- and wide-angle commercial nozzles were tested; compares results to measured pool boiling data and previously published findings

Flow boiling heat transfer of R-717

This project will investigate enhancement of boiling heat transfer by electrohydrodynamic (EHD) effects. The research focuses on concept testing, including experimentation and demonstration, and system design, including optimum electrode design and system design guidelines. The contractor is Texas A&M University led by J. Seyed-Yagoobi; the project is sponsored by ASHRAE Technical Committee 8.5, Liquid to Refrigerant Heat Exchangers.

Effects of Inundation and Miscible Oil Upon the Condensation Heat Transfer Performance of R-134a, research project 984-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1997 - April 1999 (ASH0894)

This research will investigate the effect of liquid inundation and lubricant concentration on condensing heat transfer on the shell-side of shell-and-tube heat exchangers. It also will examine the benefits of surface enhancement for both single tubes and tube bundles. The report on the work will include a literature survey. The contractor for the project is Kansas State University (KSU) led by S. J. Eckels; it is sponsored by ASHRAE Technical Committee 8.5, Liquid to Refrigerant Heat Exchangers.

EHD-Enhanced Condensation Heat Transfer of Alternate Refrigerants and Refrigerant Mixtures for HVAC Applications, research project 922-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1996 - April 1998 (ASH0922)

This research will investigate the performance of electrohydrodynamic (EHD) techniques to enhance heat transfer with alternative refrigerants and blends. It also will provide data on pressure drop, electrical power requirements, electrode geometries, and operating conditions for air-conditioning and refrigeration applications. Utilizing these and other published data, the work will develop design correlations for feasibility and economic evaluation of EHD-enhanced condensation. The contractor for the project is the University of Maryland led by M. M. Ohadi; it is sponsored by ASHRAE Technical Committee 8.5, Liquid to Refrigerant Heat Exchangers.

Evaporation of Ammonia Outside Smooth and Enhanced Tubes With Miscible and Immiscible Oils, research project 977-RP, American Society of Heating, Refrigerating, Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1997 - April 1999 (ASH0977)

This research includes both a literature survey and measurements of R-717 (ammonia) heat transfer on both single tubes and tube bundles for horizontal tubes in flooded evaporators. Tests will evaluate both enhanced and smooth tubes, different flow and temperature conditions, and the effects of miscible and immiscible lubricants. The measured data will be reduced to correlations and charts for use in design. The contractor for the project is the Texas Technological University, led by M-C. Chyu; it is sponsored by ASHRAE Technical Committee 1.3, Heat Transfer and Fluid Flow.

Experimental Determination of Heat Transfer in Water-Cooled Condensers and Direct Expansion Water Coolers Using Brazed Plate Heat Exchangers, research project 752-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1994 - October 1996 (ASH0752)

This project will determine average heat transfer coefficients for R-22 and R-134a for counterflow plate heat exchangers. Two or more commercially-available, brazed-plate heat exchangers will be tested. Heat transfer coefficients will be measured for the refrigerants for condensing at 41 °C (105 °F) and evaporating at 2 °C (35 °F). Water-side coefficients also will be determined. The coefficients and associated pressure drops will be presented as functions of the mass flow rates, which will be varied over the full range of commercial applications. Superheating and subcooling effects also will be investigated. The overall goal is to provide basic information to permit potential users to evaluate counterflow, brazed-plate heat exchangers as refrigerant evaporators and condensers. The contractor is the University of Missouri at Columbia led by W. E. Stewart, H. J. Sauer, Jr., and B. R. Becker; the project is sponsored by ASHRAE Technical Committee 8.5, Liquid to Refrigerant Heat Exchangers.
Experimental Determination of the Effect of Oil on Heat Transfer in Flooded Evaporators with Refrigerants HCFC-123 and HFC-134a, research project 751-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1993 - April 1997, extended to 1998 (ASH10751)

This project will determine average shell-side boiling coefficients for R-123 and R-134a with compatible lubricants for finned and other enhanced tube surfaces, as used in flooded evaporators. The work will expand on that addressed in ASHRAE 392-RP, by covering the influences of the lubricants. Heat flux, mass flux, and vapor quality will cover typical conditions for air conditioning and refrigeration for lubricant concentrations of 0-10% at evaporator temperatures of approximately 4 °C (40 °F). The contractor is the Northern Illinois University, led by P. Payvar; it is sponsored by ASHRAE Technical Committee 8.5, Liquid to Refrigerant Heat Exchangers.

Heat Transfer and Pressure Drop Characteristics During In-Tube Gas Cooling of Supercritical Carbon Dioxide, research project 913-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1997 - December 1998 (ASH10913)

This research project will develop basic heat transfer and fluid flow data including local supercritical heat transfer coefficients (HTCs) for R-744 (carbon dioxide). It will examine improvements with enhanced-surface tubes and the effects of lubricants. The work also will develop correlations for use in design. The contractor for the project is Purdue University, led by E. A. Groll; it is sponsored by ASHRAE Technical Committee 1.3, Heat Transfer and Fluid Flow.

This research project will investigate local, two-phase heat transfer and pressure drop during in-tube evaporation of R-717 (ammonia). Performance will be quantified for both a smooth tube and an enhanced-surface, micro-fin tube. The study also will examine the effect of miscible lubricants on evaporation performance. Correlations will be developed for use in design. The contractor for the project is Kansas State University (KSU) led by D. L. Fenton; it is sponsored by ASHRAE Technical Committee 1.3, Heat Transfer and Fluid Flow.

Single-Phase Refrigerant Heat Transfer and Pressure Drop Characterization of High Reynolds Number Flow for Internally Finned Tubes Including the Effects of Miscible Oils, proposed research project 1067-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1999 - September 2001 (ASH1067)

This research project will develop nondimensional correlations to predict performance of internally-finned tubes for single-phase, refrigerant flows with Reynolds numbers of 5,000-1,000,000. The work will measure heat transfer coefficients (HTCs) and friction factors with 0.0, 0.5, 1.0, 3.0, and 5.0% m/m oil, to assess the impacts of lubricants. The work includes performance of a literature search and tests for both smooth and six types of internally finned copper tubes with outside diameters of 7.94 and 9.53 mm (0.32 and 0.38") for R-22, R-134a, R-407C, and R-410A. This research project is sponsored by ASHRAE Technical Committee 1.3, Heat Transfer and Fluid Flow. Proposals are due at ASHRAE Headquarters by 18 December 1998. Further information is available from the ASHRAE Manager of Research (+1-404/636-8400).

Indirect Systems ("Secondary Loops")

T. P. Castle, R. H. Green (EA Technology, UK), and D. Anderson (Lancaster University, UK), Modelling of an Integrated Supermarket Refrigeration and Heating System Using Natural Refrigerants, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 363-368, July 1996 (6 pages with 5 figures, RDB6936)

simulation model for an integrated supermarket refrigeration and heating system using R-717 (ammonia) and hydrocarbons in indirect systems; secondary loop refrigeration systems

T. Enkemann and H. Arnemann (Universität Hannover, Germany), Investigation of CO2 as a Secondary Refrigerant, New Applications of Natural Working Fluids in Refrigeration and Air Conditioning (proceedings of the meeting of IIR Commission B2, Hannover, Germany, 10-13 May 1994), International Institute of Refrigeration (IIR), Paris, France, 1994 (RDB6993)

use of R-744 (carbon dioxide) as a heat transfer fluid in indirect systems for commercial refrigeration: secondary-loop systems

please see page 6 for ordering information
U. Hesse (Spauschus Associates, Incorporated), Secondary Refrigerant Systems for Supermarket Application with Brine or Carbon Dioxide, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 369-376, July 1996 (8 pages with 8 figures and 4 tables, RDB5937)

- evaluation of an organic salt and water solution, propylene glycol, ice slurry, and R-744 (carbon dioxide) as heat transfer fluids in indirect (secondary-loop) commercial refrigeration, supermarket systems; concludes that indirect systems are promising to avoid refrigerant leakage into supermarkets, organic salt solutions are more efficient than propylene glycol in high-temperature systems, and use of R-744 in a phase change or cascaded system is promising; cites defrost problems as a not insurmountable barrier as a heat transfer fluid

- indirect systems for refrigeration: R-22, R-410A, R-507A, R-717, R-744; propylene glycol and organic salt heat transfer fluids

This paper explores the potential for use of R-717 (ammonia) for supermarket refrigeration. It characterizes ammonia refrigeration, indirect (secondary coolant) systems, and even the combination as established. It suggests, however, that adoption of such systems in retail marketing would be both new and dramatic. The paper indicates that environmental concerns with chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons coupled with the efficiency of ammonia would make it the refrigerant of choice, were it not for its toxicity and flammability. The paper suggests that these risks can be reduced by use of a secondary coolant, enabling containment of the ammonia in a restricted access, machinery room. It describes primary and secondary systems, connected by plate-and-shell heat exchangers. This type is described as providing the benefits of plate heat exchangers with the high integrity of shell-and-tube designs. Schematics illustrate the machinery room components and secondary distribution circuits for both two- and four-pipe systems. A plot compares projected maintenance costs of the ammonia-based secondary system to an R-22, direct expansion system. The paper concludes that the ammonia-based secondary system offers environmental and cost benefits, reduced refrigerant charge, lower costs of ownership, and flexibility in store layout. It notes that development work is still required.

P. S. Hrnjak (University of Illinois at Urbana-Champaign), The Benefits and Penalties Associated with the Use of Secondary Loops, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 85-95, 1997 (11 pages with 13 figures and 4 tables, RDB7B10)

- comparative advantages and disadvantages of direct and indirect (secondary loop) refrigeration systems: examination of single- and two-phase heat transfer fluids (coolants), the latter including both liquid-solid and gas-liquid types; summarizes results of laboratory experiments and modeling for commercial refrigeration systems for application in supermarkets; discusses ethylene and propylene glycol brines, silicone oils, organic salts, hydrofluoroethers (HFEs), ethanol-water mixtures, d-limonene, ice slurries, carbon dioxide; notes that indirect systems are particularly suited for lower operating temperatures in the range of -40 to 10 °C (-40 to 50 °F); concludes that the performance penalties of indirect systems can be overcome by reduced parasitic losses and refrigerant charge

S. W. Inlow and E. A. Groll (Purdue University), A Performance Comparison of Secondary Refrigerants, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 357-362, July 1996 (6 pages with 6 figures and 1 table, RDB6932)

- performance comparison of R-744 (carbon dioxide), ethylene glycol, propylene glycol, undisclosed hydrofluoroether, and an undisclosed synthetic organic fluid as heat transfer fluids in secondary-loop commercial refrigeration, supermarket systems; concludes that a system using R-717 (ammonia) as a refrigerant with R-744 as a heat transfer fluid offers a coefficient of performance equivalent to that for R-22
S. W. Inlow and E. A. Groll (Purdue University), *Analysis of Secondary-Loop Refrigeration Systems Using Carbon Dioxide as a Volatile Secondary Refrigerant*, HVAC&R Research, 2(2):107-121, 1996 (15 pages, RDB86934)

use of R-744 (carbon dioxide) as a heat transfer fluid in indirect (secondary-loop) commercial refrigeration

M. Kauffeld, *Neue NH₃-Technologie - NH₃ mit CO₂ als Kältemittel* [New Ammonia Technology - Ammonia with Carbon Dioxide as a Secondary Refrigerant], *Klima-Kälte-Heizung*, Germany, 931-932, 1995 (2 pages in German, rdb6935)

use of R-744 (carbon dioxide) as a heat transfer fluid in indirect (secondary-loop) commercial refrigeration with R-717 (ammonia) as the primary refrigerant

Indirect systems for refrigeration with R-717 (ammonia): optimization, performance comparison with staged compression to R-22 direct systems: compares three methods of staging the compression for both refrigerants; evaluates six secondary fluids for use with R-717; discusses rules based on the heat transfer fluid used for optimal systems design; concludes that the efficiency of well-designed secondary-loop systems with R-717 refrigeration is 4-10% lower than direct R-22 systems operating under similar conditions

heat transfer fluids (coolants) for indirect (secondary-loop) systems

laboratory tests of potassium formate and potassium acetate brines in an upright display case with comparisons to a direct-expansion system using R-404A: discussion of alternative heat transfer fluids including silicone oils such as polydimethylsiloxane and unidentified hydrofluoroethers (HFEs); results for the display cases only (not the full systems) show improved performance with potassium formate at low temperatures

Operation and Maintenance

M. M. Bagaman (Southland Industries Services Company, SISCO), *After CFCs: What a Changeover Means for Maintenance*, Maintenance Solutions, 10 and 12, July/August 1994 (2 pages, RDB5126)

This article reviews requirements for record keeping, system maintenance and monitoring, and refrigerant safety and handling, including training of personnel. The discussion of record keeping centers on compliance with regulations promulgated in May 1993, pursuant to Section 608 of the U.S. Clean Air Act Amendments. Six top record types are listed, namely those covering service, maintenance, repair, or disposal; copies of service invoices; and indications of the quantities of appliances serviced, maintained, repaired, or disposed. They also include records of the amount of refrigerant used, recovered, or recycled; the equipment used to recover or recycle refrigerants; and of other methods used to prevent releases into the atmosphere. The article summarizes guidelines for maintenance and monitoring, dominantly focusing on the recommendations of ASHRAE Guideline 9-1990. It identifies parameters to be checked and logged routinely. Turning to safety, the article outlines training requirements and identifies responsibilities for maintenance managers. The latter include providing a safe workplace, compliance with laws, and attention to the interests of facility owners. The article stresses the importance of regulatory and code compliance as well as attention to safety in improving the environment.

This bulletin outlines basic requirements for the safe start-up, inspection, and maintenance of R-717 (ammonia) refrigerating systems. The maintenance focus is on steps to promote safety, to supplement manufacturer instructions.
The guide provides definitions and a section on ammonia characteristics, properties, hazards, specifications for refrigerant grade ammonia, and general precautions. It then identifies essential records and documentation to be obtained and maintained by the user. A section on start-up covers an advance safety review, process hazard analysis, operating procedures, training, initial status and safety provisions, electrical equipment, evacuation, dehydration, leak checking, charging, and testing of protection devices. A section on inspection and maintenance covers general considerations, keeping of a system log, compressors, other system components, ammonia pumps, valves and sensing devices, piping, oil maintenance and removal, and motors and other drives. Appendices identify minimum design pressures, information to be provided on component name plates, a check list for start-up, and requirements for machinery rooms and auxiliary safety equipment. A separate appendix reviews stress corrosion cracking (SCC), inspection, and preventive measures. Additional appendices cover pressure tests and typical schedules for inspection and maintenance. The document concludes with sample forms for pressure vessel records and system logs.

This bulletin provides guidance for uniform labeling of R-717 (ammonia) piping and components for refrigeration systems. Its objective is to promote safety, facilitate maintenance, and provide vital information to emergency service personnel. It stipulates standardized identification of the physical state, relative pressure level, and direction of flow of the refrigerant for piping mains, headers, and branches. It also provides for identification of components, including receivers, heat exchangers, and accumulators. The bulletin prescribes standard piping and component markers with specific attention to content, arrangement, approved abbreviations, dimensions, and colors. It also prescribes marker locations and provides for posting of reference charts.

Performance

R-11 and R-114 alternatives

R407 series blends

compares use of simplified equations and more precise formulations for performance predictions; focuses on the compromise between accuracy and the amount of computational time required in a system simulation or optimization; presents comparisons for R-12 and R-22 in the heating mode of a heat pump model; compares the predicted coefficient of performance (COP) and pressure ratio for the Carnahan-Starling-DeSantis (CSD) equation of state (EOS) and standard reference quality EOS explicit in Helmholtz energy (or fundamental equations, FEQs); presents results for various values of system temperature lift, heat exchanger temperature glide, and for three different sets of CSD coefficients for R-12; observes that the CSD equation predicts COP values that are 8-10% percent higher and require computational times nearly twice as long as the FEQ.

performance of single-compound refrigerants in the basic reversed-Rankine and three modifications to minimize throttling-process (expansion)
irreversibilities: concludes that all refrigerants can offer the same coefficient of performance (COP) in the ideal vapor-compression cycle; overall, the penalties from the expansion process are the largest total loss from the theoretical cycle; cycles with a liquid-line/suction line heat exchanger (LSHX or LSHX) minimize expansion losses for refrigerants with high molar heat capacity, but fluids with low molar heat capacity do not benefit from this enhancement; economizer cycles improve the performance for all refrigerants and reduce the COP differences among them, but fluids with the highest COP in the Rankine cycle are still the best performers; the COPs with ejector cycles are sensitive to the ejector efficiency; at low ejector component efficiencies, low heat capacity refrigerants have a better COP; at high ejector efficiencies, high heat capacity fluids show a higher COP; the improvements for both economizer and ejector cycles results from both increased capacity and reduced work, the latter having a more significant effect; refrigerants addressed include R-11, R-12, R-13, R-13B1, R-14, R-21, R-22, R-23, R-32, R-113, R-114, R-115, R-123, R-123a, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143, R-143a, R-152a, R-218, R-227ea, R-236ea, R-245cb, R-E245, R-C270, R-290 (propane), R-C318, R-600 (n-butane), R-600a (isobutane), R-602 (n-pentane, n-C5), R-602a (isopentane, i-C5), R-717 (ammonia), R-744 (carbon dioxide)

This report presents a theoretical analysis of three vapor-compression cycles that incorporate a liquid-line/suction-line heat exchanger (LSHX), economizer, or ejector. These enhancements reduce throttling losses by different principles, but they also increase complexity and costs. The analyses compared the variations to basic reverse Carnot and Rankine cycles for 36 refrigerants. They included R-11, R-12, R-13, R-13B1, R-14, R-21, R-22, R-23, R-32, R-113, R-114, R-115, R-123, R-123a, R-124, R-125, R-134, R-E134, R-134a, R-141b, R-142b, R-143, R-143a, R-152a, R-218, R-227ea, R-236ea, R-245cb, R-E245, R-C270, R-290, R-C318, R-600, R-600a, R-601 (pentane), R-601a (isopentane), R-717, and R-744. The benefits of the cycle modifications generally increase with the amount of throttling losses realized by the refrigerant in the reverse-Rankine cycle. The study found that the LSHX cycle offers the smallest improvement. The ejector cycle offers the highest efficiency, but requires an ejector efficiency beyond that practically demonstrated. The performance of the ejector cycle is comparable to that of the single-stage economizer cycle for typical ejector efficiencies. The report includes a tabular summary of selected properties (critical temperature, molecular mass, latent heat of vaporization, and vapor and liquid molar heat capacities).

T. Ebner and H. Halozan (Technische Universität Graz, Graz, Austria), Testing the Available Alternatives - An Examination of R-134a, R-152a, and R-290, IEA Heat Pump Newsletter, International Energy Agency (IEA) Heat Pump Centre (HPC), Sittard, The Netherlands, 12(1), 1994 (rdb5721)

Alternative Refrigerants Evaluation Program (AREP)

R-407A [R-32/125/134a (20/40/40)], R-407B [R-32/125/134a (10/70/20)]

R-410A, pressure loss in grooved tube evaporators, capillary tube characteristics, system simulation, seasonal performance, comparison to R-22 concludes that efficiency is better at low loads, worse at high loads, and nearly the same on a seasonal basis.

Y. Morikawa (Matsushita Electric Industrial Company Limited, Japan), Summary of Test Data from Several Drop-In, Compressor Calorimeter, Soft-Optimized Compressor, and Soft-Optimized System Tests Performed by JRAIA Member Companies, Alternative Refrigerants Evaluation Program (AREP) report 123, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (14 pages with 10 figures and 1 table, available from JMC as RDB3D23)

J. Pettersen (University of Illinois at Urbana-Champaign), Experimental Results of Carbon Dioxide in Compression Systems, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 100(2):140-147, 1994 (8 pages with 8 figures, RDB4708)

for outdoor heat exchangers and of volumetric losses in compressors for R-22 and R-744; illustrates comparative capacity and coefficients of performance (COP) for R-22, R-134a, and R-744

D. R. Riffe (AmeriCold / White Consolidated Industries, Incorporated), Is There a Relationship Between the Ideal Carnot Cycle and the Actual Vapor-Compression Cycle?, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 205-212, July 1994 (8 pages with 12 figures and 1 table, RDB-4826)

theoretical performance, refrigeration effect, isentropic compression efficiency, coefficient of performance, COP, R-12, R-22, R-115, R-124, R-134, R-134a, R-142b, R-143a, R-152a, R-218, R-C270, R-290, R-C318, R-600a

consideration of properties in centrifugal compressor design

C. Wahlberg, V. W. Goldschmidt (Purdue University), and G. de Souza Damasceno (Universidade Federal de Vicosa, Brazil), Anticipating the Performance of Drop-In Refrigerant Alternatives, Proceedings of the 19th International Congress of Refrigeration (The Hague, The Netherlands, 20-25 August 1995), International Institute of Refrigeration (IIR), Paris, France, IVb:1029-1036, 1995 (8 pages with 11 figures and 1 table, RDB7940)

effects of refrigerant charge variations on capacity and subcooling in a domestic refrigerator; effects of expansion valve position on evaporator superheat; correlation of charge with capacity and power draw; correlation of optimum charge and capacity with molecular weight; correlation of average power to refrigerant suction pressure

T. Yamaguchi (Mitsubishi Electric Corporation, Japan), Characteristics of Scroll Condensing Units for R125/143a/134a, paper 3.4, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 63-67, December 1994 (5 pages with 13 figures and 1 table; in Japanese with abstract, figures, and table in English; RDB5413)

R-125/143a/134a (44/52/4) [R-404A], composition shift, equilibrium composition, discharge temperature, cooling capacity and efficiency

Cycle Analyses

use of the thermodynamic mean temperature (defined as the enthalpy variation divided by the entropy variation) to evaluate the performance of zeotropic mixtures in vapor-compression cycles to address the influence of temperature glide: illustration with a comparison of R-407C to R-22 for two applications in air conditioners and one in cold storage

C. E. Bullock (Carrier Corporation), Theoretical Performance of Carbon Dioxide in Subcritical and Transcritical Cycles, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 20-26, 1997 (7 pages with 8 figures and 4 tables, RDB7803)

examines the reasons for the low cycle efficiency of R-744 (carbon dioxide): analyzes theoretical and real cycles as well as cycle modifications to improve this performance; tabulates comparative efficiencies of R-22, R-134a, R-290, R-410A, R-717, and R-744; details an evaluation of R-744 in a 13.5 kW (4 ton) air-to-air unitary heat; concludes that R-744 offers the advantages of low toxicity, environmental attraction, nonflammability, and low cost but its inherently low efficiency and high operating pressures remain serious challenges; identifies needed improvements in heat exchangers, compressors, and expanders to make R-744 use competitive, and notes that the resulting higher discharge temperatures would make it attractive for use in heat pumps

S. Chen, J. F. Judge, E. A. Groll, and R. K. Rademaker (University of Maryland), Theoretical Analysis of Hydrocarbon Mixtures as a Replacement for HCFC-22 for Residential Uses, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN,
225-230, July 1994 (6 pages with 4 figures and 2 tables, RDB4827)

R-22, R-290 (propylene), R-600 (n-butane), R-600a (isobutane), R-601a (isopentane), R-290/-600, R-290/600a, R-290/601a

R-12, R-134a, efficiency, thermodynamic properties, thermophysical data

R-22, R-32/125 (49/51), R-290, R-290/600a (70/30), simulated performance

This report evaluates performance of candidate refrigerants to replace R-22 and R-502. The alternatives compared to R-22 include R-32/125 (60/40), R-407B [R-32/125/134a (10/70/20)], R-32/125/134a (30/10/60), R-32/125/290/-134a (20/55/6/20), R-32/134a (25/75), R-32/-134a (30/70), R-32/227ea (35/65), R-134a, and R-250 (propylene). The analyses are based on a semi-theoretical model, CYCLE-11, with cross-flow heat transfer in the evaporator and condenser. Thermodynamic properties were calculated using the Carnahan-Starling-DeSantis (CSD) equation of state. The conditions examined approximate outdoor rating conditions for residential heat pumps, namely 27.8 and 35 °C (82 and 95 °F) for cooling and -8.3 and 8.3 °C (17 and 47 °F). Calculated volumetric capacities, coefficients of performance (COPs), pressure lift, and compressor discharge temperatures and pressures are plotted. The analyses are presented for "drop-in" conditions (constant heat exchangers), constant heat exchanger loading, and with addition of a liquid-suction heat exchanger. The alternatives compared to R-502 are R-32/125/134a (10/45/45), R-125/143a (35/45), and R-125/143a/134a (44/-52/4) [R-404A]. These fluids are examined at typical conditions for commercial refrigeration, namely 23.3 and 35 °C (-10 and 95 °F) for the fluid entering the evaporator and condenser, respectively. Simulation cases and results similar to those for the R-22 alternatives are presented. Summary fluid properties and results for the constant exchanger loading cases are tabulated. They indicate efficiency losses of 1-16% for the R-22 alternatives and 3-7% for the R-502 alternatives. Corresponding changes in volumetric capacity range from 31% lower to 55% higher and from 8% lower to 13% higher than R-22 and R-502, respectively. The report notes, however, that these findings would change with consideration of differences in transport properties. The report abstractly discusses the influence of critical temperature on performance and unavoidable trade off between COP and volumetric capacity. It also reviews the impacts of heat capacity, liquid thermal conductivity, and liquid viscosity; neither these transport properties nor toxicity and flammability were otherwise addressed. Two appendices summarize the nomenclature used in the report and describe the CYCLE-11 model. A third tabulates vapor heat capacity, liquid and vapor thermal conductivity, and liquid and vapor viscosity for the fluids addressed.

I. W. M. Eames (University of Nottingham, UK) and M. Naghashzadegan (University of Sheffield, UK), *Comparison Study of ISeeon 49 (A Drop-In Replacement for R12)* with R12 and R-134a, *Proceedings of the 1996 International Refrigeration Conference at Purdue* (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 259-264, July 1996 (6 pages with 8 figures and 1 table, RDB6911)

R-12, R-134a, R-413A, cooling capacity, coefficient of performance, cycle analysis, experimental validation in a refrigerator; concludes that retrofit from R-12 to R-413A does not result in a significant loss in overall performance

zeotropic blends, performance
Compressor Calorimeter Tests

R. R. Angers (Dunham-Bush, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-32/125 (50/50), Alternative Refrigerants Evaluation Program (AREP) report 133, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, December 1993 (14 pages with 8 figures and 2 tables, available from JMC as RDB3D32)

R-410A compared to R-22, with a polyolester (POE) lubricant (CPI® Soltest® 120), in a cycle test of a semihermetic, twin-screw compressor (Dunham-Bush model 1615DHR4VOEOM).

R. R. Angers (Dunham-Bush, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-134a, Alternative Refrigerants Evaluation Program (AREP) report 132, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, December 1993 (14 pages with 8 figures and 2 tables, available from JMC as RDB3D32)

This report presents results of calorimeter (gas-cycle) testing for two refrigerants in an open-drive, large twin-screw compressor (Dunham-Bush model 1610FFH4VOE). R-22 was tested as a reference with a mineral oil (Witco Suniso® 4GS); R-134a was tested with a polyolester (CPI® Soltest® 120). The report summarizes the test conditions and provides a schematic of the test system. Three appendices present the tabular data, derived performance curves, and a plot comparing the relative efficiencies for R-134a to those with R-22. The tabular data for the tests include capacity, mass flow rate, compressor speed, current draw, input power, energy efficiency ratio (EER), coefficient of performance (COP), and relative COP (R-507A to R-502). The tests were performed at saturated suction temperatures of -40, -32, and -18 °C (-40, -25, and 0 °F) and saturated discharge temperatures of 35, 41, and 52 °C (95, 105, and 125 °F). Capacity, input power, and COP are plotted for the same conditions. The resultant data for R-507A show 4-9% lower efficiency, depending on the suction and discharge temperatures. The relative COP appears to decrease with increasing discharge temperature. No source is indicated for the thermodynamic properties used.

R-404A, twin-screw compressor

R. R. Angers (Dunham-Bush, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 122, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (14 pages with 8 figures and 2 tables, available from JMC as RDB3D22)

R-404A

This report presents results of calorimeter (gas-cycle) testing for two refrigerants in a vertical, twin-screw compressor (Dunham-Bush model 1212BH6W4KB). R-134a was tested with a polyolester (CPI® Soltest® 120); R-22 was tested with a mineral oil (Witco Suniso® 4GS) as a reference. R-22 testing was performed using a 134 kW (100 HP) compressor motor, reduced to 107 kW (80 HP) for R-134a. The tests and resulting comparisons were repeated without and with vapor injection. The test condi-

This report presents results of calorimeter (gas-cycle) testing for R-717 (ammonia) in medium and large screw compressors. The actual tests were performed by Svenska Rotor Maskiner AB (SRM) in Sweden, using compressors with 127 and 204 mm (6 and 8") rotors. The report describes the test setup and shows it schematically. Appendices present the test results including reference data with R-22. Saturated discharge temperature, saturated suction temperature, volumetric and adiabatic efficiency, brake horsepower, capacity, and coefficient of performance (COP) are tabulated for both compressors. The results show 8% lowered COP with R-717 at low suction temperatures improving to 5% better at high suction temperatures for the larger compressor size. The relative COP was 3-6% lower with R-717 in the smaller compressor. A second appendix indicates the lubricant content circulated, substantially higher with R-717. A third appendix describes 12 plots of the measured data including capacity, input power, and COP as functions of suction temperature for both refrigerants for both compressors.

B. Carter (Copeland Corporation). Compressor Calorimeter Test of Refrigerant Blend R-32/125 (60/40), Alternative Refrigerants Evaluation Program (AREP) report 157, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (16 pages with 3 figures and 4 tables, available from JMC as RD85657)

R-410A with a polyol ester lubricant (Mobil EAL Arctic® 22 CC) in a hermetic, compliant scroll compressor (Copeland ZR18K1-PFV)

R. E. Cawley (The Trane Company). Compressor Calorimeter and Drop-In Tests of Refrigerant R-290 (Propane), Alternative Refrigerants Evaluation Program (AREP) report 18, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, February 1993 (12 pages with 7 figures and 2 tables, available from JMC as RD3818; table 1 contains type that is small and may be difficult to read)

This report summarizes a test of R-290 (propane) as an alternative to R-22 in unitary air conditioners and heat pumps. It documents comparative performance; flammability and safety concerns are acknowledged and noted as separately addressed in other work. The report reviews the Alternative Refrigerants Evaluation Program (AREP) objectives and rationale for nomination of R-290 by Lennox International. The test procedure, instrumentation, and test equipment are described. The basic test machine used was a 10.6 kW cooling (3 ton) single-speed, medium-efficiency heat pump. Performance was measured with a standard scroll compressor (Copeland ZR34K1-PFV) for R-22 and with a second compressor, for R-290, with 14.5% greater volumetric displacement (Copeland ZRK40K1-PFV). The latter was specially prepared with motor thermocouples. Testing followed ASHRAE standards 37-1988 and 115-1989 and ARI standard 210/240. The lubricant used was a conventional white oil (Penreco Sontex 200LT); a solubility plot is presented for R-290 in mineral oil (Witco Suniso® 3GS). Measured increases in the heating and cooling capacities with R-290 are noted as resulting from the difference in compressors. System efficiencies were indicated as comparable, within ±2%. Appendices provide measured performance data and comparative plots of capacity, input power, efficiency, and efficiency ratio for evaporator temperatures of -18 to 16 °C (0-60 °F) and condenser temperatures of 32-60 °C (90-140 °F). Simulated and measured data are tabulated in both inch pound and metric (SI) units. The report concludes that performance with propane is predictable, despite small inconsistencies in thermodynamic data for it, that few equipment changes are needed to switch to R-290, and that retrofit may be possible. The report recommends that R-290 be further considered until another candidate becomes an "obvious choice" or ongoing safety evaluations and related efforts prove ineffective.

J. Gephart, E. B. Muir, P. Naculich, and S. G. Sundaresan, (Copeland Corporation), Compressor Calorimeter Test of Refrigerant Blends R-125/143a (45/55), R-125/143a/134a (44/52/4), and R-32/125/143a (10/45/45), Alternative Refrigerants Evaluation Program (AREP) report 28, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (44 pages with 9 figures and 25 tables, available from JMC as RDB3828; available copy is difficult to read)

R-125/143a (45/55), R-404A, and R-32/125/-143a (10/45/45)

This paper summarizes results of calorimeter tests to measure performance of alternative refrigerants in compressors for air conditioners, heat pumps, and refrigeration equipment. It also addresses laboratory "drop-in" (unoptimized) tests in equipment. The tests were performed by companies participating in the Alternative Refrigerants Evaluation Program (AREP), established by the Air-Conditioning and Refrigeration Institute (ARI). The paper reviews the development of AREP and lists the 39 companies - in Europe, Japan, and North America - participating in this effort. It also lists the 14 candidate refrigerants selected for testing as potential replacements for R-22. They include R-134a; R-290 (propane); R-717 (ammonia); R-32/125 (60/40); R-32/134a (20/80), (25/75), (30/70), and (40/60); R-32/227ea (35/65); R-125/143a (45/55); R-32/125/134a (10/70/20) [R-407B], (24/16/60), and (30/10/60); and R-32/125/290/134a (20/55/6/20). The candidates also include four for R-502, namely R-125/143a (45/55), R-32/125/134a (20/40/40) [R-407A]; R-125/143a/134a (10/45/45), and R-125/143a/134a (44/52/4) [R-404A]. The paper summarizes the results for R-32/125 (60/40); R-32/125/134a (30/10/60), R-32/134a (25/75), and R-32/134a (30/70). Four plots show the efficiencies and capacities measured in calorimeter tests relative to evaporating temperatures. Five additional plots, for the same candidates plus R-134a, map the efficiencies and capacities found in system "drop-in" tests as ratios to those for R-22. The paper concludes that several non-ozone depleting candidates offer performance approaching those of R-22. While most of the candidates resulted in a loss of capacity, efficiency, or both, some yielded improvements in either capacity or efficiency. The paper notes that efforts to standardize the test conditions led to good agreement in the calorimeter tests, but that higher scatter was found in the system "drop-in" tests as ratios to those for R-22. The paper concludes that several non-ozone depleting candidates offer performance approaching those of R-22. While most of the candidates resulted in a loss of capacity, efficiency, or both, some yielded improvements in either capacity or efficiency. The paper notes that efforts to standardize the test conditions led to good agreement in the calorimeter tests, but that higher scatter was found in the system tests. The cause is suggested as the result of differences in the specific equipment tested. The paper notes that performance is likely to improve with full optimization of the compressors and equipment for these fluids, but that such optimization is left to the individual companies. It also cites international cooperation as a significant and advantageous accomplishment.

D. S. Godwin and M. S. Menzer (Air-Conditioning and Refrigeration Institute, ARI), Results of Com-
This paper summarizes results of calorimeter tests to measure performance of alternative refrigerants in compressors for air conditioners, heat pumps, and refrigeration equipment. The tests were performed by companies participating in the Alternative Refrigerants Evaluation Program (AREP) established by the Air-Conditioning and Refrigeration Institute (ARI). The paper reviews the development of AREP and lists the 39 companies participating in this international effort. It also lists the 14 candidate refrigerants selected for testing as potential replacements for R-22. They include R-134a; R-290 (propane); R-717 (ammonia); R-32/125 (60/40); R-32/134a (20/80), (25/75), (30/70), and (40/60); R-32/227ea (35/65); R-125/143a (45/55); R-125/125/134a (10/70/20) [R-407B], (24/16/60), and (30/10/60); and R-32/125/290/134a (20/55/5/20). The candidates also include four for R-502, namely R-125/143a (45/55), R-32/125/134a (20/40/40) [R-407A]; R-125/143a/134a (10/45/45), and R-125/143a/134a (44/52/4) [R-404A].

The paper briefly outlines three facets of the program, including calorimeter, drop-in, and heat transfer testing. The test conditions and reporting requirements for the compressor calorimeter tests are outlined. The measured capacities and efficiencies are tabulated as ratios to those for the reference (R-22 and R-502) fluids for 12 of the candidates. The results also are plotted relative to the evaporating temperatures of the tests, accompanied by an explanation of the data and variances. The paper concludes that several non-ozone-depleting candidates offer performance approaching those of R-22 and R-502, and some offer better capacity and/or efficiency. Moreover, performance is likely to improve with full optimization of the compressors for these fluids.

This report provides summary plots based on calorimeter test results for a large semihermetic (accessible hermetic), reciprocating piston compressor. The plots present capacity and input power multipliers, for converting from R-22 to R-134a, as functions of saturated suction and discharge temperatures. One set of figures for operation at 1750 rpm shows the effect on performance of retaining the same motor for both refrigerants, namely oversizing the motor for R-134a. The second set shows the benefits of changing the motor to suit the reduced power requirements with R-134a, by changing the speed from 1750 to 1775 rpm. Modelled compressor data, based on measurements for a single 9.53 cm (3.75”) bore and 7.87 cm (3.10”) stroke, are presented. The results cover 29 to 21 °C (-20 to 70 °F) saturated suction and 27-68 °C (80-155 °F) saturated discharge conditions.

K. Hickman (York International Corporation), Compressor Calorimeter Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 15, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (10 pages with 6 figures and 2 tables, available from JMC as RDB3815)

T. Iizuka and A. Ishiyama (Hitachi Corporation, Japan), Reliability of Compressors for HFC-Based Refrigerants, paper 6.2, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 139-144, December 1994 (6 pages with 15 figures...
and 7 tables; in Japanese with abstract, figures, and tables in English; RDB5426)

R-22, R-32, R-125, R-134a, R-32/134a (50/50) and (30/70), and R-407C; polyolester and carbonate lubricants, compatibility.

H. Kanno (Mitsubishi Heavy Industries, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 41, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (12 pages with 3 figures and 1 table, available from JMC as RDB3841)

N. Kanzaki (Kobe Steel, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 43, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (10 pages with 3 tables, available from JMC as RDB3843)

performance test for R-134a

O. Kataoka (Toshiba Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 38, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (12 pages with 4 figures and 1 table, available from JMC as RDB3838)

O. Kataoka (Toshiba Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 39, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (12 pages with 4 figures and 1 table, available from JMC as RDB3839)

R-E125, theoretical evaluation, compressor calorimeter tests.

R-114, R-236ea

G. S. Kazachki (Acurex Environmental Corporation) and R. V. Hendriks (U.S. Environmental Protection Agency, EPA), Calorimeter Tests of HFC-236ea as a CFC-114 Alternative and HFC-245fa as a CFC-11 Alternative, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 158-166, October 1993 (9 pages with 7 tables, RDB3A38)

Y. Kiyokawa (Sanyo Electric Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blends R-32/125 (60/40) and R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 35, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (14 pages with 5 figures and 2 tables, available from JMC as RDB3835)

S. Komatsu (Sanden Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-125/143a, Alternative Refrigerants Evaluation Program (AREP) report 147, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (6 pages with 3 figures and 2 tables, available from JMC as RDB5647)

This report summarizes performance measurements of R-404A [R-125/143a/134a (44/52/4)] with an unidentified ester lubricant in a rotary, rolling-piston compressor. Note that the title disagrees with the report on the refrigerant tested.

performance comparison for both heating and cooling with partial optimization, concludes that capacities with R-407C and R-410A were 91-101% and 98-107%, respectively of that with R-22 depending on the operating conditions and modifications to the indoor heat exchanger.

K. W. Mumpower (Bristol Compressors, Incorporated) and M. B. Shiflett (DuPont Fluoroproducts),
Calorimeter Experiments with Suva(R) AC9000, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 61-66, July 1994 (6 pages with 6 figures and 1 table, RDB4811)

R-407C [R-32/125/134a (23/25/52)]

K. Mumpower (Bristol Compressors, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-32/125/134a (10/70/20), Alternative Refrigerants Evaluation Program (AREP) report 4, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (30 pages with 4 figures and 12 tables, available from JMC as RDB3854)

This report summarizes calorimeter test data for R-22 and R-407B [R-32/125/134a (10/70/20)] for a hermetic, reciprocating piston compressor (Bristol Inertia(R) model H25A3S3CBC). Performance tables, calculated with thermodynamic data supplied by the refrigerant manufacturer, and a revision, based on data from NIST REF-PROP 3x, are provided; the latter indicate increased capacity over the former. Raw and regressed performance (capacity, power, current, mass flow, and efficiency) tables are provided for -7 to 13 °C (-20 to 55 °F) evaporating and 27-66 °C (80-150 °F) condensing temperatures, based on 8 °C (15 °F) subcooling and 11 °C (20 °F) superheat. Plots compare the capacity and efficiency of the blend versus R-22. A performance plot depicts the motor characteristics and small shift in the torque range required (and corresponding efficiencies) for the two refrigerants. A table summarizes the blend pressures at test temperatures. Tests were performed with mineral oil (Witco Suniso(R) 3GS). The test conditions and instrumentation accuracy are indicated. The report concludes that the blend yielded significantly higher capacities at condensing temperatures below 54 °C (130 °F), but lower capacities at higher temperatures. Similarly, the blend was less efficient than R-22 except at condenser temperatures below 38 °C (100 °F).

K. Mumpower (Bristol Compressors, Incorporated), Compressor Calorimeter Test of Refrigerant R-290, Alternative Refrigerants Evaluation Program (AREP) report 21, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (30 pages with 6 figures and 11 tables, available from JMC as RDB3821)

K. Mumpower (Bristol Compressors, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 54, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (28 pages with 4 figures and 12 tables, available from JMC as RDB3855)

K. Mumpower (Bristol Compressors, Incorporated), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 55, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (32 pages with 4 figures and 13 tables, available from JMC as RDB3855)

R-404A

N. Murata (Mitsubishi Heavy Industries, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 115, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (8 pages with 2 figures and 2 tables, available from JMC as RDB3D15)

R-404A

H. Namiki (Mayekawa Manufacturing Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 145, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (8 pages with 3 figures and 2 tables, available from JMC as RDB4745)

This report summarizes performance measurements of R-134a with an unidentified mineral oil in a reciprocating piston compressor. The test rig is shown schematically. Two tables present evaporating and condensing temperatures and pressures. They also give the capacity, input power, and coefficient of performance (COP) normalized to those with R-22 at corresponding conditions. Measurements were made for -21, -9, and 8 °C (-6, 16, and 46 °F) evaporating and 33, 43, 53, and 57 °C (91, 109, 127, and 135 °F) condensing. Two plots show the dependence of the normalized COPs on the evaporating and condensing temperatures. The COPs: decreased by 5-15% with R-134a, and were most sensitive to decreasing evaporating temperature.

H. Namiki (Mayekawa Manufacturing Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 79, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, May 1993 (10 pages with 3 figures and 3 tables, available from JMC as RDB3C79)

This report summarizes performance measurements of a twin-screw compressor with R-134a and an unidentified polyolester lubricant. The test rig is shown schematically. Two tables present evaporating and condensing temperatures...
and pressures. They also give the capacity, input power, and coefficient of performance (COP) normalized to those with R-22 at corresponding conditions. Measurements were made for -15, -5, 0, and 7 °C (5, 23, 32, and 45 °F) evaporating and 35 and 45 °C (95 and 113 °F) condensing. Two plots show the dependence of the normalized COPs on the evaporating and condensing temperatures. The COPs decreased by 10% at low evaporating temperatures, but increased by up to 10% at high evaporating temperatures. The decreased slightly with increasing condensing temperature.

T. Nitta (Mitsubishi Heavy Industries, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-125/143a/134a (44/52/4). Alternative Refrigerants Evaluation Program (AREP) report 141, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (6 pages with 2 figures and 1 table, available from JMC as RDB-4741)

R-404A, ester lubricant, rotary rolling-piston compressor

M. Ozu (Toshiba Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70). Alternative Refrigerants Evaluation Program (AREP) report 37, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (12 pages with 3 figures and 1 table, available from JMC as RDB3837)

C. K. Rice and J. R. Sand (Oak Ridge National Laboratory, ORNL), Compressor Calorimeter Performance of Refrigerant Blends - Comparative Methods and Results for a Refrigerator Freezer Application, paper CH-93-20-3, Transactions (Winter Meeting, Chicago, IL, January 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 99(1): 1447-1466, 1993 (20 pages with 7 figures and 5 tables, RDB3115)

K. Sakaino (Mitsubishi Electric Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-134a and Refrigerant Blend R-32/134a (30/70). Alternative Refrigerants Evaluation Program (AREP) report 42, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (34 pages with 17 figures and 9 tables, available from JMC as RDB3842)

This paper summarizes evaluation of R-32/134a (30/70) as a substitute for R-22 for use in unitary hermetic compressors. It reviews a cooperative industry effort to test new refrigerants, the Alternative Refrigerants Evaluation Program (AREP), and the author's rationale for selecting the R-32/134a blend for testing (see RD3802). The paper then summarizes calorimeter tests for a nominal 8.8 kW (30,000 Btu/hr), hermetic reciprocating piston compressor. Plots present efficiency and capacity ratios, to compare performance for R-32/134a (30.1/69.9) and R-22, as functions of evaporator and condensing temperatures. The ranges covered are -25 to 13 °C (-15 to 55 °F) and 32-66 °C (90-150 °F), respectively. The tests were performed using a fully-formulated, polyolester lubricant. The paper notes that above -12 °C (10 °F) evaporator temperature, the efficiencies of the blend slightly exceed those with R-22. Below this temperature, the blend suffers compared to R-22. The capacity is shown to be slightly lower with the blend at almost all conditions plotted, though the same trend in worse comparative performance is evident at low suction temperatures. The paper then discusses materials compatibility considerations. It presents miscibility diagrams for R-32, R-134a, and the R-32/134a blend in polyolster and a solubility plot to compare R-22 in alkylbenzene against R-32/134a in polyolster. Turning to compatibility, the paper notes that R-134a is relatively benign, but that R-32 behaves more like R-22 in softening and blistering magnet wire. A table compares the effects of R-22, R-32, and R-134a on and their absorption by wire enamel. The discussion concludes that the R-32/134a blend is expected to have less or comparable effect than R-22 alone. The paper notes concern with desiccants, since activated alumina will become fully loaded by absorbing polyolster and commercially-available molecular sieves will adsorb R-32. The paper then address flammability considerations. It notes disagreement on classification of the blend, since it could become flammable at low, -20 °C (-4 °F) ambient conditions, or if tested above 80 °C (176 °F). The author indicates an urgent need for consensus on acceptable criteria for flammability. The paper concludes that R-32/134a (30/70) is as close as can be expected to a drop-in replacement for R-22, but that its use could be impeded by the definition of, and therefore potential labeling of the blend as, flammable.

This report compares the performance of R-407C to that with R-22 and that with R-32/125/134a (30/10/60) in an 8.8 kW (30,000 Btu/hr), hermetic reciprocating piston compressor (Tecumseh AW5530F). A polyester (POE) lubricant (Mobil EAL Arctic® 32) was used for these tests, which were performed using secondary refrigerant calorimetry. The report summarizes the evaluation purpose and experimental details. Two tables show the calorimeter parameters for representative evaporator and condenser test conditions. Two additional tables compare the measured capacity and efficiency of R-407C to those of R-22 and R-32/125/134a (30/10/60). Four plots show the capacity and energy-efficiency ratios for the same comparisons as functions of the evaporator and condensing temperatures, for ranges of -12 to 13°C (10-55°F) and 32-54°C (90-130°F) respectively. The report concludes that R-407C and R-22 have identical capacities at 7°C (45°F) evaporating and 54°C (130°F) condensing, but that R-407C is more favorable at lower condensing temperatures. Further, R-407C offers marginally lower performance compared to R-32/125/134a (30/10/60), but the differences are within the range of experimental uncertainty. It recommends further evaluation of R-407C based on its nonflammability compared to the other blend formulation.

K. S. Sanvordenker (Tecumseh Products Company), Compressor Calorimeter Test of Refrigerant Blends R-32/134a (30/70), R-32/134a (25/75), and R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 32, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1993 (14 pages with 7 tables, available from JMC as RDB3832).

This report summarizes calorimeter test results for a nominal 8.8 kW (30,000 Btu/hr), hermetic reciprocating piston compressor (Tecumseh model AW5530F). Tabular data are provided to compare the capacity and efficiency for R-22, R-32/134a (30/70), R-32/134a (25/75) and R-32/125/134a (30/10/60) as functions of evaporator and condensing temperatures. The ranges covered are -26 to 13°C (-15 to 55°F) and 32-66°C (90-150°F), respectively. The tests were performed using a fully-formulated, polyester lubricant (Mobil EAL Arctic® 322 R, ISO viscosity grade 22). Tables and plots summarize the compressor performance (capacity, input power, current draw, mass flow, and efficiency) and coefficients per ARI standard 540-91. The report notes that above -12°C (10°F) evaporator temperature, the efficiencies of the blend exceed those with R-22 by less than 5%. Below this temperature, the blend suffers compared to R-22. The effect is described as real, because the compression ratios are significantly higher, but exaggerated, because there may be large errors in measurements at those conditions. The capacity is shown to be slightly lower with the blend at almost all conditions plotted. The report also notes that the same gain in efficiency was not found for a different compressor, using thermodynamic data from a separate source (NIST REFPROP 3.04a versus DuPont Chemicals data), though the trends are the same. (also see RDB3622)

N. Sawada (Sanyo Electric Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blends R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 2, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, August 1992 (22 pages with 10 figures and 4 tables, available from JMC as RDB3802).

This report summarizes calorimeter test results for a nominal 8.8 kW (30,000 Btu/hr), hermetic reciprocating piston compressor (Tecumseh model AW5530F). Plots present efficiency and capacity ratios, to compare performance for R-32/134a (30/10/60) and R-22, as functions of evaporator and condensing temperatures. The ranges covered are -26 to 13°C (-15 to 55°F) and 32-66°C (90-150°F), respectively. The tests were performed using a fully-formulated, polyester lubricant (Mobil EAL Arctic® 322 R, ISO viscosity grade 22). Tables and plots summarize the compressor performance (capacity, input power, current draw, mass flow, and efficiency) and coefficients per ARI standard 540-91. The report notes that above -12°C (10°F) evaporator temperature, the efficiencies of the blend exceed those with R-22 by less than 5%. Below this temperature, the blend suffers compared to R-22. The effect is described as real, because the compression ratios are significantly higher, but exaggerated, because there may be large errors in measurements at those conditions. The capacity is shown to be slightly lower with the blend at almost all conditions plotted. The report also notes that the same gain in efficiency was not found for a different compressor, using thermodynamic data from a separate source (NIST REFPROP 3.04a versus DuPont Chemicals data), though the trends are the same. (also see RDB3622)

R-407C, polycarbonate lubricant, rotary rolling-piston compressor

M. B. Shiflett and A. Yokozeki (DuPont Fluoroproducts), Compressor Calorimeter Experiments on R-502 and R-22 Alternatives, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 401-405, July 1994 (6 pages with 7 figures, RDB4653)

R-404A [R-125/143a/134a (44/52/4)], R-407C [R-32/125/134a (23/25/52)]

K. Tojyo (Mitsubishi Electric Corporation, Japan), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 78, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (6 pages with 1 figure and 2 tables, available from JMC as RDB3C7B)

R-404A

Y. Seyama (Sanyo Electric Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 171, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, March 1994 (10 pages with 3 figures and 1 table, available from JMC as RDB5617)

R-404A with an unidentified ester lubricant compared to R-22 in a reciprocating piston compressor

describes a series of laboratory tests to compare the performance of two near-azeotropic blends, R-290/22/218 (6/65/39) and (6/74/20) [developmental formulations, since modified, for R-403B and R-403A, respectively], to R-502 for low-temperature refrigeration: tests were carried in a water-to-water heat pump test facility using an open-drive, reciprocating-piston compressor and counterflow heat exchangers:

measurements were conducted at condensing temperatures of 43.3 and 54.4 °C (110 and 130 °F); the evaporating temperature was varied over a range of -30 to -15 °C (-22 to -5 °F); superheat was maintained at approximately 5 °C (9 °F), and the inlet temperature to the compressor was maintained 18.3 °C (65 °F); subcooling was held constant at 12 °C (21.6 °F); compressor performance characteristics including shaft power, volumetric efficiency, pressure ratio, and compressor discharge temperature were compared; system performance characteristics were also measured, including evaporator capacity, refrigerant mass flow, and cooling coefficient of performance (COP)

J. P. Soley (Unidad Hermética, S.A., Spain), Compressor Calorimeter Test of Refrigerant Blend R-125/143a/134a (45/52/4), Alternative Refrigerants Evaluation Program (AREP) report 158, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, February 1994 (8 pages with 2 figures and 1 table, available from JMC as RDB5658)

This report compares the measured performance of R-404A and an unidentified polyether (POE) lubricant to that of R-502 and mineral oil. The tests were made with a reciprocating-piston compressor (Unidad Hermética model MR22FB). The document lists the compressor characteristics and presents the test conditions and results in a table. Plots show the performance with R-404A and R-502. The capacity was approximately 4% lower with R-404A at the lowest evaporator temperature, -40 °C (40 °F), but increased to 10% higher at -10 °C (14 °F). The efficiency was lower by 9 and 7% at the same two points for condensing at 55 °C (131 °F).

K. Tojo (Hitachi, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-125/143a/-134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 140, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January
1994 (6 pages with 2 figures and 1 table, available from JMC as RDB4740)

R-404A, scroll compressor

K. Toto (Hitachi, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-32/125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 153, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (6 pages with 2 figures and 1 table, available from JMC as RDB4753)

R-407C with an unidentified polyester lubricant, rotary rolling-piston compressor

H. Wakabayashi (Matsushita Electric Industrial Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/125/134a (23/25/53), Alternative Refrigerants Evaluation Program (AREP) report 144, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (10 pages with 4 figures and 2 tables, available from JMC as RDB4744)

R-407C, rotary, rolling-piston compressor

H. Wakabayashi (Matsushita Electric Industrial Company, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/125/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 36, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (12 pages with 3 figures and 1 table, available from JMC as RDB3836)

H. Yasuda (Hitachi, Limited, Japan), Compressor Calorimeter Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 57, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (6 pages with 2 figures and 1 table, available from JMC as RDB-3C57)

This report summarizes calorimeter tests of R-134a in a 1-10 kW (0.3-2.8 ton) rotary, rolling-piston compressor using an unidentified polyester (POE) lubricant. The charge and lubricant quantities, motor characteristics, and test conditions are indicated. A table presents evaporator and condenser temperatures and pressures along with compressor speed and discharge temperature. The capacity, input, and efficiency are tabulated relative to performance with R-22. Plots compare the coefficient of performance (COP) and capacity ratio at 46 °C (115 °F) for compressor speeds of 2000-6000 rpm and for evaporating temperatures of 5.5-11 °C (42-52 °F). The efficiency and capacity are indicated to be approximately 5-8% and 32-38% lower, respectively.

H. Yasuda (Hitachi, Limited, Japan), Compressor Calorimeter Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 40, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (12 pages with 1 figure and 2 tables, available from JMC as RDB3840)

This report summarizes calorimeter tests of R-32/134a (30/70) in a 1-10 kW (0.3-2.8 ton) rotary, rolling-piston compressor and in a 2.5-25 kW (0.7-7.1 ton) scroll compressor using an unidentified polyester (POE) lubricant. The charge and lubricant quantities, motor characteristics, and test conditions are indicated. A table presents evaporator and condenser temperatures and pressures along with compressor speed and discharge temperature. The capacity, input, and efficiency are tabulated relative to an undescribed base performance, presumed to be that with R-22. The efficiencies and capacities are indicated to be approximately 3-6% and 7-12% lower, respectively, for the rotary compressor and 10% lower to 1% higher and 5-13% lower, respectively, for the scroll compressor. A schematic shows the calorimeter arrangement and instrumentation.

Drop-In Tests

A. Bangheri, Wärmpumpen Erfahrungsbericht mit dem neuen Arbeitsmittel R410A [Heat Pump Trials with the New Working Fluid R-410A], Firma Heliotherm Solartechnik, Kirchberg, Austria, August 1996 (rdb3C09) performance tests, long-term comparisons between R-410A and R-22

R-22, R-407C, R-23/32/134a (4.5/21.5/742) [FX-220], laboratory performance tests

J. Berge, S. L. Kwon, and L. Naley (Thermo King Corporation), Drop-In Test of Refrigerant Blends R-125/143a (45/55) and R-125/143a (50/50), Alternative Refrigerants Evaluation Program (AREP) report 156, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (14 pages with 8 figures and 10 tables, available from JMC as RDB4756)
R-125/143a (45/55) and R-507A [R-125/143a (50/50)] with an unidentified polyolester compared to R-502 with an unidentified alkylbenzene and with an unidentified polyolester in a transport refrigeration unit with a reciprocating piston compressor

J. Berge, S. L. Kwon, and L. Naley (Thermo King Corporation), Drop-In Test of Refrigerant Blends R-32/125/143a (10/45/45) and R-32/125/134a (20/40/40), Alternative Refrigerants Evaluation Program (AREP) report 87, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (8 pages with 4 figures and 2 tables, available from JMC as RDB3833)

R-32/125/143a (10/45/45) and R-407A

J. Berge, S. L. Kwon, and L. Naley (Thermo King Corporation), Drop-In Test of Refrigerant Blends R-125/143a/134a (44/52/4) and R-125/143a (45/55), Alternative Refrigerants Evaluation Program (AREP) report 51, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (12 pages with 4 figures and 5 tables, available from JMC as RDB3851)

R-404A and R-125/143a (45/55)

D. Clodic (École des Mines de Paris, France), Comparison of Performance between R404A and AZ50 Used in Commercial Refrigeration, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 73-78, July 1994 (6 pages with 1 figure and 2 tables, RDB4813)

R-404A [R-125/143a/134a (44/52/4)], R-507A [R-125/134a (50/50), AZ-50], R-502

S. Devotta, M. M. Kulkarni, and M. Lele (National Chemical Laboratory, India), Performance of Refrigerators Retrofit with HFC-134a and HC blend, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 66-73, November 1997 (8 pages with 2 tables, RDB8328)

comparative performance tests of R-134a with a polyol-ester (POE) lubricant and the hydrocarbon (HC) blend R-290/600a (50/50) [propane-/iso-butane] with a mineral oil: describes drop in tests under laboratory conditions of the cited refrigerants and comparative tests with R-12; describes the retrofit procedures; tabulates results for energy consumption, no-load pull down, and ice making tests; concludes that better evacuation, leak testing, and charging practices are needed; also concludes that the performance of R-134a and R-290/600a would be similar in optimized systems, but that the HC blend is preferred based on ozone depletion and global warming issues, but that safety issues need to be investigated

ETL Testing Laboratory, Incorporated, Drop-In Test of Refrigerant R-290 (Propane), Alternative Refrigerants Evaluation Program (AREP) report 33, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, December 1992 (28 pages with 17 tables, available from JMC as RDB3839)

K. Furuhama (Toshiba Corporation, Japan), Drop-In Test of Refrigerant Blend R-32/125/134a (23/-25/52), Alternative Refrigerants Evaluation Program (AREP) report 172, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1994 (16 pages with 4 figures and 7 tables, available from JMC as RDB5672)

R-407C with an unidentified ester lubricant compared to R-22 with mineral oil in an air-to-air, multcoil heat pump using an adjustable-speed rotary, rolling piston compressor in both the cooling and heating modes; composition shift

D. S. Godwin, Results of System Drop-In Tests in ARI's R-22 Alternative Refrigerants Evaluation Program, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, 1 December 1993 (10 pages with 7 figures and 2 tables, available from JMC as RDB4868)

R-12, R-290/600 (70/30)

R-404A, R-407A, R-507A

P. F. Hearty, J. W. Linton, W. K. Snelson, and A. R. Triebe (National Research Council, Canada, NRCC), Drop-In Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants...
Evaluation Program (AREP) report 52, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, 25 February 1993 (18 pages with 4 figures and 4 tables, available from JMC as RDB3852)

R-404A and R-502

This report summarizes a performance test of R-134a in a water-cooled chiller (Dunham-Bush model WCFX20), to compare capacity and efficiency to those with R-22 for a drop-in (no components changed) substitution. This chiller employs two twin screw compressors (Dunham-Bush model 1210BH6W4JB0C), a flooded evaporator with interior and exterior tube enhancement, and a shell-and-tube condenser with integral-finned tubes. R-22 was tested with an unidentified mineral oil as a reference; R-134a was tested with a lubricant containing 85% unidentified ISO 150 polyolester and 15% mineral oil. The mineral oil content in the latter was residual from the first test. A table compares entering and leaving water temperatures and flow rates in the heat exchangers, capacity, input power, approach temperatures, subcooling and superheat. The report notes that the capacity and input power with R-134a were 68.0 and 68.4%, respectively, of those with R-22. The efficiency was, therefore, unchanged within the instrumentation accuracy. Oil return and evaporator performance were both satisfactory in the R-134a test despite the residual mineral oil.

T. Itami (Toshiba Corporation, Japan), Drop-In Test of Refrigerant Blend R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 12, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (5 pages with 2 tables, available from JMC as RDB3812)

J. F. Judge, Y. H. Hwang, and R. K. Radermacher (University of Maryland), Experimental Results of Two Drop-In Replacement Refrigerants for R-22, Proceedings of the 19th International Congress of Refrigeration (The Hague, The Netherlands, 20-25 August 1995), International Institute of Refrigeration (II-R), Paris, France, IVb:1168-1175, 1995 (8 pages with 4 figures and 5 tables; the pages are out of sequence in the published proceedings and page 1170 appears to have been inserted from another paper; RDB3807)

H. Kanno (Mitsubishi Heavy Industries, Limited, Japan), Drop-In Test of Refrigerant Blend R-125/143a, Alternative Refrigerants Evaluation Program (AREP) report 47, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (20 pages with 6 figures and 9 tables, available from JMC as RDB3847)

N. Kanzaki (Kobe Steel, Limited, Japan), Drop-In Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 109, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1993 (4 pages with 2 tables, available from JMC as RDB3D09)

This report summarizes a performance test of R-134a in a 40 hp, 207 kW (59 ton), water-cooled chiller with a twin-screw compressor and shell-and-tube heat exchangers. The results are tabulated for R-134a along with corresponding data for R-22. Both refrigerants were tested with an unidentified polyolester lubricant. The charge and lubricant quantities and the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor, condenser, expansion device, and evaporator. The results show decreases of 34.3 and 29.0% in capacity and increases of 2.1 and 5.1% in efficiency, with and without an economizer, compared to R-22.

R-32/125/134a (30/10/60) and (23/25/52) [R-407C]

M. Katayama (Fujitsu General Limited, Japan), Drop-In Test of Refrigerant Blend R-32/125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 170, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, May 1994 (16 pages with 9 figures and 2 tables, available from JMC as RDB5670)

R-407C with a polyolester lubricant (JS-4156A1) compared to R-22 with mineral oil (Witco Suniso(R) 4GSD) in a room heat pump, with
and adjustable-speed rotary, rolling-piston compressor, in both the cooling and heating modes.

S. Komatsu (Sanden Corporation, Japan), **Drop-In Test of Refrigerant Blend R-125/143a/134a (44/52/4)**, Alternative Refrigerants Evaluation Program (AREP) report 173, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, May 1994 (14 pages with 12 figures and 3 tables, available from JMC as RDB5669)

This report compares performance measurements of R-404A with an unidentified ester lubricant to those for R-502 with mineral oil in a chest freezer using a rotary, rolling-piston compressor.

This paper summarizes capacity and efficiency tests of five zeotropic blends in a 2 ton, split-system air conditioner. The refrigerants included three mixtures of R-32 and R-134a, with 20, 30, and 40% R-32 by mass, and two of R-32 and R-152a, with 30 and 40% R-32. The five blends were selected as candidate R-22 replacements based on prior studies. Testing was performed by an independent testing laboratories, and confirmed by separate tests by the manufacturer of the air conditioner; both were performed in accordance with standard rating test procedures. The fluids were tested under near "drop-in" conditions, without equipment modification except for substitution of a manual expansion device and replacement of the refrigerant and lubricant. An unidentified polyol ester lubricant was used. The paper summarizes the need for R-22 alternatives, candidates identified in prior and ongoing studies, testing and equipment details, and measured results. It also compares the findings to simulations. Measured capacity and efficiency fell below simulated results, but the test system had not been optimized for the alternative refrigerants. The blends tested generally showed steady-state efficiency to be within 2% of that of R-22, but offered lower capacity. R-32/134a (40/60) was identified as a promising retrofit fluid since it yielded steady state efficiency and capacity 1% higher than R-22, though the seasonal performance (SEER) was 1% lower. The paper concludes with recommendations to better evaluate the refrigerant blends tested.

M. Kurachi (Matsushita Refrigeration Company, Japan), **Drop-In Test of Refrigerant Blend R-32/125/134a (23/25/52)**, Alternative Refrigerants Evaluation Program (AREP) report 169, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, May 1994 (14 pages with 12 figures and 3 tables, available from JMC as RDB5669)

R-407C with an unidentified polyol ester (POE) lubricant compared to R-22 with mineral oil in an air-to-air, multicoil heat pump using a scroll compressor in both the cooling and heating modes; internal composition change

M. Lindsay and D. Shapiro (Hussmann Corporation), **Drop-In Test of Refrigerant Blend R-125/143a/134a (44/52/4)**, Alternative Refrigerants Evaluation Program (AREP) report 58, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, February 1993 (8 pages with 3 figures and 1 table, available from JMC as RDB3658)

This report summarizes drop-in testing of R-404A in a low- and two medium-temperature display cases (Hussmann G6FA129 and FHMG12U, respectively). They were tested with an indoor condensing unit, including a Copeland Discus (reciprocating semi-hermetic) compressor, and an air-cooled condenser. The lubricant used both for the R-404A and R-502 reference tests was Mobil EAL ArcticF22. The test setup is described and shown schematically. The results are tabulated and plotted both for medium- and low-temperature display cases. The relative power use was 10% higher with R-404A at 35 °C (95 °F) outdoor temperature, but nearly the same or 4% lower at 10 °C (50 °F). Comparative run time data also are provided.

Laboratory performance test of a 10.5 kW (3 ton), split-system, air-to-air air conditioner retrofit from R-22 with alkylbenzene to R-407C with a polyol ester (POE) lubricant

please see page 6 for ordering information
This paper summarizes a drop-in performance test of R-32/125/134a (32/10/60) (sic, probably 30/10/60) in a water-cooled chiller, with and without an economizer. The zeotropic hydrofluorocarbon (HFC) blend yielded a 10% lower coefficient of performance (COP) than R-22, attributed to degraded heat exchanger performance. Plots show the chiller configuration, flow schematic, compressor volumetric and adiabatic efficiency as functions of the entering temperature, and the overall heat transfer coefficients, heat fluxes, and superheat for the condenser and evaporator. Additional plots compare the R-22 and blend capacities, input powers, and COPs as functions of the chilled water temperature both with and without a single-stage economizer. Ratios are tabulated for these data at 7 °C (45 °F). The economizer appears to increase capacity and performance by 5.7 and 3.4%, respectively, with the blend and 3.4 and 1.7% with R-22.

K. Matsuo (Hitachi, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 6, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1992 (4 pages with 2 tables, available from JMC as RDB3806)

Two tables summarize tests to compare performance of R-22 and R-32/134a (30/70) through drop-in tests in a 2.7 kW cooling (3/4 ton) air-to-air, room heat pump using a variable-speed, rotary rolling-piston compressor. R-22 was tested with ISO-viscosity grade 56 mineral oil; the blend was tested with an ISO viscosity grade 52 ester lubricant. The refrigerant charge amounts, lubricant quantities and circulated fractions, and test conditions are indicated. Temperature and pressure data are tabulated at the compressor shell inlet and outlet, condenser inlet, condenser exit, inlets to the expansion device, and evaporator outlet. Data are presented for both the heating and cooling modes. The results show 8 and 3% decreases for the blend in heating capacity and efficiency at the same speeds and 6% reductions in cooling capacity and efficiency. With speed increases of 6% for heating and 12% for cooling, to restore the capacities with the blend, the efficiencies were reduced by 10 and 12% in the heating and cooling modes, respectively, compared to the R-22 reference.
Refrigerant Database

K. Matsu (Hitachi, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 8, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1992 (4 pages with 2 tables, available from JMC as RDB3805)

Two tables summarize tests to compare performance of R-22 and R-32/134a (30/70) through drop-in tests in a 7.0 kW cooling (2 ton) air-to-air, packaged heat pump using a scroll compressor. R-22 was tested with a mineral oil; the blend was tested with an unidentified ester lubricant. The refrigerant charge amounts, lubricant quantities and circulated fractions, and test conditions are indicated. Temperature and pressure data are tabulated at the suction line and compressor shell outlets, condenser inlet, saturated vapor and liquid states in the condenser, condenser and liquid line exits, expansion device outlet, evaporator inlet, saturated vapor state in the evaporator, and the evaporator outlet. Data are presented for both the heating and cooling modes. The results show 3 and 6% decreases for the blend in heating capacity and efficiency and 1 and 2% reductions in cooling capacity and efficiency, respectively.

T. Nitta (Mitsubishi Heavy Industries, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/125/134a (23/25/52), Alternative Refrigerant Evaluation Program (AREP) report 136, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (8 pages with 1 figure and 4 tables, available from JMC as RDB4736)

This report summarizes performance measurements of R-407C, with an unidentified ester lubricant, In a 2.4 kW (8300 Btu/hr) split-system room air conditioner (RAC) / heat pump with a scroll compressor. The results are compared to corresponding data for R-22 with alkylbenzene. A schematic illustrates the refrigerant circuit. The data for the cooling and heating modes are summarized in two tables. The charge and lubricant quantities are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor, condenser, expansion device, and evaporator. The results show decreases of 7 and 1% in the cooling and heating modes, respectively, with corresponding decreases in the coefficient of performance (COP) of 13 and 12%. The report notes that the discharge pressure with R-407C is 6-13% higher than with R-22, but the discharge temperature is 0.5-3 °C (0.9-5.4 °F) lower.

M. Ohta (Mitsubishi Heavy Industries, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 5, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, April 1993 (5 pages with 2 tables, available from JMC as RDB3805)

Two tables summarize tests to compare performance of R-22 and R-32/134a (30/70) through drop-in tests in a 12.6 kW cooling (3.6 ton) packaged, air-to-air heat pump using a scroll compressor. R-22 was tested with an alkylbenzene lubricant (ISO viscosity grade 32); the blend was tested with an ester lubricant. The refrigerant charge amounts, lubricant quantities and circulated fractions, and test conditions are indicated. Temperature and pressure data are tabulated at the compressor shell inlet and outlet, condenser inlet, saturated condensing vapor and liquid conditions, condenser exit, liquid line inlet and exit, inlets to the expansion device and evaporator, saturated evaporating condition, and the evaporator outlet. Data are presented for both the heating and cooling modes. The results show 4 and 1% decreases for the blend in heating capacity and efficiency and 7 and 6% reductions in cooling capacity and efficiency; the latter were lowered to 4 and 2%, respectively, with optimized charge and capillary-tube selection.

H. Ohnishi (Daikin Industries, Limited, Japan), Drop-In Test of Refrigerant Blends R-32/134a (25/75), R-32/134a (30/70), R-32/134a (40/60), and R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 66, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, May 1993 (12 pages with 9 tables, available from JMC as RDB3668)

K. Sakuma (Mitsubishi Electric Corporation, Japan), Drop-In Test of Refrigerant R-134a and Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 48, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1993 (28 pages with 4 figures and 18 tables, available from JMC as RDB3848)

performance test results for R-32/125/143a/-134a (40/25/25/10), proposed as a replacement for R-502; laboratory test rig and comparative tests for R-407B, R-502, and R-507A are outlined; plots show the comparative heating and cooling coefficients of performance (COP), capacities, compression pressure ratios, discharge temperatures, and mass flow rates, as functions of the evaporator temperature; also

please see page 6 for ordering information
M. Seki, A. Osajima, Y. Nakane, K. Watanabe (Kelo University, Japan), N. Kegawa (National Defense Academy, Japan), and T. Yajima (Toshiba Corporation, Japan), Performance of Refrigeration Equipment on the Reliable Thermodynamic Property Data, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 67-72, July 1994 (6 pages with 2 tables, RDB4801)

This paper discusses alternative refrigerants for R-22 in unitary air conditioners and heat pumps, with emphasis on R-407C - R-32/125/134a (23/25/52). The paper notes that while R-134a and R-410A also were in the focus of interest in the Alternative Refrigerants Evaluation Program (AREP), both would require system redesign due to capacity and efficiency differences with R-22. R-407C is suggested as offering the closest performance match to R-22 in existing equipment. The paper notes that R-407C was formulated for similar capacity, highest efficiency, and to be nonflammable under both normal and abnormal operating conditions. The paper then outlines tests of R-407C in an 8.8 kW (2 1/2 ton), air-to-air, split-system heat pump. The paper describes and schematically shows the instrumentation; it also outlines the test procedures. The results are presented and compared for both R-22 and R-407C, with the same reciprocating piston compressor and an unidentified polyolester lubricant. A series of four plots compare capacity, efficiency, compressor discharge temperature and pressure for cooling at 28 and 35 °C (82 and 95 °F) and heating at -18 and 8 °C (17 and 47 °F). The paper also discusses system modifications to improve the capacity and efficiency, including use of a suction line accumulator to allow composition shifting for improved heating capacity. Estimated improvements are discussed with counterflow heat exchangers and a liquid-suction heat exchanger. The paper concludes that R-407C offers similar heating and cooling capacity to R-22 with a 3-4% loss in efficiency. Gains of up to 6% in heating capacity or 8-10% in cooling efficiency and capacity are suggested for optimized systems. DuPont’s product name for R-407C is Suva® AC9000.

C. N. Shores (York International Corporation), Drop-In Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 134, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, December 1993 (6 pages with 1 table, available from JMC as RDB5645)

This report summarizes "drop-in" performance tests of R-134a in a water-cooled, centrifugal
chiller with a nominal capacity of 3.2 MW (900 tons) for R-22. The report describes the test equipment and conditions. The entering and leaving water temperatures, flow rates, refrigerant pressures and subcooling are tabulated along with comparative R-22 measurements. A second table gives the capacity, input power, and specific power (reciprocal of efficiency) for R-134a normalized to those for R-22. The report concludes that the chiller capacity and efficiency dropped by 30% and 4.5% respectively when run with R-134a. The report discusses these decreases, attributing them to differences in both thermodynamic properties and the operating point in the compressor performance map. R-22 was tested with a mineral oil and R-134a with a polyester, both unidentified. The impeller speed was held constant between the two refrigerants.

H. W. Sibley (Carrier Corporation), *Drop-In Tests of Refrigerant Blends R-32/125/134a (30/10/-60), R-32/125/134a (25/20/55), and R-32/125/134a (23/25/52)*, Alternative Refrigerants Evaluation Program (AREP) report 178, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1994 (12 pages with 2 figures and 6 tables, available from JMC as RDB5678)

R-32/125/134a (30/10/60), (25/20/55), and (23/25/52) [R-407C] with a polyester (POE) lubricant (Mobil EAL Arctic® 32) compared to R-22 with an alkylbenzene (AB) lubricant (Shrieve Zerol® 150) in a 0.9 kW (8000 Btu/hr) window air conditioner (Carrier 51AGA108111) using a hermetic, rotary rolling-piston compressor

R-32/125/134a (30/10/60) and (23/25/52) [R-407C] with a polyester (POE) lubricant (Mobil EAL Arctic® 32) compared to R-22 with an alkylbenzene (AB) lubricant (Shrieve Zerol® 150) in a 17.6 kW (6 ton) split-system heat pump (Carrier 58YKB060) using a hermetic scroll compressor in both the cooling and heating modes

Y. Tanimura (Mitsubishi Electric Corporation, Japan), Drop-In Test of Refrigerant Blend R-32/-125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 9, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1993 (8 pages with 5 figures and 2 tables, available from JMC as RDB4737)

This report summarizes performance measurements of R-407C [R-32/125/134a (23/25/52)] and R-32/125/134a (30/10/60) with an unidentified mineral oil. They were tested in a 2.6 kW (8900 Btu/hr) split-system room air conditioner (RAC) / heat pump with a rotary, rolling-piston compressor. The results are compared to corresponding data for R-22 with an unidentified mineral oil. Schematics illustrate the refrigerant circuits in both the heating and cooling modes. The data for the two modes are tabulated. The charge and lubricant quantities as well as the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor, condenser, expansion device, and evaporator. The results for both refrigerants show capacity changes of less than 1% in either the cooling and heating modes. The coefficients of performance (COPs) dropped by 3% and less than 1% in the cooling mode, with R-407C and R-32/125/134a (30/10/60). The heating COPs decreased by 7 and 4%, respectively. The report notes that the compressor discharge pressures is higher in both modes with both blends, but the discharge temperatures are lower.

S. Uemura (Daikin Industries, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 9, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1992 (4 pages with 2 tables, available from JMC as RDB3809)

Two tables summarize tests to compare performance of R-22 and R-32/134a (30/70) through drop-in tests in a 7.6 kW cooling (2.1 ton) air-to-air, room heat pump using a scroll compressor. R-22 was tested with a mineral oil; the blend was tested with an ester lubricant. The refrigerant charge amounts, lubricant quantities and circulated fractions, and test conditions are indicated. Temperature and pressure data are tabulated at the compressor shell inlet and outlet, condenser inlet, condenser and liquid line exits, evaporator inlet, and the evaporator outlet. Data are presented for both the heating and cooling modes. The results for the blend show a 3% decrease to a 1% gain in capacity, depending on superheating and subcooling, and corresponding 2 and 1% efficiency increases in the heating mode. The results also show a 1% decrease to 1% gain in capacity, again depending on superheating and subcooling, and corresponding 3% gain and 1% loss in efficiency in the cooling mode.

H. Wakabayashi (Matsushita Electric Industrial Company, Limited, Japan), Drop-In Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 11, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, September 1992 (4 pages with 2 tables, available from JMC as RDB3811)

Two tables summarize tests to compare performance of R-22 and R-32/134a (30/70) through drop-in tests in a 2.5 kW cooling (0.4 ton) air-to-air, room heat pump using a variable-speed, rotary rolling-piston compressor. R-22 was tested with an unidentified synthetic lubricant; the blend was tested with an ester lubricant. The refrigerant charge amounts, lubricant quantities and circulated fractions, and test conditions are indicated. Temperature and pressure data are tabulated at the compressor shell inlet and outlet, condenser inlet, saturated vapor and liquid states in the condenser, condenser exit, liquid line inlet, expansion device inlet, evaporator inlet, saturated vapor state in the evaporator, and the evaporator outlet. Data are presented for both the cooling and heating modes. With an unspecified speed adjustment to match capacity, the cooling efficiency dropped 6% with the blend; other (unspecified) adjustments yielded a 1% increase in capacity at 6% loss in efficiency or 3% loss in capacity and efficiency. Set to match heating capacity, the efficiency dropped less than 1% with the blend. Other, unspecified adjustments yielded a 3% increase in capacity at 3% loss in efficiency or 1% loss in capacity and negligible drop in efficiency.

K. Wakahara (Sharp Corporation, Japan), Drop-In Test of Refrigerant Blends R-32/125/134a (30/-10/60) and R-32/125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 174, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1994 (12 pages with 1 figure and 4 tables, available from JMC as RDB-5674)

R-407C and R-32/125/134a (30/10/60) with an unidentified ester lubricant compared to R-22 with mineral oil in a room heat pump using a rotary, rolling-piston compressor in both the cooling and heating modes.

C-S. Wei, S-P. Lin, and C-C. Wang (Industrial Technology Research Institute, ITRI, Taiwan), System

This paper summarizes a laboratory comparison of the performance of four potential R-22 replacements in a water-to-water heat pump, for both the heating and cooling modes. R-22 was tested with an alkylbenzene lubricant as a reference. R-134a, R-404A, R-407C, and R-23/32/134a (4.5/21.5/72) were tested with an unidentified polyol ester lubricant. They were tested in an unmodified 7.6 kW (2 ton) split-system, unitary heat pump with a 2.2 kW (3 hp) scroll compressor. The equipment is shown schematically. The results are tabulated with corresponding data for R-22 with an unidentified mineral oil. The charge and lubricant quantities and the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor and evaporator as well as the outlets from the condenser and expansion device. The results show capacity and efficiency losses of 1.4 and 5.8%, respectively in the cooling mode, and a capacity increase of 4% and efficiency decrease of 3.5% in the heating mode, for R-32/134a (30/70). They also show a capacity increase of 1.2% and efficiency decrease of 1% in the cooling mode, and capacity and efficiency increases of less than 1% in the heating mode, for R-407C. V. V. Zhidkov (NORD Association, Ukraine), V. P. Zhelezny, and A. G. Butler (Odessa State Academy of Refrigeration, Ukraine), Ecological and Ecological Aspects of Changing-Over Refrigerant Equipment of Joint-Stock Company NORD to Alternative Refrigerants, *Proceedings of the 1996 International Refrigeration Conference at Purdue* (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 507-512, July 1996 (6 pages with 1 figure and 3 tables, RDB6C33)

comparative performance of R-134a, R-401A, R-600a, R-134a/152a, R-152a/600a, and R-290/600a; cooling capacity, coefficient of performance, total equivalent warming impact (TEWI)

R. Yajima and O. Kataoka (Daikin Industries, Japan), Drop-In Test of Refrigerant Blends R-23/32/134a (1.5/27/71.5), R-23/32/134a (1.5/20/78.5), and R-23/32/134a (2.29.4/68.6), Alternative Refrigerants Evaluation Program (AREP) report 152, Air-Conditioning and Refrigeration Institute (ARI), Atlanta, GA, January 1994 (10 pages with 1 figure and 2 tables, available from JMC as RDB4752)

This report summarizes performance tests of R-32/134a (30/70) and R-407C with an unidentified ester lubricant. They were tested in an unmodified 7.6 kW (2 ton) split-system, unitary heat pump with a 2.2 kW (3 hp) scroll compressor. The equipment is shown schematically. The results are tabulated with corresponding data for R-22 with an unidentified mineral oil. The charge and lubricant quantities and the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor and evaporator as well as the outlets from the condenser and expansion device. The results show capacity and efficiency losses of 1.4 and 5.8%, respectively in the cooling mode, and a capacity increase of 4% and efficiency decrease of 3.5% in the heating mode, for R-32/134a (30/70). They also show a capacity increase of 1.2% and efficiency decrease of 1% in the cooling mode, and capacity and efficiency increases of less than 1% in the heating mode, for R-407C.
Optimized Compressor Tests

K. Furuhama (Toshiba Corporation, Japan), Soft-Optimized Compressor Test of Refrigerant Blend R-32/125 (50/50), Alternative Refrigerants Evaluation Program (AREP) report 163, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1994 (18 pages with 7 figures and 6 tables, available from JMC as RDB5663)

R-410A compared to R-22 in a rotary, rolling-piston compressor with an unidentified polyol ester lubricant.

N. Kanzaki (Kobe Steel, Limited, Japan), Soft-Optimized Compressor Test of Refrigerant R-134a, Alternative Refrigerants Evaluation Program (AREP) report 85, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (12 pages with 8 tables, available from JMC as RDB3C85)

H. Waikabayashi (Matsushita Electric Industrial Company, Limited, Japan), Soft-Optimized Compressor Test of Refrigerant Blend R-32/125 (60/40), Alternative Refrigerants Evaluation Program (AREP) report 105, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (10 pages with 2 figures and 4 tables, available from JMC as RDB3D05)

Optimized System Tests

R-12, R-134a, R-600a, R-290/600a (50/50), capacity, efficiency, run time, pull down, ice making

comparisons of R-404A, R-407A, R-407B, R-407C, R-410A, and R-507A to R-22 with constant refrigerating capacity and evaporating and condensing temperatures, but different compressor speeds

J. Berge, S. L. Kwon, and L. Naley (Thermo King Corporation), Soft-Optimized System Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 176, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1994 (20 pages with 4 figures and 5 tables, available from JMC as RDB5676)

R-404A with an unidentified polyol ester (POE) lubricant compared to R-502 with an alkybenzene (AB) lubricant in a 14 kW (4 ton) transport refrigeration unit using an engine-driven, reciprocating piston compressor

J. L. Cox and Q. Wang (Rheem Manufacturing Company), Soft-Optimized System Test of Refrigerant Blends R-32/125 (60/40) and R-32/125 (50/50), Alternative Refrigerants Evaluation Program (AREP) report 93, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (20 pages with 9 tables, available from JMC as RDB3C93)

R-22, R-407C

R-407C compared to R-22 and to R-32/125/134a (30/10/60) with an unidentified polyol ester (POE) lubricant in an air-source, room heat pump with a rotary, rolling-piston compressor in both the cooling and heating modes

R-22; R-32; R-125; R-32/125 (40/60), (50/50), (60/40), and (80/20); zeotrope, blend composition, efficiency, COP

This report provides detailed chiller test data for R-11 with a mineral oil and a polyolester (POE) lubricant (CPI Soltest 68) and for R-123 and R-245ca with the same POE in a three-stage, centrifugal chiller (Trane CenTraVac CVHE). R-11 and R-245ca were run with two sets of impeller selections, and R-123 with three; these selections include optimized choices for each of the three refrigerants. The test data cover multiple runs to optimize the charge size and test different operating and load conditions. Curve fits are provided for motor efficiency and speed. These detailed measurements substantiate the data plots and comparisons provided in volume 1 of this report.

R-407C and R-410A performance in a 10.8 kW (3 ton) water-source heat pump compared to R-22

D. S. Godwin (Air-Conditioning and Refrigeration Institute, ARI), **Results of Soft-Optimized System Tests in ARI's R-22 Alternative Refrigerants Evaluation Program**, *Proceedings of the 1994 International Refrigeration Conference at Purdue*, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 7-12, July 1994 (6 pages with 4 figures; 8 page reprint available from JMC as RDB4982)

AREP

J. Hellmann (Solvay Fluor und Derivate GmbH, Germany) and R. Döring (Fachhochschule Münster, Germany), **Vergleich der Kältemittel R22, R410A, und R-407C in einer Kältetechnik [Comparison of the Refrigerants R-22, R-410A, and R-

R-407C with an polyol ester lubricant (JS-4156A1) compared to R-22 with mineral oil (Witco Suniso® 4GSD) in a room heat pump, with and adjustable-speed rotary, rolling-piston compressor, in both the cooling and heating modes

rationale for selection of R-404A as a replacement for R-502 in transport refrigeration systems: development and modification of system components; evaluation of composition shifts; test facility, procedures, and results; concludes that equipment designed for R-502 achieves essentially the same performance with R-502 with little or no modification and improved efficiency with optimization

M. Kurachi (Matsushita Refrigeration Company, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 83, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (6 pages with 1 figure and 3 tables, available from JMC as RDB3C83)

R-32/125/134a (30/10/60) with an unidentified polyol ester lubricant compared to R-22 with mineral oil in a room heat pump, with and adjustable-speed scroll compressor, in both the cooling and heating modes

M. Kurachi (Matsushita Refrigeration Company, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 83, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (6 pages with 1 figure and 3 tables, available from JMC as RDB3C83)

R-32/125/134a (30/10/60) with an unidentified polyol ester lubricant compared to R-22 with mineral oil in a room heat pump, with and adjustable-speed scroll compressor, in both the cooling and heating modes

performance of R-407C, R-410A, and R-410B in a laboratory test facility

R-32/125/134a (23/25/52) [R-407C]

This report consists of a single table that compares the measured performance and operating parameters of R-407C and R-22 in a packaged-terminal air conditioner. The zeotropic blend was tested in drop-in and three soft-optimized modes. They included matching of the superheat and subcooling, coil modification for recirculating, and coil modification for counterflow circuiting. An unidentified polyolster (POE) lubricant was used with both refrigerants. The blend results show steady state losses of 7.3-10.8% in efficiency and 2.5-6.0% in capacity. The report gives the measured temperatures and pressures for key locations, power draw, sensible and latent cooling capacities, and counts of expansion valve openings.

Laboratory performance tests compared R-507 to R-502 at evaporating temperatures of -30 to -15 °C (-22 to 5 °F) and 43.3 and 54.4 °C (110 and 130 °F) condensing: the evaporator capacity with R-507 was found to be 95-105% of that for R-502, depending on the operating conditions and the amount of liquid subcooling present; R-507 was less energy efficient for all conditions tested with a 3-13% lower coefficient of performance (COP).

Soft optimization, laboratory tests to compare the system performance of R-407B [R-32/125/134a (10%/70%/20%)] with that of R-502: tests were conducted using an open-drive, reciprocating-piston compressor and counterflow, tubular-tube heat exchangers; paper presents compressor performance characteristics including shaft power, pressure ratio, and compressor discharge temperature along with the evaporator capacity, refrigerant mass flow, and cooling coefficient of performance (COP); effects of additional liquid subcooling on the evaporator capacity and COP are discussed.

Laboratory tests of the performance of R-407C with an ester lubricant in a split-system, air-to-air heat pump using a scroll compressor and composition maintenance; deviation in the composition is minimized by storing liquid refrigerant in a receiver on the high-pressure side of the circuit rather than in an accumulator on the low-side; method improves the heating and cooling mode coefficients of performance (COPs) by 6% and 10% respectively.

K. Matsuo (Hitachi, Limited, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/-125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 97, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (10 pages with 2 figures and 3 tables, available from JMC as RDB3C97)

R-22, R-32/125/134a (30/10/60), performance tests in room (window) air conditioner, modification to flooded evaporator with liquid overfeed (LOF): drop-in cooling capacity was 7.7% lower with the blend, 1.1% lower with the LOF modification.

This report summarizes performance measurements of R-32/125/134a (30/60) with an unidentified ester lubricant in a 2.75 kW (9600 Btu/hr) room air conditioner (RAC) / heat pump with a rotary rolling-piston compressor. The results are compared to corresponding data for R-22 with alkylbenzene. Two schematics illustrate the refrigerant circuit and modifications to the heat exchangers for the zeotropic blend. The data for the cooling and heating modes are summarized in two tables. The charge and lubricant quantities and the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor, condenser, expansion device, and evaporator. The results show a 1% increase in capacity for both cooling and heating and decreases of 5 and 4% in efficiency for the cooling and heating modes, respectively, compared to R-22. These findings are plotted. The report notes that the discharge pressure with R-32/125/134a (30/10/60) is approximately 10% higher than with R-22, but the discharge temperature is approximately 7% lower.

M. Ozu (Toshiba Corporation, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/-125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 149, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (10 pages with 3 figures and 3 tables, available from JMC as RDB4749)

This report summarizes a performance test of R-407C with an unidentified ester lubricant in a 2.3 kW (8000 Btu/hr) room air conditioner (RAC) / heat pump. The results are tabulated with corresponding data for R-22 with an unidentified mineral oil.

M. Ozu (Toshiba Corporation, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/-125 (60/40), Alternative Refrigerants Evaluation Program (AREP) report 82, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, June 1993 (8 pages with 2 figures and 4 tables, available from JMC as RDB3C82)

This performance comparison of R-32, R-410A, and R-410B with R-32 in a residential, air-to-air heat pump; indicates 5.1% and 2.5-4% improvement in cooling and heating seasonal performance, respectively, for R-32, but notes that it is flammable; indicates a 2-3% improvement for R-410A and R-410B for cooling and similar performance for heating; summarizes tests at standard rating conditions and provides plots of efficiency and capacity relative to charge amount; tabulates seasonal performance for heating (for the six standard rating regions for the United States) and cooling for the cited refrigerants.

K. Sakuma (Mitsubishi Electric Corporation, Japan), *Soft-Optimized System Test of Refrigerant Blend R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 102, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (10 pages with 3 figures and 5 tables, available from JMC as RDB3D02; available copy is difficult to read)

This report summarizes a performance test of R-407C with an unidentified polyester lubricant in a 2.6 kW (9400 Btu/hr) room air conditioner (RAC) / heat pump. The results are tabulated with corresponding data for R-22 with a mineral oil (Witco Suniso® 4GSD-T).

N. Sawada (Sanyo Electric Company, Limited, Japan), *Soft-Optimized System Test of Refrigerant Blend R-32/125/134a (30/10/60), Alternative Refrigerants Evaluation Program (AREP) report 100, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (10 pages with 2 figures and 5 tables, available from JMC as RDB-3D00)

H. W. Sibley (Carrier Corporation), *Soft-Optimized System Test of Refrigerant Blends R-32/125 (60/40) and R-32/125 (50/50), Alternative Refrigerants Evaluation Program (AREP) report 95, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (6 pages with 2 tables, available from JMC as RDB3C95)

R-32/125 (50/50) [R-410A] and R-32/125 (60/40)

H. W. Sibley (Carrier Corporation), *Soft-Optimized System Test of Refrigerant Blends R-32/125/-134a (30/10/60), R-32/125/134a (25/20/55), and R-32/125/134a (23/25/52), Alternative Refrigerants Evaluation Program (AREP) report 96, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (6 pages with 3 tables, available from JMC as RDB3C96)

R-32/125/134a (30/10/60), R-32/125/134a (25/20/55), and R-32/125/134a (23/25/52) [R-407C]

R-407A with unidentified ester lubricant compared to R-502 with unidentified alkylbenzene in a test loop with a reciprocating-piston compressor

R-507A with unidentified ester lubricant compared to R-502 with unidentified alkylbenzene in a test loop with a reciprocating-piston compressor

R-407B

R-404A and R-502

M. Sonneckle and K. Köhler (Konvecta / IPEK, Germany), *Transport Refrigeration with a Transcritical Cycle Using Carbon Dioxide as Refrigerant, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 124-133, November
laboratory performance tests of optimized transport refrigeration systems using R-502, R-507A, and R-744 (carbon dioxide): tests were conducted on 4 kW (13,600 Btu/h) systems employing open reciprocating-piston compressors (Bock FFX 3) modified for each refrigerant; the heat exchangers were made with steel instead of copper tubes for R-744 to withstand the higher pressures; the measured coefficient of performance (COP) with R-744 in a conventional vapor-compression cycle was 15% lower than R-502 in a conventional vapor-compression cycle, but 18% higher than for R-507A; authors conclude that R-744 should be used instead of the fluorochemical alternatives in light on the leakage rates of refrigerants from transport refrigeration units and the high global warming potentials (GWP) or hydrofluorocarbon (HFC) refrigerants.

presentation charts on laboratory tests to compare R-22 and R-404A performance in a a 950 kW (270 ton), water-cooled chiller, employing a twin-screw compressor, in a test loop; the lubricant used with R-404A is not indicated, but is likely to have been a mineral oil; the lubricant used with R-404A was a polyol ester (CPI(R) Soltest(R) 68), comparative operating conditions are tabulated; overall, capacity and efficiency were 1% higher and 1% lower, respectively, with R-404A; the condensing temperature increased and evaporator temperature decreased with R-404A; the lower evaporating temperature was confirmed in independent pool-boiling tests.

Y. Sumida (Mitsubishi Electric Corporation, Japan), Soft-Optimized System Test of Refrigerant Blend R-125/143a/134a (44/52/4), Alternative Refrigerants Evaluation Program (AREP) report 101, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, October 1993 (12 pages with 8 figures and 4 tables, available from JMC as RDB3D01)

This paper summarizes a project to evaluate the relative efficiencies of R-134a and R-152a in household refrigerators and freezers typical of those used in the United States. The project was conducted by the Appliance Industry-Government CFC Replacement Consortium, also known as the Appliance Research Consortium (ARC). The paper reviews the organization and membership of ARC and mentions that 21 projects have been initiated and three of them completed since 1989. It reviews the history of the present project, noting a 1991 comparison showing higher efficiency for R-152a in unoptimized, drop-in comparisons. Those findings were challenged by another study (see RDB-2728). The paper outlines testing by the Environmental Protection Agency (EPA) and six equipment manufacturers, using refrigerator-freezers incorporating compressors optimized for each refrigerant. The paper reviews test unit criteria, test methods, refrigerant supply, and lubricant and desiccant selection. It presents arguments for and against adjusting the measured data, and notes a conclusion by the program participants not to do so. The paper gives the study's conclusion, that no statistically significant difference in efficiency was found between R-134a and R-152a.

R-502/13 (87/13), R-22/115/12 (42.5/44.5/13), R-125/143a/134a (40/50/10), R-404A [R-125/-143a/134a (44/52/4)], R-507A [R-125/143a...

performance comparison of R-407A and R-502 based on measurements in a test loop; performance with R-407A was found to be 96-105% and 98-99% that of R-502 by switching from a parallel to counter-flow heat exchanger at -15 °C (5 °F) and -25 °C (-13 °F) evaporating temperature, respectively; the maximum performance increase with a counter-flow condenser was found to be 3%.

E. A. Vineyard (Oak Ridge National Laboratory, ORNL) and L. J. Swatkowski, Jr. (Appliance Industry-Government CFC Replacement Consortium), Energy Efficiency of HFC-134a versus HFC-152a, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 86-91, October 1993 (6 pages with 1 figure and 1 table, RDB3A30).

R-134a, R-152a, performance

R-407C [R-32/125/134a (23/25/52)] and R-410A

R-22; R-32; R-125; R-134a; R-32/134a (30/70); R-32/125 (60/40); R-125/134a (40/60); R-32/125/134a (30/10/60), (23/25/52) [R-407C], and (18/40/42)

R. Yajima and 0. Kataoka (Daikin Industries Limited, Japan), Soft-Optimized System Test of Refrigerant Blend R-32/134a (30/70), Alternative Refrigerants Evaluation Program (AREP) report 151, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, January 1994 (10 pages with 1 figure and 2 tables, available from JMC as RDB4751).

This report summarizes performance tests of R-32/134a (30/70) with an unidentified ester lubricant. They were tested in a 2.4 kW (8300 Btu/hr) room air conditioner (RAC) / heat pump with a 750 W (1 hp) rotary, rolling-piston compressor. The tests included both an unmodified (drop-in) and optimized system, the latter with modified circuiting of the indoor and outdoor heat exchangers. These modifications are shown in a schematic. The results are tabulated with corresponding data for R-22 with an unidentified mineral oil. The charge and lubricant quantities and the test conditions are indicated. Operating temperatures and pressures are given for the inlets and outlets of the compressor and evaporator as well as the outlets from the condenser and expansion device. The results show nearly identical capacity and efficiency in the cooling mode except for a 10.4% efficiency loss for the drop-in case. Capacity increases of less than 1%, and efficiency decreases of 5 and 1.2%, were measured for the drop-in and soft-optimized versions, respectively, in the heating mode.

Field Tests

efficiency and materials performance in a field test of R-12 and R-134a in a supermarket; documentation of required modifications for eight systems in the store; no compatibility or operational problems were encountered.

152, November 1997 (10 pages with 7 figures and 1 table, RDB8339)

presentation charts on the required changes for application and performance of hydrofluorocarbon (HFC) refrigerants; tabular comparisons of the capacity, efficiency, and operating characteristics of R-404A, R-502, and R-507A in four compressors for low-temperature use, of R-12 and R-134a in a medium temperature compressor, and of R-134a, R-407C, R-410A, and R-410B in air-conditioning and heat pump compressors; list of 23 field tests with R-407C; concludes with a summary of required changes to the lubricant, lubrication system, bearings, housings, and compressor displacement for use of HFC refrigerants.

provides field test data from use of R-744 (carbon dioxide) in two buses, along with comparative data for a third bus using R-134a, in Bad Hersfeld, Germany; concludes that performance was comparable; presents findings for laboratory and field tests of an open, two-cylinder, reciprocating-piston compressor (Bock FKX3*CO2), derived from an R-134a design with reinforcement of major parts and reduction of the displacement by 75%; describes both initial and improved versions, the latter using annular valves and a reinforced lubrication system; diagrams compare the ideal and real cycles, showing that the second version of the compressor reduced the pressure drop across the discharge valves, but increased the clearance resulting in an overall volumetric efficiency of 81±7% with a lowered, but still high (8.8-10.5 MPa, 1,400-1,500 psia) compressor discharge pressure.

system performance of R-404A, R-407A, and R-407C; phaseout schedule of common refrigerants in Sweden showing completion by 2000 for chlorofluorocarbon (CFC) refrigerants and curtailment of R-22 use by 2002; presents performance data from a simple field test for R-22 and R-407C in milk coolers; discusses methods and limitations for rigorous field tests with sample data for R-22 and R-407C in a 10 kW (34,000 Btu/hr) water-to-water heat pump; plots performance of R-407C relative to that of R-22 for laboratory drop-in tests and performance data for R-404A and R-407A in a scroll compressor with a liquid injection port, tested in single-stage, with an added suction gas heat exchanger, and with an economizer configurations.

presentation charts on field tests of hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants and polyolester (POE) lubricants for both retrofits and new applications; the refrigerants addressed were R-134a, R-401A, R-401B, R-402A, R-402B, R-404A, R-407A, R-407C, R-410A, and R-507A; the lubricants were Mobil EAL Arctic(®) 22CC and ICI Emkarate(™) RIL 32S; field experience revealed no major system or compressor problems with attention to moisture control and lubrication; describes general results with a question on the quality of thermodynamic property data; outlines lubrication and fractionation issues.

description charts on field tests of R-407C in residential, unitary, split-system, air-to-air, heat pumps at ten sites; shows comparative total acid numbers (TAN) based on oil analyses for eight machines after one winter; concludes that
Pipe Sizing and Flow

D. A. Aaron and P. A. Domanski, An Experimental Investigation and Modeling of the Flow Rate of Refrigerant 22 through the Short Tube Restrictor, report NISTIR 89-4120, National Institute of Standards and Technology (NIST), Gaithersburg, MD, July 1989 (106 pages with 32 figures and 3 tables, available from NTIS, RDB4730)

R-22

R-134a

J. Barnhart, An Experimental Investigation of Flow Patterns and Liquid Entrainment in a Horizontal Tube Evaporator, PhD thesis (Department of Mechanical Engineering), University of Illinois, December 1992 (rdb3B49)

Y. Kim (Xi'an Jiaotong University, China), Two-Phase Flow of HFC-134a and CFC-12 through Short-Tube Orifices, paper OR-94-2-2, Transactions (Annual Meeting, Orlando, FL, 25-29 June 1994), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 100(2):582-591, 1994 (10 pages with 7 figures and 4 tables, RDB4707)

S. J. Kuehl (Whirlpool Corporation) and V. W. Goldschmidt (Purdue University), Flow of R-22 through Short-Tube Restrictors, paper 3603, Transactions (Annual Meeting, Baltimore, MD, 27 June - 1 July 1992), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 98(2):59-64, 1992 (6 pages, rdb3215)

R-134a

Charge Inventory Calculations for Evaporating and Condensing Refrigerants Inside Tubes, proposed research project 758-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH-0758)

This research project is sponsored by ASHRAE Technical Committee 8.4, Air-to-Refrigerant Heat Transfer Equipment. Proposals were due at ASHRAE Headquarters by 12 January 1996. Further information is available from the ASHRAE Manager of Research (+1-404/636-8400).

ICI Klea Engineers’ Tables: KLEA 407B, Version 1.0 SI Units, bulletin CP/10150/1Ed/23/994, ICI Klea, Runcorn, Cheshire, UK, September 1994 (24 pages with 1 figure and 23 tables, RDB6B39)

This bulletin provides detailed data for systems design using R-407B - a zeotropic blend containing R-32, R-125, and R-134a, specifically R-32/125/134a (10/70/20) - in metric (SI) units of measure. An introductory section explains the use of the data and how they were derived. The first tables give the evaporator pressure from the liquid temperature and mean evaporating temperature, the mean evaporator and dew-point temperatures from the pressure and liquid temperature, the mean condenser pressure and dew- and bubble-point temperatures from the mean temperature, and the condenser bubble-point, mean, and dew-point temperatures from pressure. They cover evaporating temperatures of -40 to +5 °C (-40 to +41 °F) and condensing temperatures of 10-60 °C (50-140 °F). The next set of tables give the maximum recommended suction line capacities for varying suction gas conditions for 10-105 mm (0.4-4.1") type L copper tube and 10-100 (0.4-3.9") schedule 40 steel pipe. Further tables give the discharge and liquid line capacities, and recommended minimum capacities for oil entrainment in suction lines for the same line sizes and types. Two final tables provide correction factors to use the capacity tables at other conditions. A chart correlates refrigerant flow rate and unit capacity for mean evaporating and condensing temperatures of
-40 to +5 °C (-40 to 41 °F) and condensing temperatures of 20-50 °C (68-122 °F), respectively. ICI's product name for R-407B is Klea® 407B (formerly Klea® 61).

Performance of a Suction-Line Capillary Tube Heat Exchanger with Alternative Refrigerants, research project 948-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, September 1997 - August 1999 (ASH0948)

This project includes theoretical analysis and experimental measurements to develop a method to rate refrigerant mass flow though a suction-line, capillary-tube heat exchanger for single-compound refrigerants and azeotropic blends. Tests with R-12, R-22, R-134a, R-152a, and R-600a are planned. The contractor for the work is the Iowa State University of Science and Technology led by M. B. Pate; it is sponsored by ASHRAE Technical Committee 8.8, Refrigerant System Controls and Accessories.

Pressure Drop in Refrigerant Suction Lines at High Refrigerant Flux with Oil in Circulation, proposed research project 731-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH0731)

This research project is sponsored by ASHRAE Technical Committee 10.3, Refrigerant Piping.

Recycling, Reclamation, and Disposal

D. Clodic (École des Mines de Paris, France) and F. Sauer (Dehon Service, France), The Refrigerant Recovery Book, publication 90371, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1994 (236 pages with 73 figures and 31 tables, available from ASHRAE for $33 to members and $49 for others; RDB4673)

This book describes methods for efficient and economical recovery of refrigerants from a variety of systems. It begins with a review of ozone depletion and global warming with specific focus on the role of chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) refrigerants. It then summarizes the phaseout schedule for ozone-depleting substances under the Montreal Protocol, U.S. regulations for phaseout and emission reduction, and corresponding restrictions in the European Community. The book presents recovery devices and methods, including recovery cylinders, equipment for recovery in the vapor and liquid phases, and procedures. It reviews considerations and quality requirements for recycling, reclaim, and disposal with attention to ISO Standard 11650R and ARI Standard 700. It also outlines accepted destruction methods. The book then presents nine case studies covering domestic refrigerators, a small cold room (refrigerated walk-in box), a supermarket, transport refrigeration systems, an industrial plant, R-11 and R-113 centrifugal chillers, railway car air-conditioning units, and automotive air conditioners. It provides a questionnaire to prepare for recovery operations and reviews fundamental physical principles associated with refrigerant handling and recovery. They include the vapor-pressure law for a pure substance, departures from theory at equilibrium conditions, supercritical states, and the behavior of fluid mixtures. The discussion of the last of these subjects focuses on composition diagrams for zeotropic and azeotropic mixtures and on pressure-composition diagrams for refrigerant-lubricant mixtures. Appendices summarize the purity requirements of ARI Standard 700-88, the results of a bench test of the performance of recovery and recycling equipment, and thermodynamic properties of common CFC, HCFC, and HFC refrigerants. [see RDB4672 for original edition in French]

[see RDB4673 for abstract of English language edition]

potential requirements and technical considerations for recovery and recycling of blends to replace R-12 in mobile air-conditioning (MAC) systems

R-11 and R-12 recovery, ODS phaseout schedule, R-12 usage in Taiwan

describes a pilot plant for recovery and destruction of chlorofluorocarbons (CFCs) from appliances; removal of R-12 refrigerant and R-11 foam blowing agent from retired refrigerators; catalytic decomposition process; illustration and specifications for a transportable, modular plant

refrigerant disposal

This paper summarizes research to identify and quantify the typical contaminant levels in used refrigerants. A total of 39 samples were taken from both normally operating and failed air-conditioning and refrigerating systems. These samples included R-11 from centrifugal chillers, R-12 from commercial refrigeration systems, R-22 from unitary heat pumps and air conditioners, and R-502 from low-temperature frozen food cases. Results are summarized for measurement of water content (Karl Fisher technique), acid content (ASTM 664 tests), ion content (ion-specific electrode), high-boiling content (gravimetric technique, gas chromatography, and mass spectrometry), particulate content (direct-current plasma emission spectrometer and scanning electron microscope), and volatile impurity content (gas chromatography and mass spectrometry). The contaminant levels found exceeded those of new refrigerants, but the types and concentrations varied by refrigerant, application, and whether a system burnout had occurred. Laboratory tests evaluated a recycling scheme based on oil separation followed by water and acid removal, by an alumina/molecular sieve filter/dryer. The preliminary study showed that this recycling procedure is effective in removing acids, but has insignificant effects on volatile impurities and high-boiling residue. The effects of noncondensable gases were not addressed.

K. W. Manz and A. J. Manz (Robinair Division of SPX Corporation), Efficient Operation of Filter

- use of in-situ mass flow meters to measure R-12, R-22, R-134a, R-407C, and R-502 in processing through single-pass, distillation recycling machines: model with corrections for superheat and compressor dead volume to determine the refrigerant type from pressure-temperature curves for both single- and two-phase flow

- refrigerant recovery regulations and results; statistics of chlorofluorocarbon (CFC) use by sector in 1986 and 1993 as well as recovery by charge size in 1994; refrigerant fraction of CFC use increased from 9.64 to 29.65% of the totals; nearly half of recovered refrigerants came from systems using 10-50 kg (22-110 lb)

S. Snyder (Robinair Division of SPX Corporation), J. Willis (Asoma Instruments, Incorporated), R. Tobias (Hitek Hardware, Incorporated), and K. W. Manz (Robinair Division of SPX Corporation), Portable Refrigerant Identification by Near Infrared Spectrophotometry, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 115-120, July 1994 (6 pages with 4 figures and 2 tables, RDB4814)

- Portable Refrigerant Identification
- Near Infrared Spectrophotometry

- Determination of Refrigerant Type
- Using Vapor Thermal Conductivity Measurements

- Chlorofluorocarbons (CFCs)
- Destruction Technology
- Induction Coupled Plasma

L. Voers (L&E Teknik og Management, Denmark), A Scheme for Collecting and Registration of CFC, HCFC, HFC, etc., Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC, 23-25 October 1995), Alliance for Responsible Atmospheric Policy, Arlington, VA, 167-175 (repeated on November 1997 (9 pages with 3 figures and 2 tables, RDB8342)

- A Scheme for Collecting and Registration
- CFC, HCFC, HFC, etc.
- Stratospheric Ozone Protection

G. Zehl, J. Freiberg, and M. Meinke (Institute of Environmental Research, Germany), Environmentally Safe Disposal of Ozone-Depleting CFCs, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 490-499, October 1995 (10 pages with 6 figures and 4 tables, available from JMC as RDB5B18)

- Environmentally Safe Disposal
- Ozone-Depleting CFCs

- Code of Practice for the Reduction
- Chlorofluorocarbon Emissions
- Refrigeration and Air Conditioning Systems

This code provides guidelines for reduction of atmospheric emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) used in refrigeration and air-conditioning applications. It covers residential, commercial, and industrial refrigeration, heat pumps, and air conditioning, including mobile air conditioning. The code ad-
addresses design, manufacture, installation, servicing, use, recovery, handling, storage, disposal, and training. Three standards recommended by the Society of Automotive Engineers (SAE) are appended. They include Recommended Service Procedure for the Containment of R-12 (J1989), Extraction and Recycle Equipment for Mobile Automotive Air-Conditioning Systems (J1990), and Standard for Purity of Used Refrigerant in Mobile Air-Conditioning Systems (J1991). A list of widely-used refrigerants, with chemical names, formulae, and ozone depletion potentials (ODPs) also is appended.

This document provides recommendations for voluntary use by those who supply, use, store, or transport containers for recovered fluorocarbon refrigerants. It is intended as a guide of good practice to facilitate recovery, recycling, and reclamation of refrigerants, to in turn reduce environmental impacts. The need for containers designed and identified specifically for these uses stems from practical and safety considerations. The guideline identifies mandatory federal requirements in the United States, but it is neither an exhaustive listing nor does it address local requirements. It covers cylinders and ton tanks for R-12, R-22, R-114, R-500, and R-502 as well as drums for R-11 and R-113.

Electrostatic Removal of Oil, Water, and Other Contaminants from Refrigerant Flows, proposed research project 598-URF, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH-0999)

The project is being evaluated by ASHRAE Technical Committee 3.3, Contaminant Control in Refrigerating Systems. Further information is available from the ASHRAE Manager of Research (+1-404/636-8440).

Handling and Reuse of Refrigerants in the United States, Industry Recycling Guideline IRG-2, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, December 1994 (16 pages with 1 figure and 1 table, available from JMC as RDB5133)

This manual provides procedures and guidelines to maintain the quality of refrigerants used in air-conditioning and refrigeration (ACR) equipment. It defines the terms "recover," "recycle," and "reclaim" and then identifies three options for refrigerant reuse. They include reuse of the refrigerant - without recycling - in the equipment from which it was removed, recycling the refrigerant into the system same or another system from the same owner, or re-claim of the refrigerant. Five considerations are discussed as a basis for selecting the appropriate action. They include the reason the system is being serviced, condition of the refrigerant and system, equipment manufacturers' policies, refrigerant cleaning capability of recycling equipment, and feasibility and owner's preference. A flow chart diagrams the decision process. The document indicates that used refrigerants shall not be sold, or used in a different owner's equipment, unless the refrigerant has been analyzed and found to meet the requirements of ARI Standard 700, "Specifications for Fluorocarbon and Other Refrigerants." The document also provides a table of maximum contaminant levels for recycled refrigerants in the same owner's equipment, and notes that the owner's consent should be obtained for such reuse. It provides guidance for identification and avoidance of mixed refrigerants (other than manufactured blends) as well as handling of blends with compositions that were altered by selective leakage. This guideline was developed by a broad base of interests, including refrigerant reclaimers, manufacturers, contractors, engineers, government, building owners and managers, and consumers. It responds to a mandated sunset provision in regulation of reused refrigerants. The underlying goal is indicated as protection of end users, consumers, and ACR products owned by consumers.

This standard establishes uniform methods of testing for rating and evaluating performance of equipment for refrigerant recovery and/or recycling. It addresses contaminant or purity levels, capacity, speed, and purge loss, the last to minimize emission into the atmosphere of refrigerants. The standard is intended for guidance of the industry, including manufacturers, refrigerant reclaimers, repackagers, distributors, installers, servicemen, contractors, and consumers. The refrigerants covered include R-11, R-12, R-13, R-22, R-113, R-114, R-123, R-134a, R-500, R-502, and R-503. It does not apply to zeotropic mixtures of these or other refrigerants. The standard covers general equipment requirements, specifies standard samples for testing, and outlines test apparatus. It prescribes a performance testing procedure, sampling and chemical analysis methods, performance calculations and rating, tolerances, and product labeling. The rating sample characteristics include contents of moisture, particulates,
acids, mineral oil, and noncondensable gases. Schematic diagrams show the test apparatus for self-contained equipment and the configuration of a standard air-conditioning or refrigeration system for use as a test apparatus. An appendix specifies the particulate material to be used in standard contaminated refrigerant samples. Conformance with the standard is voluntary, but conformance may not be claimed unless all requirements of the standard are met.

Sealed-Tube Tests of Refrigerants from Field Systems Before and After Recycling, research project 683-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1991 - ongoing (ASHO683)

This project will quantify typical contaminant levels in refrigerants after oil separation, filtering, and drying. It will also determine the effects of contaminants at the concentrations found. The focus is on R-11 from centrifugal chillers, R-12 from commercial refrigeration systems, R-22 from unitary heat pumps, and R-502 from low-temperature commercial refrigeration systems. The work is an extension of ASHRAE research project 601-RP and is being performed by the same contractor, the University of Dayton Research Institute led by R. E. Kaufman. It is sponsored by ASHRAE Technical Committee 3.3, Contaminant Control in Refrigerating Systems.

This guideline recommends practices and procedures to reduce inadvertent releases of refrigerants during manufacture, installation, testing, operation, maintenance, and disposal of refrigeration and air-conditioning equipment and systems. It also covers refrigerant recovery, recycling, reclaim, and disposal.

Retrofit and Conversion

R. Brinkmann (York International GmbH, Germany), Influence on the Transition of Chlorofluorocarbons to Alternative Refrigerants, KI Luft- und Kältetechnik, 31(10):472-474, 1995 (3 pages in German, RDB6310)

This article outlines strategies to prolong equipment life through refrigerant conservation and reclamation and through conversion to alternative refrigerants. It cites the phaseout schedules for chlorofluorocarbon (CFC) refrigerants and consequent need to develop a refrigerant management program. The article outlines options to delay, convert, or replace systems and cites considerations in selecting among them. It also cites statistics on the inventory of existing equipment and then reviews steps to develop a management plan. The three key actions are identified as designating a corporate and/or facility refrigerant manager, conducting an inventory of equipment and refrigerants, and developing a plan for refrigerant conservation and utilization. The article explains these steps and refrigerant recovery options, including simple recovery, recycling, and reclaim. It also explains the terminology and designations being introduced for new refrigerants. The author concludes that the opportunity to implement effective refrigerant management is just about gone based on the phaseout schedule for CFCs.

R. L. Hall (Battelle) and M. R. Johnson (U.S. Air Force), Alternatives to Ozone Depleting Refrigerants in Test Equipment, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 183-189, July 1994 (7 pages with 1 figure and 2 tables, RDB4825)

This paper describes initial results of equipment retrofits to use hydrofluorocarbon (HFC) refrigerants. The equipment included environmental chambers, ultralow temperature freezers, coolant recirculators, a temperature control unit, a vapor degreaser, and a refrigerant recovery system. The conversions entailed replacement of R-12 and R-500 with R-134a, R-13 and R-503 with R-23, and R-502 with R-404A. The mineral oil lubricants were replaced with polyolesters, including Mobil EAL Arctic® 22 CC, ICI Emkate® RL 32S, and Castrol Icematic® SW32 based on recommendations of the compressor manufacturers; CPI Soltest® LT-32 was used with R-23. The paper outlines the refrigerants used, considerations in selecting alternatives and associated lubricants, concerns with mate-
Refrigerant Database

To an Alternative Refrigerant

Field Conversion/Retrofit of Products to Change to an Alternative Refrigerant - Construction and Operation (first edition), standard 2170, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 17 September 1993 (20 pages with 2 tables, RDB3B06)

This standard contains requirements for safety engineers to evaluate the construction and operation of air conditioning and refrigeration equipment intended for field conversion/retrofit to an alternative refrigerant. The equipment covered include, but are not limited to, remote commercial refrigerators and freezers, unit coolers, condensing units, split-system central cooling air conditioners and heat pumps, and self-contained equipment. The self-contained group includes commercial refrigerators and freezers, ice makers, ice cream makers, room air conditioners, central cooling air conditioners, heat pumps, and liquid chillers. The standard sets out its scope, supplementary requirements, and general requirements for components. It also provides a glossary of terminology used and clarifies the applicable units of measurement and versions of referenced documents. It then specifies three alternative performance requirements to determine the compatibility of an alternative refrigerant with materials used in the refrigerating system. The first entails testing in accordance with UL Standard 984 or CSA Standard C22.2. The second involves tests by compatibility exposures. The third allows investigation by accepted safety test methods judged equivalent to the preceding two options and that contain specific pass/fail criteria. The remainder of the standard prescribes tests for compatibility exposures, with primary attention to motor insulating materials and motorettes. Required tests are tabulated for magnet wire, helical coils, sheet insulation, lead wire, tie cord, sleeving, tapes, and motorettes. The tests include visual inspection, percent elongation, bond strength, dielectric breakdown, burnout strength, tensile properties, and voltage withstood. The number of samples and test (acceptance) criteria are indicated.

Field Conversion/Retrofit of Products to Change to an Alternative Refrigerant - Procedures and Methods, standard 2172, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 17 September 1993 (RDB3B08)

This manual provides a training guide on key issues and procedures associated with refrigerants that affect the air-conditioning and refrigeration industry. It begins with an update on regulations governing the phase out of chlorofluorocarbons compatibility, and the conversions steps followed. The paper indicates that system capacities and power requirements remained virtually unchanged, but that minimum operating temperatures increased slightly in some conversions, notably by 7 °C (12 °F) when replacing R-503 with R-23.

Field Conversion/Retrofit of Products to Change to an Alternative Refrigerant - Insulating Material and Refrigerant Compatibility (first edition), standard 2171, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 17 September 1993 (16 pages with 1 table, RDB3B07)

This standard contains test procedures to evaluate the compatibility of an alternative refrigerant with hermetic motor insulating materials and lubricants, for air conditioning and refrigeration equipment intended for conversion/retrofit to an alternative refrigerant. The equipment covered include, but are not limited to, remote commercial refrigerators and freezers, unit coolers, condensing units, split-system central cooling air conditioners and heat pumps, and self-contained equipment. The self-contained group includes commercial refrigerators and freezers, ice makers, ice cream makers, room air conditioners, central cooling air conditioners, heat pumps, and liquid chillers. The standard sets out its scope, supplementary requirements, and general requirements for components. It also provides a glossary of terminology used and clarifies the applicable units of measurement and versions of referenced documents. It then specifies three alternative performance requirements to determine the compatibility of an alternative refrigerant with materials used in the refrigerating system. The first entails testing in accordance with UL Standard 984 or CSA Standard C22.2. The second involves tests by compatibility exposures. The third allows investigation by accepted safety test methods judged equivalent to the preceding two options and that contain specific pass/fail criteria. The remainder of the standard prescribes tests for compatibility exposures, with primary attention to motor insulating materials and motorettes. Required tests are tabulated for magnet wire, helical coils, sheet insulation, lead wire, tie cord, sleeving, tapes, and motorettes. The tests include visual inspection, percent elongation, bond strength, dielectric breakdown, burnout strength, tensile properties, and voltage withstood. The number of samples and test (acceptance) criteria are indicated.

Field Conversion/Retrofit of Products to Change to an Alternative Refrigerant - Procedures and Methods, standard 2172, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 17 September 1993 (RDB3B08)

This manual provides a training guide on key issues and procedures associated with refrigerants that affect the air-conditioning and refrigeration industry. It begins with an update on regulations governing the phase out of chlorofluoro-
The refrigerants are Forane 11, 12, 22, 123, 500, and 502. and R-409A.

A glossary of terminology and retrofit procedures for hermetic reciprocating-piston compressors from R-12 to R-134a and R-502 to R-404A, centrifugal compressors from R-12 to R-134a and R-11 to R-134a, and automotive air conditioners from R-12 to R-134a, R-l34a, R-44A, semi-hermetic reciprocating-piston compressors from R-12 to R-134a and R-502 to R-404A, screw compressors from R-12 to R-134a and R-502 to R-404A, centrifugal chillers from R-12 or R-500 to R-134a and R-11 to R-123, and automotive air conditioners from R-12 to R-134a. Eight appendices outline Atochem's refrigerant reclamation program, provide a glossary of terminology and retrofit checklist, outline the previously named guidelines and standards, and provide tabular data on refrigerant-lubricant system replacements and capacity changes for R-123, R-134a, R-404A, and R-409A. Elf Atochem's product names for the refrigerants are Forane(P) 11, 12, 22, 123, 134a, 404A (FX-70), FX-10 (408A), FX-56 (409A), 500, and 502.

Guide for the Field Conversion/Retrofit of Products to Change to an Alternative Refrigerant Using UL 2170-2172, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 17 September 1993 (10 pages, available from JMC as RDB3B09)

Appliances

use of hydrocarbons as additives in domestic freezers and refrigerator-freezers to convert from R-12 to R-134a with continued use of the original mineral oil as the lubricant: examines R-E170 (dimethyl ether), R-290 (propane), R-C270 (cyclopropane), R-600 (n-butane), R-600a (isobutane), R-601 (n-pentane), and R-601a (isopentane); plots show the loss of volumetric cooling capacity and temperature glide with addition of 0-10% hydrocarbons by mass; experimental retrofits of an upright freezer and a refrigerator-freezer from R-12 to R-134a/600a (92/8) and to R-134a; whereas lubrication problems were encountered without hydrocarbon addition freezer, but not with the refrigerator-freezer; no operating problems were encountered with the R-134a/600a blend, though efficiency dropped by approximately 9%; compressor durability and wear tests are underway; authors conclude that use of R-134a/600a is a viable retrofit option and also may be an option for new equipment; potential flammability of the blend or its worst case of fractionation is not addressed

Air Conditioners and Heat Pumps

B. S. Lunger, K. A. Geiger, T. L. Anglin, and S. Narayaman (DuPont Fluoroproducts), Heat Pump / Air Conditioner Field Test Data for an HCFC-22 Alternative Containing HFC-32, HFC-125, and HFC-134a, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by B. R. Tree and J. E. Braun, Purdue University, West
The performance of a 112-ton, single-stage, hermetic centrifugal water chiller is compared for R-500 and R-134a. Both tests were run at standard rating conditions (ARI Standard 550-88) with the chiller operating at its maximum capacity. The chiller initially was tested with R-500 as a baseline and then recharged with R-134a. The lubricant was changed from a naphthenic mineral oil (Witco Suniso® 4GS) to an ester (Mobil XRL 1691-1). The low-pressure cut-out switch and thermostatic expansion valve were adjusted after changing refrigerants, but other hardware and control settings were the same for both tests. A third test was run with the impeller replaced to provide higher flow. The compressor gears were changed for a fourth test to increase the impeller speed. The capacity with R-134a decreased by 9.9, 1.3, and 4.1% for the three tests and the efficiency decreased by 2.8 and 0.5% for the second and fourth tests, but increased by 0.1% for the third.

B. Seibert (The Trane Company), How to Convert CFC-11 Chillers to HCFC-123, Heating/Piping/Air Conditioning, 65(4):45-50, April 1993 (6 pages with 5 figures, RDB3458)

S. G. Sundaresan and R. W. Griffith (Copeland Corporation), Retrofitting CFC-12 and R-502 Commercial Refrigeration Equipment, unpublished presentation at the International CFC and Halon Alternatives Conference, Washington, DC, 30 September 1992 (4 pages with 1 figure and 2 tables, available from JMC as RDB4306)

This paper outlines an approach for retrofit of commercial equipment from R-12 or R-502 to either a hydrochlorofluorocarbon (HCFC) or HCFC blend or to a hydrofluorocarbon (HFC) or HFC blend alternative. The paper identifies three verification areas before retrofit: 1) performance, leaks, required oil level, refrigerant-lubricant color and acidity, and operation, 2) materials compatibility, and 3) regulatory compliance and safety approvals. It then discusses refrigerant properties to assure suitability. It suggests that manufacturers be consulted to determine the proper refrigerant charge and operating parameters. The paper discusses considerations for lubricant selection and again recommends consultation with the compressor manufacturer, to determine both selections and cleaning procedures. It reviews typical proce-
Retrofitting CFC 12 Systems with Klea(TM) 134a and Emkarate RL Synthetic Lubricants, ICI Americas Incorporated, New Castle, DE, undated circa 1992 (6 pages with 2 tables, available from JMC as RDB3907)

This document provides information to assist equipment manufacturers and system owners in the conversion of R-12 systems to R-134a. It is based on a comprehensive program of refrigerant and lubricant compatibility studies. The document reviews reasons why R-134a is an important retrofit candidate. They include extension of equipment life beyond the phase out date of R-12, thermodynamic similarity of these two fluids, economic advantages as R-12 costs rise, and avoidance of replacement or conversion delays when R-12 shortages occur. The document reviews lubrication, system modifications, and system chemistry as considerations in retrofits. It then discusses lubrication reliability, compressor reliability, system cooling performance, and energy efficiency after retrofit. The document briefly summarizes two case studies. The first involved a 300 ton Snyder-General McQuay centrifugal chiller, from R-500 and mineral oil to R-134a. The capacity decreased by 15.4%, but could be increased with a change in impeller speed. The efficiency improved slightly. The second study involved a large heat pump in Hampshire (Stockholm) Sweden, also from R-500 to R-134a. With changes to the centrifugal compressor, the retrofit system is proving to be at least as efficient with R-134a. The document concludes with a tabular comparison of R-12 and R-134a properties.

Suva(R) 123 in Chillers, document ART-2 (H-42443-2), DuPont Chemicals, Wilmington, DE, January 1995 (6 pages with 5 tables, RDB7213)

This bulletin discusses use of R-123 in new and retrofit chillers. It briefly introduces R-123 as one of the alternatives to replace chlorofluorocarbon (CFC) refrigerants and specifically R-11. A table compares the boiling point, flammability, exposure limit, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP) for R-11 and R-123. The bulletin identifies general considerations for chiller conversions, indicating that alternative refrigerants cannot simply be "dropped into" systems designed for CFCs. Comparative ranges are provided for capacity, coefficient of performance (COP), evaporator and condenser pressures, and discharge temperature for R-123 relative to R-11. The usual changes in capacity and COP are indicated as -5 to -20% and 0 to -5%, respectively. The bulletin then outlines chemical compatibility considerations, and illustrates differences with a table comparing R-11 and R-123 compatibility with plastics, after exposures at 24 and 54 °C (75 and 130 °F). They include ABS polymer (USC Chemicals Krylastic(R)), acrylic (ICI Americas Lucite(R)), fluorocarbon polytetrafluoroethylene (PTFE, DuPont Teflon(R)), polycarbonate (General Electric Lexan(R)), polyethylene HD (Oxy Petrochemicals Alathon(R)), polypropylene (Oxy Petrochemicals Alathon(R)), polystyrene (Dow Chemical Styron(R)), and polypvynil chloride (PVC). A separate table provides length (swell) and weight change data for elastomers following exposures for 7 days at 54 °C (130 °F). Covered polymers include butyl rubber, chlorosulfonated polyethylene (DuPont Hypalon(R)), fluorocoelester (DuPont Viton(R) A), hydrocarbon rubber (DuPont Nordel(R)), natural rubber, neoprene, neoprene (NBR, Buna N, and SBR, Buna S), polysulfide (Morton Thiokol(R) FA), silicone, and urethane (Uniwyl Adiprene(R) C). The bulletin also discusses compatibility with metals and lubricants, noting that those currently used with R-11 are fully miscible with R-123 for expected conditions. It cites stability tests with metals, including steel 1010, copper, and aluminum; the tabulated findings show that R-123 is more stable than R-11. The bulletin then outlines factors for chiller retrofit from R-11 to R-123. It notes that requirements may range from a minimum effort, such as lubricant replacement, to significant changes, such as replacing gears, impellers, or materials of construction. The document then describes a retrofit program, with major equipment manufacturers, to convert DuPont's large chillers from CFCs to alternative refrigerants. It reviews field experience with three case histories, the first involving retrofit of a 1670 kW (475 ton), York open-drive chiller converted to R-123 in September 1988. Monitoring and refrigerant and lubricant sampling are described, along with measurements of machine room concentrations. Typical concentrations of 1 ppm - even during refrigerant removal and recharging - are indicated, with spikes of approximately 8 ppm when making or breaking hose connections. Two other machines at the same site were con-
Suva^{(R)} 134a (Suva Cold MP, HFC-134a) in Chillers, document ART-3 (H-42444-1), DuPont Chemicals, Wilmington, DE, January 1994 (6 pages with 5 tables, available from JMC as RDB4509)

This bulletin discusses use of R-134a in new and retrofit chillers. It briefly introduces R-134a as one of the alternatives to replace chlorofluorocarbon (CFC) refrigerants. A table compares the boiling point, flammability, exposure limit, ozone depletion potential (ODP), and halocarbon global warming potential (HGWP) for R-12 and R-134a. The bulletin identifies general considerations for chiller conversions, indicating that alternative refrigerants cannot simply be "dropped into" systems designed for CFCs. Comparative ranges are provided for capacity, coefficient of performance (COP), evaporator and condenser pressures, and discharge temperature for R-134a relative to R-12. The usual changes in capacity and COP are indicated as -10 to +2% and -8 to +2%, respectively. The bulletin then outlines and tabulates chemical compatibility considerations, and illustrates differences with a table comparing R-12 and R-134a compatibility with elastomers after exposures at 25, 80, and for some 141°C °C (77, 176, and 285 °F). They include urethane (Uniroyal Adiprene^{(R)} C), Buna N and S, butyl rubber, chlorosulfonated polyethylene (DuPont Hypalon^{(R)} 48), natural rubber, neoprene W, hydrocarbon rubber (DuPont Nordel^{(R)}), silicone, polysulfide (Morton Thiokol^{(R)} FA), and fluoroelastomer (DuPont Viton^{(R)} A). The bulletin also discusses lubricants and contrasts polyalkylene glycol (PAG) and polyolester (POE) synthetics to mineral oils (MO). A table indicates the temperature ranges from -50 to 93 °C (58 to 200 °F) for solubility of R-134a in naphthenic and paraffinic MO, alkylbenzene and dialkylbenzene, two PAGs, and four POEs. The bulletin outlines factors for chiller retrofit from R-12 and R-500 to R-134a. It notes that requirements may range from a minimum effort, such as lubricant replacement, to significant changes, such as replacing gears, impellers, or materials of construction. The document describes a retrofit program, with major equipment manufacturers, to convert DuPont's large chillers from CFCs to alternative refrigerants. It then reviews field experience with a 3460 kW [probably 2460 kW] (700 ton), York International TurboPak^{(R)} centrifugal chiller, converted to R-134a and an unidentified 300 SUS PAG lubricant in November 1989. Subsequent inspections and a second retrofitting of the drive gear, in the spring of 1990, are described, indicating satisfactory operation with a decrease in efficiency of up to 7% and an increase in capacity of up to 9%. The document also discusses conversion of a Carrier open-drive, R-12 chiller rated at 4224 kW (1200 ton) to R-134a with a PAG in December 1990; the gear set was changed in the spring of 1991. A maintenance problem with the lubricant oil pump and slight wear in the compressor journal bearings were found. While the cause was not ascertained, the lubricant was changed to a POE, indicated as less sensitive to residual chlorides. A third case history involved a 10,560 kW (3000 ton) open drive, York R-500 chiller with naphthenic MO. It was converted to R-134a with a POE in April 1991; preliminary testing confirmed that a gear change was not needed. A fourth was with a 10,560 kW (3000 ton) open drive, Carrier 17DA chiller, for which the external gear set was replaced to increase the speed by 13%. The R-12 and naphthenic MO were replaced with R-134a and a POE in April 1991. The efficiency and capacity were increased, the latter by 7%. A fifth case involved conversion of a 7040 kW (2000 ton) Worthington 52EH chiller, from R-12 and MO to R-134a and POE in July 1992. After overhaul and a speed increase, the capacity and efficiency increased by 2 and 10%, respectively. This case was unique in several respects, since this chiller design is limited in operating pressure and condenser replacement may be required for other machines. Also, the chiller had not been overhauled since its original installation in 1965. The bulletin mentions flushing with R-11 for the first two retrofits and with POE for the remainder. Also, the lubricant viscosity had to be increased in the last two to reduce operating pressures. The bulletin indicates that monitoring is continuing. DuPont's product names for R-134a refrigerant are Suva^{(R)} 134a and Suva^{(R)} Cold MP.

Commercial Refrigeration

M. R. Brubaker, G. D. Rolotti, and P. F. Radice (Elf Atochem North America), Practical Interim Solutions for Existing R-12 and R-502 Installations:

please see page 6 for ordering information

R-408A, R-409A, lubricant miscibility,flammability, fractionation, efficiency, retrofit, vending machine, commercial ice maker

This report assesses procedures to remove contaminants from refrigeration systems. It compares methods for mineral oil removal, for conversion of R-12 systems to use R-134a, including "triple-flush" approaches, variants thereof, and flushing with terpenes. The report also surveys process alternatives to clean motor burnouts, in systems using hermetic and semi-hermetic compressors. It then reviews criteria for flushing- and cleaning-solvent selection. Advanced methods, including use of polyol ester (POE) cosolvents, alkylbenzene lubricants, flushing with R-22, and cleaning with the original R-12 charge are discussed. The report describes a 12 kW (3 ton) system, employing a bolted hermetic reciprocating-piston compressor, and a system serving a supermarket dairy-case. These systems were used for laboratory and field comparisons of the flushing methods for R-134a retrofits. Data are tabulated to compare lubricant removal, costs, and material requirements for triple-flush and alternative methods. Two appendices summarize difficulties with solvent evaporation and provide an annotated bibliography of resource and reference materials. The report concludes that the alternative methods offer considerable reduction in cost and waste.

R-134a, synthetic polyol ester (POE) lubricants, retrofit of R-12 systems: overview, capacity change, lubrication, system durability, compatibility, case study in a food processing plant

use of R-134a to retrofit R-12, compatibility tests, flushing procedures, mineral oil tolerance, case study for a refrigeration system in a food processing plant

R-134a, R-403A, and R-403B

Klea(R) 60, Replacement for R-502 in New and Existing Equipment, technical note 620250450, ICI Americas Incorporated, Wilmington, DE, October 1993 (8 pages with 3 tables, available from JMC as RDB3A61)

This document describes R-407A, a ternary, zeotropic blend of R-32, R-125, and R-134a (R-32/125/134a), developed as a replacement for R-502 for commercial and transport refrigeration. The technical note summarizes the phase out of chlorofluorocarbon (CFC) refrigerants, the need for alternatives to R-502, and ICI's search for likely replacements. It then compares the atmospheric lifetimes, ozone depletion potentials (ODPs) and halocarbon global warming potentials (HGWPs) of R-22, R-32, R-125, R-134a, R-502, and the R-32/125/134a blend. It also provides a tabular comparison of the physical properties, at the normal boiling point, and theoretical performance between R-502 and the blend. The document then discusses the flammability and toxicity of both the blend and its components, noting that the composition was designed to be nonflammable despite the R-32 content. The bulletin also discusses handling and leakage and states that composition changes are anticipated to be less serious than had been expected. It discusses
appropriate lubricants, with focus on the ICI Emkarate(R) family of synthetic, neopentyl polyolesters. Several documents are cited as available or under preparation to provide thermophysical properties, flammability and toxicity specifics, blend design information, handling and storage advice, and retrofit case studies. ICI's product name for R-407A is Klea(R) 60.

Klea(R) 61, Replacement for R-502 In New and Existing Equipment, technical note 620250460, ICI Americas Incorporated, Wilmington, DE, October 1993, reprinted April 1994 (8 pages with 3 tables, RDB3A62)

This document describes R-407B, a ternary, zeotropic blend of R-32, R-125, and R-134a (R-32/125/134a), developed as a replacement for R-502 for commercial and transport refrigeration. It is specifically targeted for R-502 retrofit applications operating at high lift, for example -40 °C (-40 °F) evaporating and 40 °C (105 °F) or higher condensing. It may also be suited for use in hermetic compressors where discharge temperature is a critical parameter. The technical note summarizes the phase out of chlorofluorocarbon (CFC) refrigerants, the need for alternatives to R-502, and ICI's search for likely replacements. It then compares the atmospheric lifetimes, ozone depletion potentials (ODPs) and halocarbon global warming potential (HGWP) data for R-22, R-32, R-125, R-134a, R-502, and the R-32/125/134a blend. It also provides a tabular comparison of the physical properties, at the normal boiling point, and theoretical performance between R-502 and the blend. The document then discusses the flammability and toxicity of both the blend and its components, noting that the composition was designed to be nonflammable despite its R-32 content. The bulletin briefly reviews handling and leakage. It advises that the blend always should be liquid charged into systems, and that investigation has shown that degradation of performance will not be significant with anticipated leakage. The document next discusses appropriate lubricants, with focus on the ICI Emkarate(R) RL family of synthetic, neopentyl polyolesters. Several documents are cited as available or under preparation to provide thermophysical properties, flammability specifics, blend design information, handling and storage advice, and retrofit guidance. ICI's product name for R-407C is Klea(R) 407C (formerly Klea(R) 66).

Retrofit Changeover Guidelines - CFC-12 to HFC-134a, form 93-04-R1, Copeland Corporation, Sidney, OH, April 1993 (4 pages with 1 table, available from JMC as RDB3714)

R-12 to R-134a

Retrofit Changeover Guidelines - CFC-12 to MP39, form 93-02-R1, Copeland Corporation, Sidney, OH, April 1993 (8 pages with 2 tables, RDB3715)

R-12 to R-401A

Retrofit Changeover Guidelines - CFC-12 to MP66, form 93-03-R1, Copeland Corporation, Sidney, OH, April 1993 (8 pages with 2 tables, RDB3716)

R-12 to R-401B

Retrofit Changeover Guidelines - CFC-12 to Suva(R) HP80, form 93-05, Copeland Corporation, Sidney, OH, June 1993 (8 pages with 2 tables, RDB3717)

please see page 6 for ordering information
R-12 to R-402A

Retrofit Guidelines for Suva(R) HP62, document ART-22 (H-53019), DuPont Chemicals, Wilmington, DE, January 1994 (8 pages with 2 tables, available from JMC as RDB4510)

This bulletin provides guidance on retrofit of R-502 equipment with R-404A - R-125/143a/134a (44/62/4) - in medium and low temperature refrigeration applications. It briefly reviews the properties and safety of the two refrigerants and provides a table comparing their boiling points, vapor pressures and liquid densities at 25 °C (77 °F), vapor densities at -15 °C (5 °F), ozone depletion potentials (ODP), global warming potentials (GWP), capacities, and efficiencies. The bulletin outlines lubricant selection criteria, and notes that polyolester (POE) lubricants are recommended for most hydrofluorocarbon (HFC) systems. It offers guidance on handling POEs and the impacts of residual mineral oil. The bulletin identifies retrofit modifications, including consideration of compatibility with plastics and elastomers, but notes that minimal changes are anticipated. As for lubricants, it recommends that the materials involved be reviewed with the equipment manufacturer before retrofit. The refrigerant is indicated as suited for use in such applications as food service, commercial refrigeration, and transport refrigeration. The bulletin discusses suitability considerations and provides guidance in choosing among selected retrofit alternatives. It provides an overview of the retrofit process and identifies equipment and supplies needed. An inset notes the conditions under which Copeland Corporation approves the use of R-402A and R-404A and that excess pressure, possibly resulting in an explosion, could result without a properly installed, appropriate pressure relief valve. The bulletin then presents an eight-step retrofit procedure accompanied by a retrofit checklist and system data sheet to facilitate the process. It also provides a pressure-temperature chart, in metric (SI) and inch-pound (IP) units, covering 25-2900 kPa and -71 to 61 °C (-25 to 400 psig and -107 to 140 °F). DuPont's product name for R-404A is Suva(R) HP62.

Retrofit Guidelines for Suva(R) HP80, document ART-9 (H-45947-2), DuPont Chemicals, Wilmington, DE, December 1993 (10 pages with 2 tables, available from JMC as RDB4506)

R-402A

Retrofit Guidelines for Suva(R) HP81, document ART-15 (H-47763-1), DuPont Chemicals, Wilmington, DE, March 1993 (10 pages with 1 table, available from JMC as RDB4507)

R-402B

Retrofit Guidelines for Suva(R) MP39 and Suva(R) MP66, document ART-5 (H-42446-4), DuPont Chemicals, Wilmington, DE, October 1996 (12 pages with 4 tables, available from JMC as RDB-7214)

This bulletin provides application information for R-401A and R-401B for retrofit use. These alternative refrigerants are identified as service replacements for R-12 and, for the latter, also R-500 in direct expansion systems using positive displacement (reciprocating piston, rolling rotary piston, scroll, and screw) compressors. The bulletin reviews and tabulates representative physical and environmental properties as well as comparative performance for R-12, R-500, R-401A, and R-401B. The data suggest 8 and 16% higher capacity and slightly higher efficiency, compared to R-12, and comparable efficiency and capacity to R-500. The bulletin then discusses lubricant selection, and recommends use of alkybenzene lubricants to overcome miscibility concerns with mineral oils. It then discusses filter driers, suggests that they be changed during retrofits, and provides selection guidance for solid core, loose filled, and compacted bead driers. It outlines necessary system modifications with attention to hoses and gasket materials, and cautions against mixing R-401A and R-401B with other refrigerants, including R-12 and R-500, and additives. The bulletin summarizes the equipment, supplies, and procedures needed for retrofit with specific attention to lubricant changes, leak checking, charging, adjustments, and labeling. It also discusses the effects of temperature glide and provides pressure-temperature charts in both inch-pound (IP) and metric (SI) units. The bulletin concludes with discussion of superheat and subcooling, a retrofit checklist, and a system data sheet to record component data and operating parameters. DuPont's product names for R-401A and R-401B are Suva(R) MP39 and MP66, respectively.

Retrofit Guidelines for Suva(R) 134a (Suva(R) Cold MP) in Stationary Equipment, document ART-16 (H-47761-1), DuPont Chemicals, Wilmington, DE, January 1993 (H-47761), revised March 1993 (8 pages with 1 table, available from JMC as RDB3447)

This bulletin provides guidance on retrofit of R-12 equipment with R-134a in commercial refrigeration, air conditioning, medium temperature appliances, and chillers using both positive displacement and dynamic compressors. The bulletin notes that R-134a may be used in lower evaporator temperature applications, but may result in reduced capacity. It cautions that R-134a should not be used in conjunction with other refrigerants, and specifically not added to...
Heat Pumps for District Heating

R-12 to R-134a conversion, Ryaverket, Göteborg, Sweden

R-500 to R-134a

This report summarizes conversion of a large heat pump, for district heating, from R-500 to use of R-134a and the first subsequent year of operating experience. The report reviews both use of large heat pumps in Sweden and corresponding use of refrigerants. It then reviews specific considerations for this conversion, including a description of the heat pump and its two-stage, centrifugal compressor. The thermophysical properties of alternative refrigerants are outlined, with emphasis on projected performance with R-134a. Equipment modifications for the conversion are detailed, including a summary of compatibility considerations with the new refrigerant and polyalphaolefin (PAO) lubricant. The conversion, start up, and added refrigerant leak monitors are reviewed. Operational experience for 1991/1992 is discussed, including capacity, efficiency, availability, refrigerant and lubricant sampling, sealants, and leakage. The report concludes that the conversion was successful. The heat pump ran for 6,641 hours of operation and 148 GWh (0.5 trillion Btu) of production at output temperatures sometimes exceeding 90 °C (194 °F). There were no unplanned outages. Peak capacity is 2.4% lower with R-134a than with R-500, leading to an annual reduction in output of 1.4%. Efficiency is essentially the same. [This conversion is believed to be the largest single use of R-134a to date.]

Industrial Heat Pumps

B. Hivet and C. Gillet (Electricité de France, EDF, France), HFC-134a and HCFC-22/142b Mixture for Conversion of CFC-12 Heat Pumps, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 159-164, July 1994 (6 pages with 4 figures, RDB4821)

R-134a, R-22/142b

Industrial Refrigeration

D. Arnaud (Elf Atochem S.A., France) and G. D. Rolotti (Elf Atochem North America, USA), An Example of Successful CFC-12 Retrofit with HFC-134a in the Industrial Field, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 193-202, October 1993 (10 pages with 3 figures and 5 tables, RDB3A42)

evaluation of an industrial refrigeration system retrofit from R-502 with a mineral oil to R-507A with a polyol ester (POE, Mobil Arctic® EAL 32) lubricant: two nearly identical, side-by-side systems were instrumented and monitored for 26 days before and 24 days after one of them was converted in a cold-storage warehouse for vegetables; operation was deemed reliable and system efficiency was improved; a fourth lubricant flush was needed and the recommended method to determine oil-mixture composition was found to disagree with a more reliable, refractometer method.

Mobile Air Conditioners

B. Abboud, *Field Trials of Propane/Butane in Automotive Air Conditioning*, B.E. thesis, School of Mechanical and Manufacturing Engineering University of New South Wales, Sydney, Australia, 1994 (300 pages, RDB8368)

performance of R-290/600a in mobile air-conditioning (MAC) systems

A series of presentation charts outlines an investigation of and criteria for selection of a flushing solvent, for retrofit of mobile air-conditioning (MAC) systems. The cleanout is needed when converting from R-12 with mineral oil to R-134a and a suitable lubricant. A chart identifies seven requirements, namely compatibility with system materials, ease of removal, minimal (ideally zero) ozone depletion potential (ODP), low flammability, low toxicity, cost effectiveness, and ease of recycling and ultimate disposal. Further charts describe flushing procedures using liquid R-12 and terpenes. Others outline the Environmental Protection Agency (EPA) Solvent Alternatives Guide (SAGE), a computer program that suggests replacements for chlorinated solvents based on responses to a series of questions. The SAGE process and chemical alternatives are identified. Presentation comments note that SAGE recommendations manifest a high tolerance for aqueous and flammable solvents as well as those requiring complex methods. The presentation then lists solvent requirements and acceptable solvents under the EPA Significant New Alternatives Program (SNAP). It also discusses observations on commercially-available solvents, noting that they are either aqueous, flammable, have high boiling points, or are unacceptable under SNAP. Of the more than 1000 organic compounds screened, all fail one or more of the ideal requirements. Charts summarize complexities of solvent removal, for example from dead spots in the system and evaporation difficulty. Two plots compare the volume of a fixed weight of 14 solvents, to suggest an index of solvent removal difficulty. They include R-12, R-1311, R-22, R-113, R-123, R-141b, R-290 (propane), R-502, acetone, and hexane. B-pinene, d-limonene, and water also are included, but shown to be much more difficult to remove.

describes a retrofit test of R-134a/142b (80/20) in a mobile air-conditioning (MAC) system converted from R-12 and the marketing and support program for use of this binary zeotrope; concludes that loss of evaporator performance was insignificant and that the compression ratio was reduced.

summarizes subjective comfort evaluations of mobile air-conditioning (MAC) systems in on-road conditions for 14 vehicles including 7 using R-134a, 4 using R-744 (carbon dioxide), and 1 using an unidentified hydrocarbon refrigerant; presents findings; discusses differences between road and laboratory (wind tunnel) tests, safety implications, and considerations for future development and use of MAC systems.

mobile air-conditioning (MAC) systems: impact of R-134a use on global climate; desired at-
tributes and status of alternatives; indicates that average R-134a needs for current technology systems amount to 2 recharges in a 12 year life with a 0.91 kg (2 lb) charge; projects reduction to 1 recharge in a 12 year life with a 0.80 kg (1.8 lb) charge; based on recharge at 40% charge loss with 6% recovery and recycling losses to amount to 125 and 189 kg (276 and 417 lb) carbon dioxide (CO₂) equivalent with and without recovery, respectively, on an annualized basis, or 1.50 and 2.27 metric tonne (t) (3300 and 5000 lb) for the vehicle lifetime for current technology systems; the corresponding emissions for future technologies are projected at 62 and 127 kg (137 and 280 lb) and 0.744 and 1.52 t (1640 and 3350 lb); promotes use of total equivalent warming impact (TEWI) to gauge system effects; presents analyses to estimate budgets for mitigation activities versus purchase of credits through emissions trading; notes that MAC systems using R-744 (CO₂) as a refrigerant are projected to cost 20% more and weigh 2.5 kg more than current R-134a systems

summarizes field and laboratory measurements to estimate fuel use for operation of mobile air conditioning (MAC) systems; provides estimates of MAC penetration in new cars in Europe (30%), France (60%), Japan (>90%), and the USA (>90%); suggests modifications warranting investigation to reduce power requirements and regulatory approaches to reflecting MAC energy consumption

S. H. Colmery, T. W. Dekleva, and C. L. Jarrell (ICI Klea), Studies on the Condition of Vehicle Air Conditioning Systems - Two Years After Retrofitting HFC-134a, paper 940599 (SAE International Congress and Exposition, Detroit, MI, 28 February - 3 March 1994), Society of Automotive Engineers (SAE), Warrendale, PA, 67-72, 1994 (6 pages, rdb-4A25)

R-134a, mobile air-conditioning (MAC) systems

This document provides the presentation charts and text for an update on retrofit of mobile air conditioning (MAC) systems. The presentation reviews the basis for selection of R-134a including consideration of performance, avoidance of ozone depletion, and safety. The lubricant used is identified as a fundamental issue in retrofitting MAC systems with R-134a. Properties of two candidate esters and sealed-tube test results, including both mineral oil and R-12 as contaminant, are reviewed. One finding is that the lubricants impact the materials examined more than the refrigerants. Volume change (swell) is plotted for R-12 with mineral oil, the same pair followed by R-134a with a polyester, and R-134a with the ester alone for nine elastomers. They include chlorosulfonated PE, EPDM, EPDM-O, EPDM-S, fluoropolymer, HNBR, natural rubber, neoprene, and nitrile. Compressor tests to examine the suitability of the fluids are summarized; the tests included high contaminant levels to approximate those expected in retrofits. A rating system to gauge wear is outlined. Fleet trials conducted in Australia are summarized, noting anecdotal suggestions that R-134a may provide improved performance. While much more study is needed, the esters tested appear promising for use with R-134a in MAC system retrofit.

D. Q. Darlage (Peoples Welding Supply, Incorporated), B. C. Burke (ATC Specialists), D. Hatton (Monroe Air Tech), J. Burke (United Suppliers of America), and G. H. Goble (GHG Dev Labs, Incorporated), Profile of Autofrost(R) Refrigerants, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 392-396, November 1997 (5 pages with 1 table, RDB8354)

R-406A [R-22/600a/142b (55/4/41)], R-414A [R-22/124/600a/142b (51/28.5/4/16.5)], R-22/600a/142b (65/4/31), and R-22/227ea/-600a/142b (41/40/4/15) identified as GHG-X3 (also Autofrost-X3), GHG-X4 (also Autofrost-X4), GHG-X5, and GHG-HP, respectively; discusses personal views on, circumvention of, and observations regarding current requirements for fittings, recycling, and recovery of refrigerants for mobile air-conditioning (MAC) systems

P. G. Gott, Automotive Air-Conditioning Refrigerant Service Guide, Society of Automotive Engineers (SAE), Warrendale, PA, and Mobile Air Con-
This publication details proper service procedures involving refrigerants for automotive air conditioners for service technicians. It addresses issues such as how to avoid refrigerant contamination. It also contains the complete text of Society of Automotive Engineers (SAE) standards applicable to R-12 and R-134a recycling and service. They include "Recommended Service Procedure for the Containment of R-12" (standard J1998), "Standard of Purity for Use in Mobile Air-Conditioning Systems" (J1991), "Standard of Purity for Recycled HFC-134a for Use in Mobile Air-Conditioning Systems" (J2099), "Service Hoses for Automotive Air Conditioning" (J2196), "HFC-134a Service Hose Fittings for Automotive Air-Conditioning Service Equipment" (J2197), "Recommended Service Procedure for the Containment of HFC-134a" (J2211), and "Safety and Containment of Refrigerants" (J639).

R-12 to R-134a and R-401C, retrofit of automotive air conditioners

Performance tests of nine retrofit alternatives in a mobile air-conditioner (MAC) converted from R-12: tests at three operating conditions compared the refrigeration capacity, coefficient of performance (COP), compressor discharge pressure, compressor discharge temperature, and evaporator outlet pressure; tested refrigerants included R-12 for reference, R-134a, R-406A, R-22/124/600a/142b (51/28.5/4/16.5) [proposed R-414A] and (5) 39/1/5/9.5 [proposed R-412B], R-416A, R-22/600a/142b (65/4/31), R-134a/142b (80/20) and 79/19 with a lubricant additive, and a proprietary blend identified as Ikon-12 [possibly R-152a/1311 (25/75)]; the COPs and capacities for R-134a were 7-9 and 8-9% lower, respectively, than for R-12; blends containing R-22 tended to have higher capacities, but discharge pressures that were 17-34% higher and discharge temperatures as much as 5 °C (9 °F) higher than for R-12; concludes that further laboratory and field testing is needed to adequately evaluate performance, materials compatibility, chemical stability, fractionation, and long-term durability

J. J. Jetter, N. D. Smith (U.S. Environmental Protection Agency, EPA), K. Ratanaphruks, A. S. Ng, M. W. Tufts, and F. R. Delafield (Acurex Environmental Corporation), Evaluation of Ikon(R)-12 Refrigerant for Motor Vehicle Air Conditioning, paper 970525 (SAE International Congress and Exhibition, Detroit, MI), Society of Automotive Engineers (SAE), Warrendale, PA, 1997 (rdb8347)

Performance tests of a proprietary blend identified as Ikon-12 [possibly R-152a/1311 (25/75)] in a mobile air-conditioning (MAC) system

A. S. Parmar, Performance of Hydrocarbon Refrigerants in Motor Car Air Conditioning, B.E. thesis, School of Mechanical and Manufacturing Engineering University of New South Wales, Sydney, Australia, 1995 (rdb8370)

Performance of R-290/600a in mobile air-conditioning (MAC) systems

R-12 to R-134a retrofit of mobile air-conditioning (MAC) system, refrigerant losses, failures, user perceptions, flushed versus non-flushed results

Marine Refrigeration and Air Conditioning Systems

R-12, R-22, R-134a, lubricants
Valves and Accessories

S. Adachi (Union Showa K.K., Japan), Development of Molecular Sieve Desiccants for Alternative Refrigerants, paper 5.6, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 130-134, December 1994 (5 pages with 11 figures and 3 tables; in Japanese with abstract, figures, and tables in English; RDB5424)

R-32; 4A XH-5, 4A NRG, 4A XH-6, XH-9, XH-10c, and developmental molecular sieves; compatibility tests

R-134a, requirements and sizing for filter driers to absorb water and acid in refrigeration systems, filtration efficiency, compatibility with hydrofluorocarbon (HFC) refrigerants, polyolester (POE) lubricants and additives

R-32, molecular sieve desiccants, reaction of refrigerant with desiccant

R-12, 4Å molecular sieve, silica gel

O. S. Hernandez (Uberlandia Federal University, Brazil) and S. A. Lopes (Ouro Preto Federal University, Brazil), Performance of a Medium Size, Constant Superheating PC-Controlled Expansion Valve for Chillers, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 359-364, July 1994 (6 pages with 7 figures, RDB4846)

Other

R-12, R-22, R-134a, R-142b, R-290, R-318 (identified in the paper as FC 318), R-600a, and R-717: influence of molar heat capacity on performance; mathematical models for compression, desuperheating, expansion, subcooling, heat transfer, cycle calculations; role of liquid-vapor heat exchanger and determination of when it is advantageous

This paper presents an approach for reducing the amount of refrigerant used in supermarket systems. It employs decentralized, water-cooled, condensing units located in close proximity to the display cases served. The concept differs from traditional practice, based on centralized equipment rooms. The new system introduces three ways to reduce the required refrigerant charge. First, the reduced line lengths lower the inventory, especially in the liquid line. Second, the internal volume is lowered by using smaller tubing sizes, since large diameters are no longer needed to minimize pressure drops for long runs. Third, use of compact, water-cooled, brazed plate, heat exchangers
enables heat rejection to an intermediate water circuit, piped to fluid coolers on the roof or rear of the store. Doing so avoids the need for flooded condensers, to maintain head pressure at low ambient temperatures. The paper outlines and illustrates the concept. It indicates that refrigerant charge was reduced by 50% and joints by 50-75% in demonstration applications. The paper then reviews customer concerns that had to be resolved to make the system viable. They include control of in-store noise and serviceability, avoidance of lost merchandising space, loss of heat reclaim, and potential increases in electrical distribution costs. The paper outlines a solution, predicated on use very compact, multiplexed scroll compressors serving closely-located display cases with similar suction temperatures. The paper also indicates that R-404A, described as "an environmentally-friendy refrigerant," was selected. Heat reclaim is addressed by drawing heat from the heat rejection fluid or from a heat-reclaim condenser coil. The paper concludes that the microprocessor controlled system offers reduced refrigerant charge, reduced opportunities for leaks, lower installed costs, and reliable and simplified systems.

J. Calhoun (Sanden International, Incorporated), The Impact of HFC-134a on the Manufacture and Service of Automotive Air Conditioning Compressors, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC), Alliance for Responsible CFC Policy, Arlington, VA, 285-293, October 1993 (9 pages with 8 figures, RDB3A49)

R-32, R-125, R-134a, R-143a, R-32/125 (60/40), R-32/125/134a (24/16/60) and (30/10/60)

R-22 replacements

R-11, R-12, R-13, R-13B1, R-14, R-22, R-23, R-32, R-113, R-114, R-115, R-123, R-124, R-125, R-134, R-E134, R-134a, R-141b, R-142b, R-143a, R-152a, R-170, R-216a (sic), R-216b (sic), R-218, R-290, R-C270, R-C318, R-600a

R-13B1/152a, composition management for capacity control

effects of new refrigerants and lubricants on compressors

This paper reviews the refrigerant aspects, and corresponding implications, that a compressor manufacturer must examine when evaluating a refrigerant for suitability. They include the effects on performance, compression temperature, discharge pressure and compression ratio, and motor design including materials compatibility. A figure compares the saturation pressures of R-402A (DuPont Suva® HP80), R-402B (Suva HP81), R-404A (Suva HP62 or Atochem Forane® FX-70), and R-507A (AlliedSignal Gen-
R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.

R-407C, blending and packaging of refrigerant blends; fractionation; composition tolerances; product specifications: addresses the influences of blending equipment, techniques, quantity of components, blend formulation, temperature, and any residual "heel" (remainder of out-of-tolerance blend from preceding tank draw-down) on maintenance of zeotropes within product specifications during container filling operations.
suggests three questions to ask as a guide in choosing among alternative refrigerants: (1) Has the refrigerant been approved under the U.S. Environmental Protection Agency (EPA) Significant New Alternatives Program (SNAP)? (2) Has the refrigerant been recognized by industry standards? And (3), has the original equipment manufacturer (OEM) approved the refrigerant in the intended application? Paper discusses these issues, information sources, and tabulates information on selected refrigerants.

...building code, mechanical code, alternate methods and materials, waiver.

R-22/114 (80/20), (60/40), (40/60), and (20/-80); R-22/152a (90/10), (80/20), and (70/30); undisclosed binary zeotrope identified as NARM/UM: experimental study of dynamic behavior in an 11 kW (3 ton) water-to-air heat pump during the heating mode under start-up conditions; found a 35% improvement in efficiency over R-22 for NARM/UM; plots show the pressures and temperatures of the blends at key locations in the refrigerant circuit during transient start-up conditions; concludes that the state of the refrigerant and its composition have a significant effect on performance and that zeotropic mixtures offer potential as refrigerants in heat pump applications.

E. L. Smithart (The Trane Company), Choosing a Building Chiller, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC, 20-22 October 1993), Alliance for Responsible Atmospheric Policy, Arlington, VA, 250-258, October 1993 (9 pages, with 13 figures and 9 tables, RDB6322)

R-123, centrifugal chillers, availability, cost, safety, emissions, environmental considerations, transition planning.

A. Stegou-Sagia and D. Katsanos, On Isentropic Changes of Alternative Refrigerants (R-123, R-134a, R-500, R-503), Energy, 21(12):1071-1077, 1996 (7 pages, rdb8367)

refrigerant properties.

R-11, performance, purge requirements.

F. J. Wiesner, Jr., and H. E. Caswell, Effects of Refrigerant Properties on Centrifugal Compres-
This research project will investigate use of the electrohydrodynamic (EHD) technique to control frost growth on evaporators. Experiments will measure frost control (namely, reduced frost mass accumulation) and power consumption for a selected heat transfer surface and electrode geometry under representative operating conditions for refrigeration applications. The findings will be assembled into a database on the influences of controlling parameters including steady and pulsed operation, air temperature, heat transfer surface temperature, air humidity, and flow Reynolds number. This research project is sponsored by ASHRAE Technical Committees 8.4, Air-To-Refrigerant Heat Exchangers, and 1.3, Heat Transfer and Fluid Flow. Proposals are due at ASHRAE Headquarters by 18 December 1998. Further information is available from the ASHRAE Manager of Research (+1-404/636-8400).

DuPont HCFC-123: Properties, Uses, Storage and Handling, bulletin P-123 (H-52157), DuPont Chemicals, Wilmington, DE, November 1993 (24 pages with 7 figures and 10 tables, RDB7212)

This document provides extensive application information for R-123. It reviews identifiers and potential uses, shows an infrared spectrum for laboratory analyses, compares theoretical and retrofit performance to R-11, discusses its use as a heat transfer fluid, and summarizes physical properties as well as flammability, environmental, and toxicity indices. Plots of solubility in water and pressure-temperature relationships are included. Pressure-enthalpy diagrams, in both inch-pound (IP) and metric (SI) units, are provided. The bulletin reviews chemical and thermal stability data, including thermal decomposition and stability with metals and refrigeration lubricants. It then addresses compatibility with plastics, elastomers, desiccants, and refrigeration lubricants. A table presents compatibility ratings with plastics following exposures for 4 hours 24 °C (75 °F) and for 100 hours at 54 °C (130 °F). The plastics include ABS polymer (Kraton®), acetal (DuPont Delrin®), acrylic (Lucite®), polytetrafluoroethylene (PTFE, DuPont Teflon®), nylon 6/6 polyamide (DuPont Zytel®), polycarbonate (GE Lexan®), polyethylene- HD (Alathon®), polypropylene (Alathon®), polystyrene (Styron®), and polyvinyl chloride (PVC or CPVC). Length (swell) and weight change data, based on 7 day exposures at 54 °C (130 °F) also are tabulated for R-123 compatibility with a butyl rubber, chlorosulfonated polyethylene (CSM, DuPont Hypalon®), fluoroelastomer (DuPont Viton® A), hydrocarbon rubber (DuPont Norcel®), natural rubber, neoprene, nitrile rubber (NBR, Buna N, and SBR, Buna S), polysulfide rubber (Thiokol® FA), silicone rubber, and urethane rubber (Uniroyal Adi-
DuPont HFC-134a: Properties, Uses, Storage and Handling, bulletin P134a (H-45945-3, 233264D), DuPont Chemicals, Wilmington, DE, September 1997 (28 pages with 10 figures and 20 tables, RDB7C06)

This document provides extensive application information for R-134a. It reviews identifiers and potential uses, shows an infrared spectrum for laboratory analyses, compares theoretical performance to R-12, and summarizes physical properties as well as flammability, environmental, and toxicity indices. Plots of solubility in water, pressure-temperature relationships, and vapor thermal conductivity are included. Pressure-enthalpy (PH) diagrams, in both inch-pound (IP) and metric (SI) units, are provided. The bulletin reviews chemical and thermal stability data, including thermal decomposition, stability with metals and refrigeration lubricants, stability with foam chemicals, and concerns if mixed with R-12. It then addresses compatibility with plastics, elastomers, desiccants, and refrigeration lubricants. A table indicates "meriting further testing" or "unacceptable change" with plastics including ABS polymer (Kratallitic®), acetal (DuPont Delrin®), acrylic (Lucite®), cellulosic (Ethocel®), epoxy, polytetrafluoroethylene (PTFE, DuPont Teflon®), ETFE (Tefzel®), PVDF, ionon (Surlyn®), nylon 6/6 polyamide (DuPont Zyten®), polyamide (Arylon®), poly-carbonate (Tuffak®), polybutylene terephthalate (PBT, GE Valox®), polyethylene terephthalate (PET, DuPont Rynite®), polyetherimide (GE Ultem®), polyethylene-hd (Alathon®, polyphe- nylene oxide (PPE, GE Noryl®), polyphenylene sulfide (Ryton®), polypropylene, poly-styrene (Styron®), polysulfone (Polysufone®), and polyvinyl chloride (PVC and CPVC). A tabu- lar summary indicates R-134a compatibility ratings with a urethane rubber (Uniroyal Adiprene® L), Buna N, Butyl rubber, synthetic rubber (DuPont Hynalon® 48), natural rubber, neoprene W, hydrocarbon rubber (DuPont Norde®), silicone rubber, polysulfide rubber (Thiokol® FA), and fluoroelastomer (Du- Pont Viton® A). Further tables summarize changes in length, weight, Shore A hardness, elasticity, and appearance after exposures at 25, 80, and - for some elastomers - 141 °C (77, 176, and 285 °F). A table summarizes permeation through elastomeric hoses made of nylon, Hypalon 48, and two nitriles with identified liners, reinforcement, and covers. Solubility data are provided for R-134a in unidentified naphthenic and paraffinic mineral oils, dialkylbenzene, alkyl- benzene, polyalkylene glycol (PAG), and ester lubricants. Safety data are then presented including a review of inhalation toxicity, cardiac sensitization, responses to spills or leaks, and skin and eye contact. The report recommends an Acceptable Exposure Limit (AEL) of 30 ppm for 8 and 12 hours on a time-weighted average (TWA) basis. Monitors and leak detection are discussed as are storage, handling, and shipping. The bulletin concludes with discussion of recovery, reclamation, recycling, and disposal.

DuPont Suva® HP Refrigerant Blends: Properties, Uses, Storage, and Handling, bulletin P-HP (H-47122-2), DuPont Chemicals, Wilmington, DE, February 1994 (28 pages with 9 figures and 7 tables, available from JMC as RDB4503)

This document provides extensive application information for R-402A and R-402B, both blends of R-125, R-290, and R-22, with R-125/290/22 (60/-2/38) and R-125/290/22 (38/2/60) respectively. It also addresses R-404A, a blend of R-125, R-143a, and R-134a - R-125/143a/134a (44/52/4). It reviews identifiers, the blend compositions, and potential uses. The bulletin then summarizes physical properties as well as flammability, environmental, and toxicity indices. Pressure-enthalpy diagrams are provided in both metric (SI) and inch-pound (IP) units. The bulletin reviews chemical and thermal stability data, including thermal decomposition. A table provides representative data on stability with metals (copper, iron, and aluminum) based on sealed-tube tests of mixtures of R-402B with mineral oil (Witco Suniso® 3GS), alkylbenzene (Shrieve Zerol® 150 TD), and a branched acids polyester (Castrol Icematic® SW32) lubricants. Results also are provided for R-404A with the same lubricants and a mixed acids ester (Mobil EAL Arctic® 22). The report reviews compatibility of the refrigerant blends with R-502, noting chemical compatibility, but potential performance differences and separation difficulty, the latter leading to a need for disposal by incineration. It then addresses compatibility with elastomers; a tabular summary is provided for five lubricants and a mixed acids ester (Mobil EAL Arctic® 22). The report reviews compatibility of the refrigerant blends with R-502, noting chemical compatibility, but potential performance differences and separation difficulty, the latter leading to a need for disposal by incineration. It then addresses compatibility with elastomers; a tabular summary is provided for five lubricants and a mixed acids ester (Mobil EAL Arctic® 22).
this document provides extensive application information for R-401A, R-401B, and R-401C - R-22/152a/124 (53/13/34), (61/11/28), and (33/15/52), respectively. It reviews identifiers, the blend compositions, potential uses, compares theoretical performance to R-12, and discusses temperature glides. Using R-401A as an illustration, it presents tabular data on the theoretical effect of leakage on performance. The bulletin then summarizes physical properties as well as flammability, environmental, and toxicity indices. Plots of pressure-temperature relationships and pressure-enthalpy diagrams, in both inch-pound (IP) and metric (SI) units, are provided. The bulletin reviews chemical and thermal stability data, including thermal decomposition. A table provides representative data on stability with metals (copper, iron, and aluminum) and refrigeration lubricants; comparative information is given for R-12 with two mineral oils. The lubricants addressed include alkylbenzenes (Shrieve Zerol(R) 150DL, 300, and 500T), branched acids polyolesters (Castrol Icematic(R) SW22, SW32, SW68, and SW100), mixed acids polyolesters (Mobil EAL Arctic(R) 68, Henkel Emery(R) ISO 10 and 100, and Lubriloz ISO 150). It then addresses compatibility with elastomers; a tabular summary is provided for R-22/152a/124 (36/24/40), Zerol(R) 500, and a 50/50 mixture with 11 polymers including natural rubber (NR), butyl rubber (IIR), EPDM (DuPont Nordel(R)), chloroprene (CR), DuPont Neoprene(R) W), styrene-butadiene copolymer (SBR, Buna-S), Buna N nitrile (NBR, Polysar Krynac(R)), hydrogenated NBR (HNBR, Polysar Tornac(R)), chlorosulfonated polyethylene (CSM, DuPont Hypalon(R) 48), fluoroelastomer (FKM, DuPont Viton(R)), silicone rubber (SI, Dow Silastic(R)), epichlorohydrin homopolymer (CO, Goodrich Hydrin(R) 100), epichlorohydrin copolymer (ECO, Goodrich Hydrin(R) 200), urethane (Uniroyal Adiprene(R)), and polysulfide rubber (T, Thiokol(R) FA). A separate table summarizes the compatibility of R-401A, a mixture of this refrigerant with Zerol(R) 500T and a mineral oil (BVM 100N), and Zerol(R) 500T alone with 5 polymers; they include CR (DuPont Neoprene(R)), NBR nitrile, HNBR, CO, and ECO. Compatibility data also are provided for polyester insulation material for motors and for molecular sieve desiccants (UOP 4A-XH-5 and XH-9). Miscibility data are provided for 30, 60, and 90% weight lubricant mixtures with R-401B and naphthenic mineral oil, paraffinic mineral oil, alkylbenzenes, polyolesters, and the latter two also with mineral oils. Hose permeation rates are presented for nylon-lined and nitrile hoses. Safety data are then presented including a review of inhalation toxicity, cardiac sensitization, responses to spills or leaks, skin and eye contact, and flammability. Monitors and leak detection are discussed as are storage, handling, and shipping. The bulletin concludes with discussion of recovery, reclamation, recycling, and disposal. DuPont's product names for R-402A, R-402B, and R-404A are Suva(R) HP90, Suva(R) HP81, and Suva(R) HP82 respectively.

DuPont Suva(R) MP Refrigerant Blends: Properties, Uses, Storage, and Handling, bulletin P-MP (H-45944), DuPont Chemicals, Wilmington, DE, December 1992 (36 pages with 14 figures and 13 tables, available from JMC as RDB3441)

This document provides extensive application information for R-401A, R-401B, and R-401C - R-22/152a/124 (53/13/34), (61/11/28), and (33/15/52), respectively. It reviews identifiers, the blend compositions, potential uses, compares theoretical performance to R-12, and discusses temperature glides. Using R-401A as an illustration, it presents tabular data on the theoretical effect of leakage on performance. The bulletin then summarizes physical properties as well as flammability, environmental, and toxicity indices. Plots of pressure-temperature relationships and pressure-enthalpy diagrams, in both inch-pound (IP) and metric (SI) units, are provided. The bulletin reviews chemical and thermal stability data, including thermal decomposition. A table provides representative data on stability with metals (copper, iron, and aluminum) and refrigeration lubricants; comparative information is given for R-12 with two mineral oils. The lubricants addressed include alkylbenzenes (Shrieve Zerol(R) 150DL, 300, and 500T), branched acids polyolesters (Castrol Icematic(R) SW22, SW32, SW68, and SW100), mixed acids polyolesters (Mobil EAL Arctic(R) 68, Henkel Emery(R) ISO 10 and 100, and Lubriloz ISO 150). It then addresses compatibility with elastomers; a tabular summary is provided for R-22/152a/124 (36/24/40), Zerol(R) 500, and a 50/50 mixture with 11 polymers including natural rubber (NR), butyl rubber (IIR), EPDM (DuPont Nordel(R)), chloroprene (CR, DuPont Neoprene(R) W), styrene-butadiene copolymer (SBR, Buna-S), Buna N nitrile (NBR, Polysar Krynac(R)), hydrogenated NBR (HNBR, Polysar Tornac(R)), chlorosulfonated polyethylene (CSM, DuPont Hypalon(R) 48), fluoroelastomer (FKM, DuPont Viton(R)), silicone rubber (SI, Dow Silastic(R)), epichlorohydrin homopolymer (CO, Goodrich Hydrin(R) 100), epichlorohydrin copolymer (ECO, Goodrich Hydrin(R) 200), urethane (Uniroyal Adiprene(R)), and polysulfide rubber (T, Thiokol(R) FA). A separate table summarizes the compatibility of R-401A, a mixture of this refrigerant with Zerol(R) 500T and a mineral oil (BVM 100N), and Zerol(R) 500T alone with 5 polymers; they include CR (DuPont Neoprene(R)), NBR nitrile, HNBR, CO, and ECO. Compatibility data also are provided for polyester insulation material for motors and for molecular sieve desiccants (UOP 4A-XH-5 and XH-9). Miscibility data are provided for 30, 60, and 90% weight lubricant mixtures with R-401B and naphthenic mineral oil, paraffinic mineral oil, alkylbenzenes, polyolesters, and the latter two also with mineral oils. Hose permeation rates are presented for nylon-lined and nitrile hoses. Safety data are then presented including a review of inhalation toxicity, cardiac sensitization, responses to spills or leaks, skin and eye contact, and flammability. Monitors and leak detection are discussed as are storage, handling, and shipping. The bulletin concludes with discussion of recovery, reclamation, recycling, and disposal. DuPont's product names for R-401A, R-401B, and R-401C are Suva(R) MP39, Suva(R) MP66, and Suva(R) MP52, respectively.

Forane(R) for Refrigeration and Air Conditioning, bulletin DIREP-1985E, Elf Atochem S.A., Paris - La Défense, France, January 1994 with addendum dated May 1994 (23 pages with 13 tables, RDB-4816)

This bulletin outlines the replacement offerings of Elf Atochem for chlorofluorocarbon (CFC) refrigerants. It reviews the schedule for CFC phaseout and provides a table showing the applications of R-11, R-12, R-22, R-123, R-134a, R-142b, R-404A, R-409A, R-500, and R-502 as well as R-22/124/142b (65/25/10), R-23/32/134a (4.5/21.5/74), R-32/125/143a (10/45/45), and R-143a/22 (55/45). It briefly discusses lubricants, including the Elf Atochem polyolesters (Plantell(R)), and filter driers, including CECA's - an Elf Atochem subsidiary - molecular sieves (Siliporite(R)) for alternative refrigerants. The bulletin comments on leak detection methods and then discusses conversion of existing systems, with specific attention to R-123 for R-11; R-134a, R-409A, and R-22/124/142b (65/25/10) for R-12; R-404A, R-32/125/143a (10/45/45), and R-143a/22 (55/45) for R-502; and R-23/-32/134a (4.5/21.5/74) for R-22. Tabular swell data are provided for the cited refrigerants with plastics and elastomers, including polychloro-
prene (Neoprene), butadiene acrylonitrile (BNR, Buna N), butadiene styrene (Buna S), hexafluoropropane/vinylidene fluoride (Viton) butyl rubber (IIR), chlorosulfonated polyethylene (Hy- palon), polyamide 11 (Rilsan), polystyrene (PS), and polyvinyl chloride (PVC). Summary property data (chemical formula, chemical name, molecular mass, bubble temperature, temperature drop (glide), critical temperature, critical pressure, pressure and density at representative conditions, ozone depletion potential (ODP), global warming potential (GWP), and flammability limits) and safety data (toxicity, recommended exposure limits, and flammability limits) also are tabulated. The bulletin concludes with brief discussion of handling, storage, recovery, recycling, and the company's quality program. Elf Atochem's product names for R-404A and R-409A are Forane(R) FX-70 and FX-56, respectively. Its names for R-22/124/142b (65/25/10), R-23/32/134a (4.5/21.5/74), and R-32/125/-143a (10/48/45) are Forane(R) FX-57, FX-220, and FX-40, respectively. Its name for R-143a/22 (55/45) until 9 May 1994 was FX-10, when it was reformulated as R-125/143a/22 (7/46/47) - R-408A. An addendum explains revision of the formulation to meet the Underwriters Laboratories (UL) requirements for classification as "practically nonflammable," as requested by equipment manufacturers in the United States. The addendum provides two tables with comparative data for the physical characteristics and performance of the initial and revised formulations of FX-10. The conclusions state that the two blends can be mixed, characteristics remain unchanged, and the materials compatibility and retrofit guidelines are the same.

This bulletin provides application information for R-403B, a ternary zeotropic blend of R-22, R-218, and R-290 formulated as R-290/22/218 (6/56/39). The bulletin outlines the development and applications of the blend, and discusses its use as a service fluid for retrofit of R-502 systems. A plot compares the ozone depletion potential (ODP) of the blend with those of R-12, R-22, R-115, and R-502, showing the blend to be the lowest. Two plots and a table compare the capacities and efficiencies of R-502 and the blend for evaporator temperatures of -37 to -21 °C (-55 to -5 °F) and condensing temperatures of 41 and 49 °C (105 and 120 °F); they show higher theoretical capacity and efficiency for the blend. A figure shows how the composition varies as vapor is drawn from a cylinder, leading to the conclusion that charging should be from the vapor phase unless the entire cylinder is to be used in a large system. The document also discusses fractionation under leakage, noting that the propane (R-290) content will not rise above that of the original formulation. Potential liquid and vapor leaks are described as nonflammable, both for the escaping fluid and that remaining in the system. A final table provides physical properties, in inch-pound units. Rhône-Poulenc Chemical's product name for R-403B is Isceon 69-L; National Refrigerants is the exclusive distributor for North America.

SAFETY

P. J. Baldock (Imperial Chemical Industries PLC, ICI, UK), Accidental Releases of Ammonia: An Analysis of Reported Incidents, AIChE Loss Prevention Symposium, American Institute of Chemical Engineers (AIChE), New York, NY, 13: 1980 (rdb7535)

R-717, safety, accidents involving human exposures

factors that affect the operational safety of air (R-729) cycle systems including component or piping failure from pressure, failure of high-speed rotary components (turbine compressors or expanders), noise, and contamination; concludes that hazards are ordinary

L. W. Burgett (The Trane Company), Revised Standards for Mechanical Refrigeration, ASHRAE Journal, 35(8):31-35, August 1993 (5 pages with 3 figures and 1 table, RDB4303)

This article reviews the provisions of ANSI/ASHRAE Standards 34-1992, "Number Designation and Safety Classification of Refrigerants," and 15-1992 "Safety Code for Mechanical Refrigeration." These revised standards include new alternative refrigerants, a new safety classification matrix for refrigerants, and revised guidance for their application in mechanical refrigeration systems. The article focuses on key provisions and new application requirements. It describes the safety classification matrix, which comprises six groups combining two toxicity
and three flammability classes. A table compares the safety groups for common refrigerants under the previous and new classification schemes. The article then reviews the occupancy (institutional, public assembly, residential, commercial, industrial, and mixed) and refrigerating system (high and low probability, referring to risk of occupant exposure in the event of a leak) groupings. These classifications along with that of the refrigerant are used to determine applicable requirements and permissible refrigerant quantities. The article outlines key requirements including those for machinery rooms, ventilation, and sensors. It also discusses efforts to gain recognition of Standards 15 and 34 in model building and fire codes and to further revise and update the two standards. The author concludes that understanding and implementation of the new requirements are essential to promote safe application and use of refrigeration systems. He also notes that all refrigerants present some degree of risk, necessitating care and respect in their use.

J. M. Calm (Engineering Consultant), Refrigerant Safety, ASHRAE Journal, 36(7):17-26, July 1994 (10 pages with 3 figures and 2 tables, available from JMC as RDB4766)

flammaribility, toxicity

This article outlines safety concerns and summarizes safety data for refrigerants, with emphasis on those used in chillers. It briefly reviews the history of refrigeration, noting that nearly all of the early refrigerants were flammable, toxic, or both, and that some also were highly reactive. It describes the discovery of organic fluorides as refrigerants, by Thomas Midgley in 1926, and the first toxicity tests. The article reviews the commercial introduction and growth of fluorocarbon refrigerants. It then describes the attributes of ideal refrigerants, noting that none exist or are likely to be found. The article summarizes toxicity concerns and several reasons for increased attention to them. A table provides a glossary of safety terminology including common indices used to quantify risk. Among them are the Acceptable Exposure Limit (AEL), Immediately Dangerous to Life or Health (IDLH), Industrial Exposure Limit (IEL), Lethal Concentration for 50% of specimens (LC50), No Observed Effect Level (NOEL), Occupational Exposure Limit (OEL), Permissible Exposure Level (PEL), Recommended Exposure Limit (REL), Short-Term Exposure Limit (STEL), Threshold Limit Value (TLV), and Workplace Environmental Exposure Level (WEEL). Flammability limits also are addressed including the lower and upper flammability limits (LFL and UFL, respectively). The article then summarizes toxicity data for R-123 and R-134a, and relates the R-123 data to measured concentrations in machinery rooms. It also explains other hazards, including the potential for irritation, corrosive effects, asphyxiation, narcosis, and other physiological effects. A table compares safety indicators for R-11, R-12, R-22, R-123, R-134a, and R-717 (ammonia) including acute, subchronic, and chronic toxicity, cardiac sensitization response level, mutagenicity, carcinogenicity, and teratogenicity. The paper then summarizes the safety classifications and the recommended installation, handling, and service procedures found in ASHRAE standards 34 and 15, respectively. The article concludes that the new, alternative refrigerants can be used with comparable or higher safety than those they replace. It notes that the alternatives have been subjected to more stringent qualification criteria and testing. The article also indicates that more care is needed with all refrigerants.

flammaribility, toxicity, and other safety data

R. E. Dufour and A. J. Perkins, The Comparative Life, Fire, and Explosion Hazards of Trifluorochloroethane (Freon-113), Miscellaneous Hazard Report 3072. Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 7 April 1941 (22 pages with 6 tables, RDB5174)

R-113, toxicity, flammability, stability
R. E. Dufour and A. J. Perkins, The Comparative Life, Fire, and Explosion Hazards of Tetrafluoromonochloroethane ('Freon-124'), Miscellaneous Hazard Report 3135, Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 23 October 1940 (22 pages with 7 tables, RDB5176)

R-124, toxicity, flammability, stability

R. E. Dufour and A. J. Perkins, The Comparative Life, Fire, and Explosion Hazards of Difluoromonochloromethane ('Freon-22'), Miscellaneous Hazard Report 3134, Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 26 September 1940 (22 pages with 7 tables, RDB5175)

R-22, toxicity, flammability, stability

R. E. Dufour, The Comparative Life, Fire, and Explosion Hazards of Dichloromonofluoromethane (F21), Miscellaneous Hazard Report 2630, Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 15 January 1935 (22 pages with 7 tables, RDB5173)

R-21, toxicity, flammability, stability

flammmability, toxicity, and other safety data

This book provides guidance for classification of hazards for approximately 3,500 chemicals for use with building and fire safety codes. The volume also explains the fundamentals of hazard classification and provides a cross-reference between more than 7,000 chemical names and Chemical Abstract Service (CAS) registry numbers. A table, forming most of the book, lists the chemicals by CAS number (or pseudo-number for mixtures). It also identifies their common names; Chemical Abstract Service (CAS) registry numbers.

This software provides guidance for classification of hazards for approximately 3,500 chemicals for use with building and fire safety codes. The software enables look-up by chemical, commercial, or common names; Chemical Abstract Service (CAS) registry numbers (or pseudo-number for mixtures); or Registry of Toxic Effects of Chemical Substances (RTCS(R)) codes. The entries indicate the physical state (solid, liquid, or gaseous) at 20 °C (68 °F), concentration, indication of listing under the U.S. Environmental Protection Agency (EPA) List of Extremely Hazardous Substances (40 CFR 355 §302 and §304), information for warning placards, and physical and health hazard categories. The placard information follows the National Fire Protection Agency Standard 704-1985 Standard System for the Identification of the Fire Hazards of Materials. It includes recommended hazard identification rating numbers for health, flammability, and reactivity as well as a designator for special hazards. The physical categories identified include aerosols, combustible dusts and fibers, flammable and oxidizing cryogenics, explosives, flammable and combustible liquids, flammable gases, organic peroxides, oxidizers, pyrophorics, unstable reactives, and water reactives. The health hazards addressed are carcinogenic, corrosive, irritant, other health hazard, radioactive, sensitizer, and toxic/highly toxic. The entries also identify the classifier and reviewer for each chemical according to initials or codes. A companion user's manual provides installation in-
structions and explains the criteria, data sources, classification approach, and assigned hazard levels. The software covers R-11, R-12, R-12B2, R-13, R-14, R-21, R-22, R-23, R-30, R-113, R-114, R-115, R-116, R-123, R-134a, R-152a, R-290 R-C318, R-500, R-503, R-717 (ammonia), and R-744 (carbon dioxide), R-132a, and a number of mineral oils among the other chemicals. [see RDB3965 for printed version]

R-717, venting, emergency releases

hazards associated with R-717 (ammonia) use; review of Dutch safety regulations for ammonia refrigerating installations; prior evaluations indicate that many existing systems do not meet these requirements, that many were never inspected or fully tested, and that complete replacement of the installation would be required to obtain approvals; requirements for a Quantified Risk Assessment (QRA); proposed code of practice to obtain approvals for nonconforming systems

International Programme on Chemical Safety (IPCS), Partially Halogenated Chlorofluorocarbons (Ethane Derivatives), Environmental Health Criteria (EHC) report 126, World Health Organization (WHO), Geneva, Switzerland, 1991 (rdb5373)

R-21 and R-22: identification; summary properties; analytical methods; sources of human and environmental exposure; environmental transport, distribution, and transformation; environmental levels and human exposure; kinetics and metabolism; effects on laboratory mammals; in vitro tests; effects on humans; effects on other organisms in the laboratory and field; evaluation of human health risks and effects on the environment; recommendations for protection of human health and the environment

R-11, R-12, R-13, R-112, R-112a, R-113, R-113a, R-114, R-114a, and R-115: identification; summary properties; analytical methods; sources of human and environmental exposure; environmental transport, distribution, and transformation; environmental levels and human exposure; ecological effects; kinetics and metabolism; effects on laboratory animals; in vitro tests; effects on humans; evaluation of human health risks and effects on the environment; recommendations for protection of human health and the environment; significant reduction in ventilatory lung capacity, bradycardia, and increased variability in heart rate have been noted following exposures to 2,300-21,400 ppm v/v R-114 for 15, 45, or 60 seconds as reported in RDB 5340

advocates use of R-717 (ammonia) as an environmentally-safe refrigerant; factors affecting application including regulations

flammability, toxicity, and other safety data

R. J. Lewis, Sr., Hazardous Chemicals Desk Reference (fourth edition), VNR / John Wiley and

advocates use of R-717 (ammonia) as a "natural" refrigerant; physical and physiological effects of ammonia; public perceptions of ammonia

A. H. Nuckolls, The Comparative Life, Fire, and Explosion Hazards of Common Refrigerants, Miscellaneous Hazard Report Number 2375, Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 13 November 1933 (134 pages with 20 figures and 29 tables, RDB4564)

This report presents a detailed examination of the comparative safety of then common refrigerants. They included R-11, R-12, R-30, R-40, R-40B1, R-114, R-160, R-160B1, R-170 (ethane), R-290 (propane), R-600 (butane), R-611 (methyl formate), R-717 (ammonia), R-744 (carbon dioxide), R-764 (sulfur dioxide), and R-1130. Data also are provided for R-10 (carbon tetrachloride), R-20 (chloroform), gasoline, and "illuminating gas" for comparison. The report discusses the nature of "life," fire, and explosion hazards and outlines salient concerns for investigation. It then describes the samples tested and documents tests and findings for identification, toxicity before decomposition, toxicity of decomposition products, analytical identification of decomposition products, ignition temperature, limits of flammability, explosion pressure and kinetics, and flame propagation. A summary presents the comparative health hazards, health hazards in the presence of flames, health hazards in the presence of surfaces at high temperatures, and fire and explosion hazards. Interspersed tables and plots illustrate the findings. A summary table recapits the toxicity, fire, explosion, and other hazards of the substances investigated. It includes safety classifications based on a relative scale of toxicity.

R-717, safety, validation of dispersion models, DEGADIS (Deense GAs DisPersion model), SLAB

W. F. Stoecker (University of Illinois at Urbana-Champaign), Expanded Applications of Ammonia - Coping with Releases to the Atmosphere, CFCs: Today's Options - Tomorrow's Solutions (proceedings of ASHRAE CFC Technology Conference, Gaithersburg, MD, 27-28 September 1989), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 47-56, 1990 (9 pages with 18 figures, RDB2111)

R-717, venting, dispersion

R-717, hydrocarbons, accidents, risk assessment

safety, flammability, accidents

P. G. J. M. van Dijck, untitled report on the flammability of R-245fa, report 96D2/2344, Prins Maurit Laboratory, TNO [Netherlands Organization for Applied Scientific Research], Rijswijk, The Netherlands, 20 December 1996 (6 pages with 1 figure and 1 table, available from JMC as RDB7114)

investigation of the flammability of R-245fa in concentrations of 0-15% in air in a vertical, vapor-explosion burette using a 6.25 J (0.0059 Btu) spark for ignition; concludes that R-245fa is nonflammable as tested; an annex describes the apparatus, test procedure, and deviations from the test prescribed in EC Directive 92/69/EEC

status of R-717 (ammonia) use in the Netherlands, primarily in food processing with a 50% share (65% by refrigerant amount) with an average of 7.5 kg/kW (4.8 lb/ton) and ice skating rinks with a 75% share; use in commercial refrigeration and chillers is limited by safety regulations, but there are new indirect systems incorporating secondary heat transfer fluids; hydrocarbons have not been used for 40 years except R-290/600 (propane/butane) in domestic refrigerators; broader application of hydrocarbons, in almost all appliances starting in 1995 and transport refrigeration is expected based on quantified risk assessment (QRA) findings; review of ammonia accident data cites 37 accidents (5 in the Netherlands) with 152 injuries and 2 fatalities (1 in the Netherlands); 196 additional accidents with 185 injuries and 17 fatalities are noted for Norway and Japan; QRA methods and accepted individual and societal risk criteria are summarized for Australia, Hong Kong, the Netherlands, and the United Kingdom; discusses directives and standards for safety in the Netherlands and more broadly in Europe

R-717, safety

This paper presents an overview of the ASHRAE standards for refrigerant and refrigeration safety. It also discusses potential changes to address alternative refrigerants. The paper describes the role of Standard 34, Number Designation and Safety Classification of Refrigerants, in providing an unambiguous numbering system and safety classifications for refrigerants. It outlines this classification system, illustrates the six safety groups in a matrix of increasing toxicity and flammability, and explains the dual classifications - as formulated and worst case of fractionation - for zeotropic blends. The paper then describes Standard 15, noting that the latest revision has been written in code language to accelerate its adoption in building regulations. It notes that the requirements are based on three classifications, namely occupancy, system leak probability into occupied space(s), and refrigerant safety (from Standard 34). A table summarizes application requirements based on these three classifications. A second table indicates the maximum allowed quantities without location of equipment in a specified machinery room. The paper then discusses future considerations, identifying increased attention to acute toxicity of refrigerants. It also notes a coordinated effort between Standards 15 and 34 to make the latter the definitive source of safety and property data for refrigerants and the former the standard for application requirements. It discusses data needs and issues being addressed, including thermodynamic property data, the definition of "azeotropic," refinement of flammability criteria, and pressure relief valve calculations for blends. Two tables illustrate the data for R-407C and proposed "f factors" for relief valve sizing for R-22, R-401A, R-401B, R-401C, R-402A, R-402B, R-403A, R-403B, R-404A, R-405A, R-407C, R-502, and R-507A.

This guide identifies suggested practices for the operation of an ammonia refrigeration system. It contains general information on the chemical, its production, properties, safety, and uses. A flow diagram shows the components of a typical system. A section on operators' responsibilities covers what operators should know (compressor safety controls, automatic control valves, isolating valves, pressure relief valves, electrical controls, temperature or pressure changes, and pump out), preventative maintenance, and observation of systems to prevent incidents. A section on treatment of ammonia with respect covers effects on the human body, ammonia's self-alarming odor, and effects of exposure to both anhydrous ammonia gas and pure liquid ammonia. The effects of ammonia on unprotected workers are tabulated by concentration level. Three sections cover first aid, protective equipment, and safety programs and training. A

please see page 6 for ordering information
Addenda to Number Designation and Safety Classification of Refrigerants, ANSI/ASHRAE Standard 34a-0, 34q-2, 34ab, and 34ae (Addenda to ANSI/ASHRAE 34-1992), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1997 (18 pages with 3 tables, available from ASHRAE, RDB8602) [first distributed June 1998].

This cumulative addendum combines addenda a through o, q through z, 34ab, and 34ae as well as errata sheet number 1 to ANSI/ASHRAE Standard 34-1992. The errata correct a conversion error in the metric units for flammability classifications. The addenda provide a designation distinction for zeotropic blends having the same components in different proportions, expand the applicability of dual classifications (as formulated and worst case of fractionation) to azeotropes, and add new definitions. The last address acute toxicity, azeotropic temperature, cardiac sensitization, ceiling (as in exposure limits), chronic toxicity, committee (in the context of the standard), critical point, heat of combustion, LC50 (median lethal concentration), maximum temperature glide, ppm, permissible exposure level (PEL), short-term exposure limit (STEL), and Workplace Environmental Exposure Limit (WEEIL). The addenda clarify that concentrations identified as "ppm" for safety classifications are "ppm by volume". The addenda also modify the designation system for miscellaneous organic compounds as well as inorganic compounds, provide uniform systems to number the carbon atoms in molecules and determine designations for fluoroethers, differentiate among azeotropic blends having the same components, and add a new reference. Composite tables remove the "provisional" notation previously appended to some safety classifications, correct a number of chemical names for consistency with the International Union of Pure and Applied Chemistry (IUPAC) conventions, correct informational (not part of the standard data on refrigerants, and add safety classifications for R-23, R-32, R-116, R-124, R-125, R-143a, and R-218. The addenda also add designations, tolerances, and safety classifications for R-401A, R-401B, R-401C, R-402A, R-402B, R-403A, R-403B, R-404A, R-405A, R-406A, R-407A, R-407B, R-407C, R-407D, R-408A, R-409A, R-409B, R-410A, R-410B, R-411A, R-411B, R-412A, R-507A, R-508A, R-508B, and R-509A. A subsequent addendum revises the tolerances for R-407A and R-407B. The addenda detail the submission requirements - including both content and copy quantities - to apply for designations and classifications of additional refrigerants. A foreword and table identify the changes by specific addendum.

Decomposition of HCFC-123 and HCFC-141b in Foam Blowing Applications, Society of the Plastics Industry (SPI) and Polyurethane Insulation Manufacturers Association (PIMA), Washington, DC, January 1992 (RDB6864).

This research project is sponsored by ASHRAE Technical Committee 8.3, Absorption and Heat-Operated Machines.

This voluntary, consensus standard is intended to serve as guide to the design, manufacture, installation, and use of mechanical refrigerating systems employing R-717 (anhydrous ammonia). It applies to closed mechanical refrigerating systems in industrial occupancies. Its provisions represent minimum requirements for the areas addressed, to minimize property damage or loss and risks to persons. The standard comprises a foreword, introduction, definitions, and sections on equipment, machinery room design, and installation. The equipment provisions cover compressors, evaporative con-
This bulletin complements the Material Safety Data Sheet (MSDS) with discussion of health and safety information for use of R-410A. A table shows the composition to be R-32/125 (50/50). Discussion of its toxicity notes that data for the components were developed under the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), and that review of the results shows low toxicity in animals for both R-32 and R-125. AlliedSignal recommends an occupational exposure limit (OEL) of 1,000 ppm on an 8-hr time-weighted average (TWA) basis; the bulletin discusses concerns with oxygen displacement, asphyxiation, cardiac sensitization, and overexposure. Ingestion is noted as causing discomfort in the gastrointestinal tract, some of the effects of inhalation, and necrosis from freezing tissue. The vapor can irritate the skin and eyes while the liquid can freeze them on contact; suggestions are given for care in such cases. The bulletin discusses evacuation in response to leaks and recovery procedures. It identifies the ASHRAE Standard 34 safety classification as A1/A1, the Underwriter's Laboratory (UL) rating as practically nonflammable, and U.S. Department of Transportation (DOT) consideration as nonflammable (Green label). The bulletin cautions that R-410A can become combustible in air at elevated pressures and recommends against mixing or leak testing with air. It notes that R-410A can decompose at high temperatures, such as those found in open flames and red- or white-hot metals, yielding toxic, corrosive, and irritating compounds as well as pungent and irritating vapors. The refrigerant is described as stable at normal operating conditions, but contact with freshly abraded aluminum and active metals should be avoided. The bulletin concludes with a discussion of pressures, noting that those for R-410A are approximately 60% higher than for R-22. Suggested ratings are given for hoses and equipment used with R-410A. AlliedSignal's product name for R-410A is Genetron® AZ-20.

Guidelines for Ammonia Machinery Room Ventilation, IIAR bulletin 111, International Institute of Ammonia Refrigeration (IIAR), Washington, DC, October 1991 (24 pages with 1 figure, RDB4760)

This bulletin provides guidance for ventilation systems for machinery rooms using ammonia in industrial refrigeration facilities. The recommended design scheme and minimum ventilation levels are applicable to systems with large quantities of ammonia, exceeding several thousand pounds, but may not be appropriate for smaller systems or those for other applications. The bulletin identifies reference sources, including major codes and standards, used to prepare the guidelines. It then summarizes ventilation requirements to be classified as a "Non-
Hazardous (Unclassified) Location" under the National Fire Protection Association (NFPA) Standard 70, National Electrical Code (NEC). It specifically addresses continuously operated mechanical exhaust, independent emergency ventilation, and minimum volume requirements. A section on recommended design schemes reviews the steps to determine code minimums and outlines the design process. The document also addresses operation and maintenance. A worksheet to facilitate calculations, system illustration, and design example are provided.

flammability and toxicity data for aerosol propellants, many of which also are used as refrigerants; flammability data for blends of R-11, R-12, R-21, R-22, R-114, R-123, R-124, R-133a with R-142b or R-152a and with R-290, R-600, R-600a, R-601, or R-601a

Hazardous Chemicals Data, publication 49, National Fire Protection Association (NFPA), Quincy, MA, 1994 (170 pages, RDB6709)

flammability, toxicity, reactivity, safety classifications

R-717 (ammonia), safety

reference for flammability, toxicity, reactivity, and other safety data

This voluntary, consensus standard describes a shorthand way of naming refrigerants and classifies them according to potential hazards. It is intended to establish a simple means of referring to common refrigerants, instead of using the chemical name, formula, or trade name. It also establishes a uniform system for assigning unambiguous reference numbers, composition-designating prefixes for refrigerants, and safety classifications based on toxicity and flammability, both as formulated and under worst-case of fractionation conditions. This standard is widely cited in construction codes and provides the classifications used in ASHRAE Standard 15, Safety Code for Mechanical Refrigeration, to specify safety requirements for refrigerant use. This version supersedes ANSI/ASHRAE Standard 34-1992 and earlier editions.

Ongevallen met Ammoniak Koelinstallaties [Accidents with Ammonia Refrigeration Systems], Netherlands Organization for Applied Scientific Research (TNO), Apeldoorn, The Netherlands, 28 May 1991 (rdb5496)

R-717 (ammonia), safety

widely cited reference on chemicals that pose occupational hazards: identifiers, acute and chronic toxicity, flammability, and other safety data

The report provides toxicity and flammability data on refrigerants as well as recommended hazard categories and safety data. This information is needed to meet requirements for refrigerant use under the Uniform Fire Code (UFC) and Uniform Mechanical Code (UMC). The refrigerants addressed include R-11, R-12, R-22, R-113, R-114, R-123, R-134a, R-500, R-502, R-717 (ammonia), and R-744 (carbon dioxide). The information addressed includes Permissible Exposure Level (PEL), Immediately Dangerous to Life or Health (IDLH), and Lower Flammability Limit (LFL) values needed to set alarm and automatic shutdown levels. Where unavailable from sources prescribed by the UFC and/or UMC, surrogate values - established on a consistent basis - are offered. The report also provides hazard categories determined in accordance with the UFC and hazard signals determined in accordance with the UFC, UFC Standard 79-3, and National Fire Protection Association (NFPA) Standard 704-90. The report summarizes data assembled by industry experts, critically examined at a meeting convened solely for this purpose, and subsequently reviewed by the participants and others. The report provides an extensive list of references used to assemble the data. It also identifies the participants, contributors, and reviewers.
Refrigerants (SLGV), *Electrical Appliance and Utilization Equipment*, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 1023-1025, 1996 (3 pages, RDB6938)

These listings cover refrigerants intended for use in air-conditioning and refrigerating equipment. The refrigerants have been classified for flammability only; pressure hazards were not evaluated. The listings cover product versions of R-11, R-12, R-22, R-123, R-134a, R-404A, R-407A, R-407B, R-407C, R-408A, R-409A, R-410A, R-500, R-507A, and R-508A. The listings indicate the UL flammability group (nonflammable, practically nonflammable, or flammable) following UL Standard 2182, *Refrigerants and the Ignition Temperature If Below 750 °C (1382 °F)*. They also indicate the chemical constituents, phase as shipped, and container types.

This voluntary, consensus standard specifies safety requirements for design, construction, installation, and operation of refrigerating systems, to establish safeguards for life, limb, health, and property. It applies to mechanical refrigerating systems and heat pumps used in identified occupancies. It also covers components added after adoption, refrigerant conversions, and replacement of parts and components with new ones that are not identical in function. This standard is widely incorporated into construction codes, either by reference or by transcription with amendments. It identifies occupancy, system, and refrigerant safety classifications, the last by reference to ANSI/ASHRAE Standard 34-1992. It then prescribes restrictions on refrigerant use, including the maximum quantities of individual refrigerants that may be used for specific occupancies and systems. It also prescribes safety standards for design and construction of equipment and systems, operation, testing, and general requirements. Minimum safety devices, labeling, and tests also are specified. Appendices address the maximum allowable concentrations for blends, guidelines for emergency discharge of refrigerants, worst case fractionation, and a method for calculating the discharge capacity of pressure-relief devices for positive displacement compressors. A final appendix provides a cross-reference between paragraph numbers in the previous and current versions of this standard. This version supersedes ANSI/ASHRAE Standard 15-1992 and earlier editions.

Safety of Suva Refrigerants, document AS-1 (H-27530-3), DuPont Chemicals, Wilmington, DE, January 1994 (6 pages with 1 table, RDB4C48)

This bulletin reviews considerations for safe use of refrigerants by providing answers to common questions. It outlines the introduction of alternative refrigerants and associated testing. It briefly reviews the collaborative Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) and individual programs and findings for specific refrigerants. The document discusses the flammability of R-123, R-124, R-125, and R-134a, noting that they are neither flammable nor explosive, but can become so when mixed with gases that are. The document notes that mixtures of R-134a with more than 60% air (by volume) can become flammable at raised pressures and temperatures. It counsels against use of refrigerant-air mixtures for leak testing. The document then addresses inhalation toxicity and the potential for suffocation. It explains the DuPont Acceptable Exposure Limit (AEL), a time-weighted average (TWA) concentration for an 8 or 12 hour day or 40 hour week, to which nearly all workers may be repeatedly exposed without adverse effects. It also explains Emergency Exposure Limit (EEL) values as airborne concentrations of brief duration which should not result in permanent adverse effects or interfere with escape in the event of a major release or spill. The document discusses symptoms of exposure to high refrigerant concentrations, cardiac sensitization, suffocation, safety measures for enclosed areas, dangers of deliberate inhalation, detection by odor, and guidance when a large spill or leak occurs. It goes on to address special requirements for R-123. The chemical formulae, boiling points, AELs, and EELs are tabulated for R-123, R-124, R-125, and R-134a. The bulletin provides general advice on skin and eye contact with refrigerants, frostbite, pressure hazards, handling and disposal of cylinders, brazing or welding of pipes in air-conditioning and refrigeration systems, and decomposition. It concludes with specific cautions. The document identifies related bulletins that may be helpful and recommends familiarization with the Material Safety Data Sheet (MSDS) provided for the refrigerant to be used. DuPont's product names are Suva® Centri-LP and Suva® 123 for R-123, Suva® 124 for R-124, and Suva® 125 for R-125. It identifies R-134a as Suva® Cold-MP, Suva® Trans A/C, and Suva® 134a.

Sax's Dangerous Properties of Industrial Materials (ninth edition), edited by R. J. Lewis, Sr. (revision of publication by N. I. Sax), VNR / John Wiley and Sons, Incorporated, New York, NY, 1996 (3 volumes totalling more than 2,454 pages, rdb6106)
widely cited reference for flammability, toxicity, and other safety data

Unfallverhütungsvorschrift UVV 20, Kältelanlagen [Accident Prevention Regulations UVV 20, Refrigerating Plants], Federal Republic of Germany, Köln, Germany (rdb4681)
refrigerant safety requirements

Toxicity

B. E. Abreu (University of California Medical School), Auerbach, Thuringer, and Peoples, Journal of Pharmacology and Experimental Therapeutics (JPET), 80:139 ff, 1944 (rdb7290)
anesthetic effect of chlorine, bromine, and iodine derivatives of the methane and ethylene series of hydrocarbons, toxicity as reported in RDB 5980

B. E. Abreu (University of California Medical School), Anesthesiology, 2:393 ff, 1941 (rdb7291)
anesthetic effect of chlorine, bromine, and iodine derivatives of the methane and ethylene series of hydrocarbons, toxicity as reported in RDB 5980

R-11 and R12, biochemistry, biotransformation, elimination, health effects, inhalation toxicity

J. Adir, D. A. Blake, and G. W. Mergner (University of Maryland), Kinetics of Uptake and Elimination of Trichlorofluoromethane (F-11) and Dichlorodifluoromethane (F-12) in Beagles and Humans, abstract 171 (13th Annual Meeting of the Society of Toxicology (SOT), Washington, DC, 10-14 March 1974), Toxicology and Applied Pharmacology (TAP), 29(1):142-143, July 1974 (2 pages with no figures or tables, RDB59A9)
kinetics of uptake and elimination of R-11 and R-12 based on blood concentration in 6 beagles and 2 humans; concludes that the kinetics of these chemicals are consistent with their blood solubilities, oil-water partition characteristics, and other physiologic considerations

Y. Alarie and J. E. Luo, Sensory Irritation by Airborne Chemicals: A Basis to Establish Acceptable Levels of Exposures, Toxicology of the Nasal Passages (based on the Seventh Chemical Industry Institute of Toxicology, CIIT, Conference on Toxicology, Raleigh, NC, 22-23 February 1984), edited by C. S. Barrow, Hemisphere Publishing Corporation, Washington, DC, 91-100, 1986 (10 pages with 5 figures and 1 table, RDB6285)
acute toxicity, sensory irritation, prediction of acceptable levels, TLV-TWA predictions based on \(RD_{50} \), \(RD_{50} \) values for 40 industrial chemicals, among which are 303 ppm for R-717 (ammonia) and 117 ppm for R-764 (sulfur dioxide)

Y. Alarie (University of Pittsburgh), Dose-Response Analysis in Animal Studies: Prediction of Human Responses, Environmental Health Perspectives (EHP), 42:9-13, 1981 (5 pages with 2 figures and 4 tables, RDB6279)
acute toxicity, dependence on exposure durations for irritation and lethal concentration measures, prediction of the levels and types of responses in humans at various multiples of the \(RD_{50} \) value found in mice, regression to TLV-TWA, \(RD_{50} \) values for 25 airborne, sensory irritants: Among them are 303 ppm for R-717 (ammonia) and 117 ppm for R-764 (sulfur dioxide). The effects indicated at multiples of the \(RD_{50} \) are severe injury and possible mortality at 10, intolerable to humans at 1, some sensory irritation at 0.1, no sensory irritation at 0.01, and no effect of any kind on the respiratory system at 0.001

health effects, toxicity, \(RD_{50} \), TLV, R-717, R-764

Y. Alarie, L. E. Kane, and C. S. Barrow (University of Pittsburgh), Sensory Irritation: A Basis to Establish Acceptable Exposure to Airborne Chemical Irritants, Principles and Practice of Industrial Toxicology, edited by A. Reeves, John Wiley and Sons, Incorporated, New York, NY, 1980 (RDB6504)
health effects, toxicity, \(RD_{50} \)

acute toxicity, sensory irritation

R-764 (sulfur dioxide), acute toxicity, sensory irritation, \(RD_{50} = 117 \) ppm as reported in RDB 6557
D. M. Aviado (University of Pennsylvania School of Medicine), Metabolism and Toxicity of Hydrochlorofluorocarbons: Current Knowledge and Needs for the Future, Environmental Health Perspectives (EHP), 96:185-191, 1991 (7 pages, rdb5935)

R-123, R-125, and others, toxicity, mutagenicity

refrigerants, safety, toxicity: concentration determination in field conditions

R-114 and others, health effects, teratology, toxicity

tests of subchronic inhalation toxicity by exposure of male and female F-344 rats to a 50/50 mixture by weight of R-600a (isobutane) and R-601a (isopentane) - R-600a/601a (50/50) for 6 hr/d, 5 d/wk, for 13 wk: no significant, treatment-related effects were found and there was no evidence of nephropathy at the end of the study, though mild kidney effects were seen at an interim sacrifice point at 28 days - as reported in RDB 7621

summary toxicity data and outline of toxicological considerations for fluorocarbons using R-11 as a prototype; also addresses comparative toxicity of R-12, R-21, R-22, R-113, R-114, R-115, R-142b, R-152a, R-C318; animal models for evaluation of fluorocarbon toxicity

D. M. Aviado (University of Pennsylvania School of Medicine), Comparative Cardiotoxicity of Fluorocarbons, Cardiac Toxicology, edited by T. Balazs, CRC Press, Incorporated, Boca Raton, FL, II:213-222, 1981 (10 pages with 1 figure and 3 tables, RDB8477)

R-11, R-12, R-13, R-21, R-22, R-23, R-31, R-113, R-114, R-115, R-123, R-124, R-132b, R-133a, R-142b, R-152a, R-1113, and R-1114, health effects, toxicity: detailed review of the cardiotoxicity of R-11 followed by comparisons for the other compounds

D. M. Aviado (University of Pennsylvania School of Medicine), Effects of Fluorocarbons, Chlorinated Solvents, and Inosine on the Cardiopulmonary System, Environmental Health Perspectives (EHP), 26:207-215, 1978 (9 pages, rdb7423)

R-11 and others, health effects, toxicity

D. M. Aviado (University of Pennsylvania School of Medicine), Physiological and Biochemical Responses to a Specific Group of Inhalants: Concluding Remarks, Federation Proceedings, Federation of the American Society of Experimental Biologists, 37:2508-2509, 1978 (2 pages, rdb7430)

R-11, R-12, R-114, mixtures of them, and others, health effects, toxicity: sequence of events in deaths from cardiac sensitization from abuse of fluorocarbon aerosols (many also used as refrigerants) in "sniffing;" sensitization of the heart to prearrhythmic effects of epinephrine, depression of myocardial contractility, reduction in cardiac output, and irritation of mucosa in the upper and lower respiratory tract that causes an increase in sympathetic and vagal impulses to the heart - as reported in RDB 7414

R-30, R-140a, R-290, R-600, R-600a (2-hr LC50 mouse = 520,000 ppm), R-1120, ethanol, A-46 (R-290/600a/600 (17.1/80.4/2.5)) and others with comparative data for R-11, R-12, and R-114, health effects, interactions, toxicity

D. M. Aviado (University of Pennsylvania School of Medicine), Preclinical Pharmacology and Toxicology of Halogenated Solvents and Propellants, monograph 15, National Institute of Drug Abuse Research, chapter 10, 164-184, 1977 (21 pages, rdb7247)

R-114 and others, health effects, toxicity

D. M. Aviado, S. Zakhari (University of Pennsylvania School of Medicine), J. A. Simaan (American University of Beirut, Lebanon), and A. G. Ulsamer (U.S. Consumer Products Safety Commission, CPSC, USA), Methyl Chloroform and Trichloro-

investigates separate toxic effects on the upper (nose, pharynx, and larynx) and lower (lungs) respiratory tracts for R-11, R-12, R-114, R-115, and R-C318 administered by tracheal cannulas inserted in anesthetized dogs; responses measured by pulmonary resistance and compliance, heart rate, and aortic blood pressure; concludes that the three fluorocarbons widely used in aerosols, namely R-11, R-12, and R-114, elicit both bradycardia (slow heart rate) and tachycardia (relatively rapid heart rate) and induce bronchoconstriction or bronchodilation when inspired in large doses; also found that R-115 and R-C318 do not elicit any change in heart rate and produce only bronchodilation; recommends further study of the R-115 and R-C318 as potential replacements if the other three prove to be linked to deaths from use and abuse of aerosols

R-11, R-12, R-23, R-115, R-C318, and others; health effects, toxicity

R-11, R-12, R-21, R-22, R-30, R-113, R-114, R-115, R-140 or R-140a, R-142b, R-152a, R-290, R-C318, R-600a, and R-1140; toxicity: classifies propellants based on relative pressure and toxicity, the latter primarily effects on the respiratory and circulatory systems and the levels at which cardiac arrhythmias were produced; classifications include low-pressure propellants of high toxicity (R-11, R-21, R-30, R-113, and R-114 or R-140a), low-pressure propellants of intermediate toxicity (R-114, R-142b, R-C318, and R-600a); high-pressure propellants of intermediate toxicity (R-12, R-22, R-290, and R-1140), and high-pressure propellants of low toxicity (R-115 and R-152a); discussion of animal models for evaluation of acute toxicity, noting that the anesthetized dog with epinephrine injection is 5-10 times more sensitive to propellants (many of which also used as refrigerants) than the anesthetized dog without injection of epinephrine

R-11, R-113, R-115, R-152a, and R-C318; toxicity: concludes that "there is no available propellant for aerosols that is devoid of cardiodepressant action"

R-11, R-12, R-21, R-22, R-30, R-113, R-114 or R-114a, R-140a, R-142b, R-152a, R-290, R-C318, R-600a, R-1140, and others; health effects; toxicity: review of available information on the toxicity of 15 aerosol propellants (many also used as refrigerants); respiratory and cardiovascular effects on animals

D. M. Aviado (University of Pennsylvania School of Medicine), Toxicity of Propellants, *Proceedings of the Fourth Annual Conference on Environmental Toxicology*, Elsevier/North Holland, Amsterdam, The Netherlands, 16-19 October 1974 (RDB6594)

R-152a, and others, health effects, toxicity

observes that when "aerosols were first introduced in the 1950s, the refrigerants were examined for possible use as propellants"; reports of fatalities from use or abuse of aerosols led to reexamination of their toxicity; cardiac sensitization, without and with epinephrine injection, in male mice anesthetized with sodium pentobar-

R-11, R-12, and R-114: examines relation of cardiopulmonary toxicity to irritation of the sensory receptors in respiratory passages by tests on anesthetized dogs; identifies biological defense mechanisms to prevent entrance into and absorption of an irritant vapor by the lungs; observes that fluorocarbon compounds can cause depression of ventricular function

R-11 and others; health effects, toxicity

A. Azar (E. I. duPont de Nemours and Company, Incorporated), Cardiac Sensitization of Fluorocarbon Propellants, presentation at the Conference of Toxic Hazards of Halocarbon Propellants, U.S. Food and Drug Administration (FDA), Washington, DC, 16 July 1971 (23 pages with 3 figures and 7 tables, RDB6595)

R-11, R-12, and R-114; cardiac sensitization, health effects, toxicity

K. C. Back, A. A. Thomas, and J. D. MacEwen, Reclassification of Materials Listed as Transportation Health Hazards, report TSA-20-72-3, Aerospace Medical Research Laboratory (AMRL), U.S. Air Force, Wright-Patterson Air Force Base, OH, 1972 (rdb7290)

R-717 (ammonia) and others, health effects, toxicity: for ammonia, 1-hr LC50 mouse = 4,837 ppm v/v and 1-hr LC50 rat = 7,338 ppm v/v as reported in Rdb5340

K. S. Bakshi (National Research Council, NRC), Toxicity of Alternatives to Chlorofluorocarbons: HFC-134a and HCFC-123, Inhalation Toxicity, 10:963-967, 1998 (5 pages with 1 table, RDB9127)

summarizes a detailed assessment (see RDB-6A01) by the Board on Environmental Studies and Toxicology of the toxicities of R-123 and R-134a: provides recommendations to set emergency exposure guidance level (EEGL) concentrations for both and a continuous exposure guidance level (CEGL) for R-134a; recommends a 1 hr EEGL for R-134a of 4,000 ppm v/v based on the no-observed-adverse-effect level (NOAEL) in cardiac sensitization tests, divided by an uncertainty factor of 10 for interspecies variability; recommends a 24 hr EEGL for R-134a of 1,000 ppm based on a NOAEL of 10,000 ppm for ferotoxicity effects (slight retardation of skeletal ossification) in rats divided by an uncertainty factor of 10; recommends a 90-day CEGL for R-134a of 900 ppm based on a NOAEL of 50,000 ppm for a 2-yr chronic toxicity study in rats divided by an uncertainty factor of 10, a factor of 4 for exposures of 24 hr/d instead of 6 hr/d, and a factor of 5/7 for exposures of 7 d/wk instead of the tested 5 d/wk; recommends a 1-min EEGL for R-123 of 1,900 ppm based on a cardiac sensitization EC50 dog of 19,000 ppm divided by an uncertainty factor of 10; differences in the time periods for the R-123 and R-134a exposure levels addressed reflect proposed uses of R-134a as a refrigerant on submarines, versus R-123 as a fire suppressant to replace halon 12 in flight-line extinguishers with very quick discharges

concentrations of R-10, R-11, R-12, R-13, R-13B1, R-22, R-23, R-30, R-113, R-114, R-115, R-116, R-140a, R-142b, R-152a (possibly R-152, incorrectly identified in the report as "CH3F-CH2F") R-1110, R-1120, R-1132a, and others including toxic decomposition products in industrial sites: the plants surveyed (A) manufacture R-11, R-12, R-115, and R-116, package them, R-13B1, R-22, R-113, R-114, R-142b, R-152a, R-1132a, and other chemicals and intermediates, (B) produce R-11 and R-12 and package them and R-503 separately or with other gases, (C) use R-12 and R-113 to charge refrigeration compressors and degrease parts respectively, and (D) produce R-764 and amines and package them with and other materials with R-11 and R-12 in aerosol spray cans for solvent, insecticide, and other uses; report shows worker exposure levels to be less than permissible levels on a time-weighted average basis for each of the sites, but identifies recommendations to minimize further exposures.

R-11, R-12, R-21, R-22, R-31, R-112, R-113, R-114, R-115, toxicity.

R-22 and others, toxicity.

R-11, R-12, toxicity, accident involving human exposure as reported in RDB 6138.

M. A. Belej and D. M. Aviado (University of Pennsylvania School of Medicine), Cardiopulmonary Toxicity of Propellants for Aerosols, presented at the Fifth International Pharmacological Congress (San Francisco, 23-28 July 1972); republished in The Journal of Clinical Pharmacology, 15(1/2):105-115, January 1975 (11 pages with 3 figures and 3 tables, RDB559A4)

R-11, R-12, R-21, R-114, R-115, R-123B1, R-142b, R-152a, R-C318, and R-600a as propellants; cardiopulmonary effects, bronchopulmonary and cardiovascular toxicity; concludes that all of the propellants cause acceleration of the heart rate; shows that R-11 has a significantly greater impact on blood pressure and heart rate in 30 anesthetized mongrel dogs while R-152a had the least effect.

R-22, R-23, R-115, R-600a, and others; toxicity.

M. A. Belej and D. M. Aviado (University of Pennsylvania School of Medicine), Federation Proceedings, Federation of the American Society of Experimental Biologists, 32:814, 1973 (1 page, rdb5C62)

R-12 and others, health effects, toxicity.

quantitative analysis of the relationship between chemical structure and Salmonella mutagenicity of R-32, R-114, R-115, R-124, R-125, R-134a, R-143a, R-152a, and others: molecules were characterized by both molecular orbital and physical chemical parameters; results of the analysis indicate that mutagenicity is correlated with both the free energy of binding to biological receptors and the energy of the highest occupied molecular orbit; concludes that fluorocarbon mutagenicity is determined more by the rate of initial activation than by the rate of DNA attack since the same two factors favor catalyzed metabolism by cytochrome P-450.

M. C. Bindal et al., Quantitative Correlation of Anesthetic Potencies of Halogenated Hydrocarbons with Boiling Points and Molecular Connectivity, Fortschrritte der Arzneimittelforschung [Progress in Drug Research], Birkhäuser Verlag, Basel, Switzerland, 30(2):234-236, 1980 (3 pages, rdb6184)

R-124 and others, toxicity.

D. A. Blake and G. W. Mergner (University of Maryland), Are Fluorocarbon Propellants Metabolized? Studies in 14C-Labeled Trichlorofluoromethane (F-11) and Dichlorodifluoromethane (F-12) in Beagles and Humans, abstract 170 (13th Annual Meeting of the Society of Toxicology (SOT),
Investigation of biotransformation of R-11 and R-12 in 5 male and female beagles and 4 humans after a 7-20 minute inhalation; found that essentially all of the chemicals was recovered in unaltered form from exhaled air within one hour and, therefore, that R-11 and R-12 are refractory to biotransformation

W. Braker and A. L. Mossman, Nontoxic Halogenated Aliphatic Hydrocarbons and Halogenated Fluorocarbons, Effects of Exposure to Toxic Gases - First Aid and Medical Treatment, edited by W. Braker and A. L. Mossman, 71-73, 1970 (RDB7224)

fluorocarbons, safety, toxicity

metabolism of R-123, R-124, R-142b, R-51-14 (perfluorohexane) by groups of Fischer 344 and Sprague-Dawley rats from exposures at 10,000 ppm v/v in air for 2 hr: biochemistry, health effects, toxicity

W. J. Brock, Toxicology Summary for CFC's HCFC's and HFC's, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, undated circa 1996 (RDB6452)

R-11, R-12, R-22, R-23, R-30, R-32, R-113, R-114, R-115, R-123, R-123B1, R-124, R-125, R-134a, R-140a, R-141b, R-143a, R-152a, R-236fa, R-43-10, R-717, R-1110, R-1120: tabular summary of toxicity indicators including ALC/LCS, cardiac sensitization threshold, anesthetic concentration, subchronic NOEL/NOAEL, in vitro mutagenicity, in vivo mutagenicity, developmental toxicity, chronic and oncogenicity (carcinogenicity and tumors), AEL/TLV

R. S. Brody, T. Watanabe, and D. M. Aviado (University of Pennsylvania School of Medicine), Toxicity of Aerosol Propellants on the Respiratory and Circulatory Systems, III. Influence of Bronchopulmonary Lesion on Cardiopulmonary Toxicity in the Mouse, Toxicology, 2:173-184, 1974 (12 pages, rdb5C65)

R-11, R-12, R-152a, and others; cardiac sensitization, health effects, toxicity

W. E. Brown (University of Toronto, Canada), Experiments with Anesthetic Gases Propylene, Methane, Dimethyl-Ether, Journal of Pharmacology and Experimental Therapeutics (JPET), 23:485-496, 1924 (8 pages with no figures or tables, RDB6A61)

experimental study in cats to evaluate the effectiveness R-50, R-E170, and R-1270, as anesthetic agents by inhalation; toxicity: R-50 produces general anesthesia, but only in concentrations exceeding 850,000 ppm; 500,000 ppm caused irregular respiration; R-E170 produces general anesthesia with concentrations of 650,000 ppm, but is unpleasant to take; R-1270 induces anesthesia in cats at 370,000-500,000 ppm; effect is sustainable with 200,000-310,000 ppm; some toxic effects were noted above 400,000 ppm; 500,000 ppm produced anesthesia in humans in 2 minutes; recovery was complete

R-1111, R-1113, R-1114, R-1122 or R-1122a, R-1130c, R-1130t, R-1132 or R-1132a, and others, cardiac sensitization, toxicity as reported in RDB 5644

J. H. Burn, Proceedings of the Royal Society of Medicine, UK, 52(2):95-98, 1959 (rdb6586)

anesthetic effect in mice: R-112 LOEL 10,000-20,000 ppm with initial excitement and convulsions as reported in RDB 5C42; R-113 LOEL 50,000-120,000 ppm with initial excitement and convulsions as reported in RDB 5C42; R-114 LOEL 50,000-120,000 ppm with initial excitement and convulsions as reported in RDB 5855; R-123a 1-hr LOEL 70,000 ppm with no deleterious neurological changes as reported in RDB 5C42

anesthetic effect in mice: R-112 LOEL 10,000-20,000 ppm with initial excitement and convulsions as reported in RDB 5C42; R-113 LOEL 50,000-120,000 ppm with initial excitement and convulsions as reported in RDB 5C42; R-114 LOEL 50,000-120,000 ppm with initial excitement and convulsions as reported in RDB 5855; R-123a 1-hr LOEL 70,000 ppm with no deleterious neurological changes as reported in RDB 5C42

please see page 6 for ordering information
This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. Specifically addressed are R-11, R-12, R-22, R-23, R-32, R-113, R-114, R-115, R-116, R-123, R-124, R-225, R-234a, R-141b, R-142b, R-143a, R-152a, R-216, R-290, R-318, R-600, R-600a, R-717, R-744, and R-1270. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. Data are tabulated for the LC₅₀, cardiac sensitization NOEL and LOEL, anesthetic/CNS EC₅₀, respiratory RD₅₀, IDLH (both from the Standards Completion Program and from the 1994 revisions), PEL, UL group, and Standard 34 safety classifications. The paper outlines current classification methods for refrigerant safety and relates them to standard and code usage.

T. H. S. Burns (St. Thomas's Hospital and the Royal Northern Hospital, UK), J. M. Hall (Guy’s Hospital, UK), A. Bracken, and G. Gouldstone (British Oxygen Company, UK), Fluorine Compounds in Anaesthesia (9): Examination of Six Aliphatic Compounds and Four Ethers, Anaesthesia, 37:278-284, 1982 (7 pages with 1 table, RDB6651)

R-123, R-133a11, R-227ca, R-318, R-E347pce2, R-E356pce2, R-41-12, R-51-14, and others, anesthetic effect, toxicity: 6 mice smoothly and deeply anesthetized by 80,000 ppm v/v in 1 min 10 sec, 2 mice died in 18 min and 2 more died in 17 min when the concentration had fallen to 53,000 ppm; R-318 exposures resulted in muscle spasms and death to 1 of 4 mice at "high concentration" for 25 min

T. H. S. Burns (St. Thomas's Hospital and the Royal Northern Hospital, UK), J. M. Hall (Guy’s Hospital, UK), A. Bracken, and G. Gouldstone (British Oxygen Company, UK), Fluorine Compounds in Anaesthesia (8): Examination of Six Heavily Halogenated Ring Compounds, Anaesthesia, 19:167-176, 1964 (10 pages, rdb5650)

cyclic halocarbons possibly including R-C270 and R-C318, anesthetic effect, toxicity

T. H. S. Burns (St. Thomas's Hospital and the Royal Northern Hospital, UK), J. M. Hall (Guy’s Hospital, UK), A. Bracken, and G. Gouldstone (British Oxygen Company, UK), Fluorine Compounds in Anaesthesia (5): Examination of Six Heavily Halogenated Aliphatic Compounds, Anaesthesia, 17(3):337-343, July 1962 (7 pages with 1 table, RDB5939)

anesthetic effect, toxicity: R-123 10-min anesthetic LOEL mouse = 40,000 ppm v/v, 40-min anesthetic LOEL mouse = 30,000 ppm; R-125 anesthetic NOEL mouse at 930,000 ppm; R-125 exposures resulted in muscle spasms and death to 1 of 4 mice at "high concentration" for 25 min

T. H. S. Burns (St. Thomas’s Hospital and the Royal Northern Hospital, UK), J. M. Hall (Guy’s Hospital, UK), A. Bracken, and G. Gouldstone (British Oxygen Company, UK), Fluorine Compounds in Anaesthesia (4): Examination of an Ethane and Four Ethers, Anaesthesia, 16:440-444, 1961 (5 pages, rdb7559)

anesthetic effect, toxicity

T. H. S. Burns (St. Thomas’s Hospital and the Royal Northern Hospital, UK), J. M. Hall (Guy’s Hospital, UK), A. Bracken, G. Gouldstone (British Oxygen Company, UK), and D. S. Newland, An Investigation of New Fluorine Compounds in Anaesthesia (1), Anaesthesia, 16:3-18, 1961 (16 pages, rdb65B4)

anesthetic effect, toxicity

R-12, R-502, and others, clinical report of human exposures, safety, toxicity

R. D. Cane, N. Buchanan, and M. Miller, Pulmonary Oedema Associated with Hydrocarbon Inhalation, Intensive Care Medicine, 3:31-33, 1977 (3 pages, rdb8121)

hydrocarbons, health effects, toxicity in humans

C. P. Carpenter, H. F. Smyth, Jr., and U. C. Pozzani (Carnegie-Mellon Institute, then the Mellon Institute, University of Pittsburgh), The Assay of Acute Vapor Toxicity and the Grading and Interpretation of Results on 96 Chemicals, Journal of Industrial Hygiene and Occupational Medicine, 31(6):343-346, 1949 (4 pages with 2 tables, RDB5643)

R-130, R-140, R-142b, R-150, R-150a, R-152a, R-161, R-717, R-1112a, R-1113, R-1120, R-1130a, R-1132a, and others: LC₅₀ (widely referenced)

... toxicity tests to determine the cardiac sensitization potential of hydrocarbons mixed with oxygen in dogs with epinephrine hydrochloride injections before and approximately 10 minutes into exposures...

... comparative toxicity, concern levels, exposure symptoms, health effects, and other data for R-11, R-12, R-12B1, R-13, R-13B1, R-14, R-20, R-21, R-22, R-23, R-30, R-40, R-112, R-113, R-11, R-114B2, R-115, R-116, R-140a, R-160, R-160B1, R-C318, R-600, R-600a, R-601, R-601a, R-602, R-602a, R-744, R-717, R-764, R-1113, R-1114, R-1130, R-1140, R-1216, and others...

... R-600a and others, summary toxicity data...

... toxicity of R-116 and R-218: summarizes treatment of 56 patients with complicated retinal detachments by vitreous surgery using perfluorocarbon (PFC) gases, noted as capable of greater expansion and longevity compared to R-7146 (sulfur hexafluoride); the retinas of 31 patients (55.4%) were attached at 6 months after the disappearance of the gas; complications included increased intraocular pressure, which was usually transient, and gas-induced lens opacities...

... "sniffing" and associated deaths, abuse...

F. A. Charlesworth, The Fate of Fluorocarbons, Inhaled or Ingested, *Food and Chemical Toxicology* (FCT), 13(5):572-574, October 1975 (3 pages with 1 table, RDB5940)

... compares the blood levels from metered-dose inhaler (MDI) and food aerosol use to the cardiac-sensitization (CS) inhalation concentrations of R-11, R-12, R-113, R-114, R-115: concludes that the blood concentrations from aerosol use are far below the CS levels; notes that while the average elimination half-life of the fluorochemicals is very short (13.7 seconds for R-11 and 14.8 seconds for R-12) is very short, the biological half-life is longer due to rapid distribution and absorption in tissues...

M. B. Chenoweth, Ventricular Fibrillation Induced by Hydrocarbons and Epinephrine, *Journal of Industrial Hygiene and Toxicology*, 28:151 ff, 1946 (rdb65A2)

... R-602 (hexane), heptane, benzene, xylene, toluene, petroleum ether, and gasoline; cardiac sensitization, health effects, toxicity...

... R-114 and others, health effects, teratology, toxicity...

... R-114 and others, health effects, teratology, toxicity...

W. L. Chiou, Research Communications in Chemical Pathology and Pharmacology, 7(4):679-696, 1974 (9 pages, rdb7542)

... R-114 and others, health effects, biochemistry, decomposition, toxicity...

... laboratory method to quantify fluorochemical propellant (and refrigerant) concentrations in blood...

D. G. Clark and D. J. Tinston (Imperial Chemical Industries PLC, ICI, UK), Acute Inhalation Toxicity of Some Halogenated and Nonhalogenated Hydrocarbons, *Human Toxicology*, 1(3):239-247, 1982 (9 pages with 4 tables, RDB6110)

please see page 6 for ordering information
the potencies for cardiac sensitization to adrenaline in dogs for R-10, R-11, R-12, R-13, R-13B1, R-21, R-30, R-112, R-113, R-114, R-123B1, R-140a, R-290, and R-1140 were found to be directly related to their saturated vapor pressures: the ratio of the partial pressure at the EC_{50} for cardiac sensitization to the saturated vapor pressure at 37 °C (98.6 °F) was approximately constant (0.01-0.03), despite sensitivity concentrations that differed 700-fold and values of partial pressures that differed 300-fold; findings suggest that cardiac sensitization is probably a structurally nonspecific action that is an example of physical toxicity; paper notes that none of the halogenated hydrocarbons studied produced cardiac arrhythmias on inhalation without adrenaline, but all sensitized the heart at sufficiently high concentrations; paper also notes that a post exposure injection of adrenaline never resulted in arrhythmias, even when it followed a challenge injection that had caused arrhythmias, as the chemicals are rapidly eliminated from the body; this observation indicates that sensitization is a transient phenomenon dependent on temporary interactions and not on structural damage to the heart; a table presents the sensitization EC_{50} and physical property data

D. G. Clark and D. J. Tinston (Imperial Chemical Industries PLC, ICI, UK), Cardiac Effects of Isoprenol, Hypoxia, Hypcapnia and Fluorocarbon Propellants and Their Use in Asthma Inhalers, *Annals of Allergy*, 30(9):536-541, 1972 (6 pages, rdb6724)

R-11, R-12, and others, cardiac sensitization with epinephrine challenge, R-11 LOEL at 12,500 ppm, R-12 LOEL at 70,000-80,000 ppm - as reported in RDB 5143 and 5367

R-10, R-11, R-12, R-12B1, R-13, R-13B1, R-20, R-22, R-30, R-112, R-113, R-114B2, R-140a, R-290, R-600a, R-1120, and R-1140: acute toxicity, lethality, mortality, LC_{50}, central nervous system effects, EC_{50} CNS, cardiac sensitization, EC_{50} CS

fluorocarbon refrigerants, health effects, toxicity

R-11, R-12, R-14, and others, cardiac sensitization, toxicity as reported in RDB 5141 and 7525

R-114 and others, health effects, toxicity

fluorocarbon refrigerants, health effects, toxicity

totoxicity review of fluorine chemicals as reported in RDB 5C42

R-10, R-11, R-12, R-13, R-14, R-20, R-21, R-22, R-23, R-30, R-40, R-112, R-113, R-114, R-115, R-116, R-124a, R-133a, R-133aB1, R-142, R-142B1, R-217ba, R-226cb, R-226cbB1, R-234cb, R-235ca, R-235cc, R-C318, R-752 (SF₆), R-7146 (SF₆), R-7122 (SF₆), R-7110, R-7112, R-1113, R-1114, R-1120, R-1130, R-1132a, R-1216, R-1318, fluoroelastomer (Viton A and B), monofluoroacetic acid, polyfluorocarbons, polytetrafluoroethylene (PTFE) resin, and others; decomposition, toxicity

M. A. Collins, D. J. Tinston (ICI Chemicals and Polymers Limited, UK), and C. J. Hardy (Huntingdon Research Centre Limited, HRC, UK), Studies on the Acute Toxicity of a Number of Hydrofluorocarbons, Proceedings of the Sixth International Congress of Toxicology (Rome, Italy, 28 June - 3 July 1992), International Union of Toxicology, June 1992 (rdb5B43)

R-125 and other HFC refrigerants

toxicity summary of 40 incidents of narcotic effects in humans by gases in a refinery during a five year period: of the accidents, exposures to R-1150 and R-1270 accounted for two of them; no acute lung edema or fatalities resulted in any of the incidents, but paper recommends use of respiratory masks for dangerous tasks

Committee on Aviation Toxicology, Aero Medical Association, Blakiston, NY, 1953 (rdb72A5)

signs of intoxication produced by exposure to 50,000 ppm v/v R-744 (carbon dioxide) as reported in RDB 6340

Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, List of MAK and BAT Values 1996: Maximum Concentrations and Biological Tolerance Values at the Workplace, report 32, Deutsche Forschungsgemeinschaft [German Research Association] (DFG), Bonn, Germany; VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1996 (208 pages with 3 figures and 12 tables, rdb7101)

English language version of the MAK- und BAT-Werte-Liste; maximale Arbeitsplatz Konzentration [maximum workplace concentration] and biologischer Arbeitsstoff-Toleranz-Wert [biological tolerance value]; German occupational exposure limits for approximately 600 chemicals including R-10, R-11, R-12, R-12B2, R-13, R-13B1, R-20, R-20B3, R-21, R-22, R-30, R-30B1, R-31, R-40, R-40B1, R-40I1, R-110, R-112, R-11a, R-113, R-114, R-123, R-123B1, R-130, R-134a (new entry), R-140, R-140a, R-140B2, R-142b, R-150, R-150a, R-160, R-160B1, R-160I, R-270a, R-290, R-600, R-600a, R-601, R-601a, R-601b, R-602, R-610, R-611 (revised), R-630, R-717 (revised), R-744, R-744A, R-745, R-746, R-746, R-1110, R-1120, R-1130, R-1130a, R-1130c, R-1130t, R-1132a, R-1140, R-1150, and others; classification of carcinogenic, embryotoxic, and sensitizing substances

Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Occupational Toxicants: Critical Data Evaluation for MAK Values and Classification of Carcinogens, edited by D. Henschler, Deutsche Forschungsgemeinschaft [German Research Association] (DFG), Bonn, Germany; VCH Verlagsgesellschaft mbH, Weinheim, Germany; volume 1, September 1990 (400 pages with 15 figures and 95 tables); volume 2, July 1991 (379 pages with 12 figures and 82 tables); volume 3, September 1992 (379 pages with 12 figures and 82 tables); volume 4, July 1992 (385 pages with 11 figures and 95 tables); volume 5, July 1993 (389 pages with 8 figures and 77 tables); volume 6, August 1994 (368 pages with 10 figures and 65 tables); and volume 7, April 1996 (440 pages with 11 figures and 83 tables); (RDB7102)

analysis of available toxicity data used to set maximale Arbeitsplatz Konzentration [maximum workplace concentration] (MAK) values and carcinogenicity classifications; description of known effects, identification of inadequacies in the data, and recommendations for further research: volume 6 addresses R-13B1, R-717 (ammonia), and others; volume 7 addresses R-10B3, R-160, R-160B1, R-160I1, R-630, and others

P. Conzen and M. Nuscheler, New Inhalation Anaesthetics, Anaesthesist, 45:674-693, 1996 (20 pages, rdb8313)

toxicity of hydrofluorocarbons (HFE) used as anaesthetics and potentially as refrigerants

F. Coulston and T. B. Griffin, Physiological and Toxicological Aspects of Combustion (proceedings

please see page 6 for ordering information
of international symposium), 151-164, 1976 (14 pages, rdb6576)

R-116 and others, inhalation, toxicity

R-10 and R-11, biochemistry, health effects, metabolism, pharmacokinetics, toxicity

inhalation toxicity, metabolism, and pharmacokinetics of R-1311, R-217ca11, and R-51-1311 (probably R-51-13mccccll), which are candidates to replace halon 1301 (R-13B1) and also under consideration as refrigerants

inhalation toxicity, metabolism, and pharmacokinetics of R-125 and R-218 as replacements for R-13B1 (also used as refrigerants)

inhalation toxicity, metabolism, and pharmacokinetics of R-125, R-218, and R-227ea as replacements for R-13B1 (also used as refrigerants)

R. Culik and D. P. Kelly, Embryotoxic and Teratogenic Studies in Rats with Inhaled Dichlorofluoromethane (Freon® 21) and 2,2-Dichloro-1,1,1-Trifluoroethane (FC-123), report 227-76, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1976 (rdb6156)

R-21 and R-123, developmental and reproductive toxicity: tests of R-123 at 10,000 ppm suggest a fetotoxic effect in the offspring of exposed female rats, but the results were not statistically significant and no other concentration was tested - as reported in RDB 6B52

R-717 (ammonia), R-746 (nitrogen dioxide), and R-764 (sulfur dioxide), health effects, toxicity

T. Dalhamn, Freon som orsak till forgiftningsfall [Freon as a Cause of Toxicity], paper 11012, Nordisk Hygienisk Tidskrift, 39:165-169, 1958 (5 pages with 2 tables, RDB7205)

R-11, R-12, R-22, R-113, health effects, toxicity, and toxicity of decomposition products in open flames; cites two cases of alleged phosgene poisoning from use of R-12 as an aerosol propellant; one involved a leak in the presence of an acetylene flame, and the other, which was fatal, the use of an aerosol insecticide; see RDB-5C40 for discussion of this paper

R-717, R-764, and others, health effects, toxicity

R-717, R-764, and others, health effects, toxicity

Quantum Biology Symposium, 3:171-185, 1976 (15 pages, rdb6555)

- toxicity: R-124b (30-min LC50 mouse = 300,000 ppm), and others as reported in RDB 3721

- toxicity: R-124, R-142b (anesthetic effect, 30-min LC50 mouse = 230,000 ppm), and others as reported in RDB 5869

W. Dekant (Universität Würzburg, Germany), Toxicology of Chlorofluorocarbon Replacements, Environmental Health Perspectives (EHP), 104(supplement 1):75-83, March 1996 (9 pages with 5 figures and 2 tables, Rdb8123)

R-123, R-124, R-125, R-134a, and R-141b show only a low potential for skin and eye irritation; R-123 affects the liver and R-134a and R-141b the testes, including tumor formation, in long-term inhalation studies for very high concentrations; all of these alternatives are, to varying extents, biotransformed, mainly by cytochrome P450-catalyzed oxidation of carbon-hydrogen bonds; the resulting acyl halides are hydrolyzed to yield excretable carboxylic acids; halogenated aldehydes that are formed may be further oxidized to halogenated carboxylic acids or alcohols, found as metabolites in the urine of exposed test rats; the chronic toxicity of these alternatives is unlikely to be of relevance for humans exposed during production and use of these chemicals; further research is required for a better understanding of the chronic toxicity of R-123 and the mechanisms involved

- general reference on toxicity; cites a 4-hr LC50 rat of 2,000 ppm for R-717 (ammonia)

J. V. Dilley et al., Fluoride Ion Excretion by Male Rats After Inhalation of One of Several Fluoro-ethylenes or Hexafluoropropene Toxicology and Applied Pharmacology (TAP), 27(3):582-590, 1974 (rdb6579)

R-116, R-1216, and others, metabolism, toxicity: male rats exposed to R-1216 in air showed increased urinary fluoride after exposures and necrosis of renal tubules

R-124 and others, fluorocarbon refrigerants, anesthetic effects, toxicity

K. T. Dishart, The Synthesis and Evaluation of Some New Fluorinated Inhalation Anesthetics, National Meeting (Chicago), American Chemical Society (ACS), Columbus, OH, September 1961 (rdb5907)

R-226cb, R-228cbb1, R-226daB1, R-244ca, R-244caB1, R-245ca, and others; anesthetic effects, toxicity

R-23 and others

D. E. Dodd, A. D. Ledbetter, and A. D. Mitchell (ManTech Environmental Technology, Incorporated), Genotoxicity Testing of Halon Replacement Candidates Trifluoriodomethane (CF3I) and 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) Using the Salmonella Typhimurium and L5178Y Mouse Lymphoma Mutation Assays and Mouse Micronucleus Test, Inhalation Toxicology, 9:111-131, 1997 (21 pages, rdb8415)

- toxicity tests of R-1311 and R-227ea

- toxicity tests of the metabolism of a series of chemicals and of the pharmacokinetics of R-123: the metabolism tests addressed R-1281, R-123, R-124, R-124b, R-51-14 in Fischer 344 and Sprague-Dawley rats exposed for 2 hr; animals exposed to R-123 and R-124 excreted trifluoroacetic acid (TFA) in their urine; urinary bromide and fluoride levels increased for animals exposed to R-1281 and R-124, respectively; small amounts of R-133a and R-112a were detected in the livers of rats exposed to R-123; animals exposed to R-142b excreted chlorodifluoroacetic acid in their urine, but no volatile metabolites were found in tissues; no metabolites were found in the urine or tissues of animals exposed to R-51-14; no remarkable differences were found between the two strains of rats; paper concludes that the results are consistent with proposed oxidative and reductive pathways of metabolism for these chemicals; pharmacokinetic tests of R-123 were based on inhalation exposures with rats at 100, 1,000, and 10,000 ppm; blood concentrations of R-123 fell sharply following exposures; TFA levels rose for approximately 5 hr and then declined gradually; saturation of R-123 metabolism was estimated

please see page 6 for ordering information
with a physiologically-based pharmacokinetic (PBPK) model to occur at approximately 2,000 ppm.

R-12, R-152a, and others; cardiac sensitization, health effects, toxicity.

C. T. Dollery, Absorption and Fate of Isoproterenol and Fluorocarbons Inhaled from pressurized Aerosols, *Proceedings of the 28th Annual Congress* (Dallas, TX, 8 March 1972), 1972 (rdb-7248)

fluorochemical toxicity

fluorocarbon abuse, potential for human fatalities

R-12, R-114, and others, effects of inhalation in humans, toxicity: no adverse effects from R-12 at aerosol bronchodilator doses in healthy adults or asthmatic patients as reported in RDB 5143

fluorochemical blood levels in humans, health effects, pharmacokinetics, toxicity: based on a study for use as metered-dose inhaler (MDI) aerosol propellants (compounds also are used as refrigerants)

R. C. Downing (Consultant, formerly DuPont Chemicals), Refrigerant Toxicology, *Refrigerating Service and Contracting* (RSC), 31-32, January 1987 (2 pages with 2 tables, RDB6850)

review of refrigerant inhalation risks for technicians; indicates that fluorocarbon refrigerants are low in toxicity, do not accumulate in the body, and are not metabolized or broken down to any extent; still recommends to avoid breathing them if possible; notes that the decomposition products of fluorocarbons are toxic, but there is no evidence of phosgene (COCl₂) formation in decomposition; identifies hydrochloric (HCl) and hydrofluoric acids (HF) as the primary decomposition products, sometimes with small amounts of chlorine gas (Cl₂); these acids have a very acrid, acidic odor at very low concentrations that serves as a warning of decomposition; reviews the historical association of phosgene with fluorocarbon decomposition, noting that other carbonyl halides, notably carbonyl fluoride (COF₂) and carbonyl chlorofluoride (COClF), were misidentified as phosgene in early studies; explains that actual phosgene formation is doubtful based on relative bond strengths of carbon fluoride and carbon-chlorine bonds; explains and presents the ACGIH Threshold Limit Value (TLV) concentrations for HCl, HF, COClF, and phosgene; reviews other studies on the decomposition of refrigerants by lit cigarettes that found miniscule decomposition of R-11 and R-22; concludes that these chemicals do not pose a greater health hazard to smokers than nonsmokers

R-11, R-12, R-22, R-113, decomposition products (phosgene / COCl₂, hydrochloric acid / HCl, hydrofluoric acid / HF, chlorine Cl₂, others), refrigerants, toxicity

concentrations of R-10, R-11, R-12, R-22, R-30, R-113, R-114, R-115, R-116, R-142b, R-152a (possibly R-152, incorrectly identified in the report as "CH₂F-CH₂F"), R-1132a, and others at a chemical manufacturing site: plant (Chambers Works) manufactures diverse chemicals, among them R-11, R-12, R-115, and R-116; it also packages these chemicals and R-22, R-113, R-114, R-142b, R-152a, and R-1132a; report concludes
that the predominant opportunities for exposures are associated with packaging operations; samples collected by personal samplers worn by plant operators show the concentrations of R-22 to be 0.1-0.3 ppm and for all other fluoro-
carbons less than 20 ppm; appends a synopses
and data tables prepared by W. E. Neeld, which
concludes that there was no indication of in-
creased morbidity or mortality among 22 fluoro-
carbon workers compared to 44 controls based
on a 19-year retrospective study

L. M. Dzubow, Histologic and Temperature Alter-
ations Induced by Skin Refrigerants, Journal of
the American Academy of Dermatology, 12(5/1):
796-809, 1985 (14 pages, rdb7259)

R-114 and others, health effects, toxicity

C. Edling and C. G. Olson, Health Risks with Ex-
pposure to Fluorocarbons, University Hospital,
Uppsala, Sweden, 1988 (in Swedish, rdb8114)
fluorochemical refrigerants, health effects, toxici-
y

C. Edling and P. Sderkvist, Criteria Group for Oc-
cupational Standards: Fluorocarboner, Arbete
och Hlsa, 26:1-38, 1982 (38 pages, rdb6855)
toxicological review of R-11, R-12, R-22, and R-
113; metabolism, acute effects on the central
nervous system and the heart; cardiac sensiti-
zation in the dog, monkey, mouse and rat; re-
ports heart palpitations in humans after long-
term exposure to R-22; liver effects (lipid
droplets) found after chronic exposures to R-12,
R-22, and R-113

A. Edmonds, Toxicity of Vaporizing Liquids, An-
nals of Occupational Hygiene, 9:235 ff, 1966 (rdb-
8115)
fluorochemical health effects, toxicity

M. J. Ellenhorn and D. G. Barceloux, Aerosol Pro-
pellants, Medical Toxicology, Diagnosis and Tre-
atment of Human Poisoning, Elsevier Publishing
Company, Incorporated, New York, NY, 526 ff,
1988 (rdb5947)
refrigerants, toxicity

M. J. Ellenhorn and D. G. Barceloux, Fluorocar-
bons, Medical Toxicology, Diagnosis and Treat-
ment of Human Poisoning, Elsevier Publishing
Company, Incorporated, New York, NY, 841 ff,
1988 (rdb5949)
refrigerants, toxicity

M. J. Ellenhorn and D. G. Barceloux, Inhalant
Abuse, Medical Toxicology, Diagnosis and Treat-
ment of Human Poisoning, Elsevier Publishing
Company, Incorporated, New York, NY, 841 ff,
1988 (rdb5949)
refrigerants, toxicity

H. B. Elkins and L. Levine (Division of Occupa-
tional Hygiene, Massachusetts Department of Labor and
Industries), Decomposition of Halogenated
Hydrocarbon Vapors by Smoking, Journal of Indus-
trial Hygiene and Toxicology, 21(6):221-225, June
1939 (5 pages with 2 tables, RDB6773)
refrigerants, toxicity: reports experiments to
determine the extent of decomposition of halo-
carbons passing through lighted cigarettes and
cigars; describes the experimental and analyti-
cal methods used; tabulates tested concentra-
tions and measured bromides and chlorides for
R-10, R-12, R-160B1, R-1120, R-1130B2, and
dichlorobenzene; addresses tolerable phosgene
levels and influences of dusts and humidity;
notes warning properties of hydrochloric acid, a
primary decomposition product representing
80% of decomposition chlorides, at concentra-
tions of 10 ppm; concludes that the extent of
decomposition of the cited compounds in
smoking cigarettes or cigars in the presence of
their vapors "is of a low order and does not con-
stitute a health hazard"

S. S. Epstein, S. Joshi, J. Andrea, P. Clapp, H. Falk,
and N. Mantel, Synergistic Toxicity and Carci-
genicity of 'Freons' and Piperonyl Butoxide,
R-11 and others, health effects, toxicity: no sig-
nificant increase in tumor formation was found
with subcutaneous injection of R-11 as reported
in RDB 7414

L. Eriksson, J. Johnsson, and R. Berglind, External
Validation of a QSAR for the Acute Toxicity of
Halogenated Aliphatic Hydrocarbons, Environ-
mental Toxicology and Chemistry, 12:1185-1192,
1993 (8 pages, rdb7262)
R-114 and others, health effects, teratology, toxici-
y

L. Eriksson, J. Johnsson, M. Sjostrom, and S.
Wold, A Strategy for Ranking Environmentally
Occurring Chemicals. Part V: The Development of
Two Genotoxicity QSARs for halogenated Al-
phatics, Environmental Toxicology and Chemistry,
10:585-596, 1991 (12 pages, rdb7263)
R-114 and others, health effects, teratology, toxicity

R-114 and others, health effects, teratology, toxicity

H. Fabel, R. Wettengel, and W. Hartmann, Myocardial Ischemia and Arrhythmias Due to the Use of Pressurized Aerosols in Man, Deutsch Med. Wochenschrift [German Medical Weekly], Germany, 97:428-431, 1972 (4 pages, rdb6726)

R-12/11 (60/40), acute inhalation effects in humans, no change in EKGs as reported in RDB 5143

inhalation toxicity

R-32, R-123, R-124, R-125, R-141b, R-134a, R-225ca, R-225cb

N. C. Flowers, R. C. Hand, and L. G. Horan (Helen Dwight Reid Educational Foundation), Concentrations of Fluoroalkanes Associated with Cardiac Conduction System Toxicity, Archives of Environmental Health, 30(7):353-360, 1975 (8 pages, rdb5656)

R-11, R-12, and others, cardiac sensitization, health effects, toxicity

F. Flury, Moderne gewerbliche Vergiftungen in pharmakologisch-toxikologischer Hinsicht [Pharmacological-Toxicological Aspects of Intoxicants in Modern Industry], Archiv für Experimentelle Pathologie und Pharmakologie, 138:65-82, 1928 (18 pages, rdb7299)

general reference on toxicity; cites a 5-min LC₅₀ mammal of 5,000 ppm v/v for R-717 (ammonia) as reported in RDB 5340

S. Fogel, Sudden Death and Fluorocarbon-Containing Aerosols, Canadian Medical Association Journal, Ottawa, Canada, 114:671-672, 1976 (2 pages, rdb7530)

R-12 and others, toxicity, accident involving human exposure

R-23, R-152a, and others; toxicity as reported in RTECS

R. B. Forney, Jr., and R. N. Harger, Reaction of Mice from Acute Exposure to Various Concentrations of Methane, Ethane, Propane, and Butane in Air, or in Oxygen, Proceedings of the Sixth International Meeting of Forensic Sciences (Edinburgh, Scotland), 1972 (12 pages, rdb7462)

R-50, R-170, R-290, R-600, health effects, toxicity; anesthetic properties of R-50 (methane) as reported in RDB 7413

S. A. Friedman, M. Cammarato, and D. M. Aviado (University of Pennsylvania School of Medicine), Toxicity of Aerosol Propellants on the Respiratory and Circulatory Systems, II. Respiratory and Bronchopulmonary Effects in the Rat, Toxicology, 1(4):345-355, 1973 (11 pages with 2 figures and 4 tables, RDB6191)

R-11, R-12, R-21, R-114, R-115, R-C318, and R-600a, toxicity: classifies propellants (many of which also are used as refrigerants) into three classes, namely those that induce arrythmia and sensitize the heart to epinephrine (R-11 and R-21), those that sensitize the heart to epinephrine-induced arrythmia (R-114, R-115, R-C318, and R-600a), and those that do not induce arrythmia or sensitize the heart to epinephrine (R-12) in anesthetized rats; recommends against continued use of R-11 and R-21 as propellants; exposures to R-12 at 360,000 ppm v/v produced apnea and finally death, but did not cause arrhythmias [RDB 6138 notes that this death may have been due to the anesthetic (diallylbarbituric acid and urethane)]

R-152a and others; mutagenic potential, toxicity

R. Fuerst and M. M. Landry, Develop. Ind. Microbiology, 8:305-312, 1966 (8 pages, RDB6130)

mutagenic potential, toxicity

health effects, toxicity

R-152a and others: toxicity

cardiac sensitization, health effects, toxicity

M. L. Gargas, P. G. Seybold, and M. E. Andersen, Modeling the Tissue Solubilities and Metabolic Rate Constant (V max) of Halogenated Methanes, Ethanes, and Ethylenes, 17th Conference on Toxicology (Dayton, OH, 3-5 November 1987); re-published in Toxicology Letters, Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, 43(1-3):225-256, 1988 (22 pages, rdb5776)

R-30, R-32, R-1120, R-1130, R-1140, and others: toxicity

R-32 and others, toxicity

R-23, R-152a, and others; mutagenicity, inhalation toxicity

J. Garrett and C. S. Perry (Medical Examiner, Dallas TX), Death from Inhalant Abuse: Toxicological and Pathological Evaluation of 34 Cases, Clinical Toxicology, 16:305-315, 1980 (11 pages, rdb7431)

R-11, R-12, R-114, mixtures of them, and others, health effects, toxicity: analysis of 34 deaths after cardiac sensitization from deliberate abuse of inhalants, 16 of which were attributed to fluorocarbon aerosols (many also used as refrigerants), by "sniffing" as reported in RDB 7414

R-12, R-23, and others, health effects, toxicity

T. L. Giguz, Vliianie malych kontsentratsii ammiaka i okislov azota na podrostkovyri proizvodstvennom okruhle iikh na predpriiatiiakh khimicheskoi promyshlennosti [Effect of Low Concentrations of Ammonia and Nitrogen Oxides on Adolescents during Vocational Training at Plants in the Chemical Industry], Gigiena i Sanitariya, Moscow, Russia (then USSR, 33(9):100-102, September 1968; also cited by some authors as appearing in Hyg. Sanitariya, 7:431-434, 1968 (3/4 pages, rdb-86A49)

R-717, R-746, and others, health effects, toxicity: study of chronic, occupational exposures of humans; 140 students aged 16-19 exposed to ammonia as well as nitrogen oxides in a fertilizer factory experienced an 11% increase in respiratory tract disorders and a 27% increase in xeroderma (disease of the skin characterized by dryness and roughness) in the first year, compared to 85 students in the same vocational school not exposed to ammonia or nitrogen oxides; diseases of the upper respiratory tract and skin increased by 24 and 36%, respectively, in the second year; groups of 34 students with 3 hour shifts in the factory were then compared to a control group of 25 students; the exposed group showed increases in gamma globulin and decreases in serum albumen together with changes in fat metabolism; author suggested that there is stress on the hepatic functions that could be ascribed to low concentrations of ammonia as reported in RDB1106; limitations to the study, including unknown prior health of the subjects and possible causes other than ammonia are discussed in RDB1106

R-140a, R-600, pharmacokinetics, elimination, inhalation toxicity in humans

anesthetic effect, toxicity

please see page 6 for ordering information
anesthetic effect, toxicity

R-744 (carbon dioxide) and others, health effects, toxicity

R-600, reproductive toxicity, fetal death following an attempted suicide using butane, toxicity in humans

reference for toxicity data

V. Graff-Lonnevig, *Diurnal Expiratory Flow After Inhalation of Freons and Genoterol in Childhood Asthma*, *Journal of Allergy and Clinical Immunology*, 64:534-538, 1979 (5 pages, rdb8144)

health effects, toxicity

refrigerants and other chemicals, toxicity as reported in RDB 5C46

R-30, R-31, and others, toxicity, mutagenicity

R-116 and others, toxicity: rabbits exposed to 50,000 ppm atmospheres of R-116 showed low absorption which was quickly eliminated; 4-hr ALC rat >800,000 ppm - as reported in RDB 6687

R-116, R-318, and others, toxicity

R-114 and others, health effects, sensory irritation, toxicity

R-600, R-600a, R-601, R-601a, health effects, toxicity, inhalation studies in rats

tests of subchronic inhalation toxicity by exposure of Sprague-Dawley rats to 4,437 ppm of a blend of R-600 (n-butane), R-600a (isobutane), R-601 (n-pentane), and R-601a (isopentane) - R-600a/600/601a/601 (25/25/25/25) - for 6 hr/d, 5 d/wk, for 3 wk: no clinical signs of distress or evidence of kidney lesions were found; hematology and clinical chemistry were within norm - as reported in RDB 7621

R-124 and R-132b, health effects, toxicity, subchronic inhalation study: R-124 anesthetic LOEC rat = 100,000 ppm as reported in RDB 5863

test for decomposition of R-11 at 2,000 ppm and R-22 at 2,500 ppm on passing through lit cigarettes; no carbonyl chloride (phosgene), carbonyl fluoride, or carbonyl chlorofluoride was found at a sensitivity of 0.1% of the starting material; documents the reactions that might yield the toxic carbonyl halides, experimental methods, and measured infrared spectra; found no measurable decomposition of the chlorofluoromethane compounds with simulated smoking; concludes that chlorofluoro-
methane pollutants in a room do not pose a greater health hazard for smokers than non-smokers.

C. J. Hardy, P. C. Kieran, and I. J. Sharman (Huntingdon Research Centre Limited, HRC, UK), Assessment of Cardiac Sensitization Potential (CSP) of a Range of Halogenated Materials, poster presentation (Spring Meeting, Baltimore, MD, USA), Society of Toxicology (SOT), 1994 (10 pages with 4 figures and 1 table, RDB6684)

cardiac sensitization potential (CSP) in beagle dogs; method modification to predetermine appropriate adrenaline challenge for individual animals; presents [widely accepted] test regime for CSP measurement; 10-min EC50 dog was 10,000-20,000 ppm for R-11, 120,000 ppm for R-12, 250,000 ppm for R-13B1, >500,000 ppm for R-23, >380,000 ppm for R-32, 170,000 ppm for R-125, 205,000 ppm for R-134a, 20,000 ppm for R-141b, =910,000 ppm for R-143a, >400,000 ppm for R-218, >400,000 ppm for R-31-10, >170,000 ppm (maximum attainable vapor concentration) for R-51-14, and >230,000 (maximum attainable vapor concentration) for perfluoro-N-methyl morpholine; examines relation to normal boiling point and to molecular composition with data from the current and prior studies; concludes that "although cardiac sensitization is likely to be an example of physical toxicity and is related to the physiochemical properties of a material, the [normal] boiling point alone cannot be used as a predictor"; also concludes that "halogenated alkanes in which >75% of the halogens are fluorine are likely to be of low CSP and that halogenated alkanes in which >50% of the halogens are chlorine are likely to be of high CSP"; finally concludes that "knowledge of the molecular formula and the boiling point may, together, allow some indication of likely CSP" as a guide for animal studies.

C. J. Hardy et al., Halon 13B1, Freon 23, Mixture of Freon 23 and HFC 125: Assessment of Cardiac Sensitization Potential in Dogs, report DPT 273/921009, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 15 March 1993 (42 pages, rdb6458)

toxicity tests for cardiac sensitization in beagle dogs with administration of adrenaline by intravenous injection before and during inhalation; R-11 LOEL (100%) at 20,000 ppm v/v; R-13B1 NOEL at 100,000 ppm, LOEL (17%) at 150,000 ppm, EC50 at 250,000 ppm; R-23 NOEL at 500,000 ppm with auxiliary oxygen; R-23/125 (36.5/63.5 v/v) LOEL (1/6) at 100,000 ppm.

C. J. Hardy, P. C. Kieran, I. J. Sharman, and G. C. Clark (Huntingdon Research Centre Limited, HRC, UK), Assessment of Cardiac Sensitization Potential in Dogs: Comparison of HFC 125 and Halon 13B1, report MA-RR-92-1845 (also identified as ALS 11/920116) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), AlliedSignal Incorporated, Morristown, NJ, 10 June 1992 (44 pages, RDB5755)

toxicity tests to determine the cardiac sensitization potential in male beagle dogs with intravenous injection of adrenaline five minutes before and, with a challenge injection, midway into a 10 minute inhalation exposure through a face mask: R-11 LOEL (1/2) at 20,000 ppm v/v; R-13B1 NOEL (0/6) at 150,000 ppm with a questionable response not deemed as positive, LOEL (2/6) at 200,000 ppm, and EC50 at 250,000 ppm; R-125 NOEL (0/6) at 75,000 ppm, LOEL (1/6) at 100,000 ppm, and EC50 at 139,000 ppm.

C. J. Hardy, I. J. Sharman, and G. C. Clark (Huntingdon Research Centre Limited, HRC, UK), Assessment of Cardiac Sensitization Potential in Dogs and Monkeys: Comparison of I-141b and F11, report PWT 86/89437, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA 8 September 1989 (50 pages with 7 figures and 7 tables, RDB5663)

cardiac sensitization in beagle dogs and cynomolgus monkeys, toxicity: potential to cause cardiac sensitization is similar for R-11 and R-141b; for R-11, NOEL dog at 9,000 ppm v/v and LOEL dog at 13,000 ppm; for R-141b NOEL dog at 9,000 ppm; LOEL monkey is 5,000-10,000 ppm for both.

J. W. Harris, J. P. Jones, J. L. Martin, A. C. LaRosa, M. J. Olson (General Motors Research Laboratory), L. R. Pohl, and M. W. Anders (University of Rochester Medical Center), Pentahaloethane-Based Chlorofluorocarbon Substitutes and Halothane: Correlation of In Vivo Hepatic Protein Trifluoroacetylation and Urinary Trifluoroacetic Acid Excretion with Calculated Enthalpies
summary findings of toxicity tests for 86 chemicals to examine their carcinogenic potentials: majority were based on 2-yr feeding or gavage experiments involving groups of 50 male and female Fischer 344/N rats and B6C3F1 mice; the liver was the most frequent site of cancer in the animals tested; males were more prone to neoplasia in rats while females were in mice; 50% of the 86 chemicals showed carcinogenic effects, including R-30B1, R-120, R-150B2, R-260daB2, R-270da, and R-1120; 6% showed equivocal evidence of carcinogenicity; 42% gave no evidence of carcinogenicity including R-1130a and R-1270; and 2% of the studies were regarded as inadequate.

fluorochemical health effects, cardiac sensitization, toxicity

R-22 and others, toxicity

identifies R-10 as having intermediate potency as a cardiac sensitizer; identifies R-30, R-40, R-40B1, R-4011, R-150, R-160B1, R-160H1, and other chemicals as weak cardiac-sensitizing agents as reported in RDB 5644.

G. Hodson-Walker (Pharmacol-LSR Limited, UK), G. M. Rusch (AlliedSignal Incorporated, USA), and F. M. H. Debets (Akzo Chemicals International B.V. The Netherlands), *Mutagenicity Testing of a Number of CFC Replacements. Methodology and Results*, presented at the Sixth International Conference on Environmental Mutagens (Melbourne, Australia, February 1993); presented at the 24th Annual Meeting of the Environmental Mutagen Society (Norfolk, VA, April 1993); published in Environmental and Molecular Mutagenesis, 21(supplement 22):28 ff, 1993 (4 pages with 8 figures and 1 table, RDB65D3)

mutagenicity tests of R-123, R-124, R-125, R-141b, and R-1131a by Ames Assay, chromosome aberration studies, and - for R-125 -
mouse bone-marrow micronucleus tests by nose-only exposures: identifies concentrations resulting in toxicity and concludes that the five hydrochlorofluorocarbons (HCFCs) tested showed no evidence of mutagenic activity except that R-123 showed clastogenic (chromosome-damaging) activity in human lymphocytes, R-141b showed clastogenic activity in CHO-K1 cells, and R-1131a was positive in the Ames test; presents a new method for testing gas- and water-insoluble, volatile liquids.

P. Hoet (Catholic University of Louvain, CUL, Belgium), M. L. Graf (also shown as Graff), M. Bourdi, L. R. Pohl (National Heart, Lung, and Blood Institute, UK), P. H. Duray (National Cancer Institute, UK), W. Chen, R. M. Peter, S. D. Nelson (University of Washington, USA), N. Verlinden (Beerse, Belgium), D. Lison (CUL), Epidemic of Liver Disease Caused by Hydrochlorofluorocarbons Used as Refrigerant Database 1997 (4 pages with 3 figures, RDB7C70)

toxicity findings following accidental human exposures to a blend of R-290/124/123 (reported in this article as R-124/123) in an industrial plant: reports an investigation of liver disease in nine workers affected to various degrees following repeated exposures; metabolism of both R-123 and R-124 produces reactive trifluoroacetyl halide intermediates, which have been implicated in the hepatotoxicity of R-123B1 (halothane); a liver biopsy for one of the workers showed hepatocellular necrosis that was prominent in perivenular zone three and extended focally from portal tracts to portal tracts and centrilobular areas (bridging necrosis); immunohistochemical stainings in the same worker showed the presence of trifluoroacetyl-educted proteins in surviving hepatocytes; autoantibodies that react with human liver cytochrome P450 2E1 and P58 protein disulphide isomerase isoform were detected by serum tests in five of six affected workers; concludes that repeated exposure of human beings to R-123 and R-124 can result in serious liver injury and notes while that the exact mechanism of hepatotoxicity is unknown, the findings suggest involvement of trifluoroacetyl-altered liver proteins; the authors suggest that safer alternatives are needed. [Subsequent investigation of the accident indicates that the refrigerant involved was R-290/124/123. It was used in a direct-expansion air conditioner serving the cab and controls of an overhead gantry crane. The system had been retrofitted from R-114 to the blend, but the old, incompatible hoses were not changed. The leak persisted for several months without repairs, despite repeated requirements for refrigerant recharge, and no leak detector was installed. The concentrations to which the affected workers, all crane operators, were exposed could not be determined, but calculations indicate that they far exceeded recommended exposure limits. The liver biopsy reported was performed on only one of the workers, for whom no prior medical history was available. See RDB7C71 - RDB7C75 for further information.]

D. B. Hood, Skin and Eye Irritation Tests with Aerosol Hair Sprays, report 31-56, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1956 (rdb7526)

R-11 and R-12, dermal contact toxicity for aerosol propellants [also used as refrigerants], irritation as reported in RDB 7414 and 7525

B. K. Hoover and R. C. Graham, A Table of Acute Oral and Dermal LD50's and Inhalation LC50's for Fluorocarbon-11, 12, 22, 113, 114, 115, and 152a, report OTS-0520424 (also numbered OTS-0520425), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 11 May 1978 (8 pages, RDB6595)

summary table of acute oral, dermal, and inhalation toxicity data for six fluorochemical refrigerants indicates: for R-11, LC50 = 26,200 ppm, LD50 oral rat >3,752 mg/kg; for R-12, LC50 >600,000 ppm, LD50 oral rat >1,000 mg/kg; for R-22, ALC = 300,000 ppm; for R-113, LC50 = 56,000-68,000 ppm, LD50 dermal rabbit >11,000 mg/kg, LD50 oral rat = 42,000 mg/kg; for R-114, LC50 = 600,000 ppm, LD50 oral rat >2,250 mg/kg; for R-115, LC50 >800,000 ppm; for R-152a, LC50 = 383,000 ppm; time period and test species for LC50 and ALC data is not indicated

R-12B1, R-123, R-142b, R-124, biochemistry, health effects, toxicity

R-20B3, R2013, R-23, R-50, physiological effects, toxicity tests to determine the cardiac sensitization potential in unanesthetized dogs with intravenous injection of epinephrine hydrochloride

please see page 6 for ordering information
challenge after 5-10 minute exposures: cardiac sensitization was not evident for 800,000 ppm R-23 with oxygen as reported in RDB 5604

N. F. Izmerov, I. V. Sanotsky, and K. K. Siderov, Toxicometric Parameters of Industrial Toxic Chemicals Under Single Exposure, USSR State Committee for Science and Technology, Moscow, USSR, 1982 (in Russian, rdb5C91)

R-141b, R-152a, and others; toxicity as reported in RTECS and RDB 5865

fluorocarbon abuse, potential for human fatalities

W. Johnson, Unsafe Application of HCFC-123, -124 Blamed for Liver Damage in 9 Workers, The Air Conditioning, Heating, and Refrigeration News, 1-2 and 19, 1 September 1997 (3 pages with no figures or tables, limited copies available from JMC as RDB7C74)

provides further information on the underlying incident and subsequent investigations in response to an article in "The Lancet" (see RDB-7C70) on exposures of workers to R-124/123 (actually R-290/124/123): summarizes the incident, points made in the article, and reactions from informed industry sources; quotes E. L. Smithart (The Trane Company, USA), R. Rubenstein (Environmental Protection Agency, EPA, USA), P. Hoet (Catholic University of Louvain, Belgium), G. R. Rusch (AlliedSignal Incorporated, USA), W. R. Brock (DuPont Chemicals, USA), and J. M. Calm (Engineering Consultant, USA); the information presented indicates that the application was not typical and did not conform to recognized safety standards; also notes that the exposures exceeded recommended limits and would not have occurred if accepted practices had been followed and attention paid to the required system recharges

R. T. Johnstone and S. E. Miller, Occupational Diseases and Industrial Medicine, W. B. Saunders Company, Philadelphia, PA, 1961 (rdb5C43)

fluorocarbon inhalation effects, oxygen deprivation, toxicity

R-141b and others, toxicity as reported in RDB 6365]

D. A. Keller, Acute Inhalation Toxicity of HFC-236fa and HFC-236ea in the Rat, report 761-93, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 21 November 1994 (RDB6803)

R-236ea, R-236fa, toxicity: both can cause sleep induction (narcosis); for R-236ea, 4-hr ALC rat is >85,000 ppm v/v and NOEL and LOEL for narcosis are 14,000 and 24,000 ppm, respectively; for R-236fa, 4-hr ALC rat is >189,000 ppm and NOEL and LOEL for narcosis are 134,000 and 189,000 ppm, respectively

R-123, R-142b, and others; toxicity

D. P. Kelly, Two-Week Inhalation Toxicity Studies on FC 21 and FC 123, report 149-76, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, March 1976 (rdb6158)

R-21, R-123, toxicity: rats exposed to 10,000 ppm v/v R-123 for 6 hr/d, 5 d/wk, for 2 weeks showed signs suggestive of anesthesia as reported in RDB 6153 and 6941; no adverse hematomatologic, clinical chemical, urine analytical, or histopathological effects were found as reported in RDB 6941

toxicity tests to determine the cardiac sensitization potential of R-1311 and R-217ba1 in dogs

toxicity tests of mutagenic potential by Ames assay, with and without metabolic activation, in Salmonella typhimurium: R-600 not mutagenic as reported in RDB 6A83; R-600a not mutagenic as reported in RDB 7621; negative result for R-290
A. E. Kozbakova, Comparative Toxicity of Chlorinated and Fluorinated Methane and Ethane Derivatives, Gigiena Truda i Professional'nye Zabolevaniya [Labor Hygiene and Occupational Diseases], Moscow, Russia (then USSR), 20(11):39-41, 1976 (4 pages in Russian, rdb7547)

R-21 as reported in RDB 5340; R-114 and others, health effects, toxicity

R-113a, R-114, and others, toxicity review of fluorine chemicals: R-113a anesthetic concentration at 60,000 ppm as reported in RDB 5143

J. C. Krantz, Jr., C. J. Carr, and J. F. Vlitch (University of Maryland), Anesthesia XXXI. A Study of Cyclic and Noncyclic Hydrocarbons on Cardiac Autonomicity, Journal of Pharmacology and Experimental Therapeutics (JPET), 94:315-318, 1948 (4 pages with 1 figure and 1 table, RDB6192)

toxicity tests to determine the cardiac sensitization potential of hydrocarbons mixed with oxygen in dogs with epinephrine hydrochloride injections before and approximately 10 minutes into exposures: the number of dogs sensitized at concentrations of 100,000-250,000 ppm was 2/4 for R-170, 3/3 for R-290, 2/2 for R-C390, 2/2 for R-600, 2/2 for R-600a, 0/12 for R-1150, and 2/2 for R-1270; the number sensitized at 150,000-900,000 ppm was 2/3 for R-C41-10 and 3/3 for R-601a; data also are provided for cis-trans-butene-2, cyclobutene, and 2,2-dimethylbutane; concludes that while R-1150 does not produce sensitization, the remaining 11 hydrocarbons tested do; also concludes that cyclobutane and cyclobutene produce excellent anesthetic syndromes, the other hydrocarbons tested are unsatisfactory anesthetic agents in the dog

R-114 and others, toxicity

R-11, health effects, toxicity as reported in RDB 7414

R-116, R-152a, R-290, R-C318, R-1270, and others; mutagenic potential; toxicity; R-1270 is not mutagenic in Escherichia coli, but protects against mutations as reported in RDB 6A59

R-152a and others, mutagenicity, toxicity

D. Lester and L. A. Greenberg (Yale University), Acute and Chronic Toxicity of Some Halogenated Derivatives of Methane and Ethane, Archives of Industrial Hygiene and Occupational Medicine, 2:335-344, 1950 (10 pages with 9 tables, RDB5147)

R-11, R-12, R-132bB2, R-142b, R-152a, R-113a, and R-1141, toxicity: acute exposures of rats, for 30 min, to concentrations of 0-80% by volume, dominant clinical response found to be narcosis evidenced by disappearance of various reflexes at increasing concentrations, death when occurring appeared to be due to respiratory failure, recommends maximum allowable concentrations; chronic exposures of rats for 16 hr/d; provides data for ALC, complete anesthesia, recommended maximum allowable exposures; subchronic toxicity data for R-142b and R-152a exposures at 100,000 ppm v/v attempts to correlate toxic effects to boiling points

G. Limperos, Inhalation Toxicity Studies of Various Freon Compounds, report 2-52, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 December 1951 (5 pages with 3 tables, RDB7737)

preliminary acute inhalation toxicity tests of R-12B2, R-12B1, R-13B1, and R-152a (identified in the report as "Brom-12," "Chlorbrom-12," "Brom-13," and "Freon-152," respectively) in groups of two male albino rats by whole body exposures: for R-12B1, 2/2 rats died in 6-7 min at 100,000 ppm, severe convulsions but no deaths resulted at 57,000 ppm, violent trembling but no deaths resulted at 11,500 ppm for 6 hr, 17,000 ppm for 2 hr, and 19,000 ppm for 3 hr, and no toxic effects were observed at 10,000 ppm for 2 hr; for R-12B1, 2 of 2 rats died at 500,000 ppm for 5 min (possibly with some asphyxiation effect), violent trembling and occasional convulsions but no deaths resulted at 140,000 ppm for 1 hr, oc-
casional nervous movements but no deaths re-
resulted at 62,000 ppm, and no toxic effects were
observed at 31,000 ppm for 1 hr; for R-13B1, no
toxic effects, gross or microscopic pathology, or
deaths resulted at either 200,000 ppm for 2 hr
or 300,000 ppm for 40 min; for R-152a, occa-
sional trembling and incoordination, but no
gross or microscopic pathology or deaths re-
sulted at either 100,000 or 200,000 ppm, and no
toxic effects were observed at 74,000 ppm for 1-
3/4 hr; R-C316 and R-C317 produced no de-
tectable cumulative toxic effects nor any pathol-
gy in groups of 10 rats exposed in subchronic
studies to 10,000 ppm for 6 hr for at least 40 ex-
posures

H. A. Lincoff and I. Kreissig, Intravitreal Behavior
of Perfluorocarbons, Dev. Ophthalmology, 2:17-
23, 1981 (7 pages, rdb5C78)

R-116, R-218, R-C318, and others; ophthamolo-
gical effects, toxicity

R. C. Lind, A. J. Gandolfi, and P. D. Hall (University
of Arizona College of Medicine), Biotransforma-
tion and Hepatotoxicity of HCFC-123 in the
Guinea Pig: Potentiation of Hepatic Injury by
Prior Glutathione Depletion, Toxicology and Ap-
piled Pharmacology (TAP), 134(1):175-181, Sep-
tember 1995 (7 pages, rdb7C75)

acute toxicity of R-123: 4-hr tests in male out-
bred Hartley guinea pigs by inhalation expos-
ures to 10,000 ppm v/v R-123 in oxygen en-
riched (400,000 ppm v/v) air; animals were in-
jected 24 hr before exposures with either a pre-
treatment to deplete hepatic glutathione or a
control solution; R-123 caused minimal liver in-
jury with only 1 of 8 control animals displaying
confluent zone 3 necrosis; glutathione depletion
potentiated injury producing submassive to
massive liver necrosis in some animals; this
potentiation was associated with a 36% increase
in covalent binding of reactive R-123 intermedi-
ates to hepatic protein; plasma concentrations
of the metabolites trifluoroacetic acid (TFA) and
fluoride ion indicate that these results were not
due to alterations in the biotransformation of R-
123; R-123 also was found to cause a decrease
in liver glutathione concentrations following ex-
posure; concludes that R-123 inhalation [at high
concentrations] can cause acute hepatic injury
in the guinea pig that is worsened by low hepa-
tic glutathione concentrations

G. T. Linteris (National Institute of Standards and
Technology, NIST), Acid Gas Production in In-
hibited Propane-Air Diffusion Flames, Halon Re-
placements, Technology and Science (208th Na-
tional Meeting, Washington, DC, 21-25 August
1994), ACS Symposium Series 611, American
Chemical Society (ACS), Washington, DC, 225-242,
1995 (6 pages, RDB6209)

R-13B1, R-22, R-116, R-124, R-134a, R-218, R-
227ea, R-236fa, R-31-10, R-C318, R-410A, de-
composition in flames, reaction kinetics, poten-
tial formation of corrosive byproducts contain-
ing hydrofluoric and hydrochloric acids (HF and
HCl)

J. Little (Imperial Chemical Industries Limited (ICI),
UK), The Formation of Phosgene by the Action of
Hot Surfaces and Its Absence When Tobacco
Is Smoked in Atmospheres Containing Chlori-
nated Hydrocarbon Vapours, British Journal of
Industrial Medicine, 12:304-308, 1955 (5 pages,
RDB7260)

refrigerants, toxicity: cites cautions of and dis-
agreement by others on phosgene formation
from inhaled gases in cigarette smoking and the
secondary danger of formation around a glow-
ing cigarette tip; presents an experimental study
of smoking to detect phosgene at concentra-
tions 0.05 ppm (indicated as a tenth the toler-
ance limit): no phosgene was detected at a
continuous smoking rate selected between the
average and peak identified in other studies;
moreover, phosgene was not detected in the ef-
fluent even when cigarettes were smoked in at-
mospheres that contained phosgene, attributed
by further study to absorption by the tars in
cigarette smoke; tests to detect phosgene in the
air surrounding cigarettes found none to a de-
tection level of 0.1 ppm in atmospheres con-
taining R-10, R-20, R-130, R-1110, R-1120, or
0.2-20 ppm phosgene; concludes that while
phosgene does form when chlorine-containing
solvent vapors contact surfaces >400 °C (752
°F), phosgene was not found in inhaled gases
from cigarettes or the air surrounding glowing
tips and that phosgene added to the atmo-
sphere was destroyed by passage through the
cigarette being smoked

F. Leuschner, B. W. Neumann, and F. Hübscher,
Report on Subacute Toxicological Studies with
Several Fluorocarbons in Rats and Dogs by In-
halation, Fortschrritte der Arzneimittel Forschung
[Progress in Drug Research], Birkhäuser Verlag,
Basel, Switzerland, 33/11(10):1475-1476, 1983 (2
pages, rdb5607)

R-22, R-23 (subchronic NOAEL rat = 10,000
ppm, subchronic NOAEL dog = 5,000 ppm, as
reported in RDB 6404), and others, toxicity

E. Longstaff (ICI Chemicals and Polymers, UK),
Carcinogenic and Mutagenic Potential of Sev-
eral Fluorocarbons, Living in a Chemical World:
Occupational and Environmental Significance of
Industrial Carcinogens, edited by C. Maltoni and I.
Refrigerant Database

R-12 and others, carcinogenicity, mutagenicity, toxicity

R-32, R-123, R-124, R-134, R-142a, R-143a, R-152a, and others; negative carcinogetic findings, toxicity as reported in RDB 4B90, 5367, 5862, 5870, 5C16, and 6686

toxicity

R-22 and others, health effects, toxicity, mutagenicity: findings for R-22 were negative as reported in RDB 5923

R-744 (carbon dioxide) and others, health effects, toxicity

G. Lu, S. L. Johnson, M. S. Ling, and J. C. Krantz, Jr., Anesthesia. XLI. The Anesthetic Properties of Certain Fluorinated Hydrocarbons and Ethers, Anesthesiology, 14:466-472, 1953 (7 pages, rdb6567)

anesthetic effect, toxicity: found that some hydrogen content appears to be essential for anesthetic activity in fluorinated hydrocarbons - as reported in RDB 5628

H. R. Ludwig, S. G. Cairelli, and J. J. Whalen, Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs), National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH, May 1994 (available from NTIS as document PB-94-195047, RDB5340)

This publication documents the criteria and information sources used to determine the National Institute for Occupational Safety and Health (NIOSH) Immediately Dangerous to Life or Health (IDLH) concentrations. It addresses approximately 400 substances.

toxicity, fluorocarbons

fluorochemical refrigerants and others, effects of human exposures, toxicity

G. Malinverno and G. Bargilgia (AUSIMONT S.p.A., Italy), Reproductive Toxicity and Teratogenicity of Alternatives to Current CFCs, Proceedings of the Sixth International Congress of Toxicology (Rome, Italy, 28 June - 3 July 1992), International Union of Toxicology, June 1992 (rdb5B45)

R-125 and other refrigerants

C. Maltoni, G. Lefermine, D. Tivoli, and G. Perino, Long-Term Carcinogenicity Bioassays of Three Chlorofluorocarbons (Trichlorofluoromethane, FC11; Dichlorodifluoromethane, FC12; and Chlorodifluoromethane, FC22) Administered by Inhalation to Sprague-Dawley Rats and Swiss Mice, Annals of the New York Academy of Science (Living in a Chemical World), 534:261-282, 1988 (22 pages, rdb6570)

R-11, R-12, R-22, toxicity: 104-week inhalation study in the rat and 78-week inhalation study in the mouse, findings negative

C. Maltoni, A. Ciliberti, and D. Carretti (Institute of Oncology F. Addarii, Italy), Experimental Contributions in Identifying Brain Potential Carcino gens in the Petrochemical Industry, Annals of the New York Academy of Science, 381:216-249, 1982 (34 pages with 29 tables, RDB7743)

inhalation toxicity tests to determine the incidence of brain tumors in Sprague-Dawley (and for R-1140 also Wistar) rats from exposures to selected chemicals, among them R-11 (1,000 and 5,000 ppm for 4 hr/d, 5 d/wk, for 104 wk), R-12 (1,000 and 5,000 ppm for 4 hr/d, 5 d/wk, for 104 wk), R-22 (1,000 and 5,000 ppm for 4 hr/d, 5 d/wk, for 104 wk), R-150, R-1130a, R-

please see page 6 for ordering information
1140, and R-1270 (200, 1,000, and 5,000 ppm for 7 hr/d, 5 d/wk, for 104 wk): of those listed above, only R-1140 was found to produce brain tumors, which were observed following extended exposures exceeding 500 ppm v/v; paper also reports ingestion tests for similar purposes with Sprague-Dawley rats for R-1120, R-1120a, R-1130a, R-1140, and others; none of the compounds tested by ingestion seemed to produce brain tumors.

R-12 and others, health effects, toxicity: blood levels of R-12 were below detection limits in normal subjects using household aerosols as reported in RDB 5141

R-12, health effects, toxicity, abuse, "sniffing"

J. L. Martin (National Institute of Health, NIH), J. W. Harris (Johns Hopkins Medical Institutions), A. C. LaRosa, M. J. Olson (General Motors Research Laboratories), M. W. Anders (University of Rochester Medical Center), and L. R. Pohl, Metabolism in Vivo of Halothane and the Chlorofluorocarbon Substitutes HCFC-123, HCFC-124, and HFC-125 to Trifluoroacetylated Liver Protein Adducts, abstract 151, The Toxicologist, 12:62, 1982 (1 page with no figures or tables, RDB6B35)

toxicity of R-123, R-123B1, R-124, and R-125: rats exposed to 10,000 ppm v/v R-123 or R-123B1 produced nearly identical levels of trifluoroacetylated (TFA) liver proteins; much lower levels were found for similar exposures to R-124 or R-125; urinary trifluoroacetic acid excretion correlated with the postexposure levels of TFA adducts; concludes that R-124 and R-125 may be safer alternatives than R-123 because they produce lower TFA neoantigen concentrations, since halothane (R-123B1) hepatitis may be mediated by an immune response directed against TFA proteins in the livers of susceptible individuals.

D. A. McClure, Failure of Fluorocarbon Propellants to Alter the Electrocardiogram of Mice and Dogs, Toxicology and Applied Pharmacology (TAP), 22(2):221-230, 1972 (10 pages, rdb7295)

R-12 and others, cardiac sensitization, health effects, toxicity

R-114 and others, health effects, teratology, toxicity

toxicity: R-116 1-hr ALC >800,000 ppm as reported in RDB 5605; R-218, acute and sub-chronic inhalation toxicity, 4-hr LC50 rat >113,000 ppm v/v, 10-min CNS EC50 rat >113,000 ppm v/v as reported in RDB 5858

W. D. McNally, A Case of Phosgene Poisoning, Industrial Medicine, 6:539 ff, 1937 (rdb6774)

refrigerants, toxicity: asserts that phosgene is formed when R-112 (trichloroethylene) passes through burning tobacco in smoking

R-20, R-C270, and probably R-610, cardiac sensitization, toxicity

J. Mendelhoff (possibly Mendeloff), Death After Repeated Exposures to Refrigerant Gases, Archives of Industrial Hygiene and Occupational Medicine, 6:518-524, 1952 (7 pages, rdb7222)

R-12 and others, accidents, fatalities, toxicity

G. W. Mergner (University of Maryland), D. A. Blake (Johns Hopkins University), and M. Helrich (University of Maryland), Biotransformation and Elimination of 14C-Trichlorofluoromethane (FC 11) and 14C-Dichlorodifluoromethane (FC 12) in Man, Anesthesiology, 42(3):345-351, March 1975 (7 pages with 4 figures and 1 table, RDB5C72)

biochemistry and elimination tests of radiolabeled R-11 and R-12 in 2 human volunteers by inhalation of 1,000 ppm v/v for 7-17 min: recovery in exhaled air in the female and male was 99.5 and 79.4%, respectively, for R-11 and 95.4 and 103.2% for R-12 (errors in collection of rapidly eliminated gases account for the differences from 100%); only a very small fraction of the administered radioactivity (less than 0.2%) was found in urine or exhaled carbon dioxide; total metabolites were less than 0.2% of the administered dose and insufficient to allow determination of possible metabolites; paper notes that the trace levels of metabolites could be products of impurities, namely chloroform and carbon tetrachloride.

R-123 and others, health effects, toxicity

K. W. Miller, W. D. M. Paton, E. B. Smith, and R. A. Smith (Department of Pharmacology and Physical Chemistry Laboratory, UK), Physiological Approaches to the Mode of Action of General Anesthetics, Anesthesiology, 36(4):339-351, April 1972 (13 pages with 3 figures and 6 tables, rdb-6129)

R-12, R-14, R-20, R-116, R-123B1, R-142B1, R-218, R-C270, R-744A (nitrous oxide), R-7146 (sulfur hexafluoride), and others, anesthetic effect, inhalation toxicity

R-125 and other refrigerants

toxicity

R-290, R-600, R-600a, and R-601a, acute inhalation, dermal irritation, toxicity: R-600 causes drowsiness in humans at concentrations of 10,000 ppm for 10 min as reported in RDB 6A83

R-11, R-12, R-114, and others, inhalation toxicity

R-11, R-12, R-114, and others, inhalation toxicity

M. Morita, A. Miki, H. Kazama, and M. Sakata, Case Reports of Deaths Caused by Freon Gas, Forensic Science, 10(3):253-260, 1977 (6 pages, rdb-8151)

fatal human exposures involving fluorocarbons (some of which are used as refrigerants); health effects; toxicity

L. E. Morris, M. H. Noltensmeyer, J. M. White Jr., Epinephrine Induced Cardiac Irregularities in the Dog During Anesthesia with Trichloroethylene, Cyclopropane, Ethyl Chloride, and Chloroform, Anesthesiology, 14:153-158, 1953 (6 pages, rdb-6563)

R-20, R-160, R-C270, and R-1120, cardiac sensitization, toxicity

tests of the acute inhalation toxicity of R-115 and R-116 in groups of 4 male Cd R-CD rats exposed to 200,000 ppm v/v R-115 in air for 2 hr, 800,000 ppm v/v R-115 in oxygen for 3½-4 hr, 200,000 ppm v/v R-116 in air for 2 hr, or 800,000 ppm v/v R-116 in oxygen for 4 hr: no deaths resulted; animals exposed to R-115 showed modified depth of respiration, but no other effect; no interference was found in body weight gain; exposed animals showed marginal signs of intoxication; animals exposed to R-116 showed deep and rapid as well as at 200,000 ppm - obvious discomfort and irregular breathing and at 800,000 ppm cutaneous vasodilation; rats exposed to 200,000 ppm failed to gain weight on the day after exposure while those exposed to 800,000 ppm showed weight loss for one day after exposure; exposed animals showed marginal signs of intoxication; findings suggest a 3½-4 hr ALC rat of >800,000 ppm v/v for R-115 and a 4 hr ALC rat of >800,000 ppm v/v for R-116

R-11, R-12, R-114, toxicity: compares cardiac abnormalities produced by endogenous epinephrine with those produced by exogenous epinephrine in beagle dogs; the results show that higher concentrations are needed to sensitize a dog's heart to the action of its own circulating level of epinephrine, raised by exercise, than by experimental injection; the observed responses were fewer and less severe; paper notes that the wide differences cannot be extrapolated directly to humans, but they suggest a sufficient margin of safety based on tests by epinephrine injection; paper also notes that humans could develop cardiac arrhythmias under conditions of stress, such as fear, anxiety, or exertion, by exposures to unusually high levels of propellant (many of which also are used as refrigerants) vapors

R-11, R-12, R-113, R-114, and others, cardiac sensitization, health effects, toxicity as reported in RDB 7414

L. S. Mullin, Cardiac Sensitization - Fright Exposures, report 81-70, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1970 (5 pages, rdb-6522)

R-12, R-142b, R-C318 and others, health effects, toxicity: effect of frightening noise to stimulate the release of endogenous epinephrine in cardiac sensitization as reported in RDB 5869 and 7215

L. S. Mullin, Cardiac Sensitization: Fright/Treadmill Studies, report 325-69, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1969 (rdb-6846)

cardiac sensitization, toxicity

fluorochemical refrigerants, biochemistry, health effects, metabolism, pharmacokinetics, toxicity

fluorochemical refrigerants, biochemistry, health effects, mutagenicity, pharmacokinetics, teratogenicity, toxicity

National Research Council (NRC) Committee on Toxicology, Toxicity of Alternatives to Chlorofluorocarbons: HFC-134a and HCFC-123, National Academy Press, Washington, DC, 1996 (134 pages with 7 figures and 21 tables, RDB6A01)

R-123, R-134a, assessment by the Board on Environmental Studies and Toxicology: briefly reviews the history of "cardiac sensitization" concern arising from "sniffing" and industrial fatalities; examination of the standard dog cardiac sensitization test, using a sequence of start with face mask in place at 0 minutes, administer epinephrine injection at 2 minutes, begin test chemical exposure by inhalation at 7 minutes, administer challenge injection of epinephrine at 12 minutes, and stop at 17 minutes; concludes that the test is effective, but overpredicts the potential for a chemical to induce cardiac arrhythmia under normal or physiological levels of endogenous epinephrine; recommends that the mechanism of cardiac sensitization be determined and that a more sensitive test be developed; examines toxicity data for R-123 and R-134a and sets recommended emergency exposure guidance level (EEGL) concentrations for both and a continuous exposure guidance level (CEGL) for the former; differences in the time periods for the R-123 and R-134a exposure levels addressed reflect proposed uses of R-134a as a refrigerant on submarines, versus R-123 as a fire suppressant to replace halon 12 in flightline extinguishers with very quick discharges; recommends a 1 hr EEGL for R-134a of 4,000 ppm v/v based on the no-observed-adverse-effect level (NOAEL) in cardiac sensitization tests, divided by an uncertainty factor of 10 for interspecies variability; recommends a 24 hr EEGL for R-134a of 1,000 ppm based on a NOAEL of 10,000 ppm for ferotoxicity effects (slight retardation of skeletal ossification) in rats divided by an uncertainty factor of 10; recommends a 90-day CEGL for R-134a of 900 ppm based on a NOAEL of 50,000 ppm for a 2-yr chronic toxicity study in rats divided by an uncertainty factor of 10, a factor of 4 for exposures of 24 hr/d instead of 6 hr/d, and a factor of 5/7 for exposures of 7 d/wk instead of the tested 5 d/wk; recommends a 1-min EEGL for R-123 of 1,900 ppm based on a cardiac sensitization EC50 dog of 19,000 ppm divided by an uncertainty factor of 10; appendices and attachments provide supporting doc-
National Research Council (NRC) Committee on Toxicology, Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, volume 4, 1985 (120 pages with 1 figure and 14 tables, available from NTIS as document PB-85-239630, RDB7416)

- R-744A (nitrous oxide), R-746 (nitrogen dioxide), aluminum oxide, carbon monoxide, ethylene glycol, hydrogen sulfide, methanol, nitrogen and tetroxide, health effects, toxicity: announces a change in nomenclature from Emergency Exposure Limit (EEL) to Emergency Exposure Guidance Level (EEGL) and Continuous Exposure Limit (CEL) to Continuous Exposure Guidance Level (CEGL) to avoid confusion with limits set by regulatory agencies

National Research Council (NRC) Committee on Toxicology, Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, volume 5, 1985

- Tetroxide, health effects, toxicity: announces a change in nomenclature from Emergency Exposure Limit (EEL) to Emergency Exposure Guidance Level (EEGL) and Continuous Exposure Limit (CEL) to Continuous Exposure Guidance Level (CEGL) to avoid confusion with limits set by regulatory agencies

National Research Council (NRC) Committee on Toxicology, Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, volume 7, 1987 (78 pages with 1 figure and 6 tables, available from NTIS as document PB-89-174726, RDB7420)

- Hydrazine, monomethylhydrazine, and 1,1-dimethylhydrazine: Emergency Exposure Guidance Level (EEGL) and Continuous Exposure Guidance Level (CEGL) recommendations

National Research Council (NRC) Committee on Toxicology, Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, volume 3, October 1984 (32 pages with 4 tables, RDB7415)

- Alumina, carbon monoxide, ethylene glycol, hydrogen sulfide, methanol, nitrogen and tetroxide, health effects, toxicity: Emergency Exposure Guidance Level (EEGL) and Continuous Exposure Guidance Level (CEGL) recommendations

(please see page 6 for ordering information)
recommended Emergency Exposure Limit (EEL) and Continuous Exposure Limit (CEL) concentrations in enclosed environments, not intended for application in general industrial settings or as exposure limits for the general public; this volume addresses for chlorine, chlorine trifluoride, ethanalamine, R-11, R-12, R-21, R-113, R-114, isopropyl alcohol, phosgene, sodium hydroxide, R-764 (sulfur dioxide), R-1130a (vinylidene chloride), and xylene; defines EEL as "a ceiling limit for an unpredictable single exposure, usually lasting 60 minutes or less, and never more than 24 h - an occurrence expected to be rare in the lifetime of any person" addressing nonincapacitating, reversible effects; defines CEL as "a ceiling limit to avoid adverse health effects, either immediate or delayed, and to avoid degradation in crew performance that might endanger the objectives of a particular mission;" summarizes the physical and chemical properties, occurrence, use, acute and chronic toxicity information, inhalation exposure limits set by others, recommended exposure limits, recommended further research, and references for each chemical; prepared for the U.S. Department of Defense (DOD) and National Aeronautics and Space Administration (NASA) to update previous and to recommend new exposure limits for selected chemicals; EELs and CELs do not take into consideration the possible effects of exposure on hypersensitive people [EEL and CEL concentrations were subsequently renamed Emergency Exposure Guidance Level (EEGL) and Continuous Exposure Guidance Level (CEGL), respectively - see RDB 7416]

National Research Council (NRC) Committee on Toxicology, Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, 1984 (122 pages with 24 tables, available from NTIS as document AD-4142-13318, RDB7413)

National Research Council (NRC) Committee on Toxicology, Criteria for Short-Term Exposures to Air Pollutants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, 1979 (15 pages, RDB7412)

definitions, applicability, principles, and criteria for recommended Emergency Exposure Limit (EEL), Short-Term Public Limit (STPL), and Short-Term Public Emergency Limit (SPEL) concentrations: R-11, R-12, R-113, R-114, R-764 (sulfur dioxide), R-1130a (vinylidene chloride), and others

National Research Council (NRC) Committee on Toxicology, Basis for Establishing Guides for Short-Term Exposures of the Public to Air Pollutants, National Academy of Sciences (NAS), National Academy Press, Washington, DC, 1971 (15 pages, rdb7411)

definitions, applicability, and criteria for recommended Emergency Exposure Limit (EEL), Short-Term Public Limit (STPL), and Public Emergency Limit (PEL) [later renamed the Short-Term Public Emergency Limit (SPEL)] concentrations: R-11, R-12, R-113, R-114, R-764 (sulfur dioxide), R-1130a (vinylidene chloride), and others

R-12, R-114, and others, health effects, toxicity

M. S. Nick, Freon-115(R), Highest Purity (99.99%), Freon-115(R), Commercial Composite (99.98%), and Freon-115(R)/Freon-C318(R) (99/60): Acute Inhalation Toxicity, report 11-65, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated,
tests of the acute toxicity of R-115 and R-115/C318 (20/80) by inhalation exposure of groups of 4 male Chr-CD rats to concentrations of 800,000 ppm v/v in oxygen for 4 hr; no deaths resulted, but animals exposed to R-115 exhibited rapid and deep respiration and inactivity; animals exposed to the R-115/C318 blend exhibited deep respiration and slightly red extremities; recovery was immediate following all exposures with no interference was found with body weight gain; no compound-related effects were found by microscopic pathological examinations at necropsy; findings suggest a 4 hr ALC rat >800,000 ppm v/v for both R-115 and R-115/C318 (20/80)

T. K. Nikijenko and T. A. Kochetkova, Effect of Some Hydrochlorofluorocarbons on the Thyroid (Experimental Study), Toksikologiya Novykh Promyshlennykh Khimicheskikh Veshchestv Veshchestva [Toxicology of New Industrial Chemical Substances], Moscow, Russia (then USSR), 9(10):37-44, 1965 (8 pages in Russian, rdb5853)

R-141b, R-142b, and other HCFCs, toxicity

T. K. Nikijenko and M. S. Tolgskaya (Institute for Hygiene at Work and Occupational Illnesses of the AMS, USSR), On the Toxico-Pharmacological Changes in Animals Under the Effect of Freon®s 141, 142, and 143 and the Intermediates Used in Their Production, Gigiena Truda i Professional'nye Zabolevaniya [Labor Hygiene and Occupational Diseases], Moscow, Russia (then USSR), 9:175-182, 1967 (8 pages in Russian, rdb5852)

R-141b, R-142b, and R-143a, toxicity

Occupational Safety and Health Administration (OSHA) of the U.S. Department of Labor, Air Contaminants; Rule, 58 FR 124, Federal Register, U.S. Government Printing Office, Washington, DC, 35338-35351, 30 June 1993 (14 pages, available from JMC as RDB7617)

This rule revokes the Final Rule exposure limits in Table Z-1-A (Limits for Air Contaminants) of 29 CFR 1910.1000. It leaves the Permissible Exposure Limits (PELs) included in Table Z-1 before 1989, also published as Transitional Limits in Table Z-1-A, in effect. Tables Z-2 and Z-3 (Mineral Dusts) also remain in effect. The rule reviews the court decision leading to this action and provides the three tables for enforcement of the action. A number of refrigerants are covered. PEL values are provided for R-10, R-11, R-12, R-12B2, R-13B1, R-20B3, R-21, R-30, R-40, R-40B1, R-4011, R-110, R-112, R-112a, R-113, R-114, R-130, R-140, R-140a, R-180, R-180a, R-160B1, R-290, R-601, R-602, R-610, R-611, R-630, R-717, R-744, R-746, R-748, R-764, R-7146, R-1110, R-1120, and others. This rule is subject to revision and may have been amended or withdrawn.

Permissible Exposure Limit (PEL) values: This regulation is subject to revision and may have been amended or withdrawn.

Toxicity of chlorofluorocarbon (CFC) and alternative refrigerants; noise and vibration levels for refrigeration and freezing equipment; handling; additional problems including increased energy use both to manufacture the substitutes and for their use

R. S. Oremland (U.S. Geological Survey, USGS), D. J. Lonergan (University of Massachusetts), C. W. Culbertson (USGS), and D. R. Lovley (University of Massachusetts), Microbial Degradation of Hydrochlorofluorocarbons (CHClF and CHCl2CF3) in Soils and Sediments, Applied and Environmental Microbiology, 62(5):1818-1821, May 1996 (4 pages with 4 figures, RDB7C69)

Ecotoxicity of R-21 and R-123: examines the ability of microorganisms to degrade trace levels of these chemicals; for R-21, methanotroph-linked oxidation was observed in aerobic soils and anaerobic degradation in freshwater and salt marsh sediments; for R-123, microbial degradation was observed in anoxic freshwater and salt marsh sediments, and recovery of R-133a indicates the involvement of reductive dechlorination; no degradation of R-123 was observed in aerobic soils; concludes that degradation at low (parts per billion) concentrations suggests that bacteria may remove hydrochlorofluorocarbons (HCFCs) from the atmosphere, but further study is needed to assess this ability and its global significance as a sink for HCFCs

R-12, R-23, and others; mutagenicity, toxicity, biochemical studies

H. Oujesky and R. Fuerst, Effects of Freon(R)s and Genetron(R)s on DNA Polymerase from E. Coli, Develop. Ind. Microbiology, 15:405-410, 1974 (6 pages, rdb5C82)

R-23, R-152a, R-C318, and others; mutagenicity, toxicity

H. Oujesky and I. Bhagat, Response of Staphylococcus Aureus to Atmospheres of Freon(R)s and Genetron(R)s, Develop. Ind. Microbiology, 14:229-237, 1973 (9 pages, rdb5823)

R-23, R-152a, and others; mutagenicity, toxicity

R-12 and others, fluorochemical blood levels in humans, health effects, pharmacokinetics, toxicity: based on a study for use as aerosol propellants (compounds also are used as refrigerants)

G. Paulet, Les Fluorocarbons en Question [Fluorocarbons at issue], European Journal of Toxicology and Environmental Hygiene, 9(supplement to 7):385-407, 1976 (23 pages in French, rdb5719)

R-12, R-114, and others, toxicity: 30-min LC50 rat = 720,000 ppm as reported in RDB 5340

R-12, R-114, and others, inhalation toxicity

R-12, R-114, and others, inhalation toxicity

R-11 (trichlorofluoromethane), R-12 (dichlorodifluoromethane), health effects, toxicity

R-12 and others, health effects, toxicity

G. Paulet, J. Lanoë, A. Thos, P. Toulouse, and J. Dassonville (Laboratoire de Physiologie Médicale, U.E.R. Médicales et Pharmaceutiques, France), Fate of Fluorocarbons in the Dog and Rabbit After Inhalation, Toxicology and Applied Pharmacology (TAP), 34(2):204-213, November 1975 (10 pages with 6 figures and 5 tables, RDB5C71)

R-11 and R-12, toxicity: inhalation of R-11 at 25,000 and 50,000 ppm, R-12 at 200,000 and 500,000 ppm, and R-12/11 (90/10) at 250,000 and 900,000 ppm by anesthetized dogs and rabbits through tracheal cannula with oxygen adjusted to 200,000 ppm; animals were tested for these chemicals in their exhaled air, blood, bile, cerebrospinal fluid, and urine to measure elimination; concluded that the chemicals diffuse quickly in the body fluids, but that elimination is completed in 20-50 minutes, 98% of it through the pulmonary system

R-11, R-12, R-12/11 (90/10), and others, genetic and reproductive effects, teratogenicity, toxicity: no effect in rats and rabbits at 300,000 ppm R-12/11 (90/10) for 13-16 2-hr exposures as reported in RDB 5141

R-114 and others, health effects, toxicity

R-114 and others, health effects, toxicity

CFC biochemistry, fluorocarbons, toxicity

G. Paulet, R. Chevrier, J. Paulet, M. Duchene, and J. Chappet, De la rétention des fréons par les poumons et les voies aériennes [Retention of Fluorocarbons by the Lungs and the Pulmonary Arteries], Archives des Maladies Professionelles de Médecine du Travail et de Sécurité Sociale, France, 30(3):101-120, 1969 (20 pages, in French, rdb5370)

R-12 and others, biochemistry, fluorocarbons, toxicity

biochemistry, fluorocarbons, toxicity

J. A. Prendergast, R. A. Jones, L. J. Jenkins, Jr., and J. Siegel (National Naval Medical Center, U.S. Navy), Effects on Experimental Animals of Long Term Inhalation of Trichloroethylene, Carbon Tetrachloride, 1,1,1-Trichloroethane, Dichlorodifluoromethane, and 1,1-Dichloroethylene, Toxicology and Applied Pharmacology (TAP), 10(2):270-289, March 1967 (20 pages with 1 figure and 4 tables, RDB5C44)

R-10, R-12, R-140a with 8% inhibitor, R-1120, R-1130a, subchronic inhalation toxicity: effects of long-term inhalation exposure to develop data pertinent to human exposures in submarines; continuous exposures of rats, guinea pigs, monkeys and dogs for 90 days and repeated exposures for 8 hr/d, 5 d/wk, for 6 weeks; 2 of 15 rats and 1 guinea pig died during continuous exposures to R-12 at 840 ppm (3,997 mg/m³); 1 of 15 rats died in the repeated exposures to R-12 at 4,136 mg/m³; no other signs of toxicity were observed for R-12, suggesting that the mortality was not treatment related

K. Pennington and R. Fuerst (Helen Dwight Reid Educational Foundation), Biochemical and Morphological Effects of Various Gases on Rabbit Erythrocytes, Archives of Environmental Health, 22(4):476-481, 1971 (6 pages, rdb6131)

R-50, R-152a and others; biochemical studies, toxicity

Z. Petrovic, Abuse of Inhalants, Solvents, and Volatile Substances, Psihijatr Danas, 16(3-4):273-280, 1984 (8 pages, rdb7549)

human exposures, sudden sniffing deaths from abusive use of aerosol products also used as refrigerants

fatal human exposures involving R-11 and R-12, sudden sniffing death from abusive use of aerosol products

C. L. Potter et al., Effects of Inhaled Chlorotrifluoroethylene and Hexafluoropropene on the Rat Kidney Toxicology and Applied Pharmacology (TAP), 59(3):431 ff, 1981 (rdb8125)

tests of acute inhalation toxicity of R-1113 and R-1216 by exposures of male Fischer 344 rats; rats exposed to concentrations of 380-1200 ppm exhibited dose-related, proximal tubular necrosis, diuresis, increases in urinary fluoride, urinary lactic dehydrogenase (LDH) activity, serum creatinine, and blood urea nitrogen

toxicity, carcinogenicity

R-12, R-114, and others, toxicity, eye and skin irritation

A. Quevauviller, M. Schrenzel, and V. Ngoc Huyen, Tolérance Locale (Peau, Muqueuses, Plaies, Brûlures) Chez l'Animal aux Hydrocarbures Chlorofluorés [Local Tolerance (Skin, Mucous Membranes, Sores, and Burns) of Animals to Chlorofluorohydrocarbons], Therapie, 19:247-263, 1964 (17 pages in French, rdb5368)

R-12, R-22, R-114, and others, toxicity, eye and skin irritation, hydrochlorofluorocarbons (HCFC): daily dose of R-12 tolerated by rats for a period of 23-33 days as reported in RDB 65H1

R-12, R-115, and others, toxicity

R-11, R-12, R-22 and others, toxicity, hydrochlorofluorocarbons (HCFC)

A. Quevauviller, Skin Tolerance of Chlorofluoromethanes Used as Propellants in Cosmetology, Parfum. Cosmet. Savons, France, 3:228-230, 1960 (3 pages in French, rdb7428)

R-11 and others, health effects when used as an aerosol propellant, toxicity: well tolerated by the
reviews abuse of volatile substance by "sniffing", noting that it results in approximately 100 deaths per year in the UK and that the victims are mostly teenagers, come from all social classes, and are 90% males: 3%-10% of young people in the UK have at least experimented and 0.5-1% are current users; many products are involved, but approximately 20 solvents, adhesives, fuels, and aerosol propellants (some of which also are used as refrigerants) are commonly encountered; specifically identifies toluene, chlorinated solvents such as R-140a (methyl chloroform), R-600 butane, and hydrocarbon and halogenated hydrocarbon propellants as abused substances; acute hazards varies with the compound, product, and mode of abuse; chronic toxicity is difficult to assess, partly because of the diversity of substances involved, but some long-term abusers suffer permanent damage to the central nervous system (CNS), heart, liver, and kidneys; preventive measures including guidelines for sale of the products involved, education, and legislation have had little impact

cardiac sensitization in beagle dogs for 5-minute exposures with epinephrine challenge provides NOEL, LOEL, and EC50 data; R-30 0/12 dogs sensitized at 20,000 ppm v/v; R-113 0/12 at 2,500, 10/29 at 5,000, and 3/4 at 10,000 ppm; R-140a 0/12 at 2,500, 3/16 at 5,000, and 12/12 at 10,000 ppm; R-1110 0/12 at 10,000 ppm; R-1120 1/12 at 5,000 and 7/12 at 10,000 ppm; central nervous system effects above 20,000 ppm with R-30 and 10,000 ppm with R-1110 precluded cardiac sensitization tests at higher concentrations; toxicity

C. F. Reinhardt, L. S. Mullin, and M. E. Maxfield (E. I. duPont de Nemours and Company, Incorporated), Halocarbon-Epinephrine-Induced Cardiac Arrhythmia Potential of Some Common Industrial Solvents, abstract 81 (11th Annual Meeting of the Society of Toxicology (SOT), Williamsburg, VA, 5-9 March 1972), Toxicology and Applied Pharmacology (TAP), 22(2):305, June 1972 (1 page with no figures or tables, RDB6558)

cardiac sensitization in beagle dogs with epinephrine challenge, toxicity; reports no sensitization at 20,000 ppm with R-30 or at 10,000 ppm with R-1110; response at 5,000-10,000 with R-113 (possibly R-113a), R-140a, and R-1120; central nervous system effects above 20,000 ppm with R-30 and 10,000 ppm with R-1110 precluded cardiac sensitization tests at higher concentrations

toxicity tests to determine the cardiac sensitization potential in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure for R-11, R-12, R-22, R-114, R-115, R-142b, R-152a, R-E170, R-290, R-C318, R-502, R-600a, R-1140, and others

R-12, R-32, R-113, R-113a, R-114, R-114a, R-123, R-123a, R-134a, R-142b, toxicity

R-140a, cardiac sensitization, health effects, toxicity

C. Reynolds (Tulane University of Louisiana), Propylene, Ethylene, Nitrous Oxide and Ether: Some Comparative Investigations, Fifth Annual Meeting of the Southern Association of Anesthetists (Atlanta, GA, 16-17 November 1926); republished in Anesthesia and Analgesia, 6:121-124, June 1927 (4 pages with 1 figure and 2 tables, RDB6A73)

R-1270, health effects, inhalation toxicity: anesthetic LOEL white mouse = 400,000 ppm v/v; ALC = 650,000 ppm; cardiac effects in dogs above 250,000 ppm (not clear whether test involved epinephrine injections) as reported in RDB 6A59

C. Reynolds (Tulane University of Louisiana), Comparative Studies of Propylene, Ethylene, and Nitrous Oxide, Journal of Pharmacology and Experimental Therapeutics (JPET), 27(2):93-99, 1926 (7 pages with 1 figure and 2 tables, RDB6A74)

R-1270, health effects, toxicity: subchronic inhalation study in mice at 350,000 ppm v/v for 90 min/d for 1-10 days; pathological examination found very slight to moderate liver degeneration in 3 of 13 animals with no degenerative signs in the others as reported in RDB 6A59

anesthetic effect in rats, toxicity: R-1150 results in light anesthesia in 1 of 1 rats at 900,000 ppm v/v in oxygen in 18-20 minutes and no other toxic symptoms in 3 hours, deep anesthesia [oxygen deprivation?] at 950,000 ppm within 1 minute; R-1270 produces light anesthesia in 1 of 1 rats at 400,000 ppm within 15 minutes and no other toxic symptoms in 6 hours [implies 6-hr ALC rat 0? exceeds 400,000 ppm]; deep anesthesia at 550,000 ppm in 3-6 minutes, and death in rats at 650,000 ppm v/v with 25% oxygen and 10% nitrogen in 2 hr [implies 2-hr ALC rat 0? = 650,000 ppm]; butylene; amylene

R-1150, R-1270, and others, health effects, toxicity: examination of ethylene and propylene as general anesthetic agents

B. H. Robbins (Vanderbilt University School of Medicine), Preliminary Studies of the Anesthetic Activity of Fluorinated Hydrocarbons, Journal of Pharmacology and Experimental Therapeutics (JPET), 66:197-204, 1946 (8 pages with 3 tables, RDB5980)

tests for anesthetic effect in mice exposed to 46 fluorinated hydrocarbons for 10 minutes in a rotating bottle, including R-20, R-123 (EC50 = 27,000 ppm v/v), R-123B2, R-132b, R-132b18, R-133a, R-133aB1, R-133aB1, R-141b (EC50 = 25,000), R-142, R-142b (EC50 = 250,000). R-142B1, R-143a (EC50 = 500,000-600,000), R-223a, R-236fa (EC50 = 110,000), R-243ab, R-243db, R-243fa, R-243dbB2, R-252dc, R-252dcB1, R-252fc, R-253dbB1, R-253fb, R-261fc, R-262ca, R-262caB1, R-252db, R-262fc, R-263fb, R-263fbB1, R-265fmc, R-365fmc, R-374, R-392, R-610, R-1243a, R-1372, and others; also tests for 10-min LC50 mouse for most of them; also tests of 18 of them for effects on the blood pressure and heart rhythm in anesthetized dogs; recommends consideration of R-123B2, R-243db, R-253dbB1, and R-262db as possible anesthetic agents

R-22, R-22B1, R-23, R-32, R-123, R-124, R-125, R-134a, R-227ea, R-31-10, R-51-14, R-718 (water), R-744 (carbon dioxide), and others: brief summary of the approach used by the U.S. Environmental Protection Agency (EPA) for health hazard assessment of alternative fire suppressants (many of which also are used as refrigerants); tabulates criteria, qualitative suitability (acceptable, unacceptable, or pending) in occupied and unoccupied areas, and qualitative suitability for consumer, commercial, industrial, or military use

G. M. Rusch (AlliedSignal Incorporated), Results from the Program for Alternative Fluorocarbon Toxicology Testing Activities, FCKW - Ausstieg wohin? [CFC - Phaseout Where to?] (proceedings of the 8. DEHEMA-Fachgespräch Umweltschutz [Eighth DEHEMA Colloquium on Environmental Protection], Bonn, Germany, 2-3 May 1990), Deutsche Gesellschaft für Chemisches Apparate- wesen (DEHEMA), Chemische Technik und Bio-
R-123, R-124, R-125, R-134a, R-141b: toxicity - progress report on the Programme for Alternative Fluorocarbons Toxicity Testing (PAFT) structure, tests, findings, and plans

summary of ongoing studies for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT): reduced response to noise, probably indicating light anesthesia, was noted in a 4-week inhalation study [species not indicated] with R-124 at concentrations up to 50,000 ppm, but this effect cleared within minutes following exposures; transient, depressed response to noise also was seen in an ongoing, 3-month inhalation study with exposures of up to 50,000 ppm R-124 [species not indicated]; R-124 was not active in the Ames, cytogenetics, or in vivo micronucleus assays; no developmental effects were found in teratology studies in the rat at concentrations up to 50,000 ppm; no treatment-related effects were observed in a 3-month inhalation study [species not indicated] with R-134a even for exposures of 50,000 ppm; a chronic toxicity study is underway; R-134a did not induce unscheduled DNA synthesis and was not active in the Ames, cytogenetics, or in vivo micronucleus assays; no developmental effects were found in teratology studies in the rabbit with R-134a at concentrations up to 40,000 ppm

biochemistry, toxicity of chlorinated halochemical refrigerants

biochemistry, toxicity of chlorinated halochemical refrigerants

R-50 (methane), R-170 (ethane), R-290 (propane), R-600 (butane), R-600a (isobutane), R-601 (pentane), R-601a (isopentane), R-601b (neopentane), R-602 (hexane), R-1150 (ethylene), R-1270 (propylene), and others; health effects, toxicity

R-744 (carbon dioxide) and others, health effects, toxicity

developmental toxicity studies of R-123 and R-124 in rabbits: groups of 20-24 female New Zealand White rabbits were naturally mated and exposed by whole-body inhalation to concentrations of 0, 500, 1,500, or 5,000 ppm v/v R-123 in air and to 0, 5,000, 15,000, or 50,000 ppm v/v R-124 for 6 hr/d during days 6-18 of gestation; in-life observations included periodic measurements of body weight, food consumption, and clinical signs; animals were sacrificed on day 30 of gestation; maternal toxicity was evidenced by reduced weight gain and food consumption during the treatment period at all exposure levels for R-123, but no developmental toxicity was seen; no maternal or developmental toxicity was seen at the 5,000 and 15,000 ppm exposure levels for R-124; maternal toxicity was indicated from a decrease in in-chamber activity and a slight reduction in food consumption during exposures to 50,000 ppm R-124, but no developmental toxicity was seen; concludes that the NOEL for developmental toxicity was 5,000 and 50,000 ppm v/v for R-123 and R-124, respectively

J. Scholz and W. Weigand (Fartwerke Hoechst AG, Germany), Zentralbl. für Arbeitsmedizin und Arbeitsschutz [Occupational Medicine and Safety], 14:129 ff, 1964 (rdb6B42)

[Frigen®] R-11, R-12, R-13B1, R-113, R-114, narcotic effect, toxicity as reported in RDB 6365

J. Scholz (Fartwerke Hoechst AG, Germany), New Toxicological Investigations of Certain Types of Freons Used as Propellants for Aerosols and Sprays, Fortschritte der biologischen Aerosolforschung [Progress in Biological Research of
Aerosols], 4:420-429, 1962 (10 pages in German, rdb5355)

[Friegen(R)] R-11, R-12, R-113, R-114, narcotic effect, toxicity

J. Scholz (Farbwerke Hoechst AG, Germany), Progress in Biological Research of Aerosols 1957-1961, proceedings of the Aerosol Congress (Stuttgart, Germany, 1961), F. K. Schattaver Verlag, Germany, 1961 (in German, rdb8170)

toxicity of fluorocarbons used as aerosol propellants (and as refrigerants)

fluorocarbon elimination from the bloodstream, toxicity

F. E. Shipway (Guy's Hospital, UK), Acetylene, Ethylene, and Propylene, Lancet, UK, 1:1126-1130, 30 May. 1925 (5 pages with 3 tables, RDB-6A82)

surgical tests of the effectiveness and toxicity of acetylene, R-1150, and R-1270 as anesthetic agents

B. B. Shugaev, Concentrations of Hydrocarbons in Tissues as a Measure of Toxicity, Archives of Environmental Health, 18:878-882, 1969 (5 pages, rdb5363)

R-600 and others, health effects, toxicity: 2-hr LC₅₀ mouse = 286,000 ppm; 4-hr LC₅₀ rat = 277,000 ppm as reported in RDB 6A83; 4-hr LC₃₀ rat = 280,000 ppm for R-600 as reported in RDB 5141

B. B. Shugaev, Distribution and Toxicity of Aliphatic Hydrocarbons in Body Tissues, Farmakol. Toksikol., Russia (then USSR), 31(3):360-363, 1968 (4 pages, rdb6A89)

R-600, health effects, metabolism, toxicity

B. B. Shugaev, Combined Action of Aliphatic Hydrocarbons, Such as Butane and Isobutylene, with Reference to Their Effective Concentration in Brain Tissue, Farmakol. Toksikol., Russia (then USSR), 30(1):102-105, 1967 (4 pages, rdb6A90)

R-600, health effects, toxicity: 2-hr LC₅₀ mouse = 286,000 ppm; 4-hr LC₅₀ rat = 277,000 ppm as reported in RDB 6A83

E. Siegel and S. Wason, Sudden Death Caused by Inhalation of Butane and Propane, New England Journal of Medicine, 323(6):1638 ff, December 1990 (rdb7451)

deaths of two children (ages 11 and 15) from inhalation of R-290 (propane) and R-600 (n-butane): concludes that although inhalation of butane and propane has been largely unreported in the United States, there is an urgent need for preventive efforts, directed at teenagers, with an emphasis on the risk of sudden death from "sniffing" hydrocarbons; abuse, health effects, toxicity

cardiac sensitization, toxicity

R-10 and R-11, ingestion toxicity as reported in RDB 5141, 5367, and 7296

J. A. Simaan and D. M. Aviado (University of Pennsylvania School of Medicine), Hemodynamic Effects of Aerosol Propellants, II. Vascular Resistance in Canine Hind Limb, Toxicology, 5(3):287-295, 1976 (9 pages, RDB7251)

R-12, R-114, and others, health effects, toxicity

J. A. Simaan and D. M. Aviado (University of Pennsylvania School of Medicine), Hemodynamic Effects of Aerosol Propellants, I. Cardiac Depression in the Dog, Toxicology, 5(2):127-138, 1975 (12 pages with 1 figure and 4 tables, RDB6123)

R-11, R-12, R-152a, and R-C318, cardiac sensitization in anesthetized mongrel dogs, health effects, toxicity: inhalation of fluorocarbons caused a depression of myocardial contractility, aortic hypotension, decrease in cardiac output, and increase in pulmonary vascular resistance; LOEL that elicited these changes are 10,000 ppm for R-11, 100,000 ppm for R-12, and 25,000 ppm for R-114; concentrations of 200,000 ppm did not influence these hemodynamic parameters for R-152a and R-C318

J. A. Simaan and D. M. Aviado (University of Pennsylvania School of Medicine), Hemodynamic Effects of Aerosol Propellants, II. Pulmonary Circulation in the Dog, Toxicology, 5(2):139-146, 1975 (8 pages, rdb6124)

R-12, R-114 and others, cardiac sensitization, health effects, toxicity

please see page 6 for ordering information

Toxicity: Indicates a 15-min LC50 rat of 274,000 ppm for R-1311; 4-hr ALC rat concentrations of 663,000 ppm for R-23, 280,000 ppm for R-124, >800,000 ppm for R-125, and >800,000 ppm for R-31-10 ("PFC-410"); 4-hr LC50 rat concentrations of 100,000-130,000 ppm for R-1281, 32,000 ppm for R-123, >800,000 ppm for R-227ea, and >800,000 ppm for R-51-14; also indicates NOAEL levels for cardiac sensitization of 50,000-100,000 ppm for R-12B1, 70,000 ppm for R-13B1, 2,000 ppm for R-1311, 300,000 ppm for R-23, 10,000 ppm for R-123, 10,000 ppm for R-124, 75,000 ppm for R-125, 90,000 ppm for R-227ea, 400,000 ppm for R-51-10, and >400,000 ppm for R-51-14; also tabulates developmental toxicity NOAEL and subchronic (13-week) inhalation toxicity NOAEL; data sources are not explicit

health effects of fluorochemical aerosol propellants (also used as refrigerants); toxicity

fluorocarbons, toxicity

F. A. Smith, W. L. Downs, H. C. Hodge, and E. A. Maynard (University of Rochester School of Medicine and Dentistry), Screening of Fluorine-Containing Compounds for Acute Toxicity, Toxicology and Applied Pharmacology (TAP), 2(1):54-58, January 1960 (5 pages, RDB5908)

R-51-12 and other fluorine-containing organic and inorganic compounds, health effects, acute toxicity

H. F. Smith, T. F. Hatch, K. H. Jacobson, M. L. Keppler, and F. Princi (National Research Council (NRC) Ad Hoc Committee) with revisions by A. J. Lehman, W. G. Fredrick, H. W. Gerarde, H. E. Stokinger, and J. A. Zapp, Jr. (NRC Committee on Toxicology), Basis for Establishing Emergency Inhalation Exposure Limits Applicable to Military and Space Chemicals, National Academy of Sciences (NAS), National Academy Press, Washington, DC, 1964 (10 pages with no figures or tables, RDB5A19)

toxicity of fluorochemicals used as aerosol propellants (and also as refrigerants); health effects

R-23 and others; mutagenicity, toxicity, biochemical studies

R. D. Stewart, P. E. Newton, E. D. Baretta, A. A. Herrmann, H. V. Forster, and R. J. Soto (Medical College of Wisconsin), Physiological Response to Aerosol Propellants, Environmental Health Perspectives (EHP), 26:275-285, October 1978 (11 pages with 10 tables, rdb6115)

R-11, R-12, R-290, and R-600a; subchronic human exposures to 1000 ppm, toxicity: exposures of healthy adult male and female volunteers to R-12 levels of up to 1,000 ppm for 8 hr/d, 5 d/wk, for 4 weeks did not produce any abnormal effects; routine hematological, clinical chemistry, EKG, pulmonary function tests, and neurological measurements were performed - as reported in RDB 5143

R. D. Stewart et al. (Medical College of Wisconsin), Acute and Repetitive Human Exposure to Isobutane and Propane, report PB-279205/LLC, National Technical Information Service (NTIS), Springfield, VA, April 1977 (available from NTIS, rdb6599)

R-290, R-600, health effects, toxicity

R. D. Stewart, A. A. Herrmann, E. D. Baretta, H. V. Forster, J. H. Crespo, P. E. Newton, and R. J. Soto (Medical College of Wisconsin), Human Exposure to Aerosol Propellants, National Technical Information Service (NTIS), Springfield, VA, 1977 (available from NTIS, rdb7620)

R-12, R-290, R-600, R-600a, and others, health effects, toxicity

Anesthesia, acute inhalation toxicity: light anesthesia produced in mice exposed to R-600 at 130,000 ppm for 25 minutes or 220,000 ppm for 1 minute as reported in RDB 6290 and 6A83; anesthesia produced in dogs by R-600 at 220,000 ppm as reported in RDB 6A83; light anesthesia induced in mice exposed to R-600a at 150,000 ppm for 60 minutes or 200,000 ppm for 17 minutes as reported in RDB 5885; R-601, and others

R-31-10, R-C41-10, mixed depressant and excitant effects, anesthesia

M. Stupfel et al., Comparative Acute Toxicity, in Male and Female Mice, of Several Air Pollutants: Automobile Exhaust Gas, Nitrogen Oxides, Sulfur Dioxide, Ozone, Ammonia, and Carbon Dioxide, C. R. Soc. Biol., 165(9):1869-1872, 1971 (4 pages, rdb5817)

R-717, R-744, R-748, R-764, health effects, toxicity

R-12 and others: initial linkage of cardiac sensitization to fatalities from use or abuse of fluor-alkane propellants also used as refrigerants (see RDB 5854); nasal inhalation of aerosols by mice

This article presents an analysis of mortality data, to determine time-dependent relations for lethal acute concentrations in various species for 20 chemicals. The maximum likelihood estimates of regression coefficients, variances and covariances and chi-square confidence predictor were determined by probit analysis of the raw data from previously published toxicity studies. The results show that the product of exposure and time (ct) is not always a good parameter for predicting mortality response (Haber's rule). The product of exposure to the power of n and time predicts the response well, where n ranges from 0.8 to 3.5 for 20 studied substances. Among them are n=2.8 for R-10, n=1.6 for R-3081, n=2.0 for R-717 (ammonia), n=3.5 for R-746 (nitrogen dioxide), n=2.0 for R-1110, and n=0.8 for R-1120. These results estimate the LC50 for a specified period from data taken for another exposure duration.

toxicity of fluoroether (FE), hydrofluoroether (HFE), and other halogenated ether candidates

toxicity tests of 51 halogenated ethers, including 36 newly-synthesized compounds, for anesthetic effects in mice: among those tested are R-236ca1 (light anesthesia at 125,000 ppm v/v), R-E245fa1 (very weak anesthetic at 100,000 ppm v/v), R-E254cb1 (convulsant at 25,000 ppm v/v), R-E254fa1 (very weak anesthetic at 50,000 ppm v/v), and R-E263fb1 (weak anesthetic properties by injection); concludes that those ethers having one hydrogen atom with at least two halogens other than fluorine or having two hydrogen with at least one bromine or one chlorine were the most potent as anesthetics [the reverse of which suggests that ethers containing only hydrogen and fluorine should have weaker anesthetic properties]

R-12, R-115, and others, health effects, toxicity

R-12 and others, health effects, toxicity

R-123, R-124, R-125, R-134a, R-141b, R-142b, R-152a, R-E170 (DE), R-225ca, R-225cb: brief review of candidate alternatives for refrigerants and other chlorofluorocarbons and halons; overview of the Programme for Alternative Fluorocarbons Toxicity Testing (PAFT); brief summaries of findings for R-123, R-124, R-125, and R-134a indicate 4-hr LC50 rat concentrations as 32,000, 262,500, >800,000, and >500,000 ppm v/v, respectively, and 5-min cardiac sensitization thresholds in dogs at 20,000, 25,000, 100,000, and 75,000 ppm, respectively

H. J. Trochimowicz (E. I. duPont de Nemours and Company, Incorporated) and T. Kawano (Daikin Industries, Limited), Subchronic Inhalation Toxicity Studies on Seven Alternative Fluorocarbons, Proceedings of the Sixth International Congress of Toxicology (Rome, Italy, 28 June - 3 July 1992), International Union of Toxicology, June 1992 (RDB5844)

R-125 and other refrigerants

R-22 and others, health effects, toxicity

R-21 and R-142b, health effects, toxicity

R-21, R-32, R-124, and others, health effects, toxicity

R-11, R-13B1 (halon 1301), R-140a (methyl chloroform), toxicity, cardiac sensitization NOEL and LOEL: summarizes tests on beagle dogs; "results showed no greater potential for cardiac sensitization among dogs having recovered from [induced] myocardial infarction as compared to normal healthy animals"

R-11, R-12, R-113, R-114, and R-115; health effects, toxicity

blood concentrations of R-11, R-12, R-113, R-114, and R-115 in unanesthetized beagle dogs based on tests using implanted catheters; no challenge epinephrine was administered; toxicity

R-290, R-600a, and others; metabolism in mice, toxicity

H. Uehleke, T. Werner, H. Greim, and M. Kramer, Metabolic Activation of Haloalkanes and Tests in Vitro for Mutagenicity, Xenobiotica, 7(7):393-400, 1977 (8 pages, rdb8182)

fluorochemical refrigerants, mutagenicity, toxicity

F. Valic and D. Beritic-Stahuljak (University of Zagreb, Croatia), Are Chlorine-Free Compounds a Solution for Health Problems Caused by Ozone-Depleting Substances?, Acta Medica Croatica, 50(2):61-63, 1996 (3 pages, rdb6497)

reviews the environmental consequences of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs); concludes that CFCs and HCFCs are not acceptable based on their potentials for ozone depletion; examines the toxicity of HFC candidates; of those found to be nonflammable, the paper suggests that the toxicity of R-125, R-134a, and R-227ea appear to be low, but have not been fully evaluated

R-125 and others, toxicity

R-12, R-22, R-502, health effects, toxicity

fluorochemical aerosol propellants (also used as refrigerants), health effects, toxicity

fluorochemical aerosol propellants (also used as refrigerants), health effects, toxicity

O. W. Van Auken and R. H. Wilson, Halogenated Hydrocarbon Induced Reduction in Coupling Parameters of Rabbit Liver and Mung Bean Mitochondria, Naturwissenschaften [Natural Science], 60:259 ff, 1973 (rdb8191)

fluorochemical refrigerants, health effects, toxicity

R-12, R-22, R-22B1, R-23, R-114, R-124, R-124B1, R-125, R-133A1, R-152a, R-226da, R-243db, R-123B1, and others; health effects, acute toxicity, and anesthetic effects in dogs; offers several generalizations, among them that completely halogenated hydrocarbons are likely to be convulsants or without anesthetic activity; based on findings by others and the new data, notes that anesthetic potency increases with halogenation or increases in the chain length (number of carbons for alkanes), either of which usually raises the boiling point as well as the molecular weight

health effects, acute toxicity, anesthetic effects and cardiac sensitization in dogs

please see page 6 for ordering information
inhalation toxicity of R-13B1, R-134a, and R-227ea: describes tests in human volunteers to validate a physiologically-based pharmacokinetic (PBPK) model for estimating chemical biodistribution; seven male subjects were exposed in a medical facility via face masks for up to 30 minutes; inhaled and end alveolar expired concentrations were measured and periodic blood samples were drawn through an inserted venous cannula; subjects were monitored via ECG, blood pressure, and pulse-rate measurements; although the tests were conducted at concentrations well below published lowest observable adverse effect levels (LOAELs), the tests with R-134a and R-227ea had to be terminated following unexpected responses; one volunteer exposed to 4,000 ppm v/v R-134a in air displayed a rapid increase in blood concentration at 2½ minutes into the exposure; he lost consciousness and both his pulse and blood pressure dropped to zero at 4 min, upon which the test was terminated and medical personnel intervened; a second subject exposed to 4,000 ppm v/v R-134a in air experienced a rapid rise in blood pressure and pulse before he signalled for termination; he was exposed again after recovery, to 2,000 ppm v/v, but his blood pressure and pulse again rose rapidly after 2½ min; both subjects recovered rapidly but reported dizziness and balance problems 6 wk post exposure; a third subject exposed to 6,400 ppm v/v R-227ea in air suffered rapid rise in pulse 3 min into exposure; report documents the details of these and additional tests as well as blood concentrations versus time during and following exposures; it discusses the unexpected results and anomalous finding of R-134a in the blood 1 hr post exposure; report concludes that no plausible mechanism is apparent for the adverse effects [Subsequent investigation of the results indicates that the reported responses probably were not due to the chemical exposures. No adverse effects were seen in other human exposures to R-134a and R-227ea at lower or higher concentrations. See RDB7C81 - RDB7C82 for further information.]

A. Vinegar and G. W. Jepson (ManTech Environmental Technology, Incorporated), Cardiac Sensitization Thresholds of Halon Replacement Chemicals Predicted in Humans by Physiologically-Based Pharmacokinetic Modelling, Risk Analysis, 16(4):571-579, 1996 (9 pages, rdb8194)

toxicity of fluorochemicals and other candidate fire suppressants also used as refrigerants; physiologically-based pharmacokinetic (PBPK) modeling

refigerants, health effects, toxicity: asserts that phosgene is formed when R-1120 (trichloroethylene) passes through burning tobacco in smoking

Y. Wang, M. J. Olson (General Motors Research Laboratories), and M. T. Baker, Interaction of Fluoroethane Chlorofluorocarbon (CFC) Substitutes with Microsomal Cytochrome P450 - Stimulation of P450 Activity and Chlorodifluoroethene Metabolism, Biochemical Pharmacology, UK, 46(1):87-94, 6 July 1993 (6 pages, RDB6545)

R-123, R-123B1, R-133a, R-124, R-134a and R-125 metabolism and toxicity: ability to stimulate cytochrome P450 activities; R-1122a (CDE) defluorination in hepatic microsomes from phenobarbital-treated rabbits; 10,000 ppm v/v R-123 doubled oxygen consumption; R-124, R-134a, and R-125 were successively less effective, increasing oxygen consumption by 50-100%

R-11, R-12, R-22, R-113, R-114, R-115, R-116, R-152a: ALC, clinical signs from inhalation, ALD, acute eye toxicity, chronic inhalation toxicity, chronic oral toxicity, chronic skin and eye toxicity, human studies; acute inhalation toxicity data for R-C318 and comparisons to the isolog hexafluorocyclbutene; acute inhalation toxicity comparison of octafluorobutene and octafluorotributen

A case history of a nonfatal accident, involving cardiac sensitization and ventricular tachycardia in a 2-yr-old female patient, from inhalation of a commercial deodorant containing the aerosol propellants (also used as refrigerants) R-290 (propane), R-600 (n-butane), and R-600a (isobutane): describes the incident and treatment, noting resolution of the arrhythmia within 48 hr; health effects and toxicity of human exposures

fluorocarbon refrigerants, health effects, toxicity

R-11, R-12, R-152a, and others; cardiac sensitization, health effects, toxicity

cardiac sensitization, health effects, toxicity

T. Watanabe and D. M. Aviado (University of Pennsylvania School of Medicine), *Subacute Inhalational Toxicity of Aerosol Propellants*, abstract 097, Pharmacologist, 17(2):192, 1975 (1 page, rdb-5A74)

R-12, R-114, and others; reduced pulmonary compliance in rats with 30 minute exposures to 40,000 ppm R-114 in air for 6 d/wk for 3 weeks as reported in RDB 5141 and 5655

W. Weigand (Farbwerke Hoechst AG, Germany), Untersuchungen über die Inhalationstoxizität von Fluorodervaten des Methan, Äthan, und Cyclobutan [Studies of the Inhalation Toxicity of Fluorinated Derivatives of Methane, Ethane and Cyclobutane], Zentralbl. für Arbeitsschutz [Occupational Medicine and Safety], 21(6):149-156, 1971 (8 pages with 5 tables, in German, rdb5365)

R-12B1, R-13, R-21, R-22, R-115, R-C318, and others, toxicity: 2-hr acute inhalation toxicity tests in rats and guinea pigs; subchronic inhalation toxicity tests in rats, guinea pigs, dogs, and cats; anesthetic effect tests in rats; 4 rats and 2 guinea pigs exposed to 600,000 ppm R-C318 for 2 hours showed normal behavior during and for the subsequent 7-day observation period; 5 rats, 2 guinea pigs, 2 dogs, and 2 cats exposed to 200,000 ppm for 3½ hr/d, 5 d/wk for 4 weeks showed no adverse effects by observation or pathological examination

reviews simple asphyxiants including R-50 (methylene), R-170 (ethane), R-702 (hydrogen), R-704 (helium), R-728 (nitrogen), R-740 (argon), R-744 (carbon dioxide), and R-744A (nitrous oxide): describes simple asphyxiants as gases that cause asphyxiation when present in concentrations high enough to lower oxygen levels, resulting in inadequate delivery of oxygen to tissues, but that are physiologically inert and do not suppress cardiac output or alter the function of hemoglobin; summarizes the physical and chemical characteristics of these substances; presents the concentrations known to produce asphyxiation and the occupational environments in which incidents and even fatalities have been reported; discusses case histories to illustrate the need for safety checks when simple asphyxiants are present and the use of self-contained breathing apparatus (SCBA) as a protective measure

cardiac sensitization, toxicity

J. H. Wills, P. Bradley, H. Kao, H. Grace, W. Hull, T. B. Griffin, F. Coulston, and E. S. Harris (Albany Medical College and NASA Manned-Spacecraft Center), *Sensitization of the Heart to Catecholamine-Induced Arrhythmia by Haloalkanes, ab-

please see page 6 for ordering information
R-11, R13B1, R-114B2 or R-114aB2, R-116, R-C318, cardiac sensitization via tracheal cannula in anesthetized guinea pigs, cats, and dogs at concentrations of up to 200,000 ppm, all resulted in sensitization with R-11 the most potent followed by R-114aB2 or R-114aB2

R-11, R-12, and others: biochemistry, health effects, metabolism, pharmacokinetics, toxicity

D. S. Young et al., Journal of the American Chemical Society, 62:1171-1173, 1940 (3 pages, rdb5A73)

R-114 and others, health effects, toxicology

R-125 and others, personal protective equipment, skin contact

E. Zelser, Hydrocarbon Ingestion and Poisoning, Compr. Ther., 5:35-42, 1979 (6 pages, rdb8122)

hydrocarbons, health effects, toxicity in humans: direct aspiration into the tracheobronchial system, rather than gastrointestinal absorption, is the major toxic mechanism - as reported in RDB 7B43

R-125 and others, personal protective equipment, skin contact

P. S. Zurer, Liver Damage Tied to CFC Substitute, Chemical and Engineering News, 25 August 1997 (5 pages with 2 figures, limited copies available from JMC as RDB7C72)

provides further information on the underlying incident and subsequent investigations in response to an article in "The Lancet" (see RDB-7C70) on exposures of workers to R-124/123 [actually R-290/124/123]: quotes R. Rubenstein (a senior staff toxicologist with the U.S. Environmental Protection Agency, EPA), on the hepatotoxicity mechanisms for R-123 and that it has "always been considered very safe when used properly"; quotes P. Hoet (one of the coauthors of the cited article) that the chronic concentrations involved were not determined but must have been high since "the workers said they were always refilling the air-conditioning system"; quotes L. R. Pohl (another coauthor of the cited article) on the metabolic processes for R-123 and R-124 on the possibility of further liver damage through an autoimmune reaction; quotes G. R. Rusch (director of toxicology for AlliedSignal Incorporated) that no "chemical has ever been more extensively evaluated than HCFC-123" and W. J. Brock (staff toxicologist for DuPont Chemicals) that tested primates (monkeys) developed liver damage, which was reversible, only when exposed to doses 20 times higher than recommended exposure limits; quotes D. Hufford (acting director of the EPA Stratospheric Ozone Protection Division) that R-123 and R-124 are well studied and can be safe if industry standards are followed, but also can be misused

E. Zuskin, Z. Skuric, and V. Valic, Effects of Common Aerosols on the Ventilatory Lung Capacity,
An Investigation of Possible Cardiotoxic Effects of the Aerosol Propellants Actons 11 and 12, Allen and Hanburys Limited, UK, 1971 (rdb8127)

Cardiac Arrhythmias Induced by Epinephrine During Inhalation of Certain Halogenated Hydrocarbons: Cardiac Sensitization, report 14-69, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 1969 (rdb6A04)

toxicity tests to determine the cardiac sensitization potential in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; for R-11 and R-113, LOEL at 5,000 ppm v/v as reported in RDB 6467; for R-13B1, LOEL at 75,000 ppm v/v as reported in RDB 6527; R-C318 and others

Compendium of Abstracts from Long-Term Cancer Studies Reported by the National Toxicology Program from 1976-1992, Educational Health Perspectives (EHP), publication NIH93-218, National Institute of Health, U.S. Department of Health and Human Services (DHHS), Research Triangle Park, NC, 101 (supplement 1), April 1993 (220 pages, RDB7744)

abstracts of toxicity studies from long-term cancer studies by the NTP from 1976-1992 for R-1082, R-11, R-20B1, R-20B2, R-20B3, R-2013, R-30, R-40B1, R-110, R-120, R-130, R-130a, R-140, R-140a, R-150, R-150a, R-160, R-160B1, R-260da, R-260dab, R-270da, R-1110, R-1120, R-1130a, R-1270, and others

Compendium of Abstracts from Long-Term Cancer Studies Reported by the National Toxicology Program, Addendum to EHP Supplements, Vol. 101, National Institute of Health, U.S. Department of Health and Human Services (DHHS), Research Triangle Park, NC, November 1996 (116 pages with no figures or tables, RDB7745)

abstracts of toxicity studies

Documentation of the Threshold Limit Values and Biological Exposure Indices (sixth edition), publication 0206, American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, 1991 (RDB5141)

This book documents the bases for threshold limit values (TLVs) for airborne concentrations of chemical substances to which workers may be exposed. These chemicals include some commonly or historically used as refrigerants, based on their chronic and/or acute toxicity. The TLV data refer to concentrations under which it is believed that nearly all workers may be repeatedly exposed without adverse health effects due to identified considerations. The TLVs are tabulated for airborne concentrations of chemical substances to which workers may be exposed. These chemicals include some commonly or historically used as refrigerants, based on their chronic and/or acute toxicity. The TLV data refer to concentrations under which it is believed that nearly all workers may be repeatedly exposed without adverse health effects due to identified considerations.
The International Agency for Research on Cancer (IARC) / Centre International de Recherche sur le Cancer (CIRC) was established in 1965 by the United Nations (UN) World Health Organization (WHO). Its mission is to coordinate and conduct research on the causes of human cancer and to develop strategies for cancer control. The agency is involved in both epidemiological and laboratory research. IARC publishes a series of monographs summarizing evaluations of chemicals. IARC classifications indicated in the Refrigerant Database as from RDB8802 are as of 15 August 1998.

Inhalation Toxicity of Chlorotrifluoromethane (Freon 13) and Perfluorocyclobutane (Freon C318), report 38-56, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1956 (rdb7633)

subchronic toxicity tests for R-13 and R-C318

Kältanlagen - Sicherheitstechnische Grundsätze für Gestaltung, Ausrüstung, Aufstellung, und Betreiben [Refrigerating Plants - Safety Principles for their Construction, Equipment, Installation, and Operation], DIN Standard 8975, Deutsches Institut für Normung e.V., Berlin, Germany (rdb4880)

widely cited reference for toxicity and other safety data

preliminary limits for submarine atmospheres, recommended by the Navy Environmental Health Center (NEHC), based on toxicity and potential decomposition by and/or corrosive effects on catalytic oxygen replenishment systems; recommended limits for 1 hr, 24 hr, and 90 days are 5,000, 1,000, and 900 ppm for R-134a and 2,000, 1,000, and 100 ppm for R-236fa; article indicates that Naval Sea Systems Command (NAVSEA) plans to reduce the R-134a limits to 2,000, 1,000, and 100 ppm, re-
Refrigerant Database

This document lists safety information in tabular form for 677 chemicals found in the work environment. Many of them are regulated by the U.S. Occupational Safety and Health Administration (OSHA). Each entry identifies the chemical by name, synonym(s), trade name(s), structural or empirical chemical formula, Chemical Abstract Service (CAS) and Registry of Toxic Effects of Chemical Substances (RTECS) numbers, and assigned U.S. Department of Transportation identification and guide numbers. It then gives the National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL), Short Term Exposure Limit (STEL), ceiling REL (REL-C), carcinogenic identification or cautions, and/or Immediately Dangerous to Life or Health (IDLH) value. It also indicates the OSHA Permissible Exposure Limit (PEL) or PEL ceiling value (PEL-C). The entries also provide physical descriptions and summary chemical and physical properties, as available. They include concentration conversion factors, molecular weight, normal boiling point; solubility in water, flash point, ionization potential, representative vapor pressure, melting or freezing point temperature, flammability limits, minimum explosive concentration, representative specific gravity, and relative density of gases referenced to air. Entries list incompatibilities, reactivities, and measurement methods for the chemicals along with recommendations for personal protection, sanitation, and respirators. The entries conclude with health hazard summaries that identify body entry routes, symptoms, first aid measures, and impacted target organs. An introduction briefly describes these data and the codes used in the listings. Appendices provide recommendations on potential occupation carcinogens, identify 13 regulated carcinogens, discuss supplementary exposure limits, discuss exposure limits for certain substances without established RELs, discuss respirator recommendations for selected chemicals, and provide miscellaneous notes. They also list more protective OSHA PELs that were vacated by a court decision and provide indices by synonym and trade names, by CAS registry numbers, and by DOT identification numbers. A number of historical, current, and candidate refrigerants are covered. They include R-10, R-11, R-12, R-12B2, R-13B1, R-21, R-22, R-30, R-30B1, R-40, R-112, R-113, R-114, R-115, R-290 (propane), R-600 (butane), R-600a (isobutane), R-601 (pentane), R-610, R-630, R-631, R-717 (ammonia), R-744 (carbon dioxide), R-764 (sulfur dioxide), R-1120, R-1130, R-7146 (sulfur hexafluoride), and others.

PAFT Member Companies Respond to Lancet Report, press release, Programme for Alternative Fluorocarbon Toxicity Testing (PAFT), Washington, DC, 27 August 1997 (3 pages with no figures or tables, limited copies available from JMC as RDB-7C73)

provides further information on the underlying incident and subsequent investigations in response to an article in "The Lancet" (see RDB-7C70) on exposures of workers to R-124/123 [actually R-290/124/123]: describes the article as "incomplete and unsubstantiated"; quotes G. R. Rusch (director of toxicology and risk assessment for AlliedSignal Incorporated and chairman of the PAFT Toxicology Committee) that overexposure to any chemical can cause a toxic response; notes that R-123 and R-124 have undergone extensive toxicity testing and have been found to not pose any adverse health effects, including acute liver toxicity, when used properly in their intended applications; notes that the cited article attempted to correlate clinical evidence of hepatitis with exposure to refrigerants, but that exposure duration and concentration were never addressed; quotes W. J. Brock (staff toxicologist for DuPont Chemicals) that linkage of liver injury to exposure to R-123 or R-124 is premature since the authors made no attempt to assess exposure concentrations or to rule out other chemicals in the smelting plant; quotes R. Rubenstein (a toxicologist with the U.S. Environmental Protection Agency, EPA) that all of the alternative refrigerants can be used safely when industry standards are followed, but that they were not adhered to in this incident.

PAFT Statement on Wright Patterson/Armstrong Laboratory Study Involving HFC-134a and HFC-227ea, press release, Programme for Alternative Fluorocarbon Toxicity Testing (PAFT), Washington, DC, 24 September 1997; posted on the Internet (http://thor.he.net/~paft), 3 October 1997 (2 pages with no figures or tables, RDB7C81)

provides further information on inhalation toxicity test responses reported in an Air-Force study (see RDB7C80) for exposures with R-13B1, R-134a, and R-227ea: notes that the wealth of experience from use of R-134a and R-227ea contradicts the results initially reported in that study; describes tests by the International Phannaceu-
The Provincial Aerosol Consortium for Toxicology Testing (PACT) and independent pharmaceutical companies at lower and higher concentrations in which no effect on blood pressure or pulse were seen; also notes animal tests relevant to human cardiovascular responses at concentrations at least 12 times higher with no adverse effects; concludes that the effects were most likely not a direct result of the chemical exposure; describes a planned clinical study, with independent oversight, to investigate the effects of prolonged exposures to R-134a and R-227ea.

PAFT Update, document H-45950, DuPont Chemicals, Wilmington, DE, November 1992 (4 pages with 2 tables, available from JMC as RDB3909)

This bulletin outlines the Programme for Alternative Fluorocarbons Toxicity Testing (PAFT), a cooperative research effort sponsored by chlorofluorocarbon producers. PAFT is designed to expedite the development of toxicity data for possible substitute fluorocarbons. The programs integrate past and present toxicological information to perform a careful risk assessment. The bulletin outlines the six main types of studies conducted by PAFT. They include acute toxicity primarily by inhalation, genotoxicity, subchronic toxicity by inhalation, developmental toxicity by teratology and inhalation, chronic toxicity and carcinogenicity by inhalation, and environmental toxicity. PAFT has initiated more than 100 individual toxicology studies. A table gives the schedule for testing, broken into phases the longest of which requires four years. Five programs are identified: PAFT I, which began in 1987, covers R-123 and R-134a. PAFT II, initiated in 1998, addresses R-141b. PAFT III, begun in late 1989, is studying R-124 and R-125. PAFT IV, established in May 1990, will examine R-225ca and R-225cb for solvent cleaning. PAFT V, established in early 1992, will examine R-32. A table summarizes key results as of November 1992 for the fluids names as well as for R-11 and R-12 for comparison. The data include ALC/LC₅₀, oral LD₅₀, cardiac sensitization thresholds, Ames assay, in vivo mutagenicity, subchronic no observed effect level (NOEL), teratogenic, chronic inhalation, and flammability data. The completion schedule and recommended exposure limits are included.

detailed reference for toxicity and other safety data; comprises volumes on "General Principles", "Toxicology", and "The Theory and Rationale of Industrial Hygiene Practice"

R-717 and others, health effects, toxicity

chlorinated refrigerants, BCFC, BHCFC, CFC, HCFC

Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) Toxicology Summaries, PAFT, Washington, DC, September 1995 (16 pages, available from JMC as RDB5C39)

Eight data sheets summarize the status and findings of the Programme for Alternative Fluorocarbon Toxicity Testing (PAFT). They outline studies of acute toxicity (short-term exposures to high concentrations, such as accidental leakages), genotoxicity (effects on genetic material, an early screen for possible carcinogenic activity), sub-chronic toxicity (repeated exposure to determine any overall toxicological effect), reproductive and developmental toxicity (teratology, assessment of the effects on the reproductive system and of the potential for causing birth defects), chronic toxicity/carcinogenicity (lifetime testing to assess late-in-life toxicity or increased evidence of cancer), and ecotoxicity (assessment of potential to affect living organisms in the environment). Toxicology summaries for R-32, R-123, R-124, R-125, R-134a, and R-141b as well as a combined summary for R-225ca and R-225cb indicate that all have low or very low toxicity. Test results show them not to be genotoxic and, except for the R-225 isomers, also not developmental toxicants. The findings show that R-225ca produced effects on the liver of rodents and a minor effect in a primate at 650-1,000 ppm. Exposures to R-225cb in the range of 1,000 to 5,000 ppm resulted in only marginal effects in rodents or a primate. Additionally, R-123 was found to have low acute dermal and inhalation toxicity, but caused an increased incidence of benign - but not life threatening - tumors in animals following long-term exposures. R-134a and R-141b also caused an increased incidence of benign - but not life threatening - tumors in animals following long-term exposure to high concentrations. A Glossary of Terms is provided.
The Registry of Toxic Effects of Chemical Substances (RTECS(R)), computerized database, National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH, updated quarterly since June 1971 (see synopsis below for availability, rdb-4450)

The Registry of Toxic Effects of Chemical Substances, more widely known by the trademarked acronym RTECS(R), is a database of toxicologic information originally identified as the "Toxic Substances List" (TSL). RTECS is compiled, maintained, and updated by NIOSH pursuant to the Occupational Safety and Health Act of 1970. The database is a compendium of data extracted from the open scientific literature on more than 120,000 substances. They include most chemicals previously and currently used as refrigerants. Six types of toxicity data are included, namely primary irritation, mutagenic effects, reproductive effects, tumorigenic effects, acute toxicity, and other multiple-dose toxicity. Specific numeric toxicity values such as LC50, LD50, TC50, are noted with the species studied, exposure duration, and route of administration. A coded bibliographic source is included for most data to enable access to the cited studies. The actual data have not been evaluated by NIOSH. RTECS also includes chemical identification data and special reviews, including exposure limits and carcinogenicity assessments. It also includes information on regulatory requirements, NIOSH-generated data, and notations on U.S. Government program data tracking and sources. The database records consist of coded data that can be expanded, by the accessing software, to readable form. Quarterly updates to the database can be leased from the National Technical Information Service (NTIS). RTECS is more commonly accessed through a number of on-line services, among them the National Library of Medicine (NLM) TOXNET System, the Canadian Centre for Occupational Health and Safety (CCOHS) CCINFOLine system, and the European Space Agency (ESA) Informational Retrieval Service (IRS), and commercial sources. They include the Chemical Information Service (CIS), Dialog, Science and Technology Network (STN, available in North America through the Chemical Abstract Service, CAS), and others. It also is available on the CHEM-BANK(TM) compact disk from SilverPlatter Information Limited (Norwood, MA, USA, and London, UK) and TOMESPLUS(TM) from Micromedex Incorporated (Denver, CO, USA).

Report of Safety Concerns, press release, The Trane Company, La Crosse, WI, 25 August 1997 (3 pages with no figures or tables, limited copies available from JMC as RDB7C71)

This guide provides further information on the underlying incident and subsequent investigations in response to an article in "The Lancet" (see RDB-7C70) on exposures of workers to R-124/123 [actually R-290/124/123]: notes that all of the workers fully recovered; quotes R. Rubenstein, a toxicologist with the U.S. Environmental Protection Agency (EPA), that the alternative refrigerants involved can be used safely and suggestion that incorrect handling practices resulted in hazardous conditions is "outlandish"; quotes W. R. Brock, manager of fluorochemical toxicology for DuPont Chemicals, that the recommended exposure limits were exceeded for a long period of time and that any chemical can be "dangerous" if not handled properly; quotes J. M. Calm, and Independent engineering consultant, that numerous violations of accepted safety practices were involved and that the conditions were not typical; documents further details from these individuals; concludes that all refrigerants can be used safely and that all pose risks without regard to appropriate practices, as appears to have been the case in the reported exposures

reference for toxicity and other safety data for fluorinated refrigerants and other chemicals

This standard prescribes a laboratory test method for rapid determination of the sensory
irritant potential for a wide range of airborne chemicals, including refrigerants and refrigerant blends. The procedure quantifies the concentration of airborne irritant that produces a 50% decrease in the respiratory rate (RD₅₀) in mice, based on a dose-response curve constructed from tests conducted for a range of concentrations. The RD₅₀ may be used to estimate the threshold limit value (TLV) for man, but does not address discomfort from odors. The standard outlines the significance and use of the method; details the required apparatus, reagents, and test animals; and identifies associated hazards and limitations. It outlines and schematically illustrates the procedure, including required steps for sample preparation, calibration, pretest conditioning, and selection of test parameters. It then presents the actual test procedure and methods to interpret the results. It also identifies the minimum information to be recorded and concludes with a nonmandatory list of accepted apparatus and suppliers.

maximum allowable concentration (MAC) for R-717 (25 ppm v/v for 60 days continuous exposure and 400 ppm for 1 hour) and others as reported in RDB 5340

ERPG: R-10, R-30, R-40, R-401, R-630, R-717, R-764, R-1113, R-1114; WEEL: R-32, R-124, R-125, R-134a, R-141b, R-142b, R-143a, R-152a, R-E170, R-1113; definitions, history

Two-Week Inhalation Toxicity Study of FC-132b and FC-124 in Rats, TSCAT report OTS-0530590, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 8 October 1976 (rdb-7266)

R-124, R-132b, health effects, toxicity

Tab Biol Per, 3:231-296, 1933 (65 pages in German, rdb72A3)

LC₅₀ human of 5,000 ppm v/v for R-717 (ammonia); LC₅₀ human of 90,000 ppm v/v for R-744 (carbon dioxide) - as reported in RDB 5340

report 23-45, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1945 (rdb-6511)

R-12, R-23, and others, acute inhalation toxicity: guinea pigs were exposed to 30,000 ppm R-23 for 6 hr and no signs toxicity or gross or microscopic pathological changes were noted as reported in RDB 5604

report 354-69, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1969 (rdb6274)

toxicity, cardiac sensitization in dogs: R-142b NOEL > 25,000 ppm, EC₅₀ > 50,000 ppm as reported in RDB 5869 and 6467; also R-502 NOEL > 50,000 ppm, EC₅₀ > 100,000 ppm as reported in RDB 5966

R-10

E. M. Adams, H. C. Spencer, V. K. Rowe, D D. McCollister, and D. D. Irish, *Vapor Toxicity of Carbon Tetrachloride Determined by Experiments on Laboratory Animals, Archives of Industrial Hygiene and Occupational Medicine, 6:50-66, 1952* (7 pages, rdb6509)

R-10, health effects, toxicity, LC₅₀

Emergency Response Planning Guidelines - Carbon Tetrachloride, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1995

R-10, tetrachloromethane, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

R-11

R-11, health effects, toxicity

R-11, health effects, toxicity

R-11, cardiac sensitization, health effects, toxicity

R-11, health effects, toxicity

R-11, cardiac sensitization, circulatory abnormalities, health effects, toxicity

C. E. Barras, report 648-74, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, October 1974 (RDB5C53)

R-11, acute inhalation toxicity: 4-hr LC50 rat = 26,200 ppm; mild hyperactivity of for the first 2 hr of exposure at concentrations <24,900 ppm; occasional weight loss for 1 day following exposure - as reported in RDB 5873

Toxicity tests of R-11 and R-12 biochemistry and metabolism in dogs: very little of the inhaled dose appeared to be metabolized as reported in RDB 5C72

R-11, biochemistry, health effects, metabolism, pharmacokinetics, toxicity

R-11, dermal contact toxicity, irritation as reported in RDB 5141

R-11, health effects, toxicity: nonfatal accident involving human exposure; healthy man mistook a bottle of R-11 in a refrigerator for water and drank it, resulting in freezing, tissue necrosis, and multiple perforations of the stomach - as reported in RDB 7414

D. B. Hood, *Eye Irritation*, report 107-64, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 4 September 1964 (rdb5C55)

R-11, dermal contact toxicity, irritation as reported in RDB 5141

R-11, chronic inhalation toxicity as reported in RDB 5141

R-11, mutagenicity, Ames Assay, toxicity as reported in RDB 5141

D. M. Krentz, P. J. Lardear, and R. C. Graham, untitled toxicity review for Freon(R) 11 (methane, trichlorofluoro-), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 17 February 1992 (RDB5873)

R-11, summary of published and unpublished toxicity literature

S. D. Morrison, report 53-61, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1961 (rdb65H3)

R-11, inhalation, acute toxicity: 4-hr ALC rat = 66,000 ppm v/v as reported in RDB 65H1

R-11, toxicity: bioassays in mice and rats found R-11 to not be carcinogenic when administered orally as reported in RDB 7414

S. Niazi and W. L. Chiou, *Fluorocarbon Aerosol Propellants IV: Pharmacokinetics of Trichloro-

R-11, biochemistry, elimination, health effects, toxicity

S. Nick, Inhalation Toxicity of Freon(R) 11, report 71-64, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 17 June 1964 (RDB5C56)

R-11, inhalation toxicity as reported in RDB 5141

summary of toxicity, ecotoxicity, and environmental fate, and ecological effects of R-600a (isobutane), R-601 (n-pentane), R-601a (isopentane), R-601b (neopentane), cyclopentane, 2-methylpentane, 2,2-dimethylbutane, and 2,3-methylbutane based on a review of published and unpublished studies

J. W. Sarver and D. A. Snee, Washout Time of Freon(R) 11, report 349-70, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 11 August 1970 (RDB5C59)

R-11, inhalation toxicity as reported in RDB 5141

H. Sherman, 90-Day Feeding in Rats and Dogs with Freon(R) 11, report 69-72, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 18 February 1972 (RDB5C57)

R-11, ingestion toxicity by ingastrophic administration: no abnormality in results of tests of hematologic, hepatic, or renal values; a slight increase in urinary fluorides was statistically not significant - as reported in RDB 5141 and 5C72

R. D. Stewart et al. (Medical College of Wisconsin), Acute and Repetitive Human Exposure to Fluorochloromethane [trichlorofluoromethane], report PB-279203/LLCl National Technical Information Service (NTIS), Springfield, VA, 1 December 1975 (available from NTIS, rdb6598)

R-11, health effects, toxicity

R-11, cardiac sensitization, circulatory abnormalities, health effects, toxicity

G. J. Taylor, Archives of Environmental Health, 30:349 ff, 1975 (rdb5C68)

R-11, cardiac sensitization, circulatory abnormalities, health effects, toxicity

G. Thomas, Narcotic Effects of Acute Exposures to Trichloromonofluoromethane (Freon 11), Transactions of the Association of Indian Medical Officers, 15(3):105-106, 1965 (2 pages, rdb8178)

R-11, anesthesia, narcosis, health effects, toxicity

R-11, health effects, toxicity: inhaled R-11 is eliminated from the body rapidly as reported in RDB 7414

R-11: biochemistry, health effects, metabolism, pharmacokinetics, toxicity

NCI Carcinogenesis Bioassay Experimental Design Status Report, Contract Number 723278, Agent Number CO4637, National Cancer Institute (NCI), Bethesda, MD, 53, 22 February 1978 (rdb-5C61)

R-11, tumor incidence, toxicity as reported in RDB 5141

Toxicity Summary - Genetron(R) 11 (Trichloromonofluoromethane), Acute Toxicity and Cardiotoxicity, AlliedSignal Incorporated (then Allied Corporation), Morristown, NJ, March 1978 (rdb-5144)

R-11

R-11, summary of toxicological and ecological information

R-12

T. Astrom et al., Exposure to Fluorocarbons During the Filling and Repair of Air-Conditioning Systems in Cars - A Case Report, Scandinavian

R-12, health effects, toxicity: human occupational exposures involving R-12

Tests in humans of the acute toxicity of R-12 by inhalation to determine safe hygienic standards for single, brief exposures: volunteers were exposed to concentrations of 0 (control), 1,000 and 10,000 ppm R-12 in air for 2½ hr; no adverse effects were found at 1,000 ppm by clinical observations, laboratory tests, subjective impressions, electrocardiogram monitoring, and tests of psychomotor skills

Fatal human exposure involving R-12 from abusive use of aerosol products

R-12, health effects, acute inhalation toxicity, and anesthetic effect; examines the convulsant effects of R-12 in cats and concludes that the tremors seen were the result of release phenomena, indicating a type of depressant with low toxicity rather than a true convulsant - as reported in RDB 5828

Fatal human exposure involving R-12, sudden sniffing death from abusive use of aerosol products

I. K. Chemen'kii and V. A. Shugaev, Toxicity of Freon 12 with Consideration of Its Decomposition Products, Gigiena Truda i Professional'nye Zabolevaniya [Labor Hygiene and Occupational Diseases], Russia (then USSR), (7):52 ff, 1974 (in Russian, rdb7528)

R-12, health effects, toxicity

R. Culik and H. Sherman, Teratogenic Study in Rats with Dichlorodifluoromethane (Freon 12), reported 206-73, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 1973 (rdb8135)

R-12, teratogenicity, toxicity - as reported in RDB 5367

C. W. Eddy and F. D. Griffith (E. I. du Pont de Nemours and Company, Incorporated), Metabolism of Dichlorodifluoromethane C14 (Freon(R) 12 C14) by Rats, presented at the AIHA Conference (Toronto, Canada, May 1971), American Industrial Hygiene Association (AIHA), Fairfax, VA, 1971 (rdb65H9)

R-12, metabolism, toxicity: radio-labeled R-12 study; approximately 2% of oral dose metabolized to carbon dioxide and ½% excreted in urine; R-12 and its metabolites were eliminated within 30 minutes - as reported in RDB 65H1

Fatal human exposure involving R-12 from abusive use of aerosol products, sudden sniffing death

R-12 and others, health effects, oral toxicity: dietary level of R-12 that causes no toxicological effect in rats is estimated to be 0.3% as reported in RDB 5141

R. A. Kehoe, Report on Human Exposure to Dichlorodifluoromethane in Air, The Kettering Laboratory, University of Cincinnati, OH, June 1943 (rdb5C45)

R-12, toxicity: acute exposures of humans, for 11-80 minutes to concentrations of 40,000-

cardiac effects of R-12 aerosol propellant (also used as a refrigerant), health effects, toxicity

cardiac effects of R-12 aerosol propellant (also used as a refrigerant), health effects, toxicity

M. A. Lee and R. C. Graham, untitled toxicity review for Freon® 12 (methane, dichlorodifluoro-), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 19 February 1992 (RDB-7525)

R-12, summary of published and unpublished toxicity literature

R-12, cardiac sensitization

R-12, cardiac sensitization

R-12, cardiac sensitization, toxicity as reported in RDB 5367

Y. Lessard, S. Desbrousses, and G. Paulet, Rôle de l’adrénaline endogène dans le déclenchement de l’arythmie cardiaque par le dichlorodifluoro-
Data on Dichlorodifluoromethane, Department of Toxicology report MA-250-82-2, AlliedSignal Incorporated (then Allied Corporation), Morristown, NJ, 11 February 1983 (11 pages with no figures or tables, RDB6138)

review of published literature on the health effects and toxicity of R-12: 30-min LC50 is 760,000-800,000 ppm in guinea pigs, mice, rabbits, and rats; one study with anesthetized rats exposed at 360,000 or 390,000 (conflict in document) ppm resulted in apnea for exposures of 15.6 min and death for exposures of 30 min; this study is discussed with indication that the death may have been due to the anesthetic; cardiac sensitization level with exogenous epinephrine is 70,000-90,000 ppm in dogs and 370,000 ppm in cats; arrhythmias were not seen in mice even at 400,000 ppm; reviews subchronic, chronic, reproductive, and biochemistry studies in animals as well as studies with humans; concludes that R-12 "has shown a low level of toxicity," "has a long, satisfactory history of use in consumer products and immersion freezing of food," and "its presence as a low-level contaminant in food-grade hydrochloric acid should not represent a health hazard"

Dogs, monkeys, and guinea pigs were exposed to air containing 200,000 ppm R-12 by volume for 7-8 hr/d, 5 d/wk and 4 hr/d, 1 d/wk for a 12-week period. No fatalities occurred among the dogs and monkeys; two of 16 treated guinea pigs and one of 16 controls died, from which the report concludes that there was "no effect of exposure on fatality." The document identifies symptoms observed during exposure, which included generalized tremor in dogs and mild to moderate tremor in monkeys. The maximum severity was reached in the first 10-20 minutes, suggesting development of tolerance during and for subsequent exposures. The report documents the test methods and observed responses, including slight to moderate inhibition of weight and growth in the first 2-3 weeks, which were subsequently regained and maintained similar to control animals. Like patterns were identified in red blood cell increases. Autopsies showed no treatment-related gross pathology. No differences were observed in the pregnancies and offspring of the guinea pigs. The report concludes that "the possibility of public health and accident hazards resulting from exposure to [R-12] when used as a refrigerant are remote."

E. H. Schjötz, Freezing Agent Dichlorodifluoromethane from Point of View of Industrial Hygiene, Nordisk Hygienisk Tidskrift, 27:230 ff, 1946; republished in French as L'agent frigorifique freon 12 (dichlorodifluorométhane) du point de vue de l'hygiène industrielle, Chimie Ind., 52:459 ff, 1947 (rdb7220)

R-12, health effects, toxicity

H. S. Sherman, Long-Term Feeding Studies in Rats and Dogs with Dichlorodifluoromethane (Freon(R)-12 Food Freezant), report 24-74, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1974 (21 pages, rdb7433)

R-12, ingestion toxicity: as reported in RDB 7414

- R-12, chronic and reproductive toxicity: not teratogenic to rats, did not interfere with reproduction and lactation, did not effect survival or clinical laboratory parameters (hematology, urinalysis, and liver function); no evidence of toxicity in dogs after administered in feed at 10 mg/kg and 3,000 mg/kg for two years - as reported in RDB 5143

H. S. Sherman and J. R. Barnes, Feeding Studies with Dichlorodifluoromethane (Freon(R)-12 Food Freezant), report 12-66, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1966 (18 pages, rdb65H8)

R-12, ingestion toxicity: 90-day feeding study in rats and dogs; no clinical or histopathologic signs of toxicity; urinary fluoride and plasma alkaline phosphatase levels were higher than for controls but within normal ranges; blood and urine analytical results were comparable between treated animals and controls in dogs - as reported in RDB 65H1 and 7414

R-12, health effects, toxicity: 3-hr ALC rat = 620,000 ppm v/v as reported in RDB 7414

R. D. Stewart, A. A. Herrmann, E. D. Baretta, H. V. Forster, J. H. Crespo, P. E. Newton, and R. J. Soto (Medical College of Wisconsin), *Acute and Repetitive Human Exposure to Difluorodichloromethane* [dichlorodifluoromethane], report PB-279204/LLC, National Technical Information Service (NTIS), Springfield, VA, April 1976 (available from NTIS, RDB6486)

R-12, health effects, toxicity

Acute Oral Toxicity Of Freon® 12, Dichlorodifluoromethane, report on project MR-312-7, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1955 (rdb7527)

Toxicity tests of R-12 in rats for determine ingestion toxicity: oral ALD rat >1,000 mg/kg (based on the maximum feasible dose dissolved in peanut oil) as reported in RDB 7414 and 7525

R-12, summary of toxicological and ecological information

Report on Dichlorodifluoromethane, Miscellaneous Hazard Report Number 2256, Underwriters Laboratories Incorporated, Northbrook, IL (then Chicago, IL), 10 October 1931 (RDB6871)

R-12, flammability, toxicity, decomposition

R-12B1

R-12B1, health effects, toxicity

R-12B1, mutagenicity, toxicity: mixed positive and negative results depending on test as reported in RDB 65G1

R-13B1

R-13B1, cardiac sensitization, health effects, toxicity

R-13B1, toxicity

R-13B1, health effects, toxicity

R-13B1, cardiac sensitization, toxicity

R-13B1, health effects, toxicity

Report 45-71, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1971 (rdb7261)

R-13B1, toxicity tests to determine the cardiac sensitization potential in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; LOEL at 75,000 ppm v/v R-13B1 in air as reported in RDB 6527

R-1311

D. E. Dodd, R. E. Kinkead, R. E. Wolfe, H. F. Leahy, J. H. English, and A. Vinegar (ManTech Environ-
A. D. Mitchell, Genetic Toxicity Evaluation of Iodotrifluoromethane (CF$_3$I), Results of In Vivo Mouse Bone Marrow Erythrocyte Micronucleus Testing, Genesys Research Incorporated, Research Triangle Park, NC, 1995 (rdb65G4)

R-1311, subchronic inhalation toxicity: exposures at 20,000, 40,000, and 80,000 ppm for 2 hr/d, 5 d/wk, for 90 days: found alteration in thyroid hormone levels indicated as specific to rats; no precancerous cell changes were noted - as reported in RDB 65G1

R-1311, trifluorolodomethane, mutagenicity, toxicity: no significant changes were seen in the male's premature red blood cells (PRBCs) at 25,000, 50,000, or 75,000 ppm; significant changes were observed in the results were seen in the female's PRBCs exposed to 25,000 ppm and above - as reported in RDB 65G9

A. D. Mitchell, In Vivo Bone Marrow Erythrocyte Micronucleus Testing of Iodotrifluoromethane (CF$_3$I), report on project 94037, Genesys Research Incorporated, Research Triangle Park, NC, July 1994 (rdb65G6)

R-1311, trifluorolodomethane, mutagenicity, toxicity: mixed positive and negative results for potential for changes in genetic material depending on test as reported in RDB 65G1

R-1311, trifluorolodomethane, mutagenicity, toxicity: mixed positive and negative results for potential for changes in genetic material depending on test as reported in RDB 65G1

R-1311, subchronic inhalation toxicity: exposures at 20,000, 40,000, and 80,000 ppm for 2 hr/d, 5 d/wk, for 90 days: found alteration in thyroid hormone levels indicated as specific to rats; no precancerous cell changes were noted - as reported in RDB 65G1

toxicity of R-1311

Acute Inhalation Toxicity Study of Iodotrifluoromethane in Rats, report on project 1530-001 study 2, ManTech Environmental Technology, Incorporated, March 1994 (rdb65G2)

R-1311, trifluoriodomethane, toxicity: 15-min LC$_{50}$ rat 274,000 ppm; animals showed drowsiness, drooling, and heavy breathing at concentrations >100,000 ppm - as reported in RDB 6208 and 65G1

Comparing the Toxicology of Triodide(TM) and Halon 1211, HTL/KIN-Tech Division, Pacific Scientific, Duarte, CA, May 1996 (6 pages with 4 tables, RDB65G9)

R-12B1, R-1311, toxicity: acute inhalation toxicity, cardiac sensitization, mutagenicity, decomposition product toxicity in fires with comparisons of R-1311 to R-12B1, R-13B1, R-23, R-227ea, R-31-10, and R-51-14

Toxicology of Triodide(TM), HTL/KIN-Tech Division, Pacific Scientific, Duarte, CA, April 1996 (3 pages with no figures or tables, RDB65G1)

R-1311, toxicity: 15-min LC$_{50}$ rat 274,000 ppm; cardiac sensitization NOAEL at 2,000 ppm and LOAEL at 4,000 ppm; mixed positive and negative results for potential for changes in genetic material depending on test; alteration in thyroid hormone levels, but no pre-cancerous cell changes were noted in subchronic inhalations tests

unpublished data, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, July 1994 (rdb65G3)

R-1311, cardiac sensitization study, toxicity: NOAEL at 2,000 ppm; LOAEL at 4,000 ppm - as reported in RDB 65G1

please see page 6 for ordering information
R-14

R-20

A. G. Levy and T. Lewis, *Heart Irregularities, Resulting from the Inhalation of Low Percentages of Chloroform Vapor, and their Relationship to Ventricular Fibrillation*, *Heart*, 4:319-378, 1913 (60 pages, rdb6560)

R-20, historic identification of cardiac sensitization, toxicity

R-20, cardiac sensitization, toxicity

R-20B3

Occupational Safety and Health Guideline for Bromoform, National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH; Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Washington, DC, 1992 (6 pages with no figures or tables, available from GPO, also available from JMC as RDB5C47)

R-20B3, toxicity; chemical and physical properties, reactivity, flammability, exposure limits, health hazard information, exposure sources and control methods, medical monitoring, workplace monitoring and measurement, personal hygiene, storage, spills and leaks, special requirements, respiratory protection, personal protective equipment, references

R-21

Toxicity tests to determine the cardiac sensitization potential of R-21 in beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; marked response in 2 of 12 dogs at 10,000 ppm v/v in air [deemed a LOEL] as reported RDB 7414

R-21, dichlorofluoromethane, health effects, toxicity: 4-hr ALC rat = 49,900 ppm v/v as reported in RDB 7414

R-22

D. Anderson and C. R. Richardson, *Arcton 22: A Second Cytogenetic Study in the Rat*, report CTL/P/445, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 3 May 1979 (rdb5924)

R-22, health effects, toxicity

R-22, health effects, toxicity

R-22, health effects, toxicity

R-22, health effects, toxicity, mutagenicity, positive Ames assay as reported in RDB 5923

I. F. Carney, *Arcton 22 (Chlorodifluoromethane). Relationship Between Blood Levels and Inhaled Concentrations in Anesthetized, Artificially-Ventilated Rats*, report CTL/R/422, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1977 (rdb6479)

R-22, health effects, toxicity, uptake and metabolism studies

Accident from escape of 0.9-1.8 tonnes (2,000-4,000 lb) R-22 resulted in death to a 24 year old male by cardiac arrest; victim was the assistant manager for a skating rink located in the 150-
store, Dimond Center Shopping Mall in Anchorage, Alaska; victim was wearing a respirator that was ineffective; two coworkers also were hospitalized, one in critical condition, for oxygen deprivation; a total of 54 people were taken to the hospital for treatment; they included a number of swimmers rescued from a pool in the mall, where the refrigerant cloud "hovered close to the pool water" and reportedly looked like steam; responding personnel found refrigerant escaping from a 9.5 mm (3/8") high pressure line; article includes an annotated floor plan of the accident site

P. W. Grube and R. C. Graham, untitled toxicity review for chlorodifluoromethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 March 1990 (28 pages, RDB5565)

R-22, summary of published and unpublished toxicity literature

E. C. M. Hodge, D. Anderson, I. P. Bennett, and T. M. Weight, Arcton 22: Second Dominant Lethal Study in the Mouse, report CTL/R/450 (revised), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 9 November 1979 (rdb5927)

R-22, health effects, toxicity

R-22, health effects, toxicity

D. F. Krahn, Mutagenic Activity of Methane, Chlorodifluoro- in the Salmonella Microsome Assay, report 577-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1977 (rdb6481)

R-22, health effects, toxicity, mutagenicity, positive Ames assay as reported in RDB 5923

R-22, health effects, toxicity

R-22, summary of published and unpublished toxicity literature

M. H. Litchfield and E. Longstaff (Imperial Chemical Industries (ICI) plc, UK), The Toxicological Evaluation of Chlorofluorocarbon 22 (CFC 22) [sic, HCFC-22], Fundamentals of Chemical Toxicology, 22(6):465-475, 1984 (11 pages with 1 figure and 7 tables, RDB5923)

R-22, detailed review of acute, subchronic, and chronic toxicity studies: inhalation, mortality, uptake and metabolism, mutagenicity (R-22 "can be assessed as a bacteria-specific mutagen on the evidence of the Ames test, but it did not exhibit any consistent mutagenic activity in other assay systems"), reproductive toxicity, carcinogenicity

R-22, health effects, toxicity, positive Ames assay as reported in RDB 5923

fluorochemical refrigerants, safety, impacts

R-12 and R-22, health effects, toxicity, mutagenicity in both the presence and absence of metabolic activation at 330,000, 670,000, and 1,000,000 ppm R-22, no mutagenic activity was found as reported in RDB 5923

R-22, health effects, toxicity

R-22, health effects, toxicity

please see page 6 for ordering information
and Its Fate in Rabbit and Mouse, Toxicology and Applied Pharmacology (TAP), 59(1):64-70, 1981 (7 pages, rdb5739)

R-22, Inhalation toxicity, uptake and metabolism studies in the rabbit: 30-min MLC (ALC) rabbit = 300,000 ppm, 30-min LC50 mouse = 280,000 ppm as reported in RDB 5923

A. G. Salmon, S. K. Basu, M. Fitzpatrick, and J. A. Nash, Arcton 22: Metabolism Study in Vivo in Rats and in Vitro, report CTL/P/438, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1979 (rdb6484)

R-22, health effects, toxicity

R-22, health effects, toxicity, epidemiological study of workers exposed to chlorofluorocarbons including R-22 found no increase in mortality due to heart, circulatory, or tumor disorders as reported in RDB 5923

D. J. Tinston, I. S. Chart, M. J. Godley, C. W. Gore, B. A. Gaskell, and M. H. Litchfield, Chlorodifluoromethane (CFC 22): Long-Term Inhalation Study in the Mouse [HCFC-22], report CTL/P/547, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1991 (rdb6487)

R-22, chronic health effects, toxicity as reported in RDB 5923

D. J. Tinston, I. S. Chart, M. J. Godley, C. W. Gore, M. H. Litchfield, and M. Robinson, Chlorodifluoromethane (CFC 22): Long-Term Inhalation Study in the Rat [HCFC-22], report CTL/P/548, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1981 (rdb6488)

R-22, chronic health effects, toxicity as reported in RDB 5923

D. J. Tinston, unpublished data, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1976 (rdb6127)

R-22, acute toxicity as reported in RDB 5865 and 5923

E. W. Van Stee and E. E. McConnell, Studies of the Effects of Chronic Inhalation Exposure of Rabbits to Chlorodifluoromethane, Environmental Health Perspectives (EHP), 20:246-247, 1977 (2 pages, rdb6490)

R-22, health effects, toxicity

Assistant Manager at Ice Rink Asphyxiated by an Oxygen-Deficient Atmosphere, Alaska, May 20, 1991, Fatal Accident Circumstances and Epi-
Refrigerant Database

reported. R-22 is rapidly equilibrated in tissues after inhalation, and is eliminated from the blood in expired air, with a half life of only a few minutes. Blood concentrations are linearly correlated with inhalation concentrations over a wide range, but metabolism occurs in only minor amounts if at all. The report indicates that R-22 has an extremely low order of acute toxicity, and that concentrations exceeding 200,000 ppm v/v are required to produce a lethal effect. The report reviews cardiovascular studies and cites a cardiac sensitization NOEL (0/12) to adrenaline for male beagles of 24,700 ppm and a LOEL (2/12) of 50,000 ppm with. R-22 showed no adverse effects on fertility in animal studies and was not teratogenic in rabbits at doses up to 50,000 ppm. A low incidence of anophthalmia (congenital absence of eyes) and microphthalmia (abnormally small eyes) combined (10 fetuses in 383 litters) was found when groups of 400 pregnant rats were exposed to 50,000 ppm. Although statistically significant, these findings and those of subsequent studies were deemed to not threaten the health of human beings occupationally exposed at or below recommended exposure limits. Most in vitro tests of R-22 are negative and a positive response in the Ames test is consistent with occurrence of bacteria-specific metabolic pathways. Only minimal or no effects were observed chronic exposures of rats and mice for 4-131 weeks. A slight decrease in body weight gain and a small increase in liver and kidney weight occurred with an exposure level of 50,000 ppm. The only exception was a limited study in rats, mice and rabbits which reported changes in the blood, liver, lung and nervous system in animals exposed to 14,000 ppm over a ten month period; these findings were not confirmed in subsequent studies. R-22 did not produce neoplastic changes in female rats and male and female mice exposed to concentrations as high as 50,000 ppm. In one study in male rats, a concentration of 50,000 ppm was associated with an increase in the number of fibrosarcomas and Zymbal-gland tumors; they occurred late in the study and were not considered relevant to humans. Lower concentrations (10,000 ppm and below) did not increase tumor rates in any study. The assessment concludes that R-22 does not constitutes a carcinogenic hazard to man. The toxicological activities described are unlikely to be due to the formation of reactive intermediates. Although not a skin sensititizer, liquid R-22 in contact with skin causes local freezing. Reports on adverse health effects from R-22 are rare and are consistent with findings in experimental animals. Permissible occupational exposure limits vary between 500-1000 ppm (8 hr TWA) by country; the assessment judged these limits to provide adequate health protection.

concludes that the evidence for carcinogenicity of R-22 to humans is inadequate based on a study of 539 refrigeration workers exposed to various refrigerants, including R-22, for at least six months with follow up for up to 30 years: six deaths occurred from cancer and two of them from lung cancer, compared to statistical expectation of 5.7 and 2, respectively; summarizes tests for carcinogenicity in rats by oral administration and in mice and rats by inhalation of R-22; one rat study yielded no increase in tumor incidence while a mouse study gave inconclusive results for males and negative results for females; a third study in rats was deemed inadequate; a fourth found that males exposed to the highest concentration had a marginal increase in the incidence of spontaneous fibrosarcomas and Zymbal-gland tumors, but obtained negative results for females; data examined on the genetic and related effects of R-22 found insufficient indications in humans; R-22 did not induce dominant lethal mutations in rats, chromosomal aberrations in bone-marrow cells of mice treated in vivo, unscheduled DNA synthesis in human cells in vitro, mutation in cultured Chinese hamster V79 cells, or mutation or mitotic gene conversion in yeast, either after direct exposure or in a host-mediated assay; R-22 was found to be mutagenic to plants and bacteria.

identifies potential routes of exposure to R-22 from use in refrigeration and air conditioning as releases into the atmosphere, resulting in widespread, low-level human exposures, and from occupational exposure during its production and use; summarizes R-22 tests for carcinogenicity; no increase in tumor incidence was observed in rats after oral administration by gavage; results were inconclusive for males and negative for females for mice exposed in an inhalation study; male rats receiving the highest dose in an inhalation study showed increase incidence of fibrosarcomas and Zymbal-gland tumors; negative results were obtained for female rats; R-22 causes malformations of the eyes of fetal rats, but has no reproductive effect in male.
rats and does not cause prenatal toxicity in rabbits following exposure by inhalation; R-22 was found to be mutagenic to salmonella typhimurium in the presence and absence metabolic activation; it does not induce mutation or gene conversion in yeast, DNA damage or mutation in cultured mammalian cells, or chromosomal damage in bone marrow; R-22 does not induce dominant lethal mutations in mice or rats treated in vivo; no data were available to evaluate the reproductive effects or prenatal toxicity of R-22 to humans; a study of workers exposed to R-22 and other fluorochemicals was deemed to be uninformative with regard to the carcinogenic hazard of this chemical; report concludes that there is limited evidence of the carcinogenicity of R-22 to experimental animals, but inadequate evidence of carcinogenicity to humans.

R-22, safety, toxicity

R-22, Occupational Health Guideline (OHG), Occupational Safety and Health Guideline (OSHG), physical data, reactivity, flammability, exposure limits, health hazard information, toxicity, emergency procedures, medical monitoring, workplace monitoring and measurement, personal hygiene, storage, spills and leaks, emergency planning and community right-to-know requirements, hazardous waste management requirements, respiratory protection, personal protective equipment, references

R-23

R-23, toxicity

R-23, toxicity

This study reports tests of R-23 for acute cardio-toxic, anesthetic, and central nervous system effects in primates (papio anubis). A dose-response effect was established for respiratory rate, electroencephalogram, and cardiac sinus rate, which exhibited a stepwise decrease from 10% R-23. No spontaneous arrhythmias were noted, and arterial blood pressure remained unchanged at any inspired level. Intravenous epinephrine infusions (1 μg/kg) induced transient cardiac arrhythmia in one animal with 70% R-23 by volume. R-23 appears to induce mild dose-related physiological changes at inspired levels of 50% or more, indicative of an anesthetic effect. These data suggest that R-23 may be safe to use in humans, without significant adverse acute effects, at an inspired level of 30%.

R-23, acute inhalation toxicity: tests of blood flow, cardiac sensitization with epinephrine, and cerebral electrical activity tests in cats at 600,000 and 700,000 ppm R-23 as reported in RDB 5604

R-23, toxicity, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 1,000 ppm, 8-hr TWA

R-23, toxicity

R-23, toxicity: investigation of R-23 as a nuclear magnetic resonance indicator in human sub-
jects, discontinued based on slight anesthetic effects, light headedness, tingling and numbness of the extremities, and hyperacusis at 300,000 ppm; heart rate and rhythm as well as blood pressure not affected at concentrations studied

D. M. Krentz, M. A. Lee, and R. C. Graham, untitled toxicity review for trifluoromethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 3 August 1992 (RDB5604)

R-23, summary of published and unpublished toxicity literature

S. M. Munley, An Inhalation Developmental Toxicity Study in Rats, report 995-96, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 27 February 1997 (142 pages with 1 figure and 8 tables, Rdb7631)

tests of maternal and developmental toxicity of R-23 by inhalation in groups of 25 mated Crl:CD(SD)BR rats on days 7-21 of gestation at whole-body exposure levels of 0 (control), 5,000, 20,000, or 50,000 (0, 5,600 ±45, 21,000 ±48, or 51,000 ±72 actual) ppm v/v in air for 6 hr/d: no evidence of maternal or developmental toxicity was found at any exposure concentration tested; no compound-related effects were observed for clinical signs, food consumption, maternal body weights, weight changes, or postmortem findings; concludes that R-23 "was not uniquely toxic to the rat conceptus" and that "the maternal and developmental no-observed-effect level (NOEL) was 50,000 ppm"

S. D. Nash, Inhalation Approximate Lethal Concentration (ALC) of Trifluoromethane, report 641-80, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 30 September 1980 (2 pages with 1 table, RDB6513)

4 hr acute inhalation toxicity tests of R-23 in groups of six male Charles River CD albino rats by whole body exposures: mortality ratios and corresponding concentrations were 0/6 at 18,900, 0/6 at 186,000, and 0/6 at 663,000 ppm v/v in air with oxygen enrichment (to maintain 19.7-21% levels); rats showed slight weight loss 24-48 hr after exposure at 18,900 ppm followed by normal weight gain in a 14-day recovery period; an unspecified number of rats showed reduced response to sound at 186,000 ppm; an unspecified number of rats showed no response to sound, gasping, labored breathing, sluggishness, and - for 1 of 6 rats - compulsive gnawing on basket at 663,000 ppm; an unspecified number exhibited slight weight loss 24 hr after exposure at 663,000 ppm, but normal weight gain thereafter; report concludes that the 4-hr ALC rat for R-23 exceeds 663,000 ppm v/v

O. Schaumann, Archiv für Experimentelle Pathologie und Pharmakologie, 181:144-145, 1936 (2 pages, RDB5606)

R-23, inhalation toxicity: exposure (species not indicated) at 900,000 ppm resulted in moderate, but not complete narcosis

Hazardous Substance Fact Sheet - Trifluoromethane, New Jersey Department of Health, Trenton, NJ, August 1988 (RDB5138)

R-23, toxicity

Toxicology Summary for FC 23 (Trifluoromethane), ICI Chemicals and Polymers Limited, Runcorn, UK, 21 September 1994 (1 page, RDB5168)

R-23, toxicity: references a 2-hr ALC rat >200,000 ppm, cardiac sensitization EC₉₀ >500,000 ppm, and Ames test (not mutagenic); cites an ICI recommended exposure limit of 1,000 ppm, 8 hr TWA

R-23, summary of toxicological and ecological information

report 25-60, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1945 (rdb-6512)

R-23, acute inhalation toxicity: 12 guinea pigs were exposed to 200,000 ppm R-23 for 2 hr; no animals died and neither clinical signs of toxicity nor pathological changes were noted - as reported in RDB 5604

R-30

R-30, health effects, toxicity

R-30B1

T. R. Torkelson, F. Oyen, and V. K. Rowe, The Toxicity of Bromochloromethane as Determined
R-30B1, health effects, toxicity, LC\textsubscript{50}

R-31

R-31, toxicity

R-32

M. Asakura (Japan Bioassay Laboratory, JBL, Japan), Report on a Chromosomal Aberration Test of Difluoromethane on Cultured Mammalian Cells (CHL), report 5918 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Japan Industrial Safety and Health Association, Kanagawa, Japan, 1993 (rdb5750)
R-32, toxicity

R. D. Callander, HFC 32: An Evaluation of Mutagenic Potential Using S. Typhimurium and E. Coli, report CTL/P/3351 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 10 June 1992 (rdb5745)
R-32, toxicity: negative result for mutagenicity as reported in RDB 6686

M. K. Ellis, R. Trebicock, J. L. Naylor, R. Tseung, et al. (Zeneca Central Toxicology Laboratory, UK), The Inhalation Toxicology, Genetic Toxicology and Metabolism of Difluoromethane in the Rat, Fundamental and Applied Toxicology, 31(2):243-251, 1996 (9 pages, rdb6A98)
R-32: toxicity, developmental toxicity, and genotoxicity; metabolism and disposition; physiologically-based pharmacokinetic (PB-PK) model; approximately 2.1% of inhaled R-32 is absorbed; steady-state blood levels are achieved within 2 hr and are proportional to dose; carbon dioxide is the major metabolite at all exposure levels; carbon monoxide was not detected; approximately 63% (1.4% of the R-32 entering the airways) was metabolized at all doses; inhalation of R-32 (up to 50,000 ppm) caused no organ-specific effects, but resulted in slight maternal toxicity in pregnant rats and rabbits and some fetotoxicity in rats; 50,000 ppm did not sensitize the heart to adrenaline; the overall results indicate that R-32 is of very low toxicity

M. K. Ellis, R. Trebicock, and T. Green, Hydrofluorocarbon 32: Pharmacokinetics and Metabolism in the Rat, report CTL/R/1220 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 1994 (rdb5979)
R-32, toxicity

M. K. Ellis, J. L. Naylor, and T. Green, Hydrofluorocarbon 32: Pharmacokinetics and Metabolism in Male Rats and Mice Following a Single Exposure by Inhalation, report CTL/R/1137 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 23 December 1992 (rdb5749)
R-32, toxicity

J. Ferguson-Smith, HFC 32 Hygiene Standard Documentation, ICI Chemicals and Polymers Limited, Cheshire, UK, 3 June 1996 (6 pages, RDB-6686)
R-32, toxicity, literature review, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 1,000 ppm, 8-hr TWA; cites a 10-min CNS EC\textsubscript{50} rat of 370,000 ppm v/v, but this information could not be verified from the references provided

C. J. Hardy and P. C. Kieran, Hydrofluorocarbon 32: Assessment of Cardiac Sensitization Potential in Beagle Dogs, report ISN 276/920493 (also identified as ICI report CTL/C/2723) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 18 September 1992 (rdb5748)
R-32, health effects, toxicity: exposures as high as 350,000 ppm v/v did not produce a cardiac sensitization response in beagle dogs with an intravenous epinephrine challenge as reported in RDB 5C14 and 6686

K. Kawahara, Test on 1-Octanol/Water Partition Coefficient of HFC-32, report 80678, Kurume Research Laboratories (KRL), Fukuoka, Japan, 1992 (rdb5C29)
R-32, ecotoxicology, fate, environmental impacts, groundwater and soil

D. M. Krentz, M. A. Lee, and R. C. Graham, untitled toxicity review for difluoromethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 15 July 1992 (RDB5862)
R-32, summary of published and unpublished toxicity literature
R-32, toxicity, mutagenicity: no evidence of genotoxicity at 50,000-1,000,000 ppm as reported in RDB 6686

M. E. Moxon, HFC-32: Developmental Toxicity Study in the Rat, report CTL/P/3835 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 20 May 1992 (rdb5747)

R-32, toxicity: not teratogenic to the rat at 5,000-50,000 ppm for 6 hr/d; maternal food consumption was slightly decreased at 50,000 ppm; minimal fetal toxicity at 50,000 ppm - as reported in RDB 6686

M. E. Moxon, HFC-32: Modified Chernoff-Kavlock Assay in the Rat, report CTL/P/3695 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), ICI Central Toxicology Laboratory, ICI Chemicals and Polymers Limited, Cheshire, UK, 29 June 1992 (45 pages with 3 figures and 14 tables, RDB5C31)

modified Chernoff-Kavlock assay by whole-body exposure of groups of 10 female, Wistar derived rats to concentrations of 0 (control), 10,000, or 50,000 (0, 9,930, and 49,600 actual) ppm v/v R-32 in air for 6 hr/d on days 7-16 of gestation: exposures produced no clinical effects or changes in bodyweight gain and did not reduce litter size at birth or pup survival; a slight reduction in pup weight gain was observed at 50,000 ppm; report concludes that R-32 is neither poten-}

please see page 6 for ordering information
necropsy; report concludes the 4-hr LC50 rat exceeds 520,000 ppm v/v, but indicates a reduced response to sound in 10/10 rats at 85,900 ppm that was not observed at 7,510 ppm.

V. M. Randall and J. M. Mackay, HFC 32: An Evaluation of the Mouse Micronucleus Test, report CTL/P/3927, Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 23 December 1992 (rdb5746)

R-32, toxicity, mutagenicity: no evidence for clastogenicity as reported in RDB 5862.

Y. Tobeta, Test on Biodegradability of HFC-32 by Microorganisms (Closed-Bottle Method), report 12121, Kurume Research Laboratories (KRL), Fukuoka, Japan, 1992 (rdb5C33)

R-32, ecotoxicology, fate, environmental impacts, groundwater and soil.

Difluoromethane (HFC-32, CAS No. 75-10-5), Joint Assessment of Commodity Chemicals (JACC) report 32, European Chemical Industry Ecotoxicology and Toxicology Centre (ECETOC), Brussels, Belgium, May 1995 (32 pages, RDB5C13)

This assessment reviews the environmental impacts and toxicity of R-32, described as a flammable, colorless, and odorless gas under normal conditions.

Difluoromethane (HFC 32) Health Effects Information, CAS# 75-10-5, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (3 pages, RDB5B60)

R-32, summary of toxicological and ecological information.

Hydrofluorocarbon 32: Physiologically Based Pharmacokinetic Modelling to Predict Uptake and Metabolism in the Rat, report CTL/R/1137, Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 1992 (rdb6689)

R-32, biochemistry, health effects, toxicity.

Workplace Environmental Exposure Level Guide - Difluoromethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1997 (3 pages with no figures or tables, RDB5C14)

R-32: Identification, summary chemical and physical properties, uses, animal toxicology data, toxicity, human uses and experience (no reports of adverse effects), recommended WEEL guide (1,000 ppm, 2,200 mg/m³, for 8-hr TWA) and rationale, references.

Report 57-15, Jackson Laboratory / Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, date unknown (rdb6169)

R-32, toxicity, subchronic exposure of guinea pigs as reported in RDB 5862.

Report 159-76, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1976 (rdb6172)

R-32, toxicity, subchronic exposures in rats as reported in RDB 5862.

Report 698-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1975 (rdb6171)

R-32, toxicity, mortality in rats: ALC 4 hour > 760,000 ppm, anesthetic effect at 111,000 ppm as reported in RDB 5862.

R-40

Emergency Response Planning Guidelines - Methyl Chloride, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1995 (rdb4B80)

R-4011

Emergency Response Planning Guidelines - Methyl Iodide, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1991 (rdb4B80)

R-4011, iodomethane, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification.

R-50 (Methane)

Anesthetic effect of R-50 (methane) and others in mice, toxicity.

Toxicity Study Summary: Methane, Pure Grade, Phillips Petroleum Company, Bartlesville, OK, February 1990 (1 page with no figures or tables, RDB7622)

tests of the acute inhalation toxicity in 5 female and 5 male albino, Sprague-Dawley rats by 4 hr, whole body exposures to 34,149 ppm v/v R-50.
(methane) in air: no deaths resulted and animals appeared normal throughout the exposures and subsequent 14-day observation period; no gross signs or symptoms of intoxication were noted; treated females showed a slight reduction in mean body weight on days 2-7 following exposures; animals appeared normal at necropsy, with the exception of 1 female; an enlarged mandibular lymph node and scattered white focal on the lung surface were found in pathological examination of this animal; concludes that the 4-hr LC50 rat is >34,149 ppm v/v; respiratory tract irritancy studies in male mice by head-only exposures to 34,276 ppm v/v R-50 in air for 1 min, repeated 10 minutes later, while monitored by a plethysmograph: no patterns of respiratory pause were evident; concludes that R-50 failed to produce upper respiratory irritancy in mice at 34,276 ppm v/v

R-112 and R-112a

J. W. Clayton, Jr., H. Sherman, S. D. Morrison, J. R. Barnes, and D. B. Hood (E. I. duPont de Nemours and Company, Incorporated), Toxicity Studies on 1,2-Difluorotetrafluoroethane (Freon 112) and 1,1-Difluorotetrafluoroethane (Freon 112a), Toxicology and Applied Pharmacology (TAP), 6:342 ff, 1964 (rdb5562)

R-112 and R-112a, health effects, toxicity

L. A. Greenberg and D. Lester (Yale University), The Toxicity of the Tetrachlorodifluoroethanes, Archives of Industrial Hygiene and Occupational Medicine, 2:345-347, 1950 (3 pages, rdb8145)

R-112 and R-112a, health effects, toxicity

R-113

T. K. Bodganowicz, Acute Inhalation Toxicity, report 179-73, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1973 (1 page, rdb7437)

R-113, health effects, toxicity: 4-hr ALC rat as reported in RDB 7414

R-113, health effects, toxicity

R. Carchman and M. M. Greenberg, Summary Review of Health Effects Associated with 1,1,2-Trichloro-1,2,2-trifluoroethane (Chlorofluorocarbon 113): Health Issue Assessment, report EPA 600/8-82-002F, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, DC, January 1983 (available from NTIS as document PB84-118843, rdb6494)

R-113, health effects, toxicity

E. E. Christofano, J. B. Bryant, J. M. Trowell, Human Exposures to 1,1,2-Trichloro-1,2,2-trifluoroethane, abstract 91, proceedings of the AIHA conference (Denver, CO, 10-16 May 1969), American Industrial Hygiene Association (AIHA), Fairfax, VA, 30:134, 1969 (1 page, rdb5C02)

R-113, health effects, toxicity

O. L. Dashiell, 1,1,2-Trifluoro-1,2,2-trichloroethane: Acute Inhalation Toxicity, report 46-71, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1971 (2 pages, rdb7439)

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, health effects: 4-hr ALC rat as reported in RDB 7414

R-113, toxicity: 2-hr ALC rat 110,000 ppm as reported in RDB 65H1

G. T. Hall, P. W. Grube, and R. C. Graham, untitled toxicity review for CFC-113 (ethane, 1,1,2-trichloro-1,2,2-trifluoro-), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 4 April 1993 (38 pages, RDB5874)

R-113, summary of published and unpublished toxicity literature

Industrial Test Laboratory (ITL), Toxicity Tests of Non-Inflammable Solvent Cleaner for Insulated Electrical Motor Parts, report ITL 2355/NS 041 001, Philadelphia Naval Shipyard, U.S. Navy, Philadelphia, PA, 1952 (8 pages, rdb7456)

R-113, health effects, toxicity

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, human exposures, toxicity

T. Kawakami, T. Takano, and R. Araki (Japan Bioassay Laboratory, JBL, Japan), Enhanced Arrhythmogenicity of Freon 113 by Hypoxia in the Perfused Rat Heart, Toxicology Ind. Health, 6:493-506, 1990 (8 pages, rdb6845)

R-113, cardiac sensitization, health effects, toxicity

G. Limperos, Inhalation Toxicity of 'Freon 113' (1,1,2-Trichlorotrifluoroethane), report 3-54, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1954 (9 pages, rdb7440)

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, toxicity, health effects: rats exposed to an average of 2,520 ppm v/v for 7 hr/d, 5 d/wk for 6 weeks showed no signs of toxicity as reported in RDB 7414

R-113, human exposures, toxicity

R-113, mutagenicity, toxicity

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, toxicity, health effects: LD₅₀ rat = 43 g/kg as reported in RDB 7414

R-113, human exposures, toxicity

C. F. Reinhardt, M. E. McLaughlin, M. E. Maxfield, L. S. Mullin, and P. E. Smith, Human Exposures to Fluorocarbon 113 (1,1,2-trichloro-1,2,2-trifluoroethane), AIHA Journal, 32:143-152, March 1971 (10 pages, rdb6496)

R-113, health effects, toxicity

R-113, dermal contact toxicity, health effects: skin exposures result in local numbness followed by transient erythema after exposure stopped as reported in RDB 7414

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, dermal contact toxicity, eye irritation in rabbits: results in mild conjunctivitis and corneal dullness as reported in RDB 65H1

H. Savolainen and P. Pfaffi, Dose Dependent Neurochemical Effects of 1,1,2-Trichloro-1,2,2-trifluoroethane Inhalation Exposure in Rats, Toxicology Letters, 6:43-49, 1980 (rdb6497)

R-113, health effects, toxicity

J. W. Sarver, 1,1,2-Trifluoro-1,2,2-trichloroethane: Four-Hour Inhalation Toxicity, report 104-71, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 7 April 1971 (2 pages with 1 table, RDB6804)

toxicity tests by acute inhalation of R-113 in male, Manor Farm rats at 32,000, 40,500, 45,000, and 53,000 ppm v/v and for 10 repeated, subacute exposures at 1,000 ppm; record of clinical signs shows anesthetic/central nervous system (CNS) effects as well as slight weight loss, followed by normal weight gain, at 32,000 ppm; 4-hr LC₅₀ rat = 52,500 ppm; pathologic examination of exposed animals revealed no compound-related changes in the respiratory tract; comparison to prior test results with Charles River rats, which showed the 4-hr LC₅₀ to be 56,000 ppm, concludes that "there are basically no differences ... in the two strains of rats" within 95% confidence limits

M. B. Steinberg, R. E. Boldt, R. A. Renne, and M. H. Weeks, Inhalation Toxicity of 1,1,2-Trifluoro-1,2,2-trichloroethane (TCTFE), report on study 33-18-68/69, Environmental Hygiene Agency, U.S. Army, Edgewood Arsenal, MD, 1959 (20 pages, available from NTIS as document AD-854705, rdb-7444)

R-113, 1,1,2-trichloro-1,2,2-trifluoroethane, health effects, toxicity

R-113 and others, health effects, toxicity

R-113, health effects, toxicity

R-113, health effects, toxicity

H. Vainio, J. Nickels, and T. Heinonen, Dose Related Hepatotoxicity of 1,1,2-Trichloro-1,2,2-trifluoroethane in Short-Term Intermittent Inhalation Exposures in Rats, Toxicology, 18(1):17-35, 1980 (19 pages, rdb6499)

R-113, health effects, toxicity

C. K. Wood, Two-Year Inhalation Toxicity Study with 1,1,2-Trichloro-1,2,2-trifluoroethane in Rats, report 488-84, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 5 March 1985 (63 pages, rdb6730)

R-113, two year inhalation study in rats, as reported in RDB 5143

B. H. Woollen, E. A. Guest, W. Howe, J. R. Marsh (ICI Central Toxicology Laboratory, UK), H. K. Wilson (Occupational Medicine and Hygiene Laboratories, UK), T. R. A. Auton, and P. G. Blain (ICI Central Toxicology Laboratory, UK), Human Inhalation Pharmacokinetics of 1,1,2-Trichloro-1,2,2-trifluoroethane (FC113), International Archives of Occupational and Environmental Health, Germany, 62:73-78, 1990 (6 pages with 5 figures and 3 tables, RDB6482)

R-113, health effects, toxicity: tests of absorption and elimination in experimental human exposures by seven male volunteers at concentrations of 254, 526, or 980 ppm v/v for 4 hr

NIOSH Alert: Preventing Death from Excessive Exposure to Chlorofluorocarbon 113, publication 89-109, National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH, 1989 (available from GPO; rdb6848)

R-113, health effects, toxicity

R-113, Occupational Health Guideline (OHG), exposure limits, health hazard information, toxicity, chemical and physical data, reactivity, flammability, monitoring and measurement, respirators, personal protective equipment, emergency first aid procedures, spills and leaks, references

Teratogenicity Study of 1,1,2-Trichloro-1,2,2-trifluoroethane in Rats, report CTL/P/731, ICI Central Toxicology Laboratory, Cheshire, UK, 19 November 1982 (rdb732)

R-113, teratogenicity study in rats, as reported in RDB 5143 and 5367

Toxicity Studies with 1,1,2-Trichloro-1,2,2-trifluoroethane, bulletin S-24, E. I. duPont de Nemours and Company, Incorporated, Wilmington, DE, 1980 (rdb8139)

R-113, health effects, safety, toxicity

1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113), chemical infographic 22, Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, Canada, December 1989 (1 page with no figures or tables, RDB7457)

R-113, safety, toxicity, flammability, occupational exposure guidance

report 3-54, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1954 (rdb7541)

toxicity tests to determine the acute dermal toxicity of R-113 applied to the clipped skin of rabbits at >11,000 mg/kg: no signs indicating systemic toxicity were found, though the treatment caused local irritation, as reported in RDB 5874

report 724-81, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours

please see page 6 for ordering information
R-114

R-114, dermal effects and toxicity: experiments on human volunteers

R-114, health effects, toxicity

R-114, health effects, toxicity

Z. Durakovic, L. Stilinovic, and I. Bakran, Jr., Electrocardiographic Changes in Rats After Inhalation in Dichlorotetrafluoroéthane, Arcton 114, C₂Cl₂C₄, Japan Heart Journal, 17(6):753-759, 1976 (7 pages, rdb6738)

R-114, toxicity

F. D. Griffith and H. Sherman, The Effect of Freon(R) 114 (Ethane-1,2-dichlorotetrafluoro) on Growth Rate, Urinary Fluoride, and Bone Fluoride in Rats, report 381-69, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, December 1969 (rdb5A70)

R-114, toxicity, three-week intubation exposure study with rats, possibility of some metabolism as reported in RDB 5141 and 7414

R-114, dermal toxicity: no irritation observed when sprayed on shaved backs of guinea pigs as reported in RDB 65H1

D. B. Hood and M. Ward, Acute Oral Toxicity Of Freon(R) 114, Dichlorotetrafluoroéthane, report on project MR-312-7, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1955 (rdb65H5)

toxicity tests of R-114 in rats for determine ingestion toxicity: oral ALD rat >2,250 mg/kg (based on the maximum feasible dose dissolved in corn oil); comparison to R-12 ALD rat >1,000 mg/kg (maximum feasible dose dissolved in corn oil) as reported in RDB 65H1

D. B. Hood and M. Ward, Eye Irritation of Freon(R) 114 in Rabbits, report on project MR-312-7, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1955 (rdb7547)

toxicity tests of R-114 in rabbits: mild conjunctivitis, persisting less than 48 hours, resulted from acute eye exposure tests with a mineral oil solution - as reported in RDB 65H1

R. R. Montgomery, M. A. Lee, R. C. Graham, and P. J. Lardear, untitled toxicity review for 1,2-Dichloro-1,1,2,2-tetrafluoroéthane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 11 June 1992 (RDB5855)

R-114, summary of published and unpublished toxicity literature

R-114, biochemistry, elimination, health effects, toxicity

G. Paulet and S. Desbrousses, Le Dichlorotetrafluoroéthane: Toxicité Aiguë et Chronique à Moyen Terme [Dichlorotetrafluoroéthane: Acute and Mid-Test Chronic Toxicity], Archives des Maladies Professionelles de Médecine du Travail et de Sécurité Sociale, France, 30(9):477-492, 1969 (16 pages in French, rdb5172)

R-114, toxicity

J. F. Russell, report 19-78, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, January 1978 (rdb7446)

toxicity tests to determine the mutagenicity of R-114 in Salmonella typhimurium bacteria (Ames assay) both in the presence and absence of a metabolic activation system (S-9) derived from rat livers: finding was negative as reported in RDB 5141 and 5855
H. Sherman, Ninety-Day Feeding Study in Rats and Dogs with Dichlorotetrafluoroethane (Freon(R) 114), report 5-72, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, January 1972 (rdb5A71)

R-114, toxicity, 90-day intubation exposure study with dogs and rats as reported in RDB 5141

R-114; 12-week exposures of dogs, guinea pigs, and monkeys to 200,000 ppm v/v, reduced to 150,000 ppm v/v and then 141,600 ppm v/v (equivalent fluorine content on a weight basis to 200,000 ppm v/v R-12) following observation of effects; documents observed symptoms including tremors and convulsions, changes in weight, changes in blood picture, fatality, and pathology; report concludes that "the toxicity of [R-114] on a vapor-volume basis is somewhat greater than [R-12], but on a weight basis is of the same order as the latter, and is an organic vapor of remarkably low toxicity"

1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114) Health Effects Information, CAS# 76-14-2, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (8 pages, RDB5B51)

R-114, summary of toxicological and ecological information

Bioassay Report - Acute Toxicity - Fish, TSCAT report OTS-0520348, Bionomics Incorporated, 12 June 1989 (11 pages, rdb7252)

R-114, ecotoxicology study, toxicological and ecological information, toxicity

Cardiac Sensitization, report 52-69, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1969 (rdb6121)

toxicity tests to determine the cardiac sensitization potential of R-114 in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; marked response in 1 of 12 dogs at 25,000 ppm v/v in air [deemed a LOEL] and in 7 of 12 dogs at 50,000 ppm as reported in RDB 5855 and 6527

Occupational Health Guideline for Dichlorotetrafluoroethane (Refrigerant 114), U.S. Department of Health and Human Services and U.S. Depart-

R-115, health effects, toxicity: no deaths resulted in dogs that consumed up to 1,200 mg/kg of R-115 in a food topping, suggesting an LD₅₀ oral dog of > 1,200 mg/kg

R-115 and others, health effects, toxicity

R-116

accidents resulting in injection of R-116 into the fingers of workers, treatment and result

R-116, toxicity, literature review, rationale for recommended hygiene standard (Health Based Standard) of 1,000 ppm, 8-hr TWA

T. B. Griffin et al., *Toxicology and Applied Pharmacology* (TAP), 29:92 ff, 1974 (rdb6577)

R-116, toxicity

M. A. Lee and R. C. Graham, untitled toxicity review for hexafluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 July 1991 (RDB5605)

R-116, summary of published and unpublished toxicity literature

M. Hughes, unpublished data, Atlantic Research Corporation, 1973 (RDB6119)

R-116, cardiac sensitization, toxicity: indicates a cardiac sensitization NOEL dog at 600,000 ppm, but the test protocol (e.g., whether an epinephrine challenge was used, whether the test mixture was oxygen enriched, and the duration of exposure) is not clear - as reported in RDB 5605

S. D. Morrison, report 41-62, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1995 (7 pages, available from JMC as RDB6288)

R-116, Occupational Health Guideline (OHG), Occupational Safety and Health Guideline (OSHG), physical data, reactivity, flammability, exposure limits, health hazard information, toxicity, emergency procedures, medical monitoring, workplace monitoring and measurement, personal hygiene, storage, leaks, emergency planning and community right-to-know requirements, hazardous waste management requirements, respiratory protection, personal protective equipment, references

report 143-64, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1964 (rdb7618)

R-115, acute inhalation toxicity

R-116, cardiac sensitization, toxicity as reported in RDB 5605

report CTL/L/6119, ICI Central Toxicology Laboratory, Cheshire, UK, 22 November 1994 (rdb6691)

R-116, toxicity, mutagenicity: Ames test with and without metabolic activation to Salmonella typhimurium and Escherichia coli: not mutagenic as reported in RDB 6687

report CTL/L/6908, ICI Central Toxicology Laboratory, Cheshire, UK, 31 October 1995 (rdb6690)

R-116, toxicity, mutagenicity: not clastogenic to human lymphocytes with and without metabolic activation as reported in RDB 6687
R-123

R-123, toxicity

W. E. Brewer and S. Smith (Industrial Bio-Test Laboratories, Incorporated), Teratogenic Study via Inhalation with Genetron 123 in Albino Rats, report IBT 8562-09344, AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 8 November 1977 (32 pages with 10 tables, RDB6143) [included in RDB6142 as appendix C]

toxicity test of the teratogenicity of R-123 in groups of 20 female (16 pregnant) Charles River albino rats by inhalation exposures at 0 (control) or 5,000 ppm for 5 hr/d on gestation days 6-15: bodyweight gains were lower in the treated animals; both treated and control animals had red nasal discharges; no grossly apparent uterine anomalies attributed to exposures were noted; pathological findings of the sacrificed dams and fetuses were essentially the same for the test and control groups; report concludes that R-123 was not teratogenic as tested

W. E. Brewer and S. Smith (Industrial Bio-Test Laboratories, Incorporated), 90-Day Subacute Inhalation Toxicity Study with Genetron 123 in Albino Rats, report IBT 8562-09344, AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 2 September 1977 (19 pages with 2 tables, Rdb6144) [included in RDB6142 as appendix A]

R-123, subchronic inhalation toxicity: groups of 35 male and 25 female rats were exposed to concentrations of 0 (control), 500 (actual 487), 1000 (actual 1009), and 5000 (actual 4836) ppm for 6 hr/d for 5 d/wk; lower body weight gains were noted at 5000 ppm in both sexes and at 1000 ppm in females with full recovery post exposure; no remarkable effects were seen in hematology, clinical chemistry, or urinalysis parameters; increases were seen in liver weight to body weight ratios in males in the 5000 ppm group and in the females in all three exposure groups; kidney and heart weight decreases were noted, but may have been related to depressed body weight; only the liver showed treatment-related microscopic changes, namely focal necrosis and multifocal atrophy of hepatocytes, but these findings also were seen in the control groups and neither their incidence nor severity followed a treatment-related pattern; summarized and discussed in RDB 6142 and, as

study A-77, in RDB 65D8 [prepared from partial report with missing pages]

M. R. Britelli, Eye Irritation Test in Rabbits, report 747-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1975 (rdb6160)

R-123, health effects, toxicity

W. J. Brock, Acute Dermal Toxicity Study of HCFC-123 in Rabbits, report 578-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6148)

R-123, health effects, toxicity, 24-hr ALD skin rabbit 0/10 >2,000 mg/kg as reported in RDB 5861

W. J. Brock, Acute Dermal Toxicity Study of HCFC-123 in Rats, report 577-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6147)

R-123, health effects, toxicity, 24-hr ALD skin rat 0/5 >2,000 mg/kg as reported in RDB 5861

W. J. Brock, Primary Dermal Irritation Study with HCFC-123 in Rabbits, report 535-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6149)

R-123, health effects, toxicity

D. Brusick (Litton Bionetics Incorporated, LBI), Mutagenicity Evaluation of Genetron 123, report on LBI project 2547, AlliedSignal Incorporated (then Allied Chemical Company), Morristown, NJ, 30 July 1976 (rdb6135)

R-123, health effects, toxicity

R. D. Callander, HCFC 123: An Evaluation Using the Salmonella Mutagenicity Assay, report CTL/P/2421 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT) #88-01, ICI Central Toxicology Laboratory, Cheshire, UK, 15 December 1989 (rdb6136)

R-123, mutagenicity, toxicity

C. P. Chengelis (WIL Research Laboratories, Incorporated), Acute Pharmacokinetic Study of HCFC-123 in Dogs by Inhalation, Great Lakes Chemical Corporation, West Lafayette, IN, 5 July 1994 (82 pages with 5 figures and 18 tables, RDB8114)

R-123, biochemistry, health effects, toxicity; a copy of this report is appended to RDB 6573

please see page 6 for ordering information
J. W. Clayton, Preliminary Studies on the Inhalation Toxicity of Technical (79.9 per cent) 1,1-Dichloro-2,2,2-Trifluoroethane [2,2-dichloro-1,1,1-trifluoroethane], report 151-64, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 1966 (rdb6151)

R-123, toxicity

W. B. Coate (Hazleton Laboratories America, Incorporated), LC$_{50}$ of G123 in Rats, report M165-162 (FYI report OTS-0680095), AlliedSignal Incorporated (then Allied Chemical Company), Morris-town, NJ, 4 October 1976 (rdb6137)

R-123, acute inhalation toxicity, LC$_{50}$ rat, 6 hr = 52,640 ppm as reported in RDB 3719, 5371, and 5861

R-123, health effects, subchronic toxicity

R-123, toxicity, mutagenicity

R. W. Darr, An Acute Inhalation Toxicity Study of Fluorocarbon 123 in the Chinese Hamster, Corporate Medical Affairs report MA-25-78-15, Allied-Signal Incorporated (then Allied Corporation), Morristown, NJ, 10 June 1981 (25 pages with 1 figure and 1 table, RDB5149)

test of the acute inhalation toxicity of R-123 in groups of 5 male Chinese hamsters exposed to 10,000, 14,000, 22,000, 26,000, or 31,000 ppm v/v R-123 in air: 4-hr LC$_{50}$ = 28,400 ppm v/v

W. Dekant, Metabolism of 1,1-Dichloro-2,2,2-trifluoroethane [2,2-Dichloro-1,1,1-trifluoroethane], report MA-RR-93-1972a, Universität Würzburg, Germany, 1994 (rdb6852)

R-123, toxicity

C. Doleba-Crowe, Ninety-Day Inhalation Exposure of Rats and Dogs to Vapors of 2,2-Dichloro-1,1,1-trifluoroethane (FC-123), report 229-78, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 19 May 1978 (rdb6155)

R-123, subchronic inhalation toxicity: groups of 27 male and 27 female rats and 4 male beagle dogs were exposed to concentrations of 0 (control), 1000 (actual 900), and 10,000 (9800 ppm) for 6 hr/d, 5 d/wk for 4 weeks; narcosis was seen at 10,000, but not at 1000 ppm and was reversible upon cessation of exposures; decreased rates of body weight gain and increased absolute and relative liver weight gains were seen in the rats; higher relative adrenal and testes weights were seen in the male rats and in the kidney and stomachs of the female rats at both exposure levels, while lower absolute heart and kidney weights were seen at 10,000 ppm; no remarkable hematology findings were reported, though sporadic increases in serum total protein levels were noted in both the males and females; there were no noteworthy histopathological findings from evaluation of tissues from rats; dogs exposed to 10,000 ppm had lower erythrocyte counts, hemoglobin concentrations, and hematocrits; dogs exposed to 10,000 ppm also exhibited degenerative changes in the liver; overall, 1000 ppm was a NOAEL for the dogs - as reported in RDB 65D8 which summarizes this (identified as D-78) and three related studies

R-123, toxicity, mutagenicity

R-123, toxicity, literature review, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 10 ppm, 8-hr TWA, provisional

R. Ferrara, R. Tolando, L. J. King, and M. Manno (University of Padova Medical School, Italy), Cytochrome P450 Inactivation During Reductive Metabolism of 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) by Phenobarbital- and Pyridine-Induced Rat Liver Microsomes, Toxicology and Applied Pharmacology (TAP), 143(2):420-428, April 1997 (9 pages, rdb7C67)

R-123, toxicity, reduced metabolic activation of R-123; dose- and time-dependent depletion of added exogenous glutathione was observed during incubation of liver microsomes under anaerobic conditions;
R-133a and R-142 were detected as products of reductive metabolism of HCFC-123 under similar incubation conditions except for the absence of glutathione; results indicate that R-123, like hepatoxic R-123B1 (halothane) which is a close structural analog, is activated reductively to reactive metabolites by at least two P450 isoforms, namely P4502E1 and P4502B1/2; these metabolites, probably free radicals and/or carbene species, may attack the enzyme resulting in modification of the microsomal heme group and subsequent loss of catalytic activity.

R. Ferrara, R. Tolando, L. J. King, and M. Manno (University of Padova Medical School, Italy), Reductive Activation of 2,2-Dichloro-1,1,1-trifluoroethane (HCFC-123) by Rat Liver Microsomal Cytochrome P-450, Proceedings of the Fifth International Symposium on Biological Reactive Intermediates, Munich, Germany, 4-8 January 1995 (RDB 65C5)

K. M. Gerber, M. A. Lee, R. C. Graham, and S. W. Snyder, untitled toxicity review for ethane, 2,2-dichloro-1,1,1-trifluoro- (HCFC-123), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 28 February 1996 (25 pages, RDB-6941)

R-123, summary of published and unpublished toxicity literature

C. S. Godin, J. M. Drerup, and A. Vinegar, Conditions Influencing the Rat Liver Microsomal Metabolism of 2,2-Dichloro-1,1,1-Trifluoroethane (HCFC-123), Drug Metabolism and Disposition, 21(3):551-553, May 1993 (3 pages, rdb6213)

R-123, summary of published and unpublished toxicity literature

N. C. Goodman, Primary Skin Irritation and Sensitization Tests on Guinea Pigs, report 678-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 31 December 1975 (rdb-6161)

R-123, health effects, toxicity: produced no irritation or sensitization on shaved skin of albino guinea pigs in 10 and 50% solutions in propylene glycol as reported in RDB 6941

G. T. Hall and B. L. Moore, 1,1-Dichloro-2,2,2-trifluoroethane: Acute Inhalation Toxicity, report 428-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 16 July 1975 (2 pages with 1 table, RDB6139)

4 hr acute inhalation toxicity tests of R-123 in groups of six male Charles River CD rats: mortality ratios and corresponding concentrations were 0/6 at 20,700, 3/6 at 32,000, 3/6 at 33,700, 4/6 at 42,100, and 6/6 at 55,000 ppm v/v in air; rats showed loss of mobility, lethargy, prostration, unresponsiveness to sound, and dyspnea (difficult or labored breathing) within 5 minutes at all concentrations; rats that survived showed no noticeable clinical signs 30 minutes following exposures; no pathologic examinations were performed; concludes that the 4-hr LD_{50} rat for R-123 is approximately 32,000 ppm v/v, confirming an earlier study, and therefore "practically non-toxic on an acute inhalation basis," but that R-123 does cause an adverse central nervous system (CNS) effect at 20,700 ppm

R-123, biochemistry, toxicity

J. E. Henry and A. M. Kaplan, Acute Oral Test on R-123, report 638-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 30 October 1975 (rdb6140)

R-123, toxicity, ALD as reported in RDB 5861

R-123, health effects, toxicity

R-123, reproductive toxicity

R-123, R-123B1, health effects, toxicity
J. Huwyler and J. Gut, Exposure to the Chlorofluorocarbon Substitute 2,2-Dichloro-1,1,1-trifluoroethane and the Anesthetic Agent Halothane Is Associated with Transient Protein Adduct Formation in the Heart, *Biochemical and Biophysical Research Communications*, 184(3):1344-1349, 15 May 1992 (6 pages, rdb65G8)

R-123, R-123B1, health effects, toxicity

brief review of stratospheric ozone depletion and the Montreal Protocol; discussion and table of ODP and GWP values; use of the former in setting production quotas; phaseout schedules; search for substitutes and structural similarities in candidates; summary of the Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) and study sequences; risk characterization under the Significant New Alternatives Program (SNAP); use of the Workplace Guidance Level (WGL, described as essentially analogous to the Permissible Exposure Level, PEL) and Emergency Guidance Level (EGL, described as similar in intent to the Immediately Dangerous to Life and Health concentration, IDLH) as screening tools; EGL is based on the no-observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect level (LOAEL) for cardiotoxicity in the dog; assessment by comparison of the WGL and EGL to a reference concentration (RfC) with tabular data for R-22, R-123, R-124, R-134a, R-141b, R-142b, and R-152a; review of R-123 toxicity and dose-response analyses; risk assessment by physiologically-based, pharmacokinetic (PBPK) modeling for R-123 by analogy to R-123B1 (halothane) data, to decrease the need for extensive laboratory animal testing

C. A. Jenkins, HCFC 123: Acute Toxicity to Daphnia Magna, report 91/PFE006/0972 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 1992 (rdb65C9)

R-123, effects on organisms in the environment, aquatic toxicity, mutagenicity

C. A. Jenkins, HCFC 123: Acute Toxicity to Rainbow Trout, report 91/PFE004/0939 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 1992 (rdb65D0)

R-123, effects on organisms in the environment, aquatic toxicity, mutagenicity

C. A. Jenkins, HCFC 123 (Liquid): Biotic Degradation Closed Bottle Test, report 91/PFE008/0477 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 1992 (rdb65D1)

R-123, effects on organisms in the environment, aquatic toxicity, mutagenicity

C. A. Jenkins, HCFC 123: Determination of its EC₅₀ to Selenastrum Capricornutum, report 91/PFE007/0935 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 1992 (rdb65D2)

R-123, effects on organisms in the environment, aquatic toxicity, mutagenicity

D. P. Kelly, Four-Week Inhalation Study with HCFC-123 in Rats, report 229-89 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1989 (rdb6157)

R-123, subchronic inhalation toxicity: groups of 10 male and 10 female rats were exposed to concentrations of 0 (control), 1000, 5000, and 10,000 ppm for 6 hr/d, 5 d/wk for 4 weeks; rats exposed to 5000 ppm and higher showed exposure-related narcosis that was reversible upon cessation of exposures; decreased rates of body weight gain were seen in females at 1000 ppm and higher and in males at 10,000 and 20,000 ppm; this effect was not exposure related in females, but was in males; an exposure-related increase in relative liver weights was seen in the females, but only at 20,000 ppm in the males; no hematological effects were observed and the only noteworthy clinical chemistry effects were increases in SGOT and SGPT in the male rats at 20,000 ppm; a dose-related increase in cytochrome P-450 was seen in the female rats at 1000 ppm and higher and in males at 10,000 ppm and higher; urinary fluoride and volume increased with complimentary decrease in osmolarity, reported to be statistically significant only at the high concentrations; no treatment-related effects were seen in histopathological examination of the livers for either the male or female rats - as reported in RDB 65D8 which summarizes this (identified as P-89) and three related studies

J. C. Kennelly, HCFC 123: Assessment for the Induction of Unscheduled DNA Synthesis in Rat
Liver after Inhalation Exposure, report CTL/P/-3807 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, October 1993 (rub6215)

R-123, toxicity

M. A. Lee, R. C. Graham, and S. W. Snyder, untitled toxicity review for ethane, 2,2-dichloro-1,1,1-trifluoro- (HCFC-123), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, August 1991 (16 pages, RDB5861)

R-123, summary of published and unpublished toxicity literature

R. W. Lewis, HCFC 123: 28-Day Inhalation Study to Assess Changes in Rat Liver and Plasma, report CTL/T/2706, ICi Central Toxicology Laboratory, Cheshire, UK, 1990 (rdb6214)

R-123, toxicity

R-123, R-123B1, toxicity, mechanistic studies

G. D. Loizou (University of Rochester), G. Urban, W. Dekant (Universität Würzburg), and M. W. Anders (University of Rochester), Gas-Uptake Pharmacokinetics of 2,2-Dichloro-1,1,1-Trifluoroethane (HCFC-123), Drug Metabolism and Disposition, 22(4):511-517, July 1994 (7 pages with 5 figures and 3 tables, RDB6223)

In vivo rate constants for metabolism of R-123 in rats, by physiologically-based, pharmacokinetic (PBPK) modeling with validation based on 6-hr inhalation exposures at 500-5000 ppm v/v; toxicity of R-123; concludes that uptake involves a single, saturable process, with no differences in rate constants between male and female rats; the model fails to simulate the reduction in R-123 uptake at 2,000-5,000 ppm; inhibition of uptake and a decrease in trifluoroacetic acid (TFA), the primary urinary metabolite of R-123) excretion by a selective, mechanism-based inhibitor (diallyl sulfide) indicate that cytochrome P450 2E1 catalyzes the biotransformation of R-123

J. M. Mackay, HCFC 123: An Evaluation in the In Vitro Cytogenetic Assay Using Human Lymphocytes, report CTL/P/2978 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, January 1992 (rub6572)

R-123, mutagenicity, toxicity

R-123, combined chronic toxicity and oncogenicity study: four groups of 80 male and 80 female rats were exposed to 0 (control), 300, 1000, and 5000 ppm R-23 in air for 6 hr/d, 5 d/wk, for up to two years (10 males and 10 females were subjected to clinical pathological examination at 6, 12, 18, and 24 months); males and females exposed to 5000 ppm and females exposed to 300 and 1000 ppm had lower body weights and body weight gains; serum triglyceride and cholesterol were lower in both sexes at 300 ppm except the latter was only seen in males at 5000 ppm; serum protein concentrations were altered at 300 ppm and higher, but survival was notably higher in both sexes, and dramatically so in females, at 1000 and 5000 ppm; relative liver weight increases and absolute kidney weight decreases were observed at the high concentrations; benign hepatocellular adenomas increased in males at 5000 ppm and in females at 300 ppm and higher; hepatic cholangiofibromas also increased in females exposed to 5000 ppm; pancreatic acinar cell adenomas increased for all male test groups and acinar cell hyperplasia was increased in the 1000 ppm and 5000 ppm males and females; benign testicular interstitial adenomas and focal interstitial cell hyperplasia were higher in exposed males, and diffused retinal atrophy was increased in all male and female test groups, though found to be an indirect compound-related effect; hepatic peroxisome proliferation (beta oxidation activity) was higher at 300 ppm and above in males and at 1000 ppm and above in females; statistical differences in hepatic cell proliferation were not observed, and decreased incidences of age-related lesions occurred with exposures at 1000 and 5000 ppm; a NOAEL was not achieved in this study; and recommendations are made for further mechanistic studies particularly with respect to relevance to humans.
• Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1992 (rdb6152)

R-123, toxicity - see RDB65D4 for summary

R-123, health effects, toxicity

L. A. Malley, Combined Chronic Toxicity/Oncogenicity Study with HCFC-123: Two-Year Inhalation Toxicity Study in Rats (One-Year Interim Report), report 260-90 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1990 (rdb5B62)

R-123, toxicity - see RDB65D4 for summary

L. A. Malley, Subchronic Inhalation Toxicity Study: 90-Day Study with HCFC-123 in Rats, report 594-89 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, January 1990 (rdb6154)

R-123, subchronic inhalation toxicity: groups of 10 male and 10 female rats were exposed to concentrations of 0 (control), 300, 1000, and 5000 ppm for 6 hr/d, 5 d/wk for 13 weeks; rats exposed to 5000 ppm showed what might have been slight narcosis that disappeared upon cessation of exposures; no changes were seen in body weights compared to controls; serum triglyceride levels were lower in both males and females at 300 ppm and higher; serum cholesterol levels were significantly lower in females exposed at 1000 and 5000 ppm; the mean lymphocyte count for females in the 5000 ppm group decreased; exposure related increases in urinary fluoride was seen in males exposed to 5000 ppm and in females at 300 ppm and higher, but these increases were described as minimal; absolute liver weights for males were significantly higher in the 5000 ppm group and relative liver weights were higher in males and females at 1000 ppm and higher; no morphological changes were found in tissues with microscopic examination, but hepatic peroxisomal activity increased in treated males and females; this increase was nearly double in high-dose males and females, suggesting a conclusion of very mild peroxisome proliferation - as reported in RDB 65D8 which summarizes this (identified as P-90) and three related studies

G. B. Marit (U.S. Air Force Armstrong Laboratory, USAF-AL), D. E. Dodd (ManTech Environmental Technology, Incorporated), M. E. George (USAF-AL), and A. Vinegar (ManTech), Hepatotoxicity in Guinea Pigs Following Acute Exposure to 1,1-Dichloro-2,2,2-Trifluoroethane, Toxicologic Pathology, 22(4):404-414, July-August 1994 (11 pages, RDB6216)

direct inhalation toxicity tests of R-123 (2,2-dichloro-1,1,1-trifluoroethane) for concentrations of 0, 1,000, 10,000, 20,000, and 30,000 ppm v/v and of 10,000 ppm v/v R-123B1 (halothane) in groups of 10 male Hartley guinea pigs for 4 hr: gross and histopathologic examination of the liver, heart, and kidney as well as routine hematology and clinical chemistry analyses were performed after sacrifice of the animals 48 hr after the exposures; lesions were observed in the livers of 90-100% of the exposed animals, but were absent in the controls; the lesions included centrolobular vacuolar (fatty) change, multifocal random degeneration and necrosis, and centrolobular degeneration and necrosis; significant variation in susceptibility was observed, but there was similarity in the response between R-123 and halothane; the paper concludes that humans susceptible to halothane-induced hepatitis may be susceptible to R-123 by a common mechanism; the paper also notes that all guinea pigs exposed to 10,000 ppm v/v R-123B1 or 20,000-30,000 ppm v/v were rendered unconscious within 10-15 minutes of exposure and that some animals exposed to lower concentrations were uncoordinated or lethargic

R. R. Marshall, Evaluation of Chromosomal Aberrations Frequencies in Cultured Peripheral Blood Lymphocytes from Rats Treated with HCFC-123, report ALS/4-R (also identified as ASU A348, Anesthesiology, 73(3A), September 1990 (1 page with no figures or tables, RDB7232)

R-123, health effects, toxicity

J. L. Martin, J. W. Harris, M. W. Anders, and L. R. Pohl (Johns Hopkins Medical Institute), Trifluoroacetylated Proteins in Livers of Rats Treated with the Potential Chlorofluorocarbon Replacement 1,1,1-Trifluoro-2,2-dichloroethane (HCFC-123), abstract A348, Anesthesiology, 73(3A), September 1990 (1 page with no figures or tables, RDB7232)

inhalation toxicity tests for metabolism of R-123 (2,2-dichloro-1,1,1-trifluoroethane) in groups of male, Fischer 344 rats exposed for 2 hr to 0
Industrial Medicine, Composition Following Postpartum Exposures, Haskell Laboratory for Toxicology and Pregnant Monkeys to Assess Milk Transfer and report HLO-19740152 (also identified as MPI study Centrifugal Chiller Installations, MPI Research, Meridian Research, Incorporated, Employee Exposure Monitoring for HCFC-123 at Refrigerant Database HLO-6213, 6223, 65C2, 6A99, 65C7, 65E1, 65E2, and others for further investigations of this topic]

Meridian Research, Incorporated, Results of Employee Exposure Monitoring for HCFC-123 at Centrifugal Chiller Installations, U.S. Environmental Protection Agency (EPA), Washington, DC, 26 November 1991 (82 pages, RDB2529)

R-123, toxicity, machine room concentrations, occupational exposures

MPI Research, HCFC-123: Inhalation Study in Pregnant Monkeys to Assess Milk Transfer and Composition Following Postpartum Exposures, report HLO-197-00152 (also identified as MPI study 125-042), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1997 (rdb7611)

mechanistic toxicity tests in Rhesus monkeys to investigate the transfer of R-123 and its major metabolite, trifluoroacetic acid (TFA), in milk from exposed mothers to nursing infants: groups of 4 mothers and infants were exposed to 0 (control) or 1,000, 2,500, 5,000, or 10,000 ppm v/v in air by inhalation for 6 hr/d, 7 d/wk for 3 wk beginning 6-8 days following birth; no changes were observed in maternal weight gain, clinical signs deemed adverse, or blood chemistry (including triglyceride, cholesterol, and glucose levels); no effect was found on milk production or milk fat and protein content, but both R-123 and TFA were higher than in the mothers; study concluded that behavioral test failures were evident 15 min into exposures and loss of exploratory activity was evident at 30 min for exposures at 9,950 ppm; mean body temperature of rats exposed to 5,237 and 9,950 ppm were lower than controls (by approximately 1 °C, 1.8 °F, at 9,950 ppm at 60 min of exposure); study concluded that behavioral test failures were produced consistently at and above 5,237 ppm during exposure, that occasional failures were seen 15 min after exposure at 9,950 ppm, and that recovery was rapid and complete in all cases.

toxicity tests to determine the concentrations at which behavioral effects occur for whole-body exposures of groups of 6 male Charles River CD rats to 0 (control), 1,000, 2,500, 5,000, or 10,000 ppm during exposures, and at 15 min, 60 min, and 24 hr after exposures; EC50 values were calculated by probit analysis; results for the most sensitive tests (grip, lift, vertical bar, ataxia, and pinna tactile) were > 10,000 ppm before exposures, 7,090-9,710 ppm at 15 min, 5,790-8,660 at 30 min, 3,930-8,830 at 60 min, and > 10,000 after exposures; report notes that ataxia (inability to coordinate voluntary muscle movements) and catalepsy (decrease in spontaneous activity) were evident 15 min into exposures and loss of exploratory activity was evident at 30 min for exposures at 9,950 ppm; mean body temperature of rats exposed to 5,237 and 9,950 ppm were lower than controls (by approximately 1 °C, 1.8 °F, at 9,950 ppm at 60 min of exposure); study concluded that behavioral test failures were produced consistently at and above 5,237 ppm during exposure, that occasional failures were seen 15 min after exposure at 9,950 ppm, and that recovery was rapid and complete in all cases.

W. Müller and T. Hofmann (Pharma Research Toxicology and Pathology Laboratory), HCFC 123 - Micronucleus Test in Male and Female NMRI Mice After Inhalation, report 88.1340 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, 1988 or 1989 (rdb7234)

R-123, mutagenicity, toxicity

W. Müller and T. Hofmann (Pharma Research Toxicology and Pathology Laboratory), HCFC 123 - Micronucleus Test in Male and Female NMRI Mice After Inhalation, report 88.0372 for the Program for Alternative Fluorocarbon Toxicity Testing

please see page 6 for ordering information
(PAFT), Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, 1988 (rdb6141)

R-123, mutagenicity, toxicity

T. L. Pravecck (U.S. Air Force, USAF) and S. R. Channel (Tri-Service Toxicology Consortium), A Volatile Exposure Method for Precision Cut Tissue Slices: HCFC-123 Study, In Vitro Toxicology, 8(3):283-289, 1995 (7 pages with 5 figures and 1 table, RDB6A99)

R-123 toxicity: application of precision-cut tissue slice cultures to study the metabolic fate and toxicologic effects of chemicals; data describe a saturable metabolic pathway for R-123 in Sprague-Dawley rats; analyses of R-123 metabolism in rat livers suggest significant strain differences and that R-123 may inhibit its own metabolism at higher concentrations

R-123, health effects, toxicity: summarizes an inhalation teratology study in rabbits; pregnant specimens were exposed to 0 (control), 500, 1500, and 5000 ppm v/v for 6 hr/d on days 6-18 of gestation; reduced food consumption and slight body weight losses were observed at 500 ppm and higher in an exposure-related pattern, but there were no other signs of maternal toxicity or treatment-related effects on the kits; a one-generation reproduction study in rats is summarized; four groups of 24 male and female rats were exposed to concentrations of 0 (control), 300, 1000, and 5000 ppm R-123 for 6 hr/d, 7 d/wk for 4 weeks prior to mating and through weaning of the pups; no effects on mating, fertility, pup survival, or birth weight were found; a two-generation study also is summarized; five groups of 32 male and female rats were exposed to R-123 from the age of 6 weeks through weaning; groups of their offspring were exposed from weaning (4 weeks of age) through weaning of the following generation for 6 hr/d, 7 d/wk; exposures were at 0 (control), 30, 100, 300, and 1000 ppm v/v; no treatment-related effects were found on fertility or reproduction, but decreases were measured in serum triglyceride levels; pup survival and birth weight were not affected, but body-weight gain was lower in all treatment groups during nursing in an exposure-related pattern; liver weights of adult rats exposed at 100 ppm and above were higher than in the controls; histopathologic examination found hepatic enlargement and vacuolation; the study concluded that exposure to R-123 at concentrations as high as 5000 ppm did not cause reproductive, survival, or viability effects, but did affect the body weight gain of offspring during lactation and liver weights

summarizes four subchronic inhalation toxicity studies in rats and dogs for R-123: Increases in liver weight were seen at concentrations of 1000 ppm and higher; one study showed this effect at 500 ppm; histopathological findings are described as minimal and include focal necrosis (death of a portion of tissue) in the liver of dogs, induction of peroxisomal activity, lowering of serum cholesterol and triglyceride levels, and an increase in urinary fluoride levels; paper observes that while the 4-hr LC50 rat is 35,000 ppm, repeated exposures at 20,000 ppm (almost the same daily dose for the product of concentration and time) for 6 hr/d in a 4-week study yielded no mortality or marked signs of toxicity; concludes that R-123 "appears to have a low level of toxicity by the inhalation route" and that there is "no evidence for cumulative toxicity from multiple exposures in these studies"

G. M. Rusch, A Ninety-Day Inhalation Toxicology Study and an Inhalation Teratology Study of Genetron 123 in the Rat, report MA-127-80-1 (also identified as MA-RR-85-993), AlliedSignal Incorporated (then Allied Corporation), Morristown, NJ, 19 September 1985 (61 pages with 12 tables, RDB6142) [includes RDB6143 and RDB6144 as appendices A and C]

examination and summary of the findings of two R-123 toxicity studies (IBT reports 8552-09344 dated 2 September 1977 and 8 November 1977, see RDB6143 and RDB6144) conducted by Industrial Bio-Test Laboratories, Incorporated: outlines the earlier findings, describes a review of the raw data, and compares earlier interpretations with those from reexamination of the original tissue specimen slides by a pathologist; report concludes that 500 (487 ppm actual) ppm v/v is a no-effect level (NOEL) for rat exposures
to R-123 by inhalation for 6 hr/d, 5 d/wk, for 3 months while 1,000 (1,099 actual) ppm represents a minimal biological effect level; notes that hepatic alterations identified in the earlier reports did not follow an exposure-related pattern by either severity or frequency and that they probably were not related to the exposures; also concludes that primary effect was depression of body weight gain in the female rats; addressing the teratology study, the report concludes that exposure of pregnant rats for 6 hr/d for days 6-15 of gestation to a concentration of 5,000 (4,495-6,065 actual) ppm v/v produced a response of depressed weight gain in the dams, but did not result in a teratogenic response [prepared from partial report with missing pages]

J. Sandow, W. von Rechenberg, and G. Jerabek-Sandow (Hoechst AG Pharma Research), HCFC-123: Effect of HCFC-123 and Androgen Biosynthesis and Gonadotropin Secretion in Rats, report MA-R-95-2196 (also identified as Hoechst report 1/94 and as "Hoechst study Exp. 8-210 as part of Huntingdon Toxicology Study ALS/5") for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), AlliedSignal Incorporated, Morristown, NJ, 30 April 1995 (34 pages with 4 figures and 2 tables, RDB65D9)

toxicity tests to investigate the mechanism of testicular changes (Leydig cell hyperplasia) found in adult male Wistar rats after long-term (22-week) exposures to R-123: tests examined the serum luteinising hormone (LH) response, testosterone secretion, and testosterone biosynthesis ex vivo to develop understanding of the endocrine mechanism, which if deemed to be reversible in rodents would be of no concern for human safety; report concludes that there was no qualitative change in androgen biosynthesis and "the small decrease in testosterone secretion observed at 1000 ppm was not of concern for further compound development because Leydig cell hyperplasia is a rodent-specific finding in rats and mice rarely observed in humans;" report also notes that R-123 poses "a low risk for human exposure in industrial application"

R. Schroeder (Bio/dynamics Incorporated), An Inhalation Developmental Toxicity Study in Rabbits with HCFC-123, report 88-3304 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, September 1989 (rdb6162)

study of the potential for R-123 to produce developmental and reproductive toxicity in New Zealand rabbits by exposure of pregnant dams to 0 (control), 500, 1,500, or 5,000 ppm on gestation days 6-18; maternal toxicity was evident at all concentrations with decreased food consumption and bodyweight gain - as reported in RDB 6B52

R. Schroeder (Bio/dynamics Incorporated), An Inhalation Range-Finding Study to Evaluate the Toxicity of HCFC-123 in the Pregnant Rabbit, report 88-3303, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1989 (rdb6163)

study of the potential for R-123 to produce developmental and reproductive toxicity in New Zealand rabbits by exposure of pregnant dams

H. W. Sibley, A Study for Determining Refrigerant Exposure Levels While Servicing an HCFC-123 Centrifugal Chiller, publication 819-061, Carrier Corporation, Syracuse, NY, April 1992 (6 pages with 4 figures and 1 table, RDB2916)

This report summarizes an investigation to determine the exposure levels encountered while working around or on chillers using R-123. It also addresses whether there are reliable instruments to measure that low, and whether a machine room can be adequately monitored and ventilation controlled to stay below a recommended exposure limit of 10 ppm [subsequently raised by some refrigerant manufacturers]. The single test involved a 700 kW (200 ton) hermetic centrifugal chiller at the manufacturer's plant. The report outlines steps to select and qualify refrigerant sensors, develop a decision model for the test, prepare a team for use of the refrigerant monitors and safety equipment, develop service practices, and execute the plan. It was based on removal of R-123 from the machine and recharge with R-11. Additional steps were scheduled between charge removal and recharging, to determine the effects on components exposed to R-123 in a year of operation. For purposes of this test, the exhaust fans in the machinery room were reset from 10 ppm to operation when concentrations exceeded 500 ppm. A table lists the R-123 monitors used, and a figure outlines the safety decision model developed. A figures shows measured exposure concentrations, with two excursions to approximately 500 ppm, and time-weighted average (TWA) exposures of 2-5 ppm. The report notes that once R-123 was released, "it tended to drop to floor level, hang together, and move as an invisible cloud." One part of the plan included a deliberate spill of 1 litre (4/5 gallon), deemed the maximum that would be lost during a typical accident. A plot shows the resulting concentrations. The report concludes that new methods and procedures will have to be employed to minimize exposures. A brief
addendum to the report notes concentrations in field restoration of three other chillers from R-123 back to R-11 use.

E. Sullivan, Refrigerant Safety, Worker Health, and HCFC-123, Building Operating Management, 46-48, August 1997 (3 pages with no figures or tables, RDB7B47)

reviews new occupational exposure limits recommended by the American Industrial Hygiene Association (AIHA) and DuPont Chemicals for R-123 in layman's terms; a sidebar summarizes the mechanistic tests that led to the AIHA Workplace Environmental Exposure Limit (WEEL) and DuPont Acceptable Exposure Limit (AEL) of 50 ppm v/v on a time-weighted-average basis; quotes a number of toxicologists and manufacturers representatives on the safety implications and recommended procedures for use of refrigerants and R-123 in particular; contrasts the new limits to concentrations normally encountered; compares the safety of R-123 to R-11 which it replaces; concludes that all refrigerants can be used safely if recommended procedures are followed

R-123, toxicity: ALD oral rat = 9,000 mg/kg; LD$_{50}$ rat = 2,000 mg/kg; 4-hr LC$_{50}$ rat = 32,000 ppm; cardiac sensitization EC$_{50}$ dog = 19,000 ppm; dose-related, anesthetic effects observed in rats at 5,000 ppm during 15-minute inhalation exposures in a glove box, NOEL at 2,500 ppm; not mutagenic, embryotoxic, fetotoxic, or teratogenic; low in toxicity on a subchronic basis; chronic inhalation toxicity study underway

H. J. Trochimowicz and L. S. Mullin, Cardiac Sensitization Potential (EC$_{50}$) of Trifluorodichloroethane, report 132-73, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 30 March 1973 (RDB6146)

R-123, toxicity, cardiac sensitization in dogs with control injection of adrenalin before exposure and a challenge injection after inhalation for five minutes: NOEL 0/3 = 10,300 ppm v/v, LOEL 4/6 = 20,900 ppm; calculated EC$_{50}$ = 19,000 ppm

G. Urban and W. Dekant (Universität Würzburg), Metabolism of 1,1-Dichloro-2,2,2-trifluoroethane in Rats, Xenobiotica, 24(9):881-892, September 1994 (12 pages, rdb8404)

toxicity of R-123: metabolism tests with two male rats individually exposed to radiolabeled R-123 in air for 6 hr; 14% was recovered in urine within 48 hr; trifluoroacetic acid (TFA) was the major metabolite and N-trifluoroacetyl-2-aminoethanol and N-acetyl-S-(2,2-dichloro-1,1-difluoroethyl)-L-cysteine were identified as minor urinary metabolites; urinary excretion of these metabolites was very slow; examination of the sacrificed animals showed covalent binding of the metabolites to protein to be highest in the liver followed by the kidneys and lungs; no covalent binding above background levels was observed in the pancreas or testis, noted as the target organs of R-123 tumorigenicity; results suggest that the biotransformation of R-123 in rodents follows a pathway identical to that of R-123B1 (halothane), an extensively studied structural analog

G. Urban, P. Speerschneider, and W. Dekant (Universität Würzburg), Metabolism of the Chlorofluorocarbon Substitute 1,1-Dichloro-2,2,2-trifluoroethane by Rat and Human Liver Microsomes: The Role of Cytochrome P450 2E1, Chemical Research in Toxicology, 7(2):170-176, March 1994 (7 pages with 8 figures and 3 tables, RDB65E1)

R-123, toxicity: showed that trifluoroacetic acid is a major metabolite of R-123 and that chlorodifluoroacetic acid and inorganic fluoride also are products of the enzymatic oxidation of R-123 in rat and human liver microsomes; concludes that cytochrome P450 2E1 plays a major role in metabolism of R-123 and its analog R-123B1 (halothane) in vitro

G. Urban and W. Dekant (Universität Würzburg), The CFC Substitute 2,2-Dichloro-1,1,1-Trifluoroethane Is Primarily Oxidized by Cytochrome P450 2E1, abstract 1704, The Toxicologist, 13:431, 1993 (1 page, rdb65E4)

R-123, toxicity

R-123, biochemistry, health effects, toxicity

A. Vinegar, R. J. Williams, J. W. Fischer (ManTech Environmental Technology, Incorporated), and J.

R-123, toxicity

R-123, toxicity

R-123 (2,2-dichloro-1,1,1-trifluoroethane), toxicity

development and of a human, physiologically based pharmacokinetic (PBPK) model for R-123 and its major metabolite, trifluoroacetic acid (TFA): corollary approach was developed in the absence of available human kinetic data for R-123, noted as a structural analog of the common anesthetic agent R-123B1 (halothane); both follow a common pathway of oxidative biotransformation, resulting in formation of TFA; models were developed and validated for halothane for rats and humans; a corollary approach then was used to develop the human R-123 model; this strategy was implemented by using a previously validated PBPK model for R-123 and TFA in the Fisher 344 rat as a template; metabolic constants for halothane in the rat were used in the human model, and specific parameters describing the kinetics of TFA were estimated by optimization; the model was validated against published human-exposure data for halothane; a similar approach was then used to derive the R-123 model; use of this PBPK model is proposed for deriving dose-response estimates of health risks in the absence of human kinetic data

Crossover Study with HCFC-123 in Lactating Sprague-Dawley Rats Including Additional Studies on Milk Production and Metabolites in Offspring Urine, report 95/9 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany, 1996 (rdb7E10)

tests of R-123 developmental and reproductive toxicity by exposure of pregnant and/or lactating rats to 0 (control) or 1,000 ppm v/v for 6 hr/d on days 6-19 of gestation and 5-21 post partum; to evaluate the effects on offspring with cross fostering: control pups (from mothers in the control group) nursed by treated mothers showed reduction in body weight gain during the nursing period; pups from treated mothers nursed by control mothers did not; no effect was found on milk production or the nutritional composition of the milk from exposed mothers, but the milk contained the major metabolite of R-123, trifluoroacetic acid (TFA); report concludes that the adverse effects occurred by transfer of the TFA in maternal milk, and were not attributable to developmental toxicity - as reported in RDB 8611

1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123, CAS No. 306-83-2), Joint Assessment of Commodity Chemicals (JACC) report 33, European Chemical Industry Ecotoxicology and Toxicology Centre (ECETOC), Brussels, Belgium, February 1996 (68 pages with 2 figures and 11 tables, RDB6E8)

R-123, 2,2-dichloro-1,1,1-trifluoroethane, environmental impacts, toxicity

R-123, 2,2-dichloro-1,1,1-trifluoroethane, summary of toxicological and ecological information

2,2-Dichloro-1,1,1-trifluoroethane Toxikologisch- arbeitsmedizinische Begrundung von MAK-Werten (Maximale Arbeitsplatz Konzentrationen) [Toxicological and Occupational Medical Basis for the 2,2-Dichloro-1,1,1-trifluoroethane MAK Values (Maximum Workplace Concentrations), Deutsche Forschungsgemeinschaft [German Research Association] (DFG), Bonn, Germany, 1994 (18 pages, rdb6A60)

R-123, documentation for listing as a III B compound [substances suspected of having carcinogenic potential and subject to reevaluation, for assignment to category III A (unequivocally car-

please see page 6 for ordering information
Report on Testing and Analysis of the Concentration of HCFC-123 in Field Installations with General Machinery Rooms Containing Hermetic Centrifugal Chillers, report CFC-1, The Trane Company, La Crosse, WI, October 1991 (34 pages with 14 figures and 15 tables, limited copies available from JMC as RDB2246)

This report provides measured data on R-123 concentrations in equipment rooms housing hermetic centrifugal chillers. Twelve sites, representing a broad range of applications, were tested during normal operation. Additional data were taken at two sites during refrigerant transfers. Measurements were made by gas chromatography, both on site and using activated charcoal tubes (subsequently analyzed in laboratories). All of the sites except one were determined to have concentrations substantially less than 1 ppm, if any. Concentrations above minimum quantifiable levels, 0.33-0.56 ppm, were detected in only two cases. Leakage from empty, but improperly sealed, refrigerant drums was identified as the probable cause for one site. The sources in the other were improperly sealed drums and a leak from the purge vent line. The latter was ascribed to improper field installation and use of incompatible piping materials. A retest of this site, after corrections, found concentrations in line with the others. Reports on the individual sites and summary discussion describe the tests and safety considerations for refrigerants. The findings emphasize the importance of following proper refrigerant handling and storage procedures as well as installation recommendations.

Report of Worker Exposure to HCFC-123 During Servicing of Hermetic Centrifugal Chillers, report CFC-2, The Trane Company, La Crosse, WI, May 1992 (16 pages with 3 figures and 9 tables, limited copies available from JMC as RDB2908)

This report addresses the safety aspects of exposure of service personnel to R-123 during the full range of service procedures for centrifugal chiller applications. Earlier toxicity findings and implications are reviewed as background. The report then documents the measured concentrations during refrigerant transfer, routine maintenance, and major service from three different installations. Chronic (long-term), acute (short-term intermittent), and emergency acute exposure considerations are outlined. The measurement procedures are described; they used activated charcoal tubes subsequently analyzed by gas chromatography in laboratories, and on-site infrared vapor analyzers. Time-weighted average (TWA) exposures are tabulated for the chronic exposures, ranging from less than the limit of quantification (LOQ) to 1.9 ppm. Peak concentrations and durations are tabulated for the intermittent, acute exposures. Test reports are included to describe each site and provide detailed measured data. The report concludes that the long-term concentrations observed were more than five times below the allowable exposure limit (AEL) of 10 ppm [subsequently raised by some refrigerant manufacturers]. The Instantaneous concentrations were well within the 30-50 ppm limits based on guidelines developed by the American Conference of Governmental Industrial Hygienists (ACGIH). The findings emphasize the importance of following proper handling and storage procedures for refrigerants and installation recommendations of ASHRAE Standard 15R [now 15-1992].

Workplace Environmental Exposure Level Guide - 1,1,1-Trifluoro-2,2-dichloroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1998 (11 pages with 2 tables, RDB8611)

R-123: identification, summary chemical and physical properties, uses, production quantities, animal toxicology data, toxicity, human uses and experience, recommended WEEL guide (50 ppm, 310 mg/m³, for 8-hr TWA) and rationale, references

Workplace Guidelines for Suva Centri-LP (HCFC-123) in Refrigeration and Air Conditioning Applications, document AS-5 (H-53018), DuPont Chemicals, Wilmington, DE, November 1993 (4 pages with 2 tables, RDB4C50)

This bulletin presents recommended workplace guidelines for use of R-123 in air-conditioning and refrigeration applications. It notes that DuPont has concluded that R-123 poses no acute (short-term, single exposure) or chronic (long-term, repeated exposure) hazard when handled in accordance with recommendations and when exposures are maintained at or below its recommended Acceptable Exposure Limit (AEL). The bulletin indicates that the AEL for R-123 has been set at 30 ppm for exposures of 8 or 12 hours daily or 40 hours weekly on a time-weighted average (TWA) basis. It also notes that DuPont has set an Emergency Exposure Limit (EEL) of 1000 ppm for up to 1 hour, with a 1 minute ceiling of 2500 ppm. The bulletin recommends that users read and understand the Material Safety Data Sheet (MSDS) and presents guidance for storage, handling, and use of R-123. It notes that ASHRAE Standard 15 requires area monitors to detect refrigerant concentrations and additional guidance on system and machinery room design. A table recommends alarm levels and appropriate actions for...
Increasing detection levels. A second table outlines minimum respirator protection for concentrations exceeding the cited AEL. The bulletin identifies prohibited uses for R-123, personal protective equipment, and storage and handling procedures. It also recommends safety measures for system charging, maintenance, and sampling as well as responses to leaks or spills. DuPont's product names for R-123 are Suva(R) Centri-LP and Suva(R) 123.

Report 57-95, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1995 (rdb7235)

R-123, health effects, subchronic inhalation toxicity study: male rats exposed to 5,000 ppm for 6 hr/d for 5 days were evaluated for biochemical changes and peroxisome proliferation

R-123B1

Identifies R-123B1 as a cardiac sensitizer as reported in RDB 5644

R-123B1, anesthetic effect, toxicity

R-124

F. C. Barsky, In Vitro Microbial Mutagenicity Studies of 1-Chloro-1,2,2,2-tetrafluoroethane, report 349-76 (TSCAT report OTS-050589), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 4 May 1976 (rdb5176)

R-124, genotoxicity, health effects, mutagenic potential, toxicity as reported in RDB 5863 and 55B4

R-124, health effects, toxicity as reported in RDB 5863

W. E. Brewer and S. Smith (Industrial Bio-Test Laboratories, Incorporated), Teratogenic Study via Inhalation with Genetron 124 in Albino Rats, report MA-RR-89-1493 (also identified as IBT 8562-09345 and as TSCAT report OTS-0000695-2), AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 8 November 1977 (32 pages with 10 tables, RDB6173)

Toxicity test of the teratogenicity of R-124 in groups of 20 female Charles River albino rats by inhalation exposures at 0 (control) or 5,000 (4,424-5,527 actual) ppm for 5 hr/d on gestation days 6-15: no difference was found in the maternal body weights and body weight gains between the test and control groups; some animals in both groups had red nasal discharges; the number of resorption sites were slightly higher and the number of pregnancies was 20 in the test group versus 16 in the control group; no other reaction or grossly apparent uterine anomalies attributed to exposures were noted; pathological findings of the sacrificed dams and fetuses were essentially the same for the test and control groups; report concludes that R-124 was not teratogenic as tested [a letter from the study sponsor indicates that the quality of the R-124 used in this study was not certain and that further studies (see RDB 5A22, 65F5, 7268, 7270, and others) were performed]

W. E. Brewer and S. Smith (Industrial Bio-Test Laboratories, Incorporated), 30-Day Subacute Inhalation Toxicity Study with Genetron 124 in Albino Rats, report IBT 8562-09345, AlliedSignal Incorporated (then Allied Chemical Corporation), Morristown, NJ, 2 September 1977 (rdb6174)

R-124, health effects, subchronic toxicity [detailed summary provided in RDB 3720 and discussed in RDB 4C02; a letter from the study sponsor indicates that the quality of the R-124 used in this study was not certain and that further studies (see RDB 65F5 and others) were performed]

D. J. Brusick (Litton Bionetics Incorporated, LBI), Mutagenicity Evaluation of Genetron 124, report MA-RR-89-1451 (also identified as LBI project 2547), AlliedSignal Incorporated (then Allied Chemical Company), Morristown, NJ, 30 July 1976 (42 pages with 1 figure and 18 tables, RDB5807)

R-124, health effects, toxicity: concluded that R-124 did not exhibit genetic activity in any of the in vitro assays evaluated: tests were performed withSaccharomyces cerevisiae (yeast) andSalmonella typhimurium (bacteria) with and without metabolic activation

C. N. Edwards and G. Hodson-Walker (Life Science Research Limited, LSR, UK), In Vitro Assessment of the Clastogenic Activity of HCFC 124 in Cultured Chinese Hamster Ovary (CHO-K1) Cells, report MA-RR-92-1788a (also identified as LSR report 39/PA002/0388a and 31/0388a, also identified as TSCAT report OTS-0535094, Japanese ver-
toxicity tests of R-124 to assess mutagenic potential in cultured Chinese hamster ovary cells at concentrations of 150,000, 300,000, and 600,000 ppm v/v; concludes that R-124 showed no evidence of clastogenic (chromosome-damaging) activity either in the presence or absence of a metabolic activation system, derived from rat livers, under the conditions tested.

Gleason and W. B. Coate (Hazleton Laboratories America, Incorporated), LC50 of G124 in Rats, report MA-RR-89-1450 (also identified as project 165-163), AlliedSignal Incorporated (then Allied Chemical Company), Morristown, NJ, 4 October 1976 (6 pages with 2 tables, RDB5806).

R-124, acute inhalation toxicity: tests of 10 male albino rats at 0 (control), 100,000, and 300,000 ppm R-124 in air: no deaths occurred, leading to the conclusion that the 6-hr LC50 rat exceeds 360,000 ppm; hyperactivity was observed for the first 30 min during exposures at 100,000 ppm followed by inactivity; compound awareness also was observed at 360,000 ppm, at which animals appeared inactive and anesthetized after 1 hr; animals appeared normal during the post-exposure observation period; animals exposed to 360,000 ppm showed a lower rate of weight gain on days 1-8 following exposures, but the report suggests that it may have been due to their higher initial weight; one animal had no gross pathology, but discoloration was found in the cervical lymph nodes, lungs, liver, kidneys of one or more animals and one had unusually dark medullas while another had enlarged cervical lymph nodes; the report describes these pharmacotoxic effects as not serious.

D. P. Kelly, Four-Hour Inhalation Approximate Lethal Concentration (ALC) of HCFC-124 in Rats, report 71-90 (possibly TSCAT report OTS-0530585), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 19 June 1990 (Rdb6180).

tests of the acute inhalation toxicity of R-124 in groups of 6 male Sprague-Dawley rats by 4-hr, nose-only exposures at 48,000, 160,000, 230,000, and 300,000 ppm v/v: no rats died at concentrations of 230,000 ppm and lower, but all six died at 300,000 ppm leading to a conclusion that the 4-hr ALC rat = 230,000-300,000 ppm; no clinical effects were observed at 48,000 ppm; animals exposed to 160,000 and 230,000 ppm and higher showed weight loss the day after exposure followed by normal weight gain; animals exposed to 160,000 and 230,000 ppm exhibited decreased response to startle and tail pinches, prostration, lethargy, and incoordination.

D. M. Krentz, R. C. Graham, and M. A. Lee, untitled toxicity review for 2-chloro-1,1,1,2-tetrafluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 8 June 1992 (RDB5863).

R-124, summary of published and unpublished toxicity literature.

in vitro toxicity tests with Salmonella typhimurium and Escherichia coli to assess the mutagenicity of R-124.

L. A. Malley (E. I. duPont de Nemours and Company, Incorporated), M. C. Carakostas (DuPont), G. S. Elliott (DuPont), L. Alvarez (DuPont), R. E. Schroeder (Pharmaco-LSR, Incorporated), S. R. Frame (DuPont), C. Van Pelt (DuPont), H. J. Trochimowicz (DuPont), and G. M. Rusch (AlliedSignal Incorporated), Subchronic Toxicity and Teratogenicity of 2-Chloro-1,1,1,2-tetrafluoroethane (HCFC-124), article 0102, Fundamental and Applied Toxicology, 32(1):11-22, 1996 (12 pages with 1 figure and 8 tables, RDB65FS).

tests of subchronic toxicity in groups of rats and mice by inhalation exposures for 6 hr/d, 5 d/wk, for 13 weeks at 0 (control), 5,000, 15,000, or 50,000 ppm v/v; R-124 caused minimal compound-related effects; hepatic beta-oxidation activity was significantly higher in male mice exposed at 5,000, 15,000, or 50,000 ppm, but there were no compound-related effects on beta-oxidation activity in rats; rats, mice, and rabbits exposed to 50,000 ppm were less responsive to auditory stimuli or less active compared to controls; male rats exposed to 15,000 or 50,000 ppm for 13-weeks had decreased arousal; no compound-related effects on mortality, clinical signs, ocular tissues, hematology parameters, organ weights, or tissue morphology were found at any concentration in rats or mice; female rats showed a significant decrease in weight gain and food consumption at 50,000 ppm; pregnant rabbits also consumed less food at 50,000 ppm; no evidence of fetal toxicity was found at any concentration.

for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 21 October 1992 (459 pages, rdb7B41)

R-124, health effects, toxicity

90-day inhalation toxicity study for R-124 in rats exposed to 0 (control), 5,000, 15,000, or 50,000 ppm v/v for 6 hr/day, 5 d/wk: anesthetic effect observed at 50,000 ppm based on reduced response to sound; slight differences were observed in clinical chemistry parameters and decreased arousal in males at 15,000 and 50,000 ppm; no compound-related morphological changes were observed; in a related inhalation teratology study, groups of 24 pregnant rats were exposed to 50,000 ppm; no compound-related morphological changes were observed in the dams and no teratogenic changes were observed in the fetuses.

L. A. Malley, Subchronic Inhalation Toxicity: 90-Day Study with HCFC-124 in Rats, report 79-51 (TSCAT report OTS-0529977) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 8 August 1991 (602 pages, Rdb5C06)

Subchronic inhalation study in groups of 20 male and 20 female Crl:CD-BR rats exposed to R-124 for 6 hr/d, 5 d/wk, for 13 wk at target concentrations of 0 (control), 5,000, 15,000, and 50,000 ppm; males exposed to 15,000 and 50,000 ppm had lower serum triglyceride concentrations at the 45-day clinical evaluation; females exposed to 50,000 ppm had higher alkaline phosphatase activity; plasma fluoride, urinary fluoride, and fractional clearance of free fluoride were increased compared to controls in both sexes at all exposure concentrations; plasma fluoride levels remained indistinguishable at the end of the recovery period following exposures for males exposed to 15,000 and 50,000 ppm as did urinary fluoride in males and females at all exposure levels; these differences are described as expected and not considered adverse; males exposed to 15,000 and 50,000 ppm also exhibited mild diuresis attributed to osmotic activity from excreted fluoride ions; rats exposed to 50,000 ppm showed anesthetic effects during exposures based on reduced response to sound; males had decreased arousal on the day after the final exposures 4/10 at 15,000 ppm and 6/10 at 50,000 ppm; there were no treatment-related effects on body weight, food consumption, mortality, clinical signs, ocular tissues, hematological parameters, organ weights, or tissue morphology at any tested concentration; study deemed the NOEL to be 5,000 ppm for males and 15,000 ppm for females.

K. May, D. Watson, and G. Hodson-Walker (Life Science Research Limited, LSR, UK), HCFC 124 in Gaseous Phase: Assessment of Mutagenic Potential in Amino-Acid Auxotrophs of Salmonella Typhimurium and Escherichia Coli (The Ames Test), report MA-RR-92-1787a (also identified as LSR report 91/PAR001/0842 and 91/0842 and as TSCAT report OTS-0535123) for the Program the Alternative Fluorocarbon Toxicity Testing (PAFT), AlliedSignal Incorporated, Morristown, NJ, 20 December 1991 (51 pages with 1 figure and 23 tables, RDB5809)

toxicity tests to assess the mutagenicity of R-124 in bacteria, both with and without an activating system derived from rat livers, at 31,250, 62,500, 125,000, 250,000, and 500,000 ppm v/v; six additional female rats per group were exposed concurrently for a probe teratology study: anesthetic LOEC rat = 50,000 ppm; NOEL rat = 10,000 ppm

L. S. Mullin, Fluorocarbon 124 (1-Chloro-1,2,2,2-tetrafluoroethane): Cardiac Sensitization, report 220-76 (TSCAT report OTS-0530588), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 12 March 1976 (2 pages with 1 table, RDB5808)

toxicity tests to determine the cardiac sensitization potential of R-124 in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway...
into a 10 minute exposure; no marked response in 10 dogs at 10,100 ppm v/v in air [deemed a NOEL]; marked response in 4 of 10 dogs at 25,000 ppm [deemed a LOEL] with 1 death; marked response in 2 of 2 dogs at 50,000 ppm

M. J. Olson, J. T. Johnson, J. F. O’Gara, and S. E. Surbrook, Jr. (General Motors Research Laboratories), Metabolism In Vivo and In Vitro of the Refrigerant Substitute 1,1,1,2-Tetrafluoro-2-chloroethane, Drug Metabolism and Disposition, 19(5): 1004-1011, 1991 (8 pages, rdb6183)

R-124, 2-chloro-1,1,1,2-tetrafluoroethane, toxicity, metabolism in rats

L. B. Rickard, Mouse Bone Marrow Micronucleus Assay of HCFC-124, report 52-90 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 February 1990 (24 pages, rdb5A21)

R-124, genotoxicity, health effects, mutagenic potential, toxicity as reported in RDB 4B88 and 5B54

An Inhalation Developmental Toxicity Study in Rabbits with HCFC-124, report 89-3514 (OTS-05305094) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Bio/dynamics Incorporated, East Millstone, NJ, 19 December 1991 (rdb5A12)

R-124, health effects, toxicity as reported in RDB 4B88

1-Chloro-1,2,2,2-tetrafluoroethane (HCFC 124, CAS No. 2837-89-0), Joint Assessment of Commodity Chemicals (JACC) report 25, European Chemical Industry Ecotoxicology and Toxicology Centre (ECETOC), Brussels, Belgium, July 1994 (34 pages, RDB4C02)

R-124, 2-chloro-1,1,1,2-tetrafluoroethane, environmental impacts, toxicity

2-Chloro-1,1,1,2-Tetrafluoroethane (HCFC 124) Health Effects Information, CAS# 2837-89-0, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (5 pages, RDB5B54)

R-124, summary of toxicological and ecological information

Biodegradability of HCFC-124 by Microorganisms, report for the Program the Alternative Fluorocarbon Toxicity Testing (PAFT), Kurume Research Laboratories (KRL), Fukuoka, Japan, 1992 (rdb-7538)

R-124, ecotoxicology, fate, environmental impacts, groundwater and soil

Dissociation Constant of Flon 124, report for the Program the Alternative Fluorocarbon Toxicity Testing (PAFT), Kurume Research Laboratories (KRL), Fukuoka, Japan, 1991 (rdb7B39)

R-124, ecotoxicology, fate, environmental impacts, groundwater and soil

Octanol-Water Partition Coefficient of Flon 124, report for the Program the Alternative Fluorocarbon Toxicity Testing (PAFT), Kurume Research Laboratories (KRL), Fukuoka, Japan, 1992 (rdb7B40)

R-124, ecotoxicology, fate, environmental impacts, groundwater and soil

In Vitro Evaluation of HCFC-124 for Chromosome Aberrations in Human Lymphocytes, report 367-90 for the Program the Alternative Fluorocarbon Toxicity Testing (PAFT), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 24 October 1990 (rdb5A20)

R-124, mutagenicity, toxicity, potential clastogenic (chromosome-damaging) activity as reported in RDB 4B88 and 5B54

Mutagenicity Testing of HCFC-124 in the Salmonella Typhimurium Plate Incorporation Assay, report 191-90 (TSCAT report OTS-0530587), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 14 September 1990 (rdb6182)

R-124, health effects, genotoxicity, mutagenic potential, toxicity as reported in RDB 5B63 and 5B54

Pilot Teratogenicity Study of HCFC-124 in the Rat, TSCAT report OTS-0530407, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 9 March 1991 (rdb7270)

R-124, health effects, toxicity as reported in RDB 5B54

Subchronic Inhalation Toxicity: 90-Day Study with 2-Chloro-1,1,1,2-Tetrafluoroethane in Mice, TSCAT report OTS-0543411, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, volumes I and II, 21 October 1992 (rdb7267)

R-124, health effects, toxicity

R-124, health effects, toxicity as reported in RDB 4B88 and 5B54

Workplace Environmental Exposure Level Guide - 2-chloro-1,1,1,2-tetrafluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1992 (2 pages with no figures or tables, RDB4B88)

R-124: identification, summary chemical and physical properties, uses, animal toxicology data, toxicity, human uses and experience (no reports of adverse effects), recommended WEEL (1,000 ppm for 8-hr TWA) guide and rationale, references

report 108-90, Haskell Laboratory for Toxicology and Industrial Medicine, E.I. duPont de Nemours and Company, Incorporated, Newark, DE, 1990 (rdb6181)

R-124, health effects, toxicity, developmental and reproductive toxicity, teratogenicity as reported in RDB 5863

R-125

M. W. Anders, Pharmacokinetics of HFC-125 (Pentafluoroethane) in Rats, report for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), University of Rochester Medical Center, Rochester, NY, 16 December 1993 (rdb5751)

R-125, toxicity

R-125

R-125, developmental toxicity, teratogenicity: neither embryotoxic nor teratogenic in the rabbit at exposures up to 50,000 ppm v/v as reported in 5855 and 65E6

R-125, toxicity, mutagenicity: no evidence of clastogenic activity as reported in RDB 65E6

C. N. Edwards, G. Hodson-Walker, and S. Cracknell, HFC-125: In Vitro Assessment of Clastogenic Activity on Bone Marrow Erythrocytes in the Micronucleus Test, report 92/PAR004/0148 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 7 July 1992 (rdb5758)

R-125, toxicity, mutagenicity: no evidence of clastogenic activity in the mouse micronucleus assay as reported in RDB 65E6

R-125, toxicity, literature review, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 1,000 ppm, 8-hr TWA, provisional

T. Kawano (Daikin Industries, Limited, Japan), H. J. Trochimowicz (E. I. duPont de Nemours and Company, Incorporated, USA), G. Mallinverno (Ausimont S.p.A., Italy), and G. M. Rusch (AlliedSignal Incorporated, USA), Toxicological Evaluation of 1,1,1,2,2-Pentafluoroethane (HFC-125), Fundamental and Applied Toxicology, 28:223-231, 1995 (9 pages with 7 tables, RDB65E6)

R-125, summary of Program for Alternative Fluorocarbon Toxicity Testing (PAFT) studies: 4-hr ALC and LC50 rat is >800,000 ppm v/v; 5-min cardiac sensitization NOEL dog is 75,000 ppm, LOEL is 100,000 ppm, and EC50 is 100,000-150,000 ppm; subchronic exposures of rats for 6 hr/d, 5 d/wk for 4 and 13 weeks showed no evidence of toxicity at 50,000 ppm, the highest concentration tested; developmental tests found slight, reversible toxicity in the rabbit and rat dams, but no convincing evidence of embryotoxicity or teratogenicity; in vivo tests in Salmonella typhimurium and Escherichia coli bacteria (Ames Assay) found no clear evidence of clastogenic activity in Chinese hamster ovary (CHO) cells or human lymphocytes; in vivo tests found R-125 not mutagenic in the mouse micronucleus test, even at concentrations as high as 600,000 ppm for 6 hours; the paper concludes that R-125 is "very low in biological reactivity," "is not acutely toxic, not a cumulative toxin, not a developmental toxin, not a mutagen," and is
"low or lower in toxicity than any of the CFCs it will eventually replace."

R-125, developmental toxicity: neither embryotoxic nor teratogenic in the rat at exposures up to 50,000 ppm v/v as reported in 65E6

K. May, D. Watson, and G. Hodson-Walker, HFC-125 in Gaseous Phase: Assessment of Mutagenic Potential in Amino-Acid Auxotrophs of Salmonella Typhimurium and Escherichia Coli (The Ames Test), report 91/PAR003/1152a for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Life Science Research Limited (LSR), Suffolk, UK, 12 or 28 May 1992 (rdb5757)

R-125, toxicity, mutagenicity, Ames assay: R-125 deemed not mutagenic as reported in RDB 5B55 and 65E6

E. Nakayama, K. Nagano, M. Chrishi, S. Katagiri, and O. Motegi (Japan Bioassay Laboratory, JBL, Japan), Acute Inhalation Toxicity Study of 1,1,1,2,2-Pentafluoroethane (HFC-125) in Rats, report on study 0184 (also identified as MA-RR-92-1801) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Japan Industrial Safety and Health Association, Kanagawa, Japan, 18 March 1992 (84 pages with 11 figures and 22 tables, RDB5754)

tests of the acute inhalation toxicity in groups of 5 female and 5 male Crj:CD(SD) rats exposed (whole body) to concentrations of 0 and 800,000 (769,000 actual with a brief excursion to 398,000) ppm v/v R-125 in oxygen: no deaths resulted, but "almost all" animals exhibited ataxic (uncoordinated) gait, decreases in locomotor movement and sound response [suggesting an anesthetic LOEC at 769,000 ppm v/v], abnormal respiration, prone or lateral, up and down movement of the neck during exposure; mean body weight gain of the treated male rats was 3-5% lower postexposure than the controls; no other clinical signs were noted during a 14 day observation period and no toxic effects were found at necropsy; concludes that R-125 has very low toxicity by acute inhalation and that the 4-hr ALC rat exceeds 100,000 ppm v/v as tested

E. Nakayama, K. Nagano, M. Ohnishi, S. Katagiri, and O. Motegi (Japan Bioassay Laboratory, JBL, Japan), Four-Week Inhalation Toxicity Study of 1,1,1,2,2-Pentafluoroethane (HFC-125) in Rats, report 0182 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Japan Industrial Safety and Health Association, Kanagawa, Japan, 23 October 1992 (rdb5766)

R-125, inhalation toxicity: 13-wk NOAEL rat at 0, 5,000, 15,000, or 50,000 ppm v/v as reported in RDB 65E6

E. Nakayama, K. Nagano, M. Ohnishi, and O. Motegi (Japan Bioassay Laboratory, JBL, Japan), Thirteen-Week Inhalation Toxicity Study of 1,1,1,2,2-Pentafluoroethane (HFC-125) in Rats, report 0197 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Japan Industrial Safety and Health Association, Kanagawa, Japan, 31 August 1993 (rdb5761)

R-125, inhalation toxicity: R-125, toxicity: 4-wk NOAEL rat at 0, 5,000, 15,000, or 50,000 ppm v/v as reported in RDB 65E6

S. Nick, Pentfluoroethane (FC-125): Acute Inhalation Toxicity, report 54-64, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 28 May 1984 (1 page with 1 table, RDB6456)

tests of the acute inhalation toxicity in groups of 4 male Chr-CD rats exposed whole body to concentrations of 50,000 and 100,000 ppm v/v R-125 in air for 4 hr: no deaths resulted; exposed animals exhibited slightly deep respiration and inactivity during exposure, but recovered immediately thereafter; rats showed a weight gain within one day following exposures but appeared normal throughout the remainder of the 14-day observation period; gross examination of the lungs at necropsy revealed slight pulmonary changes; concludes that the 4-hr ALC rat exceeds 100,000 ppm v/v and that R-125 appears to have no deleterious effect as a contaminant of R-115 food propellant (also used as a refrigerant) if present in the expected concentration of approximately 50 ppm

A. S. Panepinto, Four-Hour Inhalation Approximate Lethal Concentration (ALC) of HFC-125 in Rats, report 582-90 (TSCAT report 0530584), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 4 December 1990 (12 pages with 1 table, RDB6457)

tests of the acute inhalation toxicity in groups of 6 male Crj:CD(BR) rats exposed nose only to concentrations of 503,000 and 709,000 ppm v/v R-125 in air, with oxygen added to maintain concentrations of 20-22%, for 4 hr: no deaths resulted and no clinical signs of toxicity were observed during exposures or immediately thereafter; animals showed transient weight
losses of 1-9% on the first day following exposures, but gained weight during the 14-day recovery period; two rats exposed at the higher concentration also exhibited transient weight loss later in the recovery period; concludes that the 4-hr ALC exceeds 709,000 ppm and that R-125 is considered to have a very low toxicity

R-125, toxicity

R-125, toxicity

V. Thompson and R. C. Graham, untitled toxicity review for pentafluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 10 December 1993 (16 pages, RDB5871)

R-125, summary of published and unpublished toxicity literature

Pentafluoroethane (HFC-125, CAS No. 354-33-6), Joint Assessment of Commodity Chemicals (JACC) report 24, European Chemical Industry Ecotoxicology and Toxicology Centre (ECETOC), Brussels, Belgium, May 1994 (36 pages with 2 tables, RDB4C01)

R-125, environmental impacts, toxicity

Pentafluoroethane (HFC 125) Health Effects Information, CAS# 354-33-6, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (9 pages, RDB5B55)

R-125, summary of toxicological and ecological information

Test on Biodegradability of HFC-125 (1,1,1,2,2-Pentafluoroethane) by Microorganisms (closed-Bottle Method), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 19 January 1993 (rdb7271)

R-125, ecotoxicology, fate, environmental impacts

Test on 1-Octanol/Water Partition Coefficient of HFC-125, Kurume Research Laboratories (KRL), Fukuoka, Japan, 28 April 1992 (rdb7273)

R-125, ecotoxicology, fate, environmental impacts, groundwater and soil

Test Report HFC 125 Dissociation Constant, Kurume Research Laboratories (KRL), Fukuoka, Japan, 28 April 1992 (rdb7272)

R-125, ecotoxicology, fate, environmental impacts, groundwater and soil

Workplace Environmental Exposure Level Guide - 1,1,1,2,2-pentafluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1996 (4 pages, RDB5C15)

R-125, WEEL, toxicity data, toxicity, safety classification

report 726-90, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1990 (rdb6455)

R-125, health effects, toxicity, mutagenicity

R-132b

R-132b, health effects, toxicity as reported in RDB 5371

R-132b, health effects, toxicity as reported in RDB 5371

R-132b, health effects, metabolism, toxicity

P. J. M. Janssen and T. E. Pot (Duphar B.V., The Netherlands), *Acute Dermal Toxicity Study with FC 132b in Rats*, report S.8807, Solvay et Cie S.A., Brussels, Belgium, 1989 (rdb5379)

Toxicity tests for acute dermal toxicity of R-132b in rats as reported in RDB 5371

P. J. M. Janssen (Duphar B.V., The Netherlands), *Acute Inhalation Toxicity Studies on FC 132b in Rats*, report S.8811, Solvay et Cie S.A., Brussels, Belgium, 1989 (rdb5380)

Tests for acute inhalation toxicity of R-132b in rats as reported in RDB 5371

P. J. M. Janssen (Duphar B.V., The Netherlands), *Acute Inhalation Study to Investigate the Respiratory Irritancy Properties of FC 132b in Male..."
R 133a

- toxicity of R-133a; health effects

R 134

M. A. Collins, Toxicology Summary for 1,1,2,2-Tetrafluoroethane (HFC 134), ICI Chemicals and Polymers-Limited, Runcorn, UK, 9 June 1993 (2 pages, RDB6688)

- R-134, summary of published and unpublished toxicity literature; ICI Hygiene Standard = 10 ppm Occupational Exposure Band; no metabolism data available, but absorption is expected to be poor; reported to be of low acute inhalation toxicity, but no data are available; no chronic exposure data, but R-134 was administered to rats at 7 ppm for 1 yr, as an impurity in refrigerant 134a, with no effect; mutagenicity tests (Ames test in human lymphocyte in vitro cytogenetics study) negative for genotoxic effects; concludes that R-134 is probably of low overall toxicity

E. C. M. Hodge, D. Anderson, I. P. Bennett, and T. M. Weight, Arcton 133a: Dominant Lethal Study in the Mouse, report CTL/P/467, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1979 (rdb5377)

- R-133a, health effects, toxicity

D. M. Krentz, M. A. Lee, and R. C. Graham, untitled toxicity review for 1,1,2,2-tetrafluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company. Incorporated, Newark, DE, 6 October 1992 (RDB5864)

- R-134, summary of published and unpublished toxicity literature

4 hr acute inhalation toxicity tests in groups of six male Charles River Crl:CD BR rats by nose-only exposures to R-134: no mortalities resulted at concentrations of 120,000, 200,000, 380,000, and 460,000 ppm v/v in air with oxygen enrichment (to maintain 20-22% levels); no clinical signs were observed at 120,000 ppm; rats exposed to 200,000 ppm showed no response to tapping on the chamber; rats exposed to 380,000 and 460,000 ppm showed rapid breathing, but no response to a tail pinch or tapping on the chamber; all rats lost 1-6% body weight 1 day following exposures but resumed weight gain thereafter; report concludes that the 4-hr ALC rat for R-134 exceeds 460,000 ppm v/v and that R-134 is "considered to have very low toxicity" on an acute inhalation basis

HFC 134: Assessment of Cardiac Sensitization Potential in Dogs, report DPT 300/932252, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 21 February 1994 (29 pages, RDB-6802)

R-134, cardiac sensitization in beagle dogs for exposures with epinephrine challenge; NOEL at 50,000 and 75,000 ppm v/v, LOEL 33% at 100,000 ppm

report 725-90, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1990 (rdb6186)

R-134, health effects, toxicity, mutagenicity, potential clastogenic (chromosome-damaging) activity as reported in RDB 5864

report 729-90, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1990 (rdb6187)

R-134, health effects, toxicity, mutagenic potential, Ames Assay negative as reported in RDB 5864

R-134a

D. J. Alexander (Glaxo Research and Development Limited, UK), S. E. Libretto, M. J. Adams, E. W. Hughes, and M. Bannerman, HFA-134a (1,1,1,2-Tetrafluoroethane): Effects of Inhalation Exposure upon Reproductive Performance, Development and Maturation of Rats, Human and Experimental Toxicology, 15(6):508-517, 1996 (10 pages, rdb8416)

two series of toxicity tests of rats to R-134a: chronic exposures at 2,500, 10,000, or 50,000 ppm to assess effects on reproduction and development; exposures from days 17 to 20 of pregnancy and days 1 to 21 post partum to atmospheres of 1,800, 9,900, or 64,400 ppm; the only treatment-related effect was a slight reduction in body weight gain of males of the treated parental generation at 50,000 ppm; no adverse effects were observed in either study on the reproductive performance of treated animals or on the development, maturation, or reproductive performance of up to two successive generations

D. J. Alexander (Glaxo Research and Development Limited, UK), Safety of Propellants, Journal of Aerosol Medicine, 8(supplement 1):S29-S34, 1995 (6 pages with 1 table, RDB8111)

summarizes a toxicological assessment of fluorochemical 134a for use as an aerosol propellant in metered-dose inhalers (MDIs, compound also is used as a refrigerant identified as R-134a): test samples were prepared by adding "essentially all the manufacturing impurities" to a stock that was in excess of 99.9% pure; results showed that R-134a has exceptionally low acute toxicity and is devoid of genotoxicity and, in rats and mice, oncogenic potential; tests showed no toxicity in rabbits, rats, mice, or dogs exposed to maximum concentrations of 40,000, 50,000, 75,000, or 120,000 ppm v/v, respectively, for up to one year; no fetotoxicity, effects on reproductive performance, peri- or post-natal development, sensitization or local irritation to the eyes or skin was found; mice and rats exposed to concentrations of 810,000 ppm v/v with oxygen supplementation for 1 hr showed no evidence of clinical reactions or acute toxicity; dogs were essentially unaffected by R-134a during acute inhalation exposures of up to 80,000 ppm but showed intolerance and minor motor disturbances at concentrations of 160,000 and 320,000 ppm v/v without oxygen enrichment; all species tested demonstrated high systemic concentrations with half-lives of 4-7 minutes following a 1-hr exposure; metabolism was very limited in rats with the main metabolites being carbon dioxide and trifluoroacetic acid (TFA) in the urine, amounting to less than 0.67% of the administered dose; TFA was detected at trace levels in the urine of humans exposed to high doses of R-134a; article concludes that R-134a is suitable for MDI use

please see page 6 for ordering information

toxicity of R-134a and others tested as metered-dose inhaler (MDI) propellants

D. Anderson and C. R. Richardson, Arcton 134a: A Cytogenetic Study In the Rat, report CTL/P/-444 (SR0002, FYI-OTS-0689-0698), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 17 May 1979 (rdb5B33)

R-134a, mutagenicity, toxicity: no chromosomal damage in rat bone marrow cells as reported in RDB 5150, 5870, and 6533

A. Araki (Japan Bioassay Laboratory, JBL, Japan), Report on Reverse Mutation Assay in Bacteria on Tetrafluoroethane, report 5292/5312, Japan Industrial Safety and Health Association, Kanagawa, Japan, 11 October 1990 (rdb6534)

R-134a, health effects, mutagenicity, toxicity

M. Asakura (Japan Bioassay Laboratory, JBL, Japan), Report on a Chromosomal Aberration Test of 1,1,1,2-Tetrafluoroethane in Cultured Mammalian Cells, report 5879 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Japan Industrial Safety and Health Association, Kanagawa, Japan, 14 June 1990 (rdb6535)

R-134a, health effects, mutagenicity, toxicity

R. D. Callander and K. P. Priestley, HFC 134a: An Evaluation Using the Salmonella Mutagenicity Assay, report CTL/P/2422 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 16 March 1990 (rdb5B37)

R-134a, toxicity

C. A. Coleman and R. S. Thompson, HFC 134a: Determination of the Acute Toxicity to Pseudomonas Putida, report CTL/BL3980/B, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1990 (rdb65B0)

R-134a, toxicity as reported in RDB 6533

M. A. Collins (ICI Chemicals and Polymers Limited, UK), G. M. Rusch (AlliedSignal Incorporated, USA), F. Sato (Showa Denko K.K., Japan), P. M. Hext (Zeneca Central Toxicology Laboratory, UK), and R-J. Millischer (Elf Atochem S.A., France), 1,1,1,2-Tetrafluoroethane: Repeat Exposure Inhalation Toxicity in the Rabbit, Developmental Toxicity in the Rabbit, and Genotoxicity in Vitro and in Vivo, Fundamental and Applied Toxicology, 25:271-280, 1995 (10 pages with 1 figure and 6 tables, RDB-5610)

This paper summarizes toxicity studies for animal exposures to R-134a by inhalation. It presents the findings for subchronic and chronic rat exposures to 0, 2,500, 10,000, and 50,000 ppm for 13, 52, and 104 weeks. No statistically significant effects were observed on clinical condition, growth, and survival or on hematological, clinical chemistry, and urinary parameters. The only treatment-related pathological changes seen were increased incidence of Leydig cell hyperplasia (abnormal or unusual increase) and adenoma (benign tumor of glandular structure or origin) in male rats exposed to 50,000 ppm. The tumors, which also were found in control animals, were benign and not life threatening. The survival rates are plotted and key data are tabulated for these chronic inhalation studies. The paper also summarizes a battery of "in vivo" and "in vitro" tests for genotoxic activity. They include mouse micronucleus, unscheduled DNA synthesis assays, Ames assay, cytogenic assay in cultured mammalian cells, and cytogenic assay in human lymphocytes. Pregnant rabbits exposed to R-134a showed minimal maternal toxicity at high concentrations, but there were no effects on fetal development. The paper presents the test methods and conditions, statistical analysis approaches, and results. Data are tabulated for the developmental toxicity and in vivo genotoxicity studies. The paper concludes that R-134a is of very low toxicity.

M. A. Collins, HFC 134a: Acute Toxicity in Rats to Tetrafluoroethane, report CTL, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1984 (rdb65A9)

R-134a, inhalation toxicity as reported in RDB 6533

R-134a: biochemistry, pharmacokinetics, toxicity

acute inhalation toxicity tests of R-134a for use as a metered-dose inhaler (MDI) aerosol pro-
pellant (compound also is used as a refrigerant identified as R-134a): health effects

M. K. Ellis, L. A. Gowans, T. Green, and R. J. N. Tanner (Zeneca Central Toxicology Laboratory, then part of ICI Chemicals and Polymers Limited, UK), Metabolic Fate and Disposition of 1,1,1,2-Tetrafluoroethane (HFC-134a) in Rat Following a Single Exposure by Inhalation, Xenobiotica, 23(7):719-729, July 1993 (11 pages, rd6531)

R-134a, metabolism, toxicity: tests in rats following single 1-hr inhalation exposures at 10,000 ppm; approximately 1% was recovered in urine, feces, and expired air after exposures, indicating low absorption of R-134a by the lungs; of the 1%, approximately two-thirds were exhaled within 1 hr of the cessation of exposure as unchanged R-134a; remainder was exhaled as carbon dioxide and excreted in urine and feces as trifluoroacetic acid; carbon dioxide was the major metabolite accounting for 0.22 and 0.27% of the inhaled dose in male and female rats, respectively; urinary excretion accounted for 0.09% of the dose and fecal excretion 0.04% of the dose by both sexes; total metabolism in urine, feces and as carbon dioxide amounted to 0.34 and 0.40% of the inhaled dose in males and females, respectively; no evidence for a specific uptake of R-134a or metabolites into any organ or tissue analyzed, including fat

M. K. Ellis, L. A. Gowans, and T. Green, Hydrofluorocarbon 134a: Pharmacokinetics and Metabolism in Rats Following a Single Exposure by Inhalation, report CTL/R/1090 (TSCAT report OTS-0536297), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, circa 1993 (rdb6581)

R-134a, biochemical study, toxicity

J. Ferguson-Smith, Hygiene Standard Documentation - HFC 134a, document HSP/93/02, ICI Chemicals and Polymers Limited, Cheshire, UK, 1993 (9 pages with 2 tables, RDB5A79)

R-134a, toxicity, literature review, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 1,000 ppm, 8-hr TWA

R-134a, cardiac study, health effects, toxicity

P. W. Grube, D. M. Krentz, M. A. Lee, and R. C. Graham, untitled toxicity review for ethane, 1,1,1,2-tetrafluoro-, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 14 February 1994 (18 pages, RDB5870)

R-134a, summary of published and unpublished toxicity literature

C. J. Hardy (Huntingdon Research Centre Limited, HRC, UK), HFC-134a: Cardiac Sensitization Study in Dogs, report ISN 250/91169, Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 1991 (rdb6844)

R-134a, toxicity

L. I. Harrison (3M Pharmaceuticals), Pharmacokinetics of HFA-134a: A Preliminary Report, American Journal of Therapeutics, 3(11):763-766, November 1996 (3 pages with 1 figure and 2 tables, RDB7537)

combines the accumulated data from four clinical studies to provide a preliminary description of the pharmacokinetics of R-134a: notes that R-134a is absorbed quickly and eliminated with an estimated, based on a population pharmacokinetics approach, half-life 5.1 minutes; subjects were healthy humans and, in one study, mild asthmatic patients; a total of 34 subjects were exposed and there were 24 controls

P. M. Hext and J. R. Parr-Dobrzanski, HFC 134a: 2-Year Inhalation Toxicity Study in the Rat, report CTL/P/3841, Zeneca Central Toxicology Laboratory (then part of ICI Chemicals and Polymers Limited), Cheshire, UK, 19 March 1993 (RDB6546)

R-134a, health effects, 2-yr inhalation toxicity study in rats exposed to 0, 2,500, 10,000, and 50,000 ppm for 6 hr/d, 5 d/wk: no significant differences in survival, body weight, clinical chemistry (except occasional small increases in urinary fluoride levels at 10,000 and 50,000 ppm), hematology, or organ weight (with exception of testes); mean testicular weight was higher at 50,000 ppm; tumor incidence comparable between control and exposed groups except at 50,000 ppm, at which the incidence of Leydig cell hyperplasia and benign Leydig cell tumors was statistically higher; low incidence of generalized large granular lymphocyte leukemia was seen across all groups, and while slightly higher in the control group and at 50,000 ppm; NOEL = 10,000 ppm - as reported in RDB 5870; see RDB 6A01 for discussion, which notes that "Leydig-cell tumors are not considered indicative of adverse effects in humans because they are not applicable to humans"

P. M. Hext, HFC 134a: 90-day Inhalation Toxicity Study in the Rat, report CTL/P/2466 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial
Chemical Industries Limited (ICI), Cheshire, UK, 15 November 1989 (rdb5B38)

R-134a: toxicity study in rats exposed to 2,000, 10,000, and 50,000 ppm for 6 hr/d, 5 d/wk: NOEL = 49,500 ppm as reported in RDB 5870

M. C. Hodge, M. Klimartin, R. A. Riley, T. M. Weight, and J. Wilson, Arcton 134a: Teratogenicity Study in the Rat, report CTL/P/417 (FYI-OTS-0689-0698), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 9 January 1980 (rdb5B31)

R-134a, developmental and reproductive toxicity based on tests at 0 (control), 1,000, 10,000, and 50,000 ppm; concludes that R-134a is neither teratogenic nor embryotoxic at the levels tested as reported in RDB 5150

M. C. E. Hodge, D. Anderson, I. P. Bennett, and T. M. Weight, Arcton 134a: Dominant Lethal Study in the Mouse, report CTL/R/437 (FYI-OTS-0689-0698), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 8 January 1979 (rdb5B32)

R-134a, mutagenicity (negative), toxicity as reported in RDB 5150 and 5870

IPACT Data Review Committee, Interpretation of Brain Weight Data from the Study 'HFC 134a: 90-day Inhalation Toxicity Study in the Rat (ICI Report Number CTL/P/2466, November 15, 1989)', International Pharmaceutical Aerosol Consortium for Toxicology Testing (IPACT), 1990 (rdb7B42)

R-134a, interpretation of findings from a prior toxicity study (see RDB5B36) in rats exposed to 2,000, 10,000, and 50,000 ppm for 6 hr/d, 5 d/wk

Litton Bionetics Incorporated (LBI), Kensington, MD, 1976 (rdb6536)

R-134a, health effects, extended oral toxicity study in rats administered 300 mg/kg/d, 5 d/wk, for 52 weeks: no significant increase in the incidence of neoplasms was observed in any organ as reported in RDB 5970

M. Lu and R. Staples, 1,1,1,2-Tetrafluoroethane (FC 134a): Embryo-Fetal Toxicity and Teratogenicity Study by Inhalation in the Rat, report 317-81 (TSCAT report OTS-0530569 and OTS-0535914), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1981 (rdb6530)

R-134a, developmental and reproductive toxicity

J. M. Mackay, HFA 134a: An Evaluation in the In Vitro Cytogenetic Assay in Human Lymphocytes, report CTL/P/2977 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 10 July 1990 (rdb5B41)

R-134a, mutagenicity, toxicity

T. A. Mahoney, Test Subject Faints After Inhaling HFC-134a in Botched Air Force Exposure Experiments, The Air Conditioning, Heating, and Refrigeration News, 202(8):1-2, 20 October 1997 (2 pages with no figures or tables, RDB7C82)

provides further information on the inhalation toxicity test responses reported in an Air-Force study (see RDB7C80) on exposures with R-13B1, R-134a, and R-227ea: describes the tests in which "one subject lost consciousness and had to be revived" following exposure to R-134a at 4,000 ppm v/v as "conducted somewhat haphazardly"; quotes D. Hufford (director of the U.S. Environmental Protection Agency, EPA, Stratospheric Ozone Protection Division) that the EPA believes "R-134a is safe and we are not urging any changes to its use"; quotes A. Vinegar (ManTech Environmental Technology, Incorporated, and coauthor of the original report) that the reported results were not a direct effect based on newer evidence; quotes a Program for Alternative Fluorocarbon Toxicity Testing (PAFT) statement (see RDB7C81) that the responses were "likely not a direct result of the chemical exposure"; quotes R. Rubenstein (an EPA toxicologist) that the first test subject reacted to a stress reaction from the manner of blood sampling and that similar causes are suspected in the other anomalous reactions

R-J. Millischer (Elf Atochem S.A., France), The Toxicology of HFC 134a, Journal of the American College of Toxicol., 8(6):1220 ff, 1989 (rdb6549)

R-134a, health effects, toxicity

L. S. Mullin, Ethane, 1,1,1,2-tetrafluoro-: Cardiac Sensitization, report 42-79, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 January 1979 (3 pages with 1 table, RDB6527)

toxicity tests to determine the cardiac sensitization potential of R-134a in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure: no marked response in 10 dogs at 49,800 ppm v/v R-134a in air [deemed a NOEL]; marked response in 2 of 10 dogs at 75,200 ppm [deemed a LOEL] and in 2 of 4 dogs with one death at 101,900 ppm:
concludes that R-134a is "a weak cardiac sensitizer similar to Halon 1301"

W. Müller and T. Hoffmann (possibly Hofmann) (Pharma Research Toxicology and Pathology Laboratory), report 88.1244/89.0115, CFC 134a Micronucleus Test in Male and Female NMRI Mice After Inhalation, Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, 1989 (36 pages, rdb-6584)

R-134a, toxicity

M. J. Olson and S. E. Surbrook, Jr. (General Motors Research Laboratories), Human Metabolism of the CFC-Substitute HFC-134a: Role of Cytochrome P45011E1, abstract 148, The Toxicologist, 12:62, 1992 (1 page with no figures or tables, RDB7538)

toxicity of R-134a: concludes that R-134a is "essentially nontoxic" based on rates of defluorination in human microsomes, with focus on the role of P450IIIE1; defluorination rates were similar in humans, rabbits, and rats; suggests that potentiation of toxicity may be possible by P450IIIE1 induction for more-readily metabolized fluorochemicals, such as R-123

M. J. Olson (General Motors Research Laboratories), C. A. Reidy, J. T. Johnson, and T. C. Pederson, Oxidation of 1,1,1,2-Tetrafluoroethane in Rat Liver Microsomes Is Catalyzed Primarily by Cytochrome P450IIIE1, Drug Metabolism and Disposition, 19(2):298-303, 1991 (6 pages, rdb6537)

R-134a, health effects, metabolism, toxicity

M. J. Olson and S. E. Surbrook, Jr. (General Motors Research Laboratories), Defluorination of the CFC-Substitute 1,1,1,2-Tetrafluoroethane: Comparison in Human, Rat and Rabbit Hepatic Microsomes, Toxicology Letters, 59(1-3):89-99, December 1991 (11 pages, rdb6538)

R-134a, toxicity: compares metabolism by hepatic microsomes in human tissue to that from rats and rabbits; defluorination of R-134a in a cytochrome-P450 catalyzed reaction was similar; maximal rate of R-134a metabolism was very low and showed little interindividual variation; findings indicate that laboratory animals are an adequate surrogate for humans to characterize R-134a toxicity, especially that which may be mediated by products of halocarbon metabolism

M. J. Olson (General Motors Research Laboratories), C. A. Reidy, J. T. Johnson, and T. C. Pederson, Oxidative Defluorination of 1,1,1,2-Tetrafluoroethane by Rat Liver Microsomes, Drug Metabolism and Disposition, 18(6):992-998, 1990 (7 pages, rdb6539)

R-134a, health effects, metabolism, toxicity

M. J. Olson (General Motors Research Laboratories) C. A. Reidy, and J. T. Johnson, Defluorination of 1,1,1,2-Tetrafluoroethane (R-134a) by Rat Hepatocytes, Biochemical and Biophysical Research Communications, 169(3):1390-1397, 1990 (8 pages, rdw6540)

R-134a, health effects, toxicity

M. J. Olson (General Motors Research Laboratories), C. A. Reidy, and J. T. Johnson, Modulation of Glucose Metabolism in Isolated Rat Hepatocytes by 1,1,1,2-Tetrafluoroethane, Fundamental and Applied Toxicology, 15(2):270-280, August 1990 (11 pages, rdb6541)

R-134a, toxicity: effects on cell viability and functional competence at concentrations of ≤750,000 ppm by glucose metabolism measurements in cultures of hepatocytes derived from fed or fasted rats; R-134a did not produce evidence of cytotoxicity following a 2-hr exposure; by contrast, R-123B1 caused cell death at 1250 ppm; 125,000-750,000 ppm: R-134a increased glycolysis (production of lactate and pyruvate) in a concentration-dependent manner in hepatocytes from fed rats; no effect was observed at 50,000 ppm; R-12, R-114, and R-134a were equal in potency to stimulate glycolysis at 250,000 ppm; R-115 depressed glycolysis slightly; R-123B1 markedly increased glycolysis rates at concentrations as low as 300 ppm; glucose production by hepatocytes of fed rats was decreased by R-12, R-114, and R-134a only at concentrations of ≥250,000 ppm; R-123B1 potentially decreased glucose production by hepatocytes at ≥300 ppm; R-134a exposure inhibited gluconeogenesis in a concentration-dependent manner in cells isolated from livers of fasted rats, although this effect was not significant until concentrations reached 125,000 ppm; comparative potency studies showed that R-12, R-114, and R-134a inhibited gluconeogenesis about equally at 250,000 ppm while R-123B1 was effective at 300 ppm and R-115 was without effect at 250,000 ppm; paper concludes that toxicologically significant alteration of glucose-linked bioenergetics is unlikely at anticipated levels of R-134a exposure in the workplace or environment

M. J. Olson (General Motors Research Laboratories) et al., abstract 202, The Toxicologist, 10(1):51 ff, 1990 (rdb6542)

R-134a, health effects, toxicity

and M. B. Hughes, *Deposition of Inhaled 1,1,1,2-
Tetrafluoroethane (HFA-134a) in Healthy Sub-
jects and in Patients with Chronic Airflow Limi-
tation*, Drug Metabolism and Disposition, 23:832-
839, 1995 (8 pages, rdb8116)

R-134a health effects, pharmacokinetics, toxicity

C. A. Reidy, J. T. Johnson, and M. J. Olson (Gen-
eral Motors Research Laboratories), *Metabolism In
Vitro of Fluorocarbon R-134a*, abstract 1295, The
Toxicologist, 10(1):324 ff, 1990 (rdb6543)

R-134a, biochemical study, health effects, toxic-
ity

R. A. Riley, I. P. Bennett, I. S. Chart, C. W. Gore, M.
Robinson, and T. M. Weight, *Arcton 134a: Suba-
cute Toxicity to the Rat by Inhalation*, report
CTL/P/463 (FYI-OTS-0689-0698), Central Toxicol-
ogist Laboratory, Imperial Chemical Industries Lim-
ited (ICI), Cheshire, UK, 6 December 1979 (rdb-
5B34)

Inhalation toxicity study in rats exposed to 1,
000, 10,000, or 50,000 ppm v/v R-134a in air for
6 hr/d, 5 d/wk, for 4 weeks: gas was ab-
sorbed into the blood; liver weights and plasma
potassium levels were higher for 10,000 and
50,000 ppm exposures; changes were noted in
liver, kidney, and gonad weights of males at
50,000 ppm, but there were no pathology
changes in these tissues; pathological change
was observed in the lungs of several male rats
at the 50,000 ppm dose as reported in RDB
5150 and 5870

S. B. Rissolo, 1,1,1,2-Tetrafluoroethane (Freon(R)
134a): *Acute Inhalation Toxicity*, report 190-67,
Haskell Laboratory for Toxicology and Industrial
Medicine, E. I. duPont de Nemours and Company,
Incorporated, Newark, DE, 2 November 1967 (2
pages with no figures or tables, RDB6525)

tests of the acute inhalation toxicity of R-134a in
Charles River CD rats exposed to 750,000 ppm
v/v in oxygen-enriched air for 30 min; 2 of 4 rats
died, one each at 20 and 29 minutes; rats showed
incoordination, pumping respiration, darkening of
the eyes, unresponsiveness, cyanosis (blue or purple
discoloration of the skin or mucous membranes
due to blood-oxygen deficiency), and convulsions;
survivors were limp, but still showed a righting reflex
after exposure and appeared to recover within 5 min;
one had a moderate weight loss the first day,
but growth was normal for the remainder of the
14-day observation period; both rats that died
had discolored and hyperinflated lungs with
some areas of edema; the survivors were found
in microscopic pathology to have pulmonary
vascular congestion and edema, but no other
compound related effects; recommends that R-
134a be handled with care and in well-ventilated
areas in light of the findings and apparent lack
of preliminary warning signs; findings imply a
30-min ALC 2/4 of 750,000 ppm v/v

G. M. Rusch, *Review of the ICI Toxicology Stud-
ies on Fluorocarbon 134a*, report MA-141-80-1
(also identified as MA-RR-93-429), AlliedSignal In-
corporated (then Allied Corporation), Morristown,
NJ, 3 March 1983 (2 pages with no figures or ta-
bles, RDB5150)

review of teratogenicity; excretion, tissue distri-
bution, and metabolism; subchronic toxicity;
cytogenetic; and dominant lethal toxicity studies
[see RDB 5B31, 5B35, 5B34, 5B33, and 5B32,
respectively]: concludes that R-134a has a low
order of toxicity showing only slight effects at an
exposure level of 50,000 ppm; notes that R-134a
is not teratogenic, embryotoxic, or mutagenic
and is rapidly eliminated and poorly metabo-
lized

A. G. Salmon, J. A. Nash, M. F. S. Oliver, and A.
Reeve, *Arcton 134: Excretion, Tissue Distribu-
tion, and Metabolism in the Rat*, report CTL/P-
513 (FYI-OTS-0689-0698), Central Toxicology Lab-
oratory, Imperial Chemical Industries Limited (ICI),
Cheshire, UK, 6 March 1980 (rdb5B35)

R-134a, biochemical study, toxicity: concludes
that R-134a is rapidly eliminated and only poorly
metabolized in the rat as reported in RDB 5150

A. G. Salmon, J. A. Nash, M. F. S. Oliver, and A.
Reeve, *Arcton 134: Excretion, Tissue Distribu-
tion, and Metabolism in the Rat*, report CTL/P-
513 (FYI-OTS-0689-0698), Central Toxicology Lab-
oratory, Imperial Chemical Industries Limited (ICI),
Cheshire, UK, 6 March 1980 (rdb5B35)

R-134a, biochemical study, toxicity: concludes
that R-134a is rapidly eliminated and only poorly
metabolized in the rat as reported in RDB 5150

M. Shulman and M. S. Sadove (University of Illinois
Research and Education Hospitals), *1,1,1,2-
Tetrafluoroethane. An Inhalation Anesthetic
Agent of Intermediate Potency*, Anesthesia and
Analgesia, 46(5):629-635, September-October 1967
(7 pages with 3 figures and 3 tables, RDB57274)

examination of R-134a as an anesthetic: discusses
effect levels in the mouse, (EC50 270,000
ppm v/v), dog, cat, and rhesus monkey; notes
cardiac sensitization, and specifically ventricular
fibrillation, by R-134a to catecholamines and
infusions of epinephrine or isoproterenol; in-
cludes discussion by J. F. Artusio, Jr. (New York
Hospital, Cornell University Medical Center)

L. S. Silber, *Acute Inhalation Toxicity Study of
Tetrafluoroethane*, report 422-79, Haskell Labo-
atory for Toxicology and Industrial Medicine, E. I.
duPont de Nemours and Company, Incorporated,
Newark, DE, 3 August 1979 (3 pages with 1 table,
RDB6529)

4 hr acute inhalation toxicity tests of R-134a in
groups of six male Charles River CD rats by
whole body exposures: mortality ratios and
the corresponding concentrations were 0/6 at
81,100, 0/6 at 205,000, 0/6 at 359,300, 5/6 at
566,700, 0/6 at 646,700, and 2/6 at 652,700
ppm v/v in air with oxygen enrichment; rats showed lethargy and rapid respiration at 205,200 ppm and additionally trembling and tearing at 359,300 ppm; 4 of 6 showed weight loss within 24 hr of exposures at 359,300 ppm followed by weight gain; the report does not comment on the high fatality occurrence at 566,700 ppm compared to the two higher concentrations tested, but the range of measured concentrations for this group is reported as 494,400-668,800 ppm, the high end of which is similar (664,300-665,300) for the three highest concentrations tested

L. S. Silber and G. L. Kennedy, Subacute Inhalation Toxicity of Tetrafluoroethane (FC 134a), report 228-79, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, August 1979 (rdb6528)

R-134a, toxicity study in rats: no exposure-related hematomal, pathological analysis, or pathologic changes were observed; significant increase in fluoride excretion indicates metabolism of R-134a as reported in RDB 5870

S. E. Surbrook, Jr., and M. J. Olson (General Motors Research Laboratories), Dominant Role of Cytochrome P450 2E1 in Human Hepatic Microsomal Oxidation of the CFC-Substitute 1,1,1,2-Tetrafluoroethane, Drug Metabolism and Disposition, 20(4):518-524, 1992 (7 pages, rdb6544)

R-134a, health effects, metabolism, toxicity

R. W. Trueman, HFC 134a: Assessment for the Induction of Unscheduled DNA Synthesis in Rat Hepatocytes In Vivo, report CTL/P/2550 (SR0337) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, June 1990 (rdb5839)

R-134a, mutagenicity, toxicity

G. P. Ventresca (Glaxo Research and Development Limited, UK), Clinical Pharmacology of HFA134a, Journal of Aerosol Medicine, 8(supplement 1):S35-S39, 1995 (5 pages with 4 figures and 1 table, RDB-8112)

summarizes an assessment in healthy human males of the safety, tolerability, and pharmacokinetics of fluorochemical 134a for use as an aerosol propellant in metered-dose inhalers (MDIs, compound also is used as a refrigerant identified as R-134a): absorption and disposition also were investigated in both healthy subjects and patients with severe chronic obstructive pulmonary disease (COPD) using radiolabeled R-134a; no serious adverse events were reported and there were no clinically significant changes in vital signs, electrocardiogram (ECG), pulmonary function tests, and laboratory parameters; R-134a was mainly eliminated by exhalation within several minutes; it was rapidly absorbed into the blood after inhalation, reaching maximum concentrations in 30-60 seconds, and distributed throughout the body with no obvious accumulation in any region; peak blood concentrations were highly variable, but generally dose dependent; blood concentrations declined rapidly after dosing, with an apparent half-life of 31 minutes; metabolism was not found to be significant; article concludes that inhalation grade R-134a is safe and well tolerated in healthy subjects and that it is rapidly eliminated by exhalation without significant metabolism in by healthy subjects and COPD patients; no accumulation was found with repeat dosing

G. A. Wickramratne (possibly Wickramaratne), Fluorocarbon 134a: Embryotoxicity Inhalation Study in the Rabbit, report CTL/P/2380 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 23 November 1989 (rdb5836)

R-134a, developmental and reproductive toxicity

G. A. Wickramratne (possibly Wickramaratne), HFC 134a: Teratogenicity Inhalation Study in the Rabbit, report CTL/P/2504 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 23 November 1989 (rdb5839)

R-134a, developmental and reproductive toxicity

A. Woodcock (Wythenshawe Hospital, UK), Continuing Patient Care with Metered-Dose Inhalers, Journal of Aerosol Medicine, 8(supplement 2):S5-S10, 1995 (6 pages with 1 figure, RDB8113)

outlines clinical tests of fluorochemical 134a as an aerosol propellant in metered-dose inhalers (MDIs, compound also is used as a refrigerant identified as R-134a): notes very few adverse affects from the R-134a inhalers, generally comparable to those from R-12/11 inhalers; paper discusses replacement of R-12/11 blends and the transition from to alternatives for MDI use

Criteria Group for Occupational Standards: Consensus Report for 1,1,1,2-Tetrafluoroethane, Arbete och Hlsa, 19:86-88, 1995 (3 pages, rdb8422)

toxicological review of R-134a: concludes that the critical toxicity of R-134a is its effect on heart rhythm based on limited data from animal studies

please see page 6 for ordering information
HFC 134a: 2-Year Inhalation Toxicity Study in the Rat. Interim Report after 52 Weeks, TSCATS report 421398 (FYI-OTS-1091-0695) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 30 September 1991 (rdb7C78)

R-134a, chronic toxicity study [also see RDB-6582]

HFC 134a: 2-Year Inhalation Toxicity Study in the Rat. Interim Report after 52 Weeks, report CTL/P/3317 for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 21 August 1991 (rdb-6583)

R-134a, chronic toxicity study

R. A. Riley, I. P. Bennett, I. S. Chart, C. W. Gore, M. Robinson, and T. M. Weight, Arcton 134a: Subacute Toxicity to the Rat by Inhalation, report CTL/P/463 (FYI-OTS-0689-0698), Central Toxicology Laboratory, Imperial Chemical Industries Limited (ICI), Cheshire, UK, 6 December 1979 (rdb-5B34)

Measurement of Dissociation Constant in Water of 1,1,1,2-Tetrafluoroethane, Kurume Research Laboratories (KRL), Fukuoka, Japan, 28 August 1990 (rdb7276)

R-134a, ecotoxicology, fate, environmental impacts, groundwater and soil

Measurement of 1-Octanol/Water Partition Coefficient of 1,1,1,2-Tetrafluoroethane, report 80678, Kurume Research Laboratories (KRL), Fukuoka, Japan, 22 August 1992 (rdb7277)

R-134a, ecotoxicology, fate, environmental impacts, groundwater and soil

Test on Biodegradability of HFC-134a by Microorganisms (Closed-Bottle Method), report 11598, Kurume Research Laboratories (KRL), Fukuoka, Japan, 22 August 1990 (rdb7275)

R-134a, ecotoxicology, fate, environmental impacts, groundwater and soil

1,1,1,2-Tetrafluoroethane (HFC-134a, CAS No. 811-97-2), Joint Assessment of Commodity Chemicals (JACC) report 31, European Chemical Industry Ecology and Toxicology Centre (ECETOC), Brussels, Belgium, February 1995 (42 pages with 1 figure and 3 tables, RDB6533)

R-134a, environmental impacts, toxicity

1,1,1,2-Tetrafluoroethane (HFC 134a) Health Effects Information, CAS# 811-97-2, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (6 pages, RDBB556)

R-134a, summary of toxicological and ecological information

1,1,1,2-Tetrafluoroethane: Mutagenic Activity in the Salmonella/Microsome Assay, report 534-78, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1978 (rdb6526)

R-134a, Ames assay (negative) health effects, mutagenicity, toxicity as reported in RDB 5870

Workplace Environmental Exposure Level Guide - 1,1,1,2-Tetrafluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1991 (4 pages, RDB4B86)

R-134a, WEEL, toxicology data, toxicity, safety classification

R-E134

R. C. Graham and P. J. Lardear, untitled toxicity review for bis(difluoromethyl) ether, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 15 April 1994 (5 pages, RDB6206)

R-E134, summary of published and unpublished toxicity literature

report for project MR-9563-1, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, undated, before 1994 (rdb6207)

R-E134, health effects, toxicity, ALC rat 4 hour >95,000 ppm as reported in RDB 6206

R-141b

M. Bazzon and G. Hervouet (Institut National de Recherche Chimique Appliquée, IRCHA, France), Determination of Acute Toxicity of HCFC 141b to Brachydanio Rerio, report B.7073 (FYI report OTS-5900695) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Levallois-Perret, France, 7 September 1989 (29 pages with 3 figures and 6 tables, RDB6475)

tests for acute aquatic toxicity to brachydanio rerio (zebra fish) exposed for 96 hr to concentrations of 60-444 mg/l R-141b in water: based on observed mortalities, the 96-hr LC₅₀ and LC₉₀ were found to be <60 and 126 mg/l, respectively

R-141b, HCFC-141b, genotoxicity, health effects, mutagenic potential, toxicity

R-141b, genotoxicity, health effects, mutagenic potential, toxicity

R-141b, HCFC-141b, genotoxicity, health effects, mutagenic potential, toxicity as reported in RDB 5B57

D. Briand and G. Hervouet (Institut National de Recherche Chimique Appliquée, IRCHA, France), Determination of Acute Toxicity of HCFC 141b to Daphnia Magna, report B.7072 (FYI report OTS-5900695) for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Elf Atochem S.A., Levallois-Perret, France, 7 September 1989 (31 pages with 3 figures and 9 tables, RDB6474)

tests for acute aquatic toxicity to daphnia magna exposed for 48 hr to concentrations of 25.4-114.3 mg/l R-141b in water: based on observed immobilizations, the 24- and 48-hr EC(50)(S) (median effective inhibiting concentrations) were found to be 33.3 and 31.2 mg/l, respectively

W. J. Brock, H. J. Trochimowicz (E. I. duPont de Nemours and Company, USA), R-J. Millischer (Elf Atochem S.A., France), C. H. Farr (Elf Atochem North America, USA), T. Kawano (Dalkin Industries, Japan), and G. M. Rusch (AlliedSignal Incorporated, USA), Acute and Subchronic Toxicity of 1,1-Dichloro-1-Fluoroethane (HCFC-141b), Fundamental and Applied Toxicology, 33(6):483-490, June 1995 (8 pages with 3 tables, RDB665A4)

This paper summarizes acute and subchronic toxicity test methods and findings for R-141b, to assist in establishing proper handling guides. It describes the sample material used, acute oral toxicity tests in rats administered in corn oil, dermal toxicity tests in rats and rabbits, ocular and dermal irritation tests in rabbits, and dermal sensitization studies in guinea pigs. It also outlines acute, two-week, four-week, and 90-day inhalation tests in rats, cardiac sensitization tests in beagle dogs and monkeys, and neurobehavioral toxicity tests in R-141b, health effects, toxicity, dermal irritation in rabbits, not a skin irritant as reported in RDB 5B57

W. J. Brock, Acute Dermal Toxicity Study of FC-141b in Rabbits, report 501-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6471)

R-141b, health effects, toxicity, LD50 dermal rabbit > 2,000 mg/kg as reported in RDB 5868 and 5B57

W. J. Brock, Primary Eye Irritation Study with FC-141b in Rabbits, report 318-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6470)

R-141b, health effects, toxicity, eye irritation in rabbits as reported in RDB 5B57 and 5868

W. J. Brock, Skin Irritation Test in Rabbits of FC-141b, report 312-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb6469)

R-141b, health effects, toxicity, dermal irritation in rabbits, not a skin irritant as reported in RDB 5B57 and 5868

CIVO, report V89.214, Netherlands Organization for Applied Scientific Research (TNO), Apeldoorn, The Netherlands, 1989 (rdb5973)

R-141b, toxicity
CIVO Institute, report V88.156/271236, Netherlands Organization for Applied Scientific Research (TNO), Apeldoorn, The Netherlands, 1988 (rdb5974)

R-141b, health effects, toxicity

R-141b, HCFC-141b, genotoxicity, health effects, toxicity

D. W. Coombs et al., Potential Neuropathological Effects of Exposure to Rats the Vapour (6 Hours a Day, 5 Days a Week Over a 16-Week Period) of HCFC-141b, report for the Program for Alternative Fluorocarbon Toxicity Testing (PAFT), Huntington Research Center Limited (HRC), Cambridgeshire, UK, 9 January 1992 (rdb7279)

R-141b, health effects, subchronic toxicity as reported in 5B57

D. E. Coombs, C. J. Hardy, D. Crook, P. A. Mullins, and C. Gopinath (Huntingdon Research Centre Limited, HRC, UK), FC-141b: Two-Week Inhalation Study in the Rat, report PWT 76/8893, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, December 1988 (rdb5996)

R-141b, health effects, subchronic toxicity

C. H. de Rooij (Solvay et Cie S.A., Belgium), The Toxicology of HFA-141b, Proceedings of the European Meeting of the Toxicology Forum (Toulouse, France, 18-22 September 1989), Société Française de Toxicologie, France, 1989 (rdb65A7)

R-141b, health effects, toxicity

C. Doleba-Crowe, Acute Inhalation Toxicity - 6 Hours (HFA 141b), report 61-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1977 (rdb6465)

R-141b, health effects, toxicity, 6-hr ALC rat = 50,200 ppm as reported in RDB 5371 and 5868

F. J. Dwyer et al., CFC Alternatives in Thermoset Foam Production, Proceedings of the 33rd Annual Polyurethane Technical/Marketing Conference (20 September - 3 October 1990), 400-406, 1990 (7 pages, rdb59A5)

R-141b, toxicity

ENVIRON Corporation, Evaluation Of Potential Risks Associated with Substitution of HCFC 141b for CFCs Used in the Manufacture of Insulating Foam, Elf Atochem North America, Incorporated, Philadelphia, PA, April 1992 (94 pages with 20 tables, RDB7288)

review of toxicity data for R-141b and its primary degradation products (R-151a, R-1131a, R-142b, and R-143a), toxicity criteria and dose-duration responses, exposure assessment, and risk characterization; concludes that "the potential health hazard...of exposure is negligible for workers manufacturing the foam insulation and for residents (both adults and children) living in homes insulated with foam boards"

J. W. Gardner (Huntingdon Research Centre Limited, HRC, UK), Acute Dermal Toxicity to Rats of 4874-89, report 88111-4D/PWT 91/AC, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, 12 October 1988 (16 pages with 4 tables, RDB5991)

test to assess the dermal toxicity of R-141b (identified in the study as 4874-89) by a single exposure to the skin of five male and five female CFY (Sprague-Dawley) rats: no signs of systemic reaction were observed and deaths resulted; rats achieved normal bodyweight gains and terminal autopsy findings were normal; concluded that the ALD dermal rat > 2000 mg/kg (1.63 mL/kg)

C. J. Hardy, G. C. Jackson, R. S. Rao, D. J. Lewis, and C. Gopinath (Huntingdon Research Centre Limited, HRC, UK), HCFC 141b Acute Inhalation Toxicity Study in Rats 4-Hour Exposure, report PWT 95/881676, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, 17 July 1989 (69 pages with 2 figures and 8 tables including 1 page sponsor summary, RDB5995)

tests of acute inhalation toxicity to groups of five male and five female Sprague-Dawley, albino rats by whole-body exposures at 0 (control), 29,674, 45,347, 67,499, or 76,485 ppm v/v R-141b in air for 4 hours: 5 of 10 and 10 of 10 animals died at the two highest concentrations, leading to findings of 4-hr LC50 rat of 58,531 for the males, 64,991 for the females, and 61,647 ppm v/v overall; treated animals showed increased respiration rates, wetness around the mouth, reduced motor activity, restless behavior, and abnormal body carriage at all concentrations except the control group; rats showed reduced bodyweight or bodyweight gain for one day following exposure; the lung to body weight ratios were high for those that died, but no treatment-related macroscopic or microscopic abnormalities were found in pathological examinations

J. H. Harris and M. W. Anders, In Vivo Metabolism of the Hydrochlorofluorocarbon 1,1-Dichloro-1-fluoroethane (HCFC-141b), Biochemical Phar-

R-141b, toxicity

Hita Research Laboratories, Twenty-Eight Day Repeated Dose Inhalation Toxicity Study of HCFC-141b in Rats, report T-2966, Chemicals Inspection and Testing Institute, Japan, February 1992 (rdb5984)

R-141b, toxicity

G. Hodson-Walker, HCFC-141b: Lymphocyte Cytogenetic Study Using the Methodology Recommended by the OECD (1983), report 89/PFG002/1029 (FYI report OTS-006900695), Life Science Research Limited (LSR), Suffolk, UK, 1990 (rdb5998)

R-141b, genotoxicity, health effects, mutagenic potential, toxicity

R-141b, genotoxicity, health effects, mutagenic potential, toxicity

R-141b, HCFC-141b, genotoxicity, health effects, mutagenic potential, toxicity

R-141b, HCFC-141b, genotoxicity, health effects, toxicity

W. Howe, Hygiene Standard Documentation - HCFC 141b, document MC001, ICI Chemicals and Polymers Limited, Cheshire, UK, 14 October 1991 (3 pages, RDB5A80)

R-141b, toxicity, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 500 ppm, 8-hr TWA, and for a short-term exposure limit of 1,250 ppm for 10 minutes

R-141b, health effects, reproduction and developmental study, toxicity

R-141b, developmental study, health effects, reproduction, toxicity

R-141b, health effects, chronic toxicity

Huntingdon Research Centre Limited (HRC, UK), HCFC-141b: Potential Tumorigenic and Toxicological Effects During Prolonged Inhalation Administration in Rats, report ALS 1/921032, AlliedSignal Incorporated, Morristown, NJ, volumes 1-8, 1993 (rdb5999)

R-141b, health effects, chronic toxicity

Huntingdon Research Centre Limited (HRC, UK), Irritant Effects on Rabbit Skin of 4874-89, report PWT 92/881066D/SE, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, 1988 or 1989 (rdb5992)

R-141b, toxicity as reported in RDB 5B57

Huntingdon Research Centre Limited (HRC, UK), Irritant Effects on the Rabbit Eye of 4874-89, report PWT 93/881067D/SE, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, 1988 or 1989 (rdb5993)

R-141b, toxicity as reported in RDB 5B57

P. J. M. Janssen (Duphar B.V., The Netherlands), Acute Inhalation Toxicity Studies on FC 141b in Rats, report S.8820 (also identified as 55645/61/-88), Solvay et Cie S.A., Brussels, Belgium, October 1988 with June 1989 supplement (76 pages with 3 figures and 37 tables, RDB6463)

Toxicity tests for acute inhalation toxicity of R-141b in groups of 5 male and 5 female Wistar-derived rats by nose-only exposures to 0 (control), 3,000, 6,000, or 10,000 ppm v/v averages please see page 6 for ordering information
of 0, 2,946, 5,992, or 11,096 ppm by analysis) R-141b in air for 6 hours: tests included observation of clinical signs, analysis of post-exposure blood and urine, and macroscopic and histopathologic examinations at necropsy; no irritation, anesthesia, or other clinical signs were observed during or after exposures; slight decreases were observed in body-weight gain for males exposed to 3,000 and 11,000 ppm and females exposed to 6,000 and 11,000 ppm; slight effects were observed in the inorganic phosphate levels in blood plasma and in the and kidney function of treated animals; absolute increases were found in the lung weights of animals exposed to 3,000 ppm and relative increases in kidney weights were observed in males exposed to 6,000 ppm; kidney is suggested as a possible target organ with prolonged exposure; no deaths resulted leading to interpretation that the 6-hr ALC rat exceeds 11,088 ppm; R-141b used is identified as 95.5-97.1% pure with 2.6-3.8% R-365 as the major impurity; supplement documents compliance with Good Laboratory Practice regulations.

P. J. M. Janssen (Duphar B.V., The Netherlands), Acute Inhalation Study to Investigate the Respiratory Irritancy Properties of FC 141b in Male Rats, report 56645/41/89, Solvay et Cie S.A., Brussels, Belgium, January 1989 (RDB7749) tests for acute inhalation toxicity of R-141b in rats as reported in RDB 5371.

P. J. M. Janssen (Duphar B.V., The Netherlands), Acute Oral Toxicity Study with FC 141b in Rats, report S.8812 (also identified as 56645/36/88), Solvay et Cie S.A., Brussels, Belgium, January 1989 (RDB7749) toxicity tests for acute ingestion toxicity of R-141b in groups of 5 male and 5 female rats by gastric intubation of 0 (control) or 2000 mg/kg bodyweight R-141b in corn oil: no deaths resulted and the report concludes that the LD₉₀ oral rat exceeds 2000 mg/kg as tested; clinical signs were mainly indicative of an effect on the autonomic nervous system, on the central nervous system, on motor coordination, an motor activity, and on muscle tone; macroscopic examination at necropsy found a higher incidence of liver changes (swollen, hydropic degeneration of the hepatocytes and cloudy swelling of the renal tubular epithelium) in treated animals compared to no males and 2 females in the control groups.

P. J. M. Janssen and T. E. Pot (Duphar B.V., The Netherlands), Acute Dermal Toxicity Study with FC 141b in Rats, report S.8801 (also identified as 56645/23/88), Solvay et Cie S.A., Brussels, Belgium, May 1988 (13 pages with 5 tables, RDB6460) toxicity tests for acute dermal toxicity of R-141b in groups of 5 male and 5 female Wistar rats by application under an occlusive dressing to the shaved, intact skin of 0 (control) or 2,000 mg/kg bodyweight R-141b; no deaths resulted and the report concludes that the LD₉₀ dermal rat exceeds 2,000 mg/kg as tested; slight vocalization was observed in 3 females of the treated group for the first 30 minutes of application; the treated males and 1 male from the control group were somewhat quiet for the corresponding period; macroscopic examination of the animals at necropsy revealed 5 males and 3 females with swollen or slightly swollen livers.

R. J. Kenny (Huntingdon Research Centre Limited, HRC, UK), HCFC-1717: Assessment of Cardiac Sensitization Potential in Dogs, report ALS 57/942811 (also identified as MA-RR-95-2156), AlliedSignal Incorporated, Morrisstown, NJ, USA, 22 December 1994 (38 pages with 4 figures and 7 tables; 3 page cover and summary available from JMC as RDB7206) toxicity tests of R-141b [identified with a truncated CAS number as a "blind control study"], to determine the cardiac sensitization level in male beagle dogs: 6 animals were exposed snout-only for 10 minutes following adrenaline administration, by intravenous injection, and with a second, challenge injection midway through the exposure; tests were repeated, on separate days, at concentrations of 0 (control), 10,000, and 20,000 ppm v/v R-141b in air; results were negative and no abnormal clinical signs were observed at 10,000 ppm; 1 dog (17%) responded positively, resulting in fatal ventricular fibrillation, at 20,000 ppm; report concludes that "HCFC-1717" [R-141b] has cardiac sensitization potential at a concentration in air of "up to 20,000 ppm".

J. C. Koorn (Duphar B.V., The Netherlands), Study to Examine the Possible Mutagenic Activity of the Volatile Liquid FC 141b in the Salmonella/Microsome Assay, report S.8819 (also identified as 56645/60/88 and 56645/41/89), Solvay et Cie S.A., Brussels, Belgium, 1988 (RDB6462) R-141b, genotoxicity, mutagenic potential, toxicity.

S. R. Kynoch and B. J. Parcell (Huntingdon Research Centre Limited, HRC, UK), Delayed Contact Hypersensitivity in the Guinea Pig with 4874-89, report PWT 94/881236D/SS, Elf Atochem North America (then Pennwalt Corporation), King of Prussia, PA, 1989 (RDB5994) R-141b, health effects, toxicity as reported in RDB 5371 and 5B57.
R-141b, safety, toxicity

M. A. Lee, D. M. Krentz, and R. C. Graham, untitled toxicity review for ethane, 1,1-dichloro-1-fluoro-, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 24 November 1993 (18 pages, rdb5868)

R-141b, summary of published and unpublished toxicity literature

M. P. Liggett, S. Allan, and I. S. Dawe (Huntingdon Research Centre Limited, HRC, UK), Acute Oral Toxicity to Rats of PWC 4874-89, report 8913D/PWT 90/AC, Elf Atocchem North America (then Pennwalt Corporation), King of Prussia, PA, 5 October 1989 (20 pages with 9 tables, RDB5988)

toxicity tests for acute toxicity by a single oral dose of PWC 4874-89 [subsequently identified by the study sponsor as R-141b] dissolved 50% w/v (sic) in corn oil administered to groups of 5 male and 5 female CD rats by a syringe and plastic catheter: no deaths resulted and the report concludes that the LD$_{50}$ oral rat exceeds 5,000 mg/kg bodyweight as tested; piloerection was observed in all rats within 5 min of dosing and throughout the remainder of the day; no other clinical signs were observed and recovery, as judged by external appearance and behavior, was complete by the next day; bodyweight gains were slightly lower for 1 male and 2 females during the second week of observation, but all animals achieved anticipated bodyweight gains during the 14-day observation period; terminal autopsy findings were normal

G. D. Lolzou and M. W. Anders (University of Rochester), Gas-Uptake Pharmacokinetics and Bio-transformation of 1,1-Dichloro-1-fluorothane (HCFC-141b), Drug Metabolism and Disposition, 21:634-639, 1993 (6 pages, rdb65E3)

R-141b, biochemistry, metabolism, toxicity

R-141b, toxicity

L. S. Mullin, Fluorocarbon 141b (Ethane, 1,1-dichloro-1-fluoro): Cardiac Sensitization, report 957-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 23 November 1977 (3 pages with 1 table, RDB6467)

R-141b, toxicity tests to determine the cardiac sensitization potential in male beagle dogs with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; NOEL (0/10) at 2,600 ppm v/v; LOEL (1/10) at 5,200 ppm; lethal to 1 of 10 dogs at 10,200 ppm and to 2 of 2 at 21,600 ppm; concludes that R-141b is a strong cardiac sensitizer

T. K. Nikijenko, Toksikologiya Novych Promyshlen-nykh Khimicheskikh Veschestva [Toxicology of New Industrial Chemical Substances], 8:83-97, 1966 (11 pages in Russian, RDB5978)

R-141b, toxicity

R-141b, health effects, toxicity

J. A. Seckar (Pennwalt Corporation), Toxicology of HCFC-141b 1,1-Dichloro-1-fluorothane, Journal of the American College of Toxicology, 8:1221ff (rdb7278)

R-141b, health effects, toxicity

4874-89: Assessment of Clastogenic Action on Bone Marrow Erythrocytes in the Micronucleus Test, report 89/0504, Life Science Research Limited (LSR), Suffolk, UK, 1989 or 1990 (rdb59A3)

R-141b, genotoxicity, health effects, mutagenic potential, toxicity as reported in RDB 5B57

Acute Oral Toxicity Study of FC-141b in Male Rats, report 363-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb5977)

R-141b, health effects, toxicity, LD$_{50}$ oral rat >5,000 mg/kg as reported in RDB 5868 and 5B57

CFC 141b: Investigation of Mutagenic Activity at the HGPRT Locus in a Chinese Hamster V79

R-141b, HCFC-141b, genotoxicity, health effects, mutagenic potential, toxicity

1,1-Dichloro-1-fluoroethane (HCFC 141b, CAS No 1717-00-6), Joint Assessment of Commodity Chemicals (JACC) report 29, European Chemical Industry Ecology and Toxicology Centre (ECE-TOC), Brussels, Belgium, December 1994 (RDB-6585)

R-141b, environmental impacts, toxicity

1,1-Dichloro-1-fluoroethane (HCFC 141b) Health Effects Information, CAS# 1717-00-6, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (6 pages, rdb5B57)

R-141b, summary of toxicological and ecological information

1,1-Dichloro-1-fluoroethane (HCFC-141b): Probe Study to Assess the Neuropharmacologic Effects of Acute Inhalation Exposure in Rats, Dow Chemical Company, 1989 (rdb7280)

R-141b, health effects, subchronic toxicity

1,1-Dichloro-1-fluoroethane: 4-Week Toxicity Study with Fischer 344 Rats, report DR-0006-8553-002, Dow Chemical Company, 1989 (rdb-5982)

R-141b, health effects, subchronic toxicity

1,1-Dichloro-1-fluoroethane: 13-Week Toxicity Study with Fischer 344 Rats, report DR-0006-8553-002B, Dow Chemical Company, Midland, MI, July 1989 (rdb5983)

R-141b, health effects, subchronic toxicity

HCFC 141b: Assessment of Mutagenic Potential in Amino Acid Auxotrophs of Salmonella Typhimurium and Escherichia Coli (The Ames Test), report 88/PFG003/0823, Life Science Research Limited (LSR), Suffolk, UK, 1989 (rdb7287)

R-141b, genotoxicity, health effects, mutagenic potential, toxicity as reported in RDB 5B57

Mouse Bone Marrow Micronucleus Assay of FC-141b, report 746-88, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1988 (rdb5472)

R-141b, health effects, toxicity, mutagenicity as reported in RDB 5668 and 5B57

R-141b, toxicity

Workplace Environmental Exposure Level Guide - 1,1-dichloro-1-fluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1992 (RDB4B87)

R-141b, WEEL, toxicology data, toxicity, safety classification

report 55635/49/90 [possibly 55645/49/90], Duphar B.V., The Netherlands, 1991 (rdb6464)

R-141b, aquatic environmental study, ecological toxicity

report 715-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1977 (rdb6466)

R-141b, health effects, toxicity, subchronic inhalation tests as reported in RDB 5668

report 598-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1977 (rdb6468)

R-141b, health effects, toxicity, Ames Assay, not mutagenic as reported in RDB 5668

report ALS 1/901566, Huntingdon Research Centre (HRC), Cambridgeshire, UK, 17 December 1990 (rdb6473)

R-141b, health effects, toxicity, neurologic study in rats, no changes indicative of neurotoxic effect as reported in RDB 5668

report ALS 2/920766, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 1988 (rdb-5990)

R-141b, toxicity

report 89/PFG003/0600, Life Science Research Limited, Suffolk, UK, 1989 (rdb5999)

R-141b, genotoxicity, health effects, mutagenic potential, toxicity: not mutagenic in 5 histidine-dependent auxotrophs of Salmonella typhimurium and 1 strain of tryptophan-dependent auxotroph of Escherichia coli using modified pour-plate assays in the absence and presence of an activating system from rat livers - as reported in RDB 5668

study of the metabolic and biochemical effect of R-141b in rats, AlliedSignal Incorporated, Morristown, NJ, 6 May 1992 (rdb6476)

R-141b, health effects, toxicity
R-142b

- R-142b, health effects, toxicity as reported in RDB 3721 and 5869

- R-142b, health effects, toxicity as reported in RDB 5869

R. Culik and D. P. Kelly, *Embryotoxic and Teratogenic Studies in Rats with Inhaled Chlorodifluoroethane (FC 142b)*, report 700-76, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1976 (rdb6520)

- R-142b, health effects, developmental and reproductive toxicity as reported in RDB 3721, 5371, and 5869

- R-142b, health effects, toxicity

A. P. Filicheva, *Changes in the Nervous System Following the Chronic Action of Fluorinated Aliphatic Carbohydrates*, Gigienna Truda i Profesossal'nye Zabolovaniya [Labor Hygiene and Occupational Diseases], Moscow, Russia (then USSR), 10:14-16, 1975 (3 pages in Russian, rdb-6523)

- R-142b, health effects, toxicity

- R-142b, aquatic environmental study, ecological toxicity

- R-142b, aquatic environmental study, ecological toxicity

- R-142b, summary of published and unpublished toxicity literature

- R-142b, ecological toxicity, ecotoxicity, aquatic impacts as reported in RDB 5371

- R-142b, ecological toxicity, ecotoxicity, aquatic impacts as reported in RDB 5371

D. R. Jagannath and D. J. Brusick, *Mutagenicity Evaluation of Isotron 142b*, report for project 20838, Litton Bionetics Incorporated (LBI), Kensington, MD, 1977 (rdb5912)

- R-142b, health effects, toxicity

- R-142b, health effects, toxicity: no adverse clinical hematological, blood chemical, urine analytical, or histopathologic evidence of effects attributable to exposures at 1,000 or 10,000 ppm v/v as reported in RDB 3721 and 5869

- R-142b, health effects, toxicity as reported in RDB 2721, 5371, and 5869

D. W. Matheson and D. Brusick, *Mutagenicity Evaluation of Isotron 142b in the In Vitro Trans-
formation of BALB/3T3 Cells Assay, report for project 20840, Litton Bionetics Incorporated (LBI), Kensington, MD, 1978 (rdb5913)

R-142b, toxicity

F. J. Mecler and P. J. Knapinsky, Acute Inhalation Toxicity Study in Rats. Isotron 142b, report for project 20888, Litton Bionetics Incorporated (LBI), Kensington, MD, 1978 (rdb59A8)

6 hr acute inhalation toxicity tests of R-142b in Charles River CD rats: mortality ratios and corresponding concentrations were 0% at 200,000 ppm in air and 20% at 400,000 ppm [deemed an ALC]; rats showed rapid and labored breathing, lethargy, and discharges from the eyes and nose at 400,000 ppm; necropsy of the surviving rats after a 14 day observation period revealed dark red mottling of the lungs and kidneys, especially at the higher concentration as reported in RDB 3721

R-142b, health effects, toxicity, inhalation study in the rat: no clinical hematological, blood chemical, urine analytical, or histopathologic evidence of effects attributable to exposures at 20,000 ppm as reported in RDB 3721 and 5869

R-142b, health effects, toxicity

J. D. Sterling, Aerosol Age, 12:48-52, 1982 (5 pages, rdb6524)

R-142b, health effects, toxicity

A Dominant-Lethal Inhalation Study with Fluorocarbon 142b in Rats, report 79-7288, Bio/dynamics Incorporated, East Millstone, NJ, 1980 (rdb-5916)

R-142b, toxicity

R-142b, health effects, toxicity

R-142b, health effects, toxicity

Acute Toxicity Study in Rats - Isotron 142b, Monochlorodifluoroethane, report for project 20795, Litton Bionetics Incorporated (LBI), Kensington, MD, 1978 (rdb5911)

R-142b, health effects, toxicity

Chlorodifluoroethane (1-Chloro-1,1-difluoroethane; HFA-142b, CAS: 7568-3), Joint Assessment of Commodity Chemicals (JACC) report 17, European Chemical industry Ecology and Toxicology Centre (ECETOC), Brussels, Belgium, February 1991 (36 pages with 1 table, RDB3721)

R-142b, environmental impacts, toxicity

Workplace Environmental Exposure Level Guide - 1-chloro-1,1-difluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1994 (RDB4B9)

R-142b, toxicity, safety classification: 4-hr ALC rat = 128,000 ppm, WEEL = 1,000 ppm

R-143

L. J. Slubinski, Two-Year Oral (Diet) Toxicity/Carcinogenicity Study of the Fluorochemical FC 143 in Rats. Riker Laboratories, Incorporated, 3M Company, Minneapolis, MN, 1987 (rdb65E0)

R-143 (possibly R-143a), toxicity

R-143a

W. J. Brock, H. J. Trochimowicz (E. I. duPont de Nemours and Company, USA), C. H. Farr (El Farochem North America, USA), R. J. Millischer (El Farochem S.A., France) and G. M. Rusch (AlliedSignal Incorporated, USA), article 0092, Acute, Subchronic, and Developmental Toxicity and Genotoxicity of 1,1,1-Trifluoroethane (HFC-143a), Fundamental and Applied Toxicology, 31(2):200-209, June 1996 (10 pages with 7 tables, RDB6597)

acute, subchronic, and developmental inhalation toxicity and genotoxicity studies for R-143a: no mortalities resulted in groups of 6 Crl:CDBR male rats exposed nose-only for 4 hours to 97,000 and 540,000 ppm v/v R-134a in air with added oxygen to maintain 20% levels; animals showed body weight loss after exposures, but recovered by the second day; concludes that the 4-hr LC50 rat exceeds 540,000 ppm; groups of 5-6 male beagle dogs were exposed to
50,000, 100,000, 150,000 200,000, 250,000, and 300,000 ppm with intravenous injection of epinephrine five minutes before and, with a challenge injection, midway into a 10 minute exposure; 1 of 6 dogs exhibited an equivocal response at 200,000 ppm, but none (including the same dog) did so at 250,000 ppm [deemed a NOEL]; 2 of 5 dogs showed marked responses at 300,000 ppm considered to be the cardiac sensitization LOEL; four groups of 10 male and 10 female rats were exposed nose-only to concentrations of 0 (control), 2,000, 10,000, and 40,000 ppm v/v R-143a in air for 6 hr/d, 5 d/wk for 4 weeks; 3 premature deaths were determined not to be treatment-related; decreases were observed in male, but not female body weights, but no toxicologically significant clinical signs or pathology measurements were observed during or after the exposures; microscopic degenerative changes were found in the testes of male rats in each exposure group, ranging in severity from slight at 2000 ppm to minimal or mild at 10,000 ppm and 40,000 ppm; based on problems encountered with the restraining devices, excessive temperatures, and prior documentation of related stress effects, the study was repeated without restraints (whole-body exposures); no adverse testicular effects or adverse clinical signs were seen at any exposure level; based on these results, 40,000 ppm was determined to be the 4-wk NOAEL rat for R-143a; 20 male and 20 female rats were exposed (whole body) to 0 (control), 2,000, 10,000, and 40,100 ppm v/v for 6 hr/day, 5 d/wk for 90 days; sporadic changes in body weight were observed, but did not follow a dose-response relationship and were not considered to be treatment-related; no clinical signs of toxicity were observed during or after the exposures, and no pathology changes were found; no 8-oxidation activity (peroxisome proliferation), organ weight, adverse gross, or microscopic changes were observed; 90-day NOAEL rat was considered to be 40,000 ppm; developmental studies conducted in both rats and rabbits by whole-body exposures at 2,000, 10,000, and 40,000 ppm for 6 hr/d on days 6 through 15 (rats) or 18 (rabbits) of gestation; no adverse clinical signs or biologically significant effects were identified; reproductive parameters and developmental variations were unaffected in rats, but visceral variations due to retarded development were observed; incidence of skeletal abnormalities was higher in exposed rabbits than in controls, but did not follow a dose-response relation; genotoxicity studies included the Ames Assay, in vitro tests with human lymphocytes, and in vivo micronucleus tests in mouse bone marrow; no increases in revertants were found in bacteria with 5 strains of Salmonella typhimurium and 2 strains of Escherichia coli; no aberrations in clastogenic activity were found in human lymphocytes; no clinical signs of toxicity or statistically significant effects were found in the micronucleus study using male and female mice; paper concludes that R-143a is "able to induce a cardiac sensitization response at very high exposure levels," "has a low acute and subchronic toxicity potential," is not a developmental toxicant, and is not genotoxic.

S. Cracknell (Life Science Research Limited, LSR, UK), Forane 143a: Acute Inhalation Toxicity in the Rat, report 91/ATH007/1159 (also identified as 91/1159), Elf Atochem S.A., Paris - La Défense, France, 4 February 1992 (72 pages with 3 figures and 5 tables, Rdb7450)

Toxicity tests for acute inhalation toxicity of R-143a in groups of 5 male and 5 female Sprague-Dawley rats by nose-only exposures to 0 (control), 300,000, or 600,000 ppm v/v (averages of 0, 305,000, or 591,000 ppm v/v by analysis) R-141b in air for 4 hours: tests included observation of clinical signs, analysis of post-exposure blood and urine, and macroscopic and histopathologic examinations at necropsy; no deaths resulted and report concludes that the 4-hr LC50 rat exceeds 591,000 ppm as tested; minor changes were observed in the respiratory pattern of 3 treated animals; peripheral vasodilation was seen for 4 females and 1 male exposed to 59,100 ppm; no other clinical signs, changes in body weight, effects on organ weight, or macroscopic changes attributed to treatment were found.

Inhalation toxicity tests in four groups of ten male and ten female CD rats exposed nose-only to 0 (control), 2,000, 10,000, and 39,000 ppm v/v R-143a in air for 31 days: males showed a trend toward decreased absolute testicular weight and microscopic degenerative changes in the testes in all exposure groups; the validity of these findings was suspect and the effects noted could have been due to excessive stress and heat; a second 4-wk study was initiated with four groups of ten male rats exposed whole body to the same concentrations; no testicular or other differences (body weights, gross and microscopic pathology, or clinical signs) were noted compared to the control group; abstract concludes that 4-wk exposures to R-143a pro-

Please see page 6 for ordering information.
duced no significant pathological effects in rats at the concentrations tested.

C. J. Hardy and I. J. Sharman, **HFC 143a: Assessment of Cardiac Sensitization Potential in Dogs**, report DPT 281/930477, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 3 June 1993 (30 pages with 7 figures and 8 tables, RDB-5C26)

Toxicity tests to determine the cardiac sensitization potential of R-143a in male beagle dogs with intravenous injection of adrenaline five minutes before and, with a challenge injection, midway into a 10 minute exposure; no marked response in 6 dogs at 50,000, 100,000, 150,000, 200,000, and 250,000 ppm v/v in air [deemed a NOEL]; marked response in 2 of 5 dogs at 300,000 ppm [deemed a LOEL] with test interrupted in a sixth dog due to severe clinical signs.

D. P. Kelly, **Four-Hour Acute Inhalation Toxicity Study with FC-143a in Rats**, report 283-90, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 6 August 1990 (11 pages with 2 tables, RDB5C17)

4 hr acute inhalation toxicity tests in groups of six male Charles River Crl:CD BR rats by nose-only exposures to R-143a: no mortalities resulted at concentrations of 97,000 and 540,000 ppm v/v in air with oxygen enrichment (to maintain 19.8-20.2% levels); rats responded normally to a tail pinch during exposures; clinical signs observed at both concentrations were noted as common to rats held in restrainers plus wet perineums following exposures at 540,000 ppm; rats exposed to 97,000 and 540,000 ppm showed slight and moderate to severe, respectively, weight loss on the day following exposure, but returned to normal weight gain in the 14-day recovery period; report concludes that the 4-hr ALC rat for R-143a exceeds 540,000 ppm.

M. A. Lee, P. J. Lardear, and R. C. Graham, untitled toxicity review for 1,1,1-trifluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 10 February 1994 (RDB5867)

R-143a, summary of published and unpublished toxicity literature

Pharmaco-LSR Limited (UK), **Forane(R) 143a in Vapour Phase: Assessment of Mutagenic Potential in Amino-Acid Auxotrophs of Salmonella Typhimurium and Escherichia Coli (the Ames Test)**, report 93/ATH008/0209, Elf Atochem S.A., Paris - La Défense, France, 1993 (rdb5C27)

R-143a, health effects, toxicity as reported in RDB 5C16

An Inhalation Developmental Toxicity Study of R-143a in Rabbits, report WIL-189005, WIL Research Laboratories, Incorporated, volumes I and II, 27 August 1993 (rdb5C28)

R-143a, health effects, toxicity as reported in RDB 5C16

Bacterial Mutagenicity Testing of HFC-143a in the Salmonella Typhimurium and Escherichia Coli: Plate Incorporation Assay, report 787-93, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1993 (21 pages, rdb5C18)

R-143a, health effects, toxicity as reported in RDB 5B58 and 5C16

Developmental Toxicity Study of HFC-143a in Rats, report 700-92, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1992 (rdb5C19)

R-143a, health effects, toxicity as reported in RDB 5C16

Forane(R) 143a - Assessment of Peroxisome Proliferation in Vitro in Rat Hepatocyte Primary Cultures Assay of Palmitoyl-CoA-Oxidase Activity, report RS0006931126/03 (PN), Elf Atochem S.A., Paris - La Défense, France, 1994 (rdb7282)

R-143a, health effects, toxicity as reported in RDB 5B58

Four-Week Inhalation Toxicity Study with HFC-143a in Rats, report 6-92 (TSCAT report OTS-0529920-2), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1992 (rdb5C20)

four groups of 10 male rats were exposed (whole body) to concentrations of 0 (control), 2,000, 10,000, and 40,000 ppm v/v R-143a in air for 6 hr/d, 5 d/wk for 4 weeks; no adverse clinical signs or testicular effects were observed at any exposure level; 40,000 ppm was determined to be the 4-wk NOAEL rat as reported in RDB 5B58, 5C16, and 6597

Four-Week Inhalation Toxicity Study with HFC-143a in Rats, report 99-91 (TSCAT report OTS-0529920-1), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1991 (rdb5C21)

four groups of 10 male and 10 female rats were exposed nose-only to concentrations of 0
(control), 2,000, 10,000, and 40,000 ppm v/v R-143a in air for 6 hr/d, 5 d/wk for 4 weeks; 3 premature deaths were determined to not be treatment-related; decreases were observed in male, but not female body weights, but no toxicologically significant clinical signs or pathology measurements were observed during or after the exposures; microscopic degenerative changes were found in the testes of male rats in each exposure group, ranging in severity from slight at 2000 ppm to minimal or mild at 10,000 ppm and 40,000 ppm, but might have stemmed from stress due to the restraining devices and excessive temperatures - as reported in RDB 5B58, 6597, and 5C16; study was repeated (see RDB 5C20) with whole-body exposures based on the suspect findings as reported in RDB 6597.

In Vitro Evaluation of HFC-143a for Chromosome Aberrations in Human Lymphocytes, report 768-93, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1994 (23 pages, rdb5C22)

R-143a, health effects, toxicity as reported in RDB 5B58 and 5C16

Metabolism of HFC-143a in the Rat, report 3-94, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1994 (rdb5C23)

R-143a, health effects, toxicity as reported in RDB 5C16

Mouse Bone Marrow Micronucleus Assay of HFC-143a by Inhalation, report 770-92, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1993 (30 pages, rdb5C24)

R-143a, health effects, toxicity as reported in RDB 5B58 and 5C16

Summary - Mutagenicity Testing with Salmonella Typhimurium Strains on Plates of Gases, Liquids, and Solids, TSCAT report OTS-0520485, ICI Central Toxicology Laboratory, Cheshire, UK, 1 August 1976 (rdb7284)

R-143a, genotoxicity, mutagenicity, toxicity as reported in RDB 5B58

Static Acute 48-Hour EC50 to Daphnia Magna, report 541-99, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1989 (rdb5C93)

R-143a, ecological toxicity, ecotoxicity, aquatic impacts: 48-hr EC50 daphnia magna = 300 mg/l (practically nontoxic) as reported in RDB 5B58 and 5867

Subchronic Inhalation Toxicity: 90-Day Study with HFC-143a in Rats, report 690-92, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1992 (498 pages, rdb5C25)

20 male and 20 female rats were exposed (whole body) to 0 (control), 2,000, 10,000, and 40,1000 ppm v/v for 6 hr/d, 5 d/wk for 90 days; sporadic changes in body weight were observed, but did not follow a dose-response relationship and were not considered to be treatment-related; no clinical signs of toxicity were observed during or after the exposures, and no pathology changes were found; no β-oxidation activity (peroxisome proliferation), organ weight, adverse gross, or microscopic changes were observed; 90-day NOAEL rat was considered to be 40,000 ppm - as reported in RDB 5C16 and 6597

1,1,1-Trifluoroethane (HFC 143a) Health Effects Information, CAS# 420-46-2, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (4 pages, RDB5B58)

R-143a, summary of toxicological and ecological information

Workplace Environmental Exposure Level Guide - 1,1,1-trifluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1996 (2 pages, RDB5C16)

R-143a, WEEL, toxicity data, toxicity, safety classification

report 540-89, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1989 (rdb5C92)

R-143a, toxicity, aquatic effects, 96-hr LC50 rainbow trout as reported in RDB 5867

R-152a

R. H. Bruner (Pathology Associates, Incorporated), Pathology Peer Review of a Two-Year Inhalation Study of FC-152a in CD Rats, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 19 May 1992 (RDB5C90)

R-152a, inhalation toxicity as reported in RDB 4590

R. Cullik and D. P. Kelly, Embryotoxicity and Teratogenicity Studies in Rats with 1,1-Difluoroethane (FC-152a), report 437-79, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 10 March 1980 (rdb5C68)
R-152a, chronic inhalation toxicity as reported in RDB 4890

R-152a, toxicity, rationale for recommended hygiene standard (occupational exposure limit, OEL) of 1,000 ppm, 8-hr TWA

A. Koop, Mutagenic Activity of Ethane, 1,1-Difluoro in the Salmonella/Microsome Assay, report 731-77, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 16 September 1977 (rdb5C86)

R-152a, mutagenicity, toxicity as reported in RDB 4890

M. A. Lee, P. W. Grube, and R. C. Graham, untitled toxicity review for 1,1-difluoroethane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 4 May 1990 (10 pages, RDB5857)

R-152a, summary of published and unpublished toxicity literature

D. E. Malek, Approximate Lethal Dose (ALD) of HFC-152a in Rats, report 524-90, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 26 September 1990 (rdb5C84)

R-152a, ingestion toxicity as reported in RDB 4890

J. W. McAlack and P. W. Schneider, Two-Year Inhalation Study with Ethane, 1,1-Difluoro (FC-152a) in Rats, report 8-82 (OTS-0520320), Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 30 November 1982 (rdb5C87)

R-152a, chronic inhalation toxicity as reported in RDB 4890

B. L. Moore, Difluoroethane: Acute Inhalation Toxicity, report 699-75, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 16 November 1975 (2 pages with 1 table, RDB5C85)

tests of the acute inhalation toxicity in groups of 6 male Charles River CD rats exposed whole body to concentrations of 66,400, 175,200, 319,000, 383,000, and 437,500 ppm v/v in air for 4 hr; except for the 66,400 ppm exposures, oxygen was added to maintain a level of approximately 20%; mortality ratios for the cited concentrations were 0/6, 0/6, 0/6, 1/6, and 2/6 respectively; shallow breathing and hyperemia (excess of blood in a body part) were observed at 66,400 ppm and higher; lethargy and reduced, or no, response to sound were observed at concentrations of 175,200 and higher; labored breathing resulted as the concentrations increased above 66,400 ppm; no abnormal signs were noted post exposure; gross pathology was performed on surviving animals after a 14-day recovery period, but no compound-related changes were found; concludes that the 4-hr ALC rat for R-152a is 383,000 ppm v/v

B. L. Moore, Subacute Two-Week Inhalation Toxicity, report 158-76, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 2 March 1976 (rdb5C89)

R-152a, inhalation toxicity as reported in RDB 4890

1,1-Difluoroethane (HFC 152a) Health Effects Information, CAS# 75-37-6, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (4 pages, RDB5B59)

R-152a, summary of toxicological and ecological information

Workplace Environmental Exposure Level Guide - 1,1-difluoroethane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1994 (4 pages, RDB4B90)

R-152a, WEEL, toxicology data, toxicity, safety classification

R-160

R-160, cardiac sensitization, toxicity

R-170 (Ethane)

Toxicity Study Summary: Ethane, Phillips Petroleum Company, Bartlesville, OK, February 1990 (1 page with no figures or tables, RDB7623)

tests of the acute inhalation toxicity in 5 female and 5 male albino, Sprague-Dawley rats by 4 hr, whole body exposures to 24,838 ppm v/v R-170 (ethane) in air: no deaths resulted and animals appeared normal throughout the exposures and 14-day observation period; treated females showed a slight reduction in mean body weight
on day 3 following exposures: gross pathological signs found at necropsy included irregularly shaped pituitary with two clear cysts on the surface, scattered red foci on the surface of the lung, and - in two animals - dilation of the "right pelvis of the kidney" (probably intended as "pelvis of the right kidney"); concludes that the 4-hr LC₅₀ rat is >24,838 ppm v/v; respiratory tract irritancy studies in male mice by head-only exposures to 23,985 ppm v/v R-170 in air for 1 min, repeated 10 minutes later, while monitored by a plethysmograph: no patterns of respiratory pause were evident; concludes that R-170 failed to produce upper respiratory irritancy in mice at 23,985 ppm v/v

R-E170

Workplace Environmental Exposure Level Guide - Dimethyl Ether, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1980 (RDB4884)

R-E170, E-170, DME, WEEL, toxicology data, toxicity, safety classification

R-21711

Acute Inhalation Toxicity Study of Iodoheptafluoropropane in Rats report on project 1530-001 study 3, ManTech Environmental Technology, Incorporated, 1994 (rdb6693)

R-21711 (either R-217ba11 or R-217cal11), heptafluorodipropyl, toxicity: 15-min LC₅₀ rat 62,000 ppm (also see RTECS) as reported in RDB 6208

R-218

Huntingdon Research Centre Limited (HRC, UK), Perfluoropropane: Mouse Micronucleus Test, Rhône-Poulenc Chemicals, Bristol, UK, 1992 (rdb-6556)

R-218, health effects, mutagenicity for 6 hr exposure of mouse (negative at necropsy), toxicity

M. A. Lee and R. C. Graham, untitled toxicity review for 1,1,1,2,2,3,3,3-octafluoropropane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 8 January 1996 (5 pages, RDB5556)

R-218, summary of published and unpublished toxicity literature

R-218, toxicity: 4-hr LC₅₀ rat >110,000 ppm; cardiac sensitization NOEL 0/6 dogs at 300,000 ppm and LOEL 2/8 at 400,000 ppm; not mutagenic by in vitro assay in Salmonella typhimurium bacteria at 800,000 ppm v/v

Report MIN 68/930457, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, May 1993 (RDB65F8)

R-218 (3M PF-5030), acute inhalation (whole body exposure) toxicity study in rats: 4-hr LC₅₀ rat >110,000 ppm; no deaths or clinical signs; body weight gain of female rats was slightly less than in the control group; macroscopic pathological examination after a 15-day observation period following exposures revealed some lung congestion in 1 of 10 exposed rats - as reported in RDB 5703

Report MIN 101/930623, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 23 June 1993 (RDB65F9)

R-218 (3M PF-5030), cardiac sensitization study in dogs, toxicity: tests at 50,000, 100,000, 200,000, 300,000, and 400,000 ppm in air (oxygen enriched above 100,000 ppm to maintain oxygen concentration at approximately 22%; sensitization NOEL 0/6 at 300,000 ppm, LOEL 2/8 (one of them a questionable response) at 400,000 ppm - as reported in RDB 5703

Report MIN 67/920961, Huntingdon Research Centre Limited (HRC), Cambridgeshire, UK, 24 August 1992 (RDB65G0)

R-218 (3M PF-5030), mutagenicity, toxicity: in vitro assay in Salmonella typhimurium bacteria at 800,000 ppm v/v; concluded not mutagenic - as reported in RDB 5703

R-225ca and R-225cb

Four-Week Repeated Inhalation Study of HCFC-225ca and HCFC-225cb in the Common Marmoset, report 3L029, Mitsubishi-Kasei Institute of Toxicological and Environmental Sciences (MITES), Japan, 1993 (rdb65D6)

R-225ca, R-225cb, toxicity

R-227ea

Dr. Bury, ARW-Begründung fur HFA-227 [Documentation for Exposure Limit for HFA-227], Hoechst Aktiengesellschaft, Frankfurt am Main, Germany, 26 August 1992 (3 pages in German, RDB7116)
summary of unreferenced toxicity data: R-227ea resulted in no mortalities at 110,000 ppm v/v, but higher concentrations were not tested because the rats [animals are not identified for this test, identification is based on corroborating information in a Hoechst Material Safety Data Sheet] breathed irregularly and became uncoordinated; Wistar rats and mice exposed head and nose only to concentrations of 0, 150,000, 300,000 and 500,000 ppm for 1 hr found the maximum tolerable concentration to exceed 500,000 ppm subject to effects of sedation, trembling, increased blood-concentrations of carbon dioxide, all reversible following exposures; 2 male and 2 female beagle dogs exposed to concentrations of 50,000, 150,000, 200,000, 250,000, 300,000, and 500,000 ppm R-227ea by face masks for 1 hr showed lethargy, sedation, and listlessness at 150,000 ppm and difficulty in breathing, spasms, and vomiting at higher concentrations, all fully reversible; concludes that the maximum tolerance in dogs is 300,000 ppm; summaries of subchronic and chronic exposures in rats and mice suggest NOEL concentrations of 300,000 ppm and in beagle dogs at 150,000 ppm (the highest concentration tested); an incomplete 90-day study on six beagle dogs found strongly narcotic effects, reversible following exposures, in two dogs at 300,000 ppm study; Ames tests in salmonella typhimurium and Escherichia coli with and without metabolic activation found R-227ea to not be mutagenic; negative findings also were found in a "HPGRT" test and a mouse micronucleus test; a cardiac sensitization test in dogs [use of epinephrine is typical but not mentioned] resulted in a response in one dog at 300,000 ppm and a NOEL at 50,000 ppm; recommends an ARW [Hoechst exposure limit] of 1000 ppm [CAUTION: Users should examine the source documentation carefully before use of this summary, which was prepared without a translation.]

C. P. Chengelis (WIL Research Laboratories, Incorporated), Toxicological Evaluation of HFC-227ea (FM-200™) - Background Document, Great Lakes Chemical Corporation, West Lafayette, IN, 20 June 1994 (rdb65F1)

R-227ea, toxicity

M. A. Lee and R. C. Graham, untitled toxicity review for 1,1,1,2,3,3,3-heptaffluoropropane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 8 January 1986 (5 pages, rdb5860)

R-227ea, summary of published and unpublished toxicity literature

FM-200™ Toxicological Study Summaries, Great Lakes Chemical Corporation, West Lafayette, IN, circa 1995 (RDB65F2)

R-227ea, toxicity: 4-hr LC₅₀ rat = >788,698 ppm, anesthetic LOEL rat = 800,000 ppm, not mutagenic by reverse mutation assay with Salmonella typhimurium or Escherichia coli, no induction of chromosomal aberrations in cultured Chinese hamster lung, NOAEL = 100,000 ppm in both a 10-day range-finding inhalation study in the rabbit and in a 14-day inhalation screening study in the rat, NOEL rat = 105,000 ppm in a 90-day inhalation study, NOAEL rat = 105,000 ppm in a developmental toxicity study, 30-min cardiac sensitization in 10 male beagle dogs with pre-exposure and 30-minute challenge injections of epinephrine showed NOAEL (effects described as "minimal or mild in nature (single or few monofocal premature ventricular contractions") = 90,000 ppm v/v, LOAEL for an unspecified number of dogs = 105,000 ppm v/v, and EC₅₀ = 140,000 ppm v/v

R-236fa

C. J. Hardy, P. C. Kleran, and I. J. Sharman, HFC 236fa: Assessment of Cardiac Sensitization Potential in Dogs, report DPT 293/931108, Huntingdon Research Centre Limited (HRC), Cambridge-shire, UK, 3 February 1994 (RDB65A5)

R-236fa, cardiac sensitization in beagle dogs for 10-minute exposures with epinephrine challenge; provides NOEL, LOEL, and EC₅₀ data; 0/6 dogs sensitized at 50,000 or 100,000 ppm v/v, 2/6 at 150,000, and 3/6 at 200,000 ppm; tests at higher concentrations were not completed due to animal struggling at 250,000 ppm and observed anesthesia at 300,000 ppm; toxicity

R. J. Hilarski (International Research and Development Corporation, IR&D), Nose Only Acute Inhalation Toxicity Evaluation on T-6195 in Rats, report 137-178, 3M Company, St. Paul, MN, 27 September 1995 (RDB6692)

R-236fa, acute toxicity by nose-only, 4 hr inhalation in 5 male and 5 female albino rats; exposures at mean vapor concentrations of 1,960 and 148,600 ppm v/v; no mortalities at either concentration [4-hr ALC rat >148,600 ppm]; post exposure weight gain was normal, at 7 and 14 days, and no significant macroscopic abnormalities were noted at necropsy; no significant pharmacotoxic signs were observed at 1,960 ppm; animals exposed to 148,600 ppm exhibited rapid respiration; no anesthetic effect indicated at either concentration.
N. D. Smith, Summary of HFC-236fa Toxicity Studies, fax to D. Munday (3M Company), U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, 22 February 1996 (5 pages, RDB6A96)

R-236fa toxicity: mutagenicity tests in the Salmonella typhimurium and Escherichia coli (negative); clastogenic (chromosome damaging) test in human lymphocytes (negative); mouse bone-marrow micronucleus test (negative); two-week inhalation study in the rat at 0, 5,000, 20,000, and 50,000 ppm (NOAEL at 5,000 ppm and anesthetic effect at 20,000 ppm); 90-day inhalation study in the rat for 6 hr/d, 5 d/wk, for 14 weeks (NOAEL at 20,000 ppm); inhalation developmental study in the rat at 0, 5,000, 20,000, and 50,000 ppm (maternal NOAEL at 5,000 ppm, developmental NOAEL at 50,000, anesthetic effect at 20,000 ppm); 5-day extended inhalation study in the rat at 50,000 ppm (slight respiratory tract irritation, concluded that R-236fa has low acute inhalation toxicity at 50,000 ppm)

R-236fa, HFC-236fa: acute, subchronic, developmental, and genetic toxicity; cardiac sensitization; 4-hr ALC rat >185,000 ppm; narcosis was the predominant clinical sign observed during exposure; cardiac sensitization LODs in beagle dogs was ≥150,000 ppm with a NOEL of 100,000 ppm; no evidence of mutagenic or genotoxic activity was found in vitro in Ames or human lymphocyte assays or in vivo in the mouse micronucleus assay; subchronic inhalation studies with exposures of rats for 6 hr/d, 5 d/wk, for 2 weeks and 13 weeks, 20,000, 50,000 ppm yielded no evidence of body or organ weight effects, clinical pathology, organ pathology, or induction of hepatic peroxisomes; rats exposed to 20,000 or 50,000 ppm had a transiently diminished acoustic startle response during exposures; rats exposed to 5,000 ppm were unaffected and some adaptation to narcosis was noted as the study progressed for the higher concentrations; maternal weight gain was evident at ≥20,000 ppm in a rat developmental toxicity study; fetal toxicity was found at ≥5,000 ppm; the overall NOEL was 5,000 ppm, based on narcosis noted at concentrations of ≥20,000 ppm

R. Valentine, Two-Week Inhalation Toxicity Study with HFC-236fa in Rats, report 596-94, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 20 June 1995 (211 pages, RDB6A93)

R-236fa, health effects, toxicity: four groups of 5 female and 5 male rats were exposed by inhalation to 0, 5,020, 20,000, or 50,000 ppm v/v for 6 hr/d, 5 d/wk, for two weeks; no body weight effects or abnormal clinical observations to exposed rats; NOAEL rat = 5,000 ppm; anesthetic NOEL at 5,000 ppm and LOEC rat at 20,000 ppm; slight decrease in hepatic β-oxidation activity at 50,000 ppm in rats killed after the tenth exposure, but this effect was deemed not biologically adverse since the change was not accompanied by relevant clinical, pathologic, organ weight, or liver histopathologic changes

inhalation toxicity, metabolism, and pharmacokinetics of R-236fa

Acute Inhalation Toxicity Study of HFC-236fa in Albino Rats, report WIL-189022, WIL Research Laboratories, Incorporated, circa 1996 (RDB86A94)

R-236fa, health effects, toxicity: 4-hr ALC rat by whole-body exposure of 5 female and 5 male rats is >457,000 ppm; hyperactivity and then prostration was noted during the exposure (457,000 ppm) for all animals, but recovery occurred in 1 day; 2 females exhibited slight body weight loss, but appeared normal by the end of the 14-day observation period; 4 animals had dark red lungs at necropsy; 2 females had cysts on the kidneys and 1 female had an enlarged pituitary gland

Workplace Environmental Exposure Level Guide - 1,1,1,3,3,3-Hexafluoropropane, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1996 (3 pages with no figures or tables, RDB88612)

R-236fa: identification, summary chemical and physical properties, uses, production quantities, animal toxicology data, toxicity, human uses and experience, recommended WEEL guide (1000 ppm, 6200 mg/m³ for 8-hr TWA) and rationale, references
R-245ca

R-245ca, toxicity

P. W. Grube, untitled toxicity review for 1,1,2,2,3-pentafluoropropane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, Newark, DE, 24 July 1991 (5 pages, RDB 5859)

R-245ca, summary of published and unpublished toxicity literature

Report 33-60, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Incorporated, date 1990 (RDB 5777)

R-245ca, health effects, toxicity as reported in RDB 5859

R-245fa

Toxicity tests by whole-body exposures of pregnant rats to nominal concentrations of 0 (control), 500, 2,000, 10,000, and 50,000 ppm R-245fa for 6 hr/d on days 6-19 post coitum: food consumption and bodyweight gain were reduced on days 6-19 and 6-12, respectively, for animals exposed to 10,000 ppm and on days 6-19 and 6-20, respectively, for animals exposed to 50,000 ppm; animals were sacrificed on day 20 for postmortem determination of litter values; and examination for visceral and skeletal changes; no effects were found on fetal parameters; study concluded that the NOEL for maternal effects was 2,000 ppm and for fetal effects was 50,000 ppm [full report not obtained - prepared from report summary]

D. W. Coombs (Huntingdon Life Sciences Limited, HLS, UK), HFC-245fa (507-96A and 515-96A): 13-Week Repeat Dose Inhalation Toxicity Study in Rats, report MA-RR-97-2346 (also identified as ALS 105/962523), AlliedSignal Incorporated, Morristown, NJ, USA, 3 March 1997 (395 pages with 6 figures and 20 tables, RDB 7557)

Subchronic inhalation toxicity tests in groups of rats by whole-body exposures to concentrations of 0 (control), 500, 2,000, 10,000, or 50,000 (0, 516, 1,998, 10,102, and 49,600 actual) ppm v/v R-245fa in air for 6 hr/d for 28 consecutive days [RDB 7612 indicates 5 d/wk]: 2 female rats exposed to 49,600 ppm died during the study; absence of marked effects in other animals suggests that these deaths, considered to be agonal in origin, were not treatment related, but report notes that this possibility cannot be excluded; 4 females exposed to 49,600 ppm exhibited lethargy and unsteady gait following overnight collection of urine samples at week 4, but animals recovered when given access to water; increases were seen in urinary fluoride levels, water consumption, and urine volumes, suggesting some metabolism of R-245fa; increases in blood urea nitrogen and serum level enzyme activity, but they did not follow an exposure-related pattern; trace to moderate inflammation of the myocardium (heart muscle) were found at necropsy in both the males and females; study suggests that this response resulted from long-term exposures, since myocardiitits was not observed in rats exposed for 28 days [full report not obtained - prepared from report summary and additional information from RDB 7612]
from report summary and additional information from RDB 7612]

C. A. Dance (Pharmaco-LSR Limited, UK), HFC-245fa (Vapour Phase): In-Vitro Assessment of Clastogenic Activity in Cultured Human Lymphocytes, report MA-RR-94-2014 (also identified as 93/ADL013/098 and as 93/09086), AlliedSignal Incorporated, Morristown, NJ, USA, 18 February 1994 (40 pages with 1 figure and 2 tables, Rdb7552)

test for mutagenic potential of R-245fa by an in vitro mammalian cytogenetic study using cultured human lymphocytes with a metabolic activation system, derived from rat livers (S-9 mix), at nominal concentrations of 300,000, 500,000, and 700,000 ppm v/v and without activation at 100,000, 200,000, and 300,000 ppm v/v: no biologically or statistically significant increases in aberrant cell frequencies were found with activation, but there was evidence of toxicity, based on a 25% reduction in mitotic activity, at 300,000 ppm without it; mean aberrant cell frequencies were 7.0, 7.5, and 12% at the three concentrations tested, respectively, without activation; study concluded that R-245fa showed weak clastogenic (chromosome-damaging) activity in the absence of metabolic activation [full report not obtained - prepared from report summary]

C. N. Edwards (Pharmaco-LSR Limited, UK), HFC-245fa: Mouse Micronucleus Test, report MA-RR-94-2016 (also identified as 93/ADL013/1219 and as 93/1219), AlliedSignal Incorporated, Morristown, NJ, USA, 18 February 1994 (40 pages with 1 figure and 2 tables, Rdb7552)

test for mutagenic potential of R-245fa by an in vivo mouse micronucleus study in bone marrow following a 4-hr acute Inhalation exposure at 101,300 ppm: exposed animals were underactive in their restraint tubes during the exposures, but no depression of bone marrow proliferation that would indicate toxicity was found 24 or 48 hr after exposure; report concludes that there was no evidence of induced chromosomal or other damage [full report not obtained - prepared from report summary and additional information from RDB 7612]

Huntingdon Life Sciences Limited (HLS, UK), HFC-245fa (Vapour Phase): In-Vitro Assessment of Clastogenic Activity in Cultured Human Lymphocytes, report 96/ADL040/0205, AlliedSignal Incorporated, Morristown, NJ, USA, 19 November 1996 (rdb7554)

test for mutagenic potential of R-245fa

G. C. Jackson (Huntingdon Life Sciences Limited, HLS, UK), HFC 245fa (513-96A): Acute Inhalation Toxicity in Rats (4-Hour Exposure), report ALS 125/961468 (also identified as MA-RR-97-2342), AlliedSignal Incorporated, Morristown, NJ, USA, 27 January 1997 (46 pages with 2 figures and 12 tables; 4 page cover and summary available from JMC as RDB7115)

acute inhalation toxicity tests with two groups of 5 male and 5 female albino rats exposed (snout only) to 0 and 116,000 ppm v/v R-245fa in air for 4 hours: no deaths resulted; animals exhibited irregular respiration, restless behavior, and intermittent muscular contractions during exposure at 116,000 ppm as well as piloerection (involuntary erection or bristling of fur) immediately following the exposure; no reported clinical signs indicate anesthesia or central nervous system (CNS) response, suggesting an anesthetic effect NOEL in rats of 116,000 ppm; no effects were noted on the rate of bodyweight gain, lung weight to bodyweight ratio, and food and water consumption; appearance and behavior were normal from the day following exposure; slight congestion was observed in the lungs of one male test rat, but deemed to be unrelated to the test treatment; no other macroscopic pathology abnormalities were found; report concludes that the 4-hr LC50 rat exceeds 116,000 ppm v/v

G. C. Jackson (Huntingdon Life Sciences Limited, HLS, UK), HFC 245fa (493-95A): Acute Inhalation Toxicity in Rats 4-Hour Exposure, report ALS 104/951746 (also identified as MA-RR-96-2270), AlliedSignal Incorporated, Morristown, NJ, USA, 27 January 1997 (46 pages with 2 figures and 12 tables; 4 page cover and summary available from JMC as RDB7111)

acute inhalation toxicity tests with three groups of 5 male and 5 female Sprague-Dawley CD rats exposed to 0 (control), 143,000, and 203,000 ppm v/v R-245fa in air for 4 hours: no deaths resulted; all animals exposed to 143,000 and 203,000 ppm v/v exhibited exaggerated respiratory movements, adoption of an abnormal posture, and reduced response to external stimuli during exposures; 3 female rats experienced occasional clonic (alternating contractions and partial relations in spasms) convulsions at 143,000 ppm; no clinical signs were observed during a subsequent 14-day observation period; food consumption was reduced for 1 day following exposures, but water consumption and the rate of bodyweight gain were the same for treated animals and controls; no macroscopic abnormalities were found; report concludes that the 4-hr LC50 rat is >203,000 ppm v/v and that there was evidence of an anesthetic effect at both 143,000 and 203,000 ppm v/v [full report not obtained - prepared from summary]
dermal toxicity of R-245fa to 5 male and 5 female New Zealand White rabbits at a dosage of 2 mL/kg (0.031 oz/lb) bodyweight for 24 hr; there were no deaths or signs of reaction to treatment; animals achieved expected body-weight gains; organ weights were unremarkable and there was no sign of macroscopic lesion at necropsy; report concludes that the LD₅₀ dermal was >2 mL/kg (>2,600 mg/kg) [full report not obtained - prepared from summary]

T. J. Kenny (Huntingdon Research Centre Limited, HRC, UK), HFC 245fa: Assessment of Cardiac Sensitization Potential in Dogs, report ALS 52/942695 (also identified as MA-RR-94-2151), AlliedSignal Incorporated, Morristown, NJ, USA, 29 November 1994 (30 pages; 3 page cover and summary available from JMC as RDB7112)

Toxicity for cardiac sensitization in 6 beagle dogs with Intravenous injection of adrenaline before and during inhalation of 10,000 and 20,000 ppm v/v R-245fa in air: no dogs responded positively at either concentration, leading to a finding that 20,000 ppm is a cardiac sensitization NOEL. [full report not obtained - prepared from summary]

K. May (Pharmac-LSR Limited, UK), HFC-245fa: Assessment of Mutagenic Potential in Amino-Acid Auxotrophs of Salmonella Typhimurium and Escherichia Coli (the Ames Test), report MA-RR-95-2205 (also identified as 95/ADL035/0004 and as 95/0004), AlliedSignal Incorporated, Morristown, NJ, USA, 30 June 1995 (49 pages with 6 tables, RDB7655)

Test for mutagenic potential of R-245fa by an Ames assay using five histidine-dependent strains of Salmonella typhimurium and one tryptophan-dependent auxotroph of E. coli exposed to R-245fa vapor, both with and without a metabolic activation system derived from rat livers (S9 mix), at nominal concentrations of 0 (control), 25,000, 50,000, 100,000, 200,000, and 400,000 ppm v/v: no increases in reversion to prototrophy were found; study concluded that R-245fa vapor is not mutagenic as tested [full report not obtained - prepared from report summary]

D. P. Meyers (Huntingdon Life Sciences Limited, HLS, UK), HFC-245fa: A Dose Range Finding Study by Inhalation Administration in the Pregnant Rat, report MA-RR-97-2339 (also identified as ALS 130/961798), AlliedSignal Incorporated, Morristown, NJ, USA, 15 January 1997 (87 pages with 2 figures and 4 tables, RDB7555)

Pilot developmental toxicity study in groups of 12 pregnant rats by whole body exposures to nominal concentrations of 0 (control), 500, 2,000, 10,000, and 50,000 ppm R-245fa: no effects were observed at concentrations as high as 10,000 ppm; food intake was lower on days 9-10 and body weight gains were reduced on days 9-13 of pregnancy for animals exposed to 50,000 ppm, but there were no adverse effects on litter parameters or macroscopic external fetal structure; concluded that the tested concentrations would be appropriate for a future embryo toxicity study in the rat [full report not obtained - prepared from report summary]

G. M. Rusch, Toxicology Testing of a New Hydrofluorocarbon, FYI notification to the U.S. Environmental Protection Agency (EPA), AlliedSignal Incorporated, Morristown, NJ, 16 December 1996 (4 pages with no figures or tables, RDB7612)

Summary of toxicity test data for R-245fa: mutagenicity tests include Ames (negative), human lymphocyte chromosome aberration (slight response, but only at high concentrations in the absence of metabolic activation), and mouse micronucleus genetic assays (negative); concludes that the weight of evidence indicates that R-245fa is not a mutagen; screening tests in beagle dogs with adrenaline injections show no potential for cardiac sensitization up to 20,000 ppm v/v in air; tests in female rabbits indicate an acute dermal LD₅₀ of >2 mL/kg; preliminary data from a developmental toxicity study in rats indicate that concentrations as high as 50,000 ppm v/v did not cause adverse effects on the development of pups; acute inhalation studies in mice and rats result in 4-hr LC₅₀ determinations of >101,300 in mice and >203,000 in rats; treated mice showed underactivity and treated rats exhibited abnormal posture, exaggerated respiratory movements, reduced response to external stimuli, and - at high concentrations - evidence of an anesthetic effect; these effects were transient and all of the animals recovered rapidly following exposures; rats exposed for 6 hr/d, 5 d/wk, for 2 wk at concentrations up to 50,000 ppm showed no evidence of treatment related effects, but were found to have increased levels of blood urea nitrogen and serum liver enzyme activities; the latter are described as not representing an adverse finding, since there was no marked dose response and since no histopathological changes were found in the kidneys, liver, or other organs; the finding leading to this "for your information" (FYI) notification was an increased frequency of slight to...
R-C270

J. W. Stutzman, Q. Murphy, C. R. Allen, and W. J. Meek, Anesthesiology, 8:579 ff, 1947 (rdb6538)

R-C270, cardiac sensitization, toxicity

R-290 (Propane)

R-290, R-600, R-290/600, toxicity, accidents involving human exposure as reported in RDB 6569

L. L. Anderson and R. C. Graham, untitled toxicity review for propane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 6 March 1990 (RDB6107)

R-290, summary of published and unpublished toxicity literature

R-290, toxicity

R-290, R-600, R-290/600, toxicity, as reported in RDB 6569

R-290; human exposures

S. Tsukamoto et al., Nippon Hojiku Zasshi, Japan, 39(2):124-130, 1985 (7 pages, rdb6117)

R-290, metabolism, toxicity

R-290, safety, toxicity, flammability, OHG, occupational exposure guidance

Propane, chemical infographic 87, Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, Canada, October 1990 (1 page, RDB5609)

R-290, safety, toxicity, flammability, occupational exposure guidance

Toxicity Study Summary: Propane (Hydrocarbon Propellant A-108), Phillips Petroleum Company, Bartlesville, OK, February 1990 (1 page with no figures or tables, RDB7624)

tests of the acute inhalation toxicity in 5 female and 5 male albino, Sprague-Dawley rats by 4 hr, whole body exposures to 12,190 ppm v/v R-290 (propane) in air: no deaths resulted and animals appeared normal throughout the exposures and subsequent 14-day observation period; no gross signs or symptoms of intoxication were noted; no exposure-related trend was evident in body weights following exposures; no mention is made of pathological examinations following the observation period; concludes that the 4-hr LC50 rat is >12,190 ppm v/v; respiratory tract irritancy studies in male mice by head-only exposures to 11,472 ppm v/v R-290 in air for 1 min, repeated 10 minutes later, while monitored by a plethysmograph: no patterns of respiratory pause were evident; concludes that R-290 failed to produce upper respiratory irritancy in mice at 11,472 ppm v/v

R-C318

S. Brubaker, G. A. Peyman, and C. Vygantas (University of Illinois Eye and Ear Infirmary), Toxicity of Octafluorocyclobutane After Intracameral Injec-
R-C318, comparisons to R-7146, toxicity: use for surgical injection to treat retinal detachment

R-C318 (identified as OFC3), health effects, toxicity: 4-hr ALC rat >800,000 ppm v/v and 4-hr anesthetic NOEL rat = 800,000 ppm; 10-min EC₅₀ mouse for anesthesia >800,000; exposures of 10 male and 10 female rats, 10 female mice, 2 male and 2 female rabbits, and 4 male dogs for 6 hr/d, 5 d/wk for 100,000 ppm revealed no harmful effects; paper concludes that R-C318 "is a material possessing an extremely low order of acute toxicity"

R-C318, health effects, toxicity: chronic exposure test at 100,000 ppm found no differences compared to a control group as reported in RDB 7215

R. C. Graham, untitled toxicity review for octafluorocyclobutane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 27 April 1982 (13 pages with 1 table, RDB7215)

R-C318, summary of published and unpublished toxicity literature

C. H. Tappan, Freon-C318(R) - JLNB-8580-70: Inhalation Toxicity, report 98-65, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 9 July 1965 (1 page with 1 table, RDB-7216)

4-hr acute inhalation toxicity test of R-C318, with approximately 40 ppm of an identified impurity, in six rats by whole-body exposures to 800,000 ppm v/v in oxygen: rats showed red ears, mild lacrimation (secretion of tears, 2/6), and hyperpnea (abnormally rapid or deep breathing) during exposure and mild mydriasis (dilation of the pupil of the eye) afterward, but appeared normal 15 minutes after exposure; no examination was performed for pathology; 4-hr ALC rat >800,000 ppm

Freon-C318(R): Inhalation Toxicity, report 15-59, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 1959 (RDB7736)

4-hr acute inhalation toxicity test of R-C318 in rats by exposures to 800,000 ppm v/v in oxygen: rats showed red ears, mild lacrimation (secretion of tears), and hyperpnea (abnormally rapid or deep breathing) during exposure and mild mydriasis (dilation of the pupil of the eye) afterward, but appeared normal 15 minutes after exposure; 4-hr ALC rat >800,000 ppm - as reported in RDB 7216

R-401A, R-401B, R-401C

Safety of Suva MP Refrigerants, document AS-3 (H-35814-1), DuPont Chemicals, Wilmington, DE, May 1994 (4 pages with 1 table, RDB4C49)

This bulletin reviews considerations for safe use of R-401A, R-401B, and R-401C - ternary blends of R-22, R-152a, and R-124 - by providing answers to common questions. It outlines the uses of these as replacements for R-12 in medium-temperature stationary refrigeration, stationary refrigeration with evaporator temperatures below -23 °C (-10 °F) and some transport refrigeration, and retrofit of mobile air-conditioning systems, respectively. It briefly reviews the collaborative Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) and partial findings for R-124. The document discusses the flammability of R-22/152a/124 blends, noting that they are neither flammable nor will become so with leakage, but can become flammable when mixed with gases that are. The document notes that mixtures of R-134a with more than 60% air (by volume) can become flammable at raised pressures and temperatures. It counsels that R-22/152a/124 blends may behave similarly and counsels against use of refrigerant-air mixtures for leak testing. The document then addresses inhalation toxicity. It explains the DuPont Acceptable Exposure Limit (AEL), a time-weighted average (TWA) concentration for an 8 or 12 hour day or 40 hour week, to which nearly all workers may be repeatedly exposed without adverse effects. The compositions, average boiling points, and AELs are tabulated for R-401A, R-401B, and R-401C. The document discusses symptoms of exposure to high refrigerant concentrations, cardiac sensitization, and special charging procedures these near-azeotropic blends. It also discusses suffocation, safety measures for enclosed areas, guidance when a large spill or leak occurs, dangers of deliberate inhalation, and detection by odor. The bulletin provides general advice on skin and eye contact with refrigerants, frostbite, pressure...
hazards, handling and disposal of cylinders, brazing or welding of pipes in air-conditioning and refrigeration systems, and decomposition. It concludes with specific cautions. The document recommends familiarization with the Material Safety Data Sheet (MSDS) available for these refrigerants. DuPont's product names R-401A, R-401B, and R-401C are Suva(R) MP39, Suva(R) MP66, and Suva(R) MP52, respectively.

R-416A

T. J. Kenny and C. J. Hardy (Huntingdon Research Centre Limited, HRC, UK), FRIGC(TM) FR-12(TM); Assessment of Cardiac Sensitization Potential in Dogs, report HZL 6/942384, Hazleton Washington, Incorporated, Vienna, VA, 1994 (33 pages, RDB7407)

toxicity tests to determine the cardiac sensitization potential of R-416A (R-134a/124/600 (69/37/4) by analysis) in male beagle dogs with intravenous injection of adrenaline five minutes before and, with a challenge injection, midway into a 10 minute exposure; in 6 dogs at 50,000 and 100,000 ppm v/v in air; no positive responses or clinical signs were observed at 50,000 ppm v/v [deemed a NOEL]; 2 of 6 dogs showed positive responses at 100,000 ppm v/v, which was fatal to one of them; the LOEL and EC50 were determined to be 70,000 and 90,000 ppm v/v, respectively; comparative tests with 2 dogs for R-11 indicate a LOEL at 20,000 ppm v/v (lowest tested concentration); report cites prior studies that determined the EC50 for R-124 and R-134a as 40,000 and 205,000 ppm v/v, respectively; concludes that the 2-hr ALC rat for R-502 exceeds 200,000 ppm v/v, which indicates a low order of toxicity by acute inhalation.

2-hr acute inhalation toxicity tests of R-502 in four male Charles River CD rats by whole-body exposure to 200,000 ppm v/v in air: no deaths occurred, but animals showed discomfort, tremors, and rapid respiration during exposures; two rats showed slight weight loss during the 14-day observation period following exposures; gross examination of the sacrificed animals revealed some pulmonary congestion at necropsy; no compound-related changes were found in the brain, lung trachea, liver, kidneys, alimentary tract, spleen, thymus, pancreas, testes, or bone marrow; concludes that the 2-hr ALC rat for R-502 exceeds 200,000 ppm v/v, which indicates a low order of toxicity by acute inhalation.

M. A. Lee, untitled toxicity review for isobutane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 22 May 1992 (RDB5866)

R-502, summary of published and unpublished toxicity literature

R-600

T. R. Cartwright, E. D. Brown, and R. E. Brashear (Indiana University School of Medicine), Pulmonary Infiltrates Following Butane 'Fire-Breathing', Archives of Internal Medicine, 143:2007-2008, October 1983 (2 pages with 3 figures, RDB7843)

deliberate inhalation of ordinary R-600 (butane) for a stage trick identified as 'fire-breathing' resulted in rapid progressive pulmonary infiltrates in a 19-yr old male leading to weakness, malaise, a nonproductive cough, and mild dyspnea (difficult or labored breathing); article concludes that this misuse of chemicals can have a
serious or even fatal outcome due to the pulmonary toxic reaction in humans

R-600, health effects, toxicity; study of the effects of misuse by direct inhalation; compared effects for 12 youths to 31 inhaling toluene and resultant marked changes of mental state; most users reported elevation of mood and hallucinations; nearly one-fourth believed they were able to fly or swim - as reported in RDB 6A83

R-600, health effects, toxicity; liquified butane causes burns or frostbite to the eyes upon direct contact as reported in RDB 6A83

M. Y. Gray and J. H. Lazarus (Llandough Hospital, UK), *Butane Inhalation and Hemiparesis*, *Clinical Toxicology*, 31(3):483-485, 1993 (3 pages with no figures or tables, RDB7406)

reports a case of hemiparesis (muscular weakness or paralysis on one side of the body) following inhalation of an unknown concentration of R-600 (butane) in a human; acute inhalation toxicity; health effects, substance abuse

T. J. Hughes et al., report EPA 600/S1-84-005, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, DC, 1984 (rdb6A86)

R-600, health effects, mutagenicity, toxicity; not mutagenic in Salmonella typhimurium or Escherichia coli in the absence or presence of rat microsomal activation as reported in RDB 6A83

M. A. Lee and R. C. Graham, untitled toxicity review for butane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 29 January 1990 (RDB6A83)

R-600, summary of published and unpublished toxicity literature

R-600, abuse, health effects in humans, toxicity

R-600, health effects, toxicity: "sniffing"

R-600 (butane), abuse, health effects in humans, toxicity

R-600, health effects, toxicity: contact with the skin may result in frostbite

R-600, health effects, toxicity; not mutagenic in Salmonella typhimurium or in Escherichia coli in the absence or presence of rat microsomal activation as reported RDB 6A83

R-600, health effects, toxicity

Occupational Safety and Health Guideline for n-Butane; National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH; Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Washington, DC, 1992 (5 pages with no figures or tables, available from GPO, also available from JMC as RDB5C48)

R-600, toxicity; chemical and physical properties, reactivity, flammability, exposure limits, health hazard information, exposure sources and control methods, medical monitoring, workplace monitoring and measurement, personal hygiene, storage, leaks, special requirements, respiratory protection, personal protective equipment, references

R-600a (Isobutane)

M. A. Lee and R. C. Graham, untitled toxicity review for isobutane, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 22 February 1990 (RDB5865)

R-600a, summary of published and unpublished toxicity literature

R-600, R-600a, cardiac sensitization, health effects, toxicity
H. J. Oettel, Archiv für Experimentelle Pathologie und Pharmakologie, 183:641 ff, 1936 (2 pages, rdb-6195)

R-600a, contact effects, frostbite, health effects, toxicity

R-600a, health effects, toxicity

Industrial Hygiene and Toxicology Bulletin, Phillips Petroleum Company, Bartlesville, OK, November 1976 (rdb6196)

R-600a, health effects, toxicity

Toxicity Study Summary: Isobutane (A-31 Hydrocarbon Propellant), Phillips Petroleum Company, Bartlesville, OK, February 1990 (1 page with no figures or tables, RDB7625)

tests of the acute inhalation toxicity in 5 female and 5 male albino, Sprague-Dawley rats by 4 hr, whole body exposures to 13,023 ppm v/v R-600a (isobutane) in air: no deaths resulted and no symptoms of intoxication were noted; animals appeared normal throughout the exposures and 14-day observation period; treated males showed a slight reduction in mean body weight on days 2-3 following exposures and in females for the entire period; animals appeared normal in pathological examination at necropsy with the exception of 2 animals: one male exhibited dilation of the pelvis of the left kidney and 1 female had a dilated pelvis of the left kidney that was white and hard; concludes that the gross pathological findings did not appear related to treatment and that the 4-hr LC50 rat is >13,023 ppm v/v; respiratory tract irritancy studies in male mice by head-only exposures to 12,640 ppm v/v isobutane in air for 1 min, repeated 10 minutes later, while monitored by a plethysmograph: no patterns of respiratory pause were evident; concludes that isobutane failed to produce upper respiratory irritancy in mice at 5,559 ppm v/v

Cyclopentane

Toxicity Study Summary: Cyclopentane (70%), Phillips Petroleum Company, Bartlesville, OK, February 1990 (3 pages with no figures or tables, RDB7627)

cyclopentane, summary of acute oral toxicity, acute inhalation toxicity, respiratory tract irritancy, eye irritancy, and primary dermal irritancy studies

R-602 (n-Hexane)

Toxicity Study Summary: n-Hexane, Phillips Petroleum Company, Bartlesville, OK, February 1990 (5 pages with no figures or tables, RDB7629)

R-602 (n-hexane), summary of acute oral toxicity, acute dermal toxicity, acute inhalation toxicity, respiratory tract irritancy, eye irritancy, primary dermal irritancy, and mutagenicity tests (Ames, mouse lymphoma forward mutational assay, and in vitro sister chromatid exchange) studies

R-630

Emergency Response Planning Guidelines - Monomethylamine, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1990 (rdb4B77)

R-630, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

please see page 6 for ordering information
R-717 (Ammonia)

R-717, toxicity

I. M. Alpatov, A Study of Gaseous Ammonia Toxicity, Gigiena Truda i Professional'nye Zabolevaniya [Labor Hygiene and Occupational Diseases], Russia (then USSR), 2:14-18, 1964 (5 pages in Russian, rdb6232)

R-717, toxicity

I. M. Alpatov and V. I. Mikhailov, Inquiries into Gaseous Ammonia Toxicity, Gigiena Truda i Profesional'nye Zabolevaniya [Labor Hygiene and Occupational Diseases], Moscow, Russia (then USSR), 1251-53, 1963 (3 pages in Russian, rdb6233)

R-717, health effects, toxicity: workers exposed to low levels of ammonia for prolonged periods have reported symptoms of headache, drowsiness, asthma, laryngitis, and skin irritation as reported in RDB 6270

L. M. Appelman (TNO-CIVO Toxicology and Nutrition Institute, The Netherlands), W. F. ten Berge (DSM, The Netherlands), and P. G. J. Reuzel (TNO-CIVO), Acute Inhalation Toxicology Study of Ammonia in Rats with Variable Exposure Periods, AIHA Journal, 43(9):662-665, September 1982 (4 pages with 4 tables, RDB5152)

presents acute inhalation toxicity data and a correlation between exposure concentrations and duration for R-717 (ammonia): summarizes lethality tests in male and female rats for varied concentrations and durations of 10, 20, 40, and 60 min; presents a probit relationship for concentrations, exposure periods, and mortality rates; indicates LC50 values in rats for 10, 20, 40, and 60 min of 40,300, 28,595, 20,300, and 16,600 ppm, respectively; demonstrates a higher mortality rate for male rats compared to females for tested concentrations as illustrated by 1-hr LC50 values of 14,071 and 19,671 ppm v/v respectively

R-717, health effects, toxicity

C. S. Barrow and W. H. Steinheggen (University of Pittsburgh), NH3 Concentrations in the Expired Air of the Rat: Importance to Inhalation Toxicology, Toxicology and Applied Pharmacology (TAP), 53:116-121, 1980 (6 pages, rdb6A45)

R-717, health effects, toxicity

C. S. Barrow, Y. Alarie, and M. F. Stock (University of Pittsburgh), Sensory Irritation and Incapacitation Evoked by Thermal Decomposition Products of Polymers and Comparisons with Known Sensory Irritants, Archives of Environmental Health, 33(2):79-88, March-April 1978 (10 pages with 6 figures and 1 table, RDB6231)

R-717 (ammonia), health effects, toxicity, source-study for widely cited RD, mouse of 303 ppm; the maximal response was achieved within the first two minutes of exposure for tested concentrations of R-717

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717 and others, health effects, toxicity

G. Bittersohl, presentation at the XVIIth International Congress of Occupational Health (Tokyo, Japan, 1969), Japanese Industrial Health Association, 250-251, 1971 (rdb6A57)

R-717, carcinogenic potential, health effects, toxicity: evaluation of neoplasms (new benign or malignant growths resembling the tissues from which they arise, but serving no physiologic functions) in East German manufacturing facilities; workers in ammonia plants exhibited a 500-600% higher rate of tumors than others; 80% of the workers were exposed for more than 10 years to exposures of 60-100 ppm as reported in RDB 1108

R-717, carcinogenic potential, health effects, toxicity: expands on study in RDB6A57, noting that known carcinogens were present; reports a 200% increase in cancers for workers exposed to ammonia and asbestos compared to asbestos alone - as reported in RDB1106 which discusses limitations to the study and concludes that the influence of ammonia on the formation of tumors by other agents, such as asbestos, cannot be determined.

E. M. Boyd, M. L. McLachlan, and W. F. Perry, Experimental Ammonia Gas Poisoning in Rabbits and Cats, Journal of Industrial Hygiene and Toxicology, 26:29-34, 1944 (6 pages, rdb6245)

R-717, toxicity: 1-hr LC50 cat and rabbit = 9,859 ppm v/v as reported in RDB 5151 (with summary) and 5340

L. A. Buckley, X. Z. Jiang, R. A. James, K. T. Morgan, and C. S. Barrow (Chemical Industry Institute of Toxicology, OILIT), Respiratory Tract Lesions Induced by Sensory Irritants at the RD50 Concentration, Toxicology and Applied Pharmacology (TAP), Academic Press, Incorporated, UK, 74(3):417-429, 1984 (13 pages with 8 figures and 2 tables, RDB6227)

toxicity; health effects; study to determine if pathologic changes occur in the respiratory tracts of mice after inhalation exposure at their RD50 concentration for 10 sensory irritants including R-717 (ammonia, RD50 mouse = 303 ppm) and R-764 (sulfur dioxide, RD50 mouse = 117 ppm); found no or slight changes of doubtful significance in the squamous epithelium for all 10; found slight to minimal changes but moderate inflammation to the respiratory epithelium and no change to the olfactory epithelium or lungs for R-717; found moderate to severe changes and moderate inflammation to the respiratory epithelium and minimal to severe changes to the olfactory epithelium for R-764; comments that ionization of R-717 in water is comparatively limited resulting in less damage than for hydrogen chloride, for which the RD50 and water solubility are similar; concludes that the value of the mouse sensory irritant model for setting occupational guidelines to sensory irritants is strengthened in that these studies demonstrate the RD50 concentration is associated with respiratory tract damage and is not an acceptable concentration for occupational exposures; safe levels are predicted at 0.01-0.1 times the RD50 concentration.

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, accident involving human exposure, health effects, toxicity: 13 of 47 people exposed to ammonia in an air raid shelter died within 48 hr of initial exposure; paper documents affects including symptoms similar to pulmonary edema and bronchopneumonia.

B. L. Carson, C. M. Beall, H. V. Ellis III, and L. H. Baker, Ammonia Health Effects, report EPA 460/3-81/027, Office of Mobile Source Air Pollution Control, U.S. Environmental Protection Agency (EPA), Ann Arbor, MI, 1981 (available from NTIS as document PB82-116047, rdb6260)

R-717, health effects, toxicity

R-717, health effects, toxicity

This document reviews data relevant to assessing the health effects of inhalation exposure to ammonia. The focus is on chronic exposures; information on subchronic and acute exposures also is reviewed to acquire a complete picture of the toxicity of ammonia. Physical and chemical properties, sources, environmental fate, environmental effects, and other related topics are discussed to provide context and perspective.

R-717, health effects, toxicity

T. J. Cole, J. E. Cotes, G. R. Johnson, et al., Ventilation, Cardiac Frequency and Pattern of please see page 6 for ordering information
Breathing During Exercise in Men Exposed to o-Chlorobenzylidene Malonitrile and (CS) and Ammonia Gas in Low Concentrations, Quarterly Journal of Experimental Physiol. Cogn. Medical Science, 62:341-351, 1977 (11 pages, rd6AO7)

R-717, health effects, toxicity

R-717 (ammonia) and five other gases, health effects, toxicity as reported in RDB 5151 (with summary)

L. V. Cralley, The Effect of Irritant Gases Upon the Rate of Ciliary Activity, Journal of Industrial Hygiene and Toxicology, 24:193-198, 1942 (6 pages, rd6235)

R-717, toxicity

R-717, health effects, toxicity

R-717, corrosivity, health effects, toxicity

R-717, toxicity

toxicity of R-717: biochemistry, metabolism, pharmacokinetics

J. A. Duke, Phytotoxin Tables, Critical Reviews in Toxicology, 5:191 ff, 1977 (rd5153)

R-717, health effects, toxicity

J. L. Egle, Jr., Retention of Inhaled Acetone and Ammonia in the Dog, AIHA Journal, 34:533-539, 1974 (7 pages, rd6A09)

R-717, health effects, toxicity

toxicity of R-717

R-717, health effects, toxicity: effects on workers exposed to R-717, frost, and dampness in an ice-manufacturing plant; observed that 20% of the exposed workers had chronic bronchitis compared to 14% in a control group, but concludes that the difference is not statistically significant as reported in RDB 7419

R-717, health effects, toxicity: people regularly exposed to ammonia may develop tolerance to its effects, as demonstrated in exposures of 6 male and female volunteers exposed to 25, 50, and 100 ppm for 6 weeks; acclimatized subjects experienced eye tearing and some discomfort at 150-200 ppm, but no lasting health effects were observed as reported in RDB 6270

R-717, health effects, toxicity: anecdotal report of long-term exposure effect on humans; man working in a walk-in refrigerator developed a persistent cough and dyspnea (breathing difficulty); test showed lung damage even 3 yr later as reported in RDB 6270 and 6A37

R-717, health effects, toxicity

M. J. Gerald And M. D. Slot, Ammonia Gas Burns (An Account of Six Cases), Lancet, UK, 1356-1357, 1938 (2 pages, rd6A48)

R-717, health effects, toxicity, accident involving human exposure

R. E. Gosselin, R. P. Smith, and H. C. Hodge, Ammonia, Clinical Toxicology of Commercial Products (fifth edition), Williams and Wilkins, Baltimore, MD, III-21 - III-26, 1984 (6 pages, rd6A34)
R-717, health effects, toxicity

H. W. Haggard, *Action of Irritant Gases upon the Respiratory Tract*, *Journal of Industrial Hygiene*, 5:390-398, 1924 (9 pages, rdb8408)

D. V. Hatton and C. S. Leach, *Collagen Breakdown and Ammonia Inhalation*, *Archives of Environmental Health*, 34:83-87, 1979 (5 pages, rdb6A10)

R-717, health effects, toxicity; accident in Houston involving a tanker truck, carrying 17.2 tonnes (38,000 lb) of anhydrous ammonia, resulted in dispersion 1500 m (5000') downwind and 550 m (1800') wide; resulted in 5 deaths and 178 injuries; the fatalities and most disabling injuries occurred within approximately 70 m (230') of the accident; bronchiectasis is a late-stage form of chronic bronchitis in which permanent dilation of bronchi due to destruction of the elastic and muscular components of the airway walls

Please see page 6 for ordering information
1979 (23 pages with 2 figures and 16 tables, RDB-6249)

presents a model to predict human sensory irritation responses based on sensory irritation data from animal tests; provides RD₉₀ data and TLV comparisons for 11 chemicals including 303 ppm for R-717 (ammonia) and 117 ppm for R-764 (sulfur dioxide); compares predicted responses to published effects; proposes use of the RD₉₀ measure to set guidelines for exposure limits; concludes that the threshold limit value (TLV) should be set at 1-10% of the RD₉₀, the short-term exposure limit (STEL) at 20% of the RD₉₀, and the emergency exposure limit (EEL) at 30% of the RD₉₀.

J. C. Kapeghian, A. B. Jones, and I. W. Waters (Mississippi University), Effects of Ammonia on Selected Hepatic Microsomal Enzyme Activity in Mice, Bulletin of Environmental Contamination and Toxicology, 39:15-22, 1985 (9 pages, rdb6A14)

R-717, health effects, toxicity

R-717, toxicity: 30-min LC₉₀ mouse = 4,230 ppm and 60-min LC₉₀ mouse = 5,981 ppm, depending on calculation method as reported in RDB (with summary) 5151 and 5155.

1-hr LC₅₀ mouse = 4,230 ppm v/v for R-717 (ammonia) as reported in RDB 5340.

R-717, health effects, toxicity: high concentrations of ammonia dissolve in moisture on the skin, leading to skin corrosion as reported in RDB 6270.

A. Kinnerle, JFF/Combustion Technology, 1:4-51, 1974 (46 pages, rdb6280)

R-717 (ammonia), health effects, toxicity: review of toxicity parameters and data, from other sources, on inhalation toxicity of ammonia in animals; characterizes concentrations of 480-570 ppm and 800-1070 ppm as "irritation" for 4 hour exposures and "strong irritation" for 7 hour exposures, respectively; the latter overlaps with dyspnea and tracheitis from 820-1430 ppm; indicates an ALC 4 hr of 4,000 ppm and LC₉₀ 2 hr of 10,930 ppm, both for rats as reported (with summary) in RDB 5151.

R-717, health effects, toxicity: anecdotal study of extended occupational exposures; compares beginning and end-of-day symptoms for 45 male and 28 female workers, exposed to 13-51 ppm, for 5-10 years in an ammonia production plant; subjects reported increases in headaches, vertigo, staggering, and tremors to interviewers; findings were dismissed by others as "not meaningful due to major methodological flaws" as reported in RDB 1106.

V. Kondrashov, Gigenla Trud i Professional'nye Zabolevanija [Labor Hygiene and Occupational Diseases], Russia (then USSR), 2:34-38, 1978 (5 pages in Russian, RDB6252)

R-717, toxicity: LC₅₀ rat comparison between inhalation and skin absorption as reported (with summary) in RDB 5151.

R-717, health effects, toxicity: anecdotal study of extended occupational exposures; 143 workers exposed to 7-41 ppm of ammonia, as well as other irritants, had lowered forced expiratory volume than workers from the same facility not exposed to ammonia; criticized for methodological flaws and other confounding factors as reported in RDB 1106.

R-717, health effects, toxicity.

K. B. Lehmann (Universität Würzburg), Experimental Studies on the Acquisition of Tolerance to Technically and Hygienically Important Gases and Vapors: Ammonia, Archiv für Hygiene, 6, 1889 (126 pages in German, rdb6247)

R-717, toxicity: early toxicity testing with cats, dogs, guinea pigs, rabbits, and rats; distinctions among species as reported in RDB 5151 (with summary).

K. B. Lehmann (Universität Würzburg), Experimental Studies on the Effect of Technically and Hygienically Important Gases and Vapors on the
Organism (Part I, Ammonia). Archiv für Hygiene, 5:1-126, 1866 (126 pages in German, RDB6248)

R-717, toxicity: early toxicity testing with cats, dogs, guinea pigs, rabbits, and rats; distinctions among species - as reported in RDB 5151 (with summary)

odor detection threshold of R-717 (ammonia)

R-717, health effects, toxicity: accidental exposure to high concentrations may cause severe eye injury, including fluid accumulation in the eyelids, scarring of the cornea, and even loss of vision as reported in RDB 6270

H. Lonsdale, Ammonia Tank Failure - South Africa, Ammonia Plant Safety, American Institute of Chemical Engineers (AIChE), New York, NY, 17:126-131, 1975 (6 pages, rdb6A16)

R-717, health effects, toxicity, accident involving human exposure: failure of a pressurized ammonia tank in Potchefstroom, South Africa, released 38 tonnes (42 tons) of anhydrous ammonia resulting in 18 deaths and multiple injuries

R-717, toxicity, 1-hr LC50, rat, = 7.338 ppm as reported in RDB 1106 and (with summary) 5151

R-717 (ammonia), health effects, toxicity

R-717, health effects, toxicity

R. S. Marknam, A Review of Damage from Ammonia Spills, Proceedings of the Ammonia Symposium (Boston, MA, August 1986), American Institute of Chemical Engineers (AIChE), New York, NY, 1986 (rdb6A17)

R-717, health effects, toxicity, accident involving human exposure

J. L. Martin, Review of Literature on the Toxicity of Ammonia, The Fertilizer Institute, Washington, DC, 1979 (rdb6A54)

R-717, health effects, toxicity: anecdotal report of the potential effects of long-term, human occupational exposure to ammonia; physician reviewed the results of physical examinations of employees of a fertilizer manufacturer prior to employment and every two years thereafter for up to 15 years; concludes that there is no long-term toxicity due to ammonia exposure as reported in RDB 1106

M. H. Mayan and C. P. Merilan, Effects of Ammonia Inhalation on Young Cattle, New Zealand Veterinary Journal, 24:221-224, 1976 (4 pages, rdb-6A18)

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity

W. Moeller, Zur chronischen Ammoniak-Exposition aus Ophthalmologischer Sicht [Chronic Ammonia Exposure from an Ophthalmologic Point of View], Zeitschrift für die gesamte Hygiene und Ihre
Grenzgebiete, 20(9):579-581, 1974 (3 pages, rdb-5769)

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity, accident involving human exposure

R-717, health effects, toxicity, accident involving human exposure: worker exposed to a very high, but unknown concentration of ammonia vapor immediately experienced coughing, dyspnea, and vomiting; developed conjunctivitis 3 hr after exposure, and died of cardiac arrest 6 hr after exposure; autopsy revealed marked respiratory irritation, denudation of the tracheal epithelium, and pulmonary edema

National Research Council (NRC) Committee on Medical and Biological Effects of Environmental Pollutants, Ammonia, University Park Press, Baltimore, MD, 1979 (rdb5771)

R-717, health effects, toxicity

National Research Council (NRC) Committee on Toxicology, Guideline for Short Term Exposures of the Public to Air Pollutants, IV, Guide for Ammonia, National Academy of Sciences (NAS), National Academy Press, Washington, DC, 1987 (rdb5154)

R-717, health effects, toxicity

F. Navazio, T. Gerritsen, and G. J. Wright, Relationship of Ammonia Intoxication to Convulsions and Coma in Rats, Journal of Neurochemistry, 8:146-151, 1961 (6 pages, rdb8413)

R-717, health effects, toxicity

R-717, health effects, toxicity: histological changes of the lung after acute exposure to ammonia, dose-dependent effects in mice as reported in RDB 5151 (with summary)

R-717, health effects, toxicity, accident involving human exposure

R-717, health effects, toxicity

R-717, health effects, toxicity

A. S. Propkop'eva and G. C. Yushkov, Toxicology of Ammonia in Animals Repeatedly Exposed for Short Lengths of Time, Gigiena Truda i Profesional'nye Zabolovaniya [Labor Hygiene and Occupational Diseases], Russia (then USSR), 9:54-55, 1975 (2 pages in Russian, rdb6228)

R-717, health effects, toxicity: subchronic exposures of rats as reported in RDB 5151 (with summary)

A. S. Propkop'eva, G. C. Yushkov, and I. O. Ubasheev, Materials for a Toxicological Characteristic of the Long-Term Effect of Ammonia on the Organisms of Animals After Brief Exposure, Gigiena Truda i Profesional'nye Zabolovaniya [Labor Hygiene and Occupational Diseases], Russia (then USSR), 6:56-57, 1973 (2 pages in Russian, rdb6229)

R-717, toxicity, LC50 rat = 26,704 ppm for 5 min, 17,371 ppm for 15 min, 10,050 ppm for 30 min, and 11,341 ppm for 60 min as reported in RDB 1106, 5106, and (with summary) 5151

R-717, health effects, toxicity

D. Richard, J. Jouany, and C. L. Bondène, Acute Toxicity of Ammonia in Rabbits by Inhalation, Compte Rendu de l'Académie de Science
R-717, health effects, toxicity: acute exposures of rabbits at 1,000-2,000 ppm as reported in RDB 5151 (with summary)

R-717, health effects, toxicity: chronic exposures of rats at 250-300 ppm, without general toxic effect, and 500 ppm as reported RDB 5151 (with summary)

R-717, health effects, toxicity: study to determine the threshold for irritation by R-717 in humans: irritation was taken to be any annoyance to eyes, nose, mouth, throat, or chest that persisted throughout a five-minute, head-only exposure for a panel of ten subjects; 1 of 10 reported dryness of the nose (deemed not an uncomfortable irritation in the report) at 32 ppm and 2 of 10 did so at 50 ppm; irritation was reported by 3 or more of 10 subjects at 72 and 134 ppm; effects were greater with increasing concentrations; report concludes that concentrations of 50 ppm or less did not cause irritation or discomfort

R-717, health effects, exposure limit, toxicity

A. D. Schaerdel, W. J. White, C. M. Lang, et al., Localized and Systemic Effects of Environmental Ammonia in Rats, Laboratory Animal Science, 33:40-45, 1983 (16 pages, rdb6A26)

R-717, health effects, toxicity

R-717, carcinogenic potential, health effects, toxicity: technician splattered with R-717 and lubricant on his nose and lip developed a small blister, which became a persistent, chronically inflamed lump; biopsy confirmed presence of epidermoid carcinoma 6 months later as reported in RDB1106; RDB1106 discusses confounding factors and concludes that it is impossible to draw conclusions concerning the role of R-717 in the observed response

S. D. Silver and F. P. McGrath, A Comparison of Acute Toxicities of Ethylene Amine and Ammonia to Mice, Journal of Industrial Hygiene and Toxicology, 30:7-9, 1948 (3 pages, rdb6254)

R-717, health effects, toxicity: acute exposures of mice at high concentrations, 10-min LC50 mouse = 10,152 ppm as reported in RDB 5151 (with summary)

L. Silverman, J. L. Whittenberger, and J. Muller, Physiological Response of Man to Ammonia in Low Concentrations, Journal of Industrial Hygiene and Toxicology, 31:74-78, 1949 (5 pages, rdb6226)

R-717, toxicity: controlled human exposures at 500 ppm for 30 min resulted in hyperpnea (abnormally rapid or deep breathing), increased blood pressure, increased pulse rate, lacrimation (abnormal or excessive secretion of tears), and complaints of respiratory irritation with some effects persisting for 24 hours after exposures

exposures to R-717 (ammonia) of 2,500-6,000 ppm v/v for 30 minutes are considered dangerous to life as reported in RDB 5340

H. F. Smyth, Jr., J. Seaton, and L. Fischer (Carnegie-Mellon Institute, then the Mellon Institute), The Single Dose Toxicity of Some Glycols and Derivatives, Journal of Industrial Hygiene and Occupational Medicine, 23(6):259-268, June 1941 (10 pages with 3 tables, rdb6287)

R-717 and others, health effects, toxicity: widely referenced LD50 oral, rat = 350 mg/kg based on tests using ammonium hydroxide (ammonia-water solution, NH₄OH) with calculated result for ammonia

R. Sobonya, Fatal Anhydrous Ammonia Inhalation, Human Pathology, 5(3):293-299, 1977 (7 pages, rdb5773)

R-717, health effects, toxicity, accident involving human exposure: 4 fatalities following exposure to ammonia in a farming accident; 3 workers died immediately; the fourth, a 25-yr old man, died from secondary effects 60 days later

please see page 6 for ordering information

R-717, health effects, toxicity

R-717, health effects, toxicity: acute exposures of mice at 12,000 ppm for 20 min and at 11,000 ppm for 40 min; males mortality found to be higher as reported in RDB 5151 (with summary)

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity

R-717, health effects, toxicity

Y. C. Ting, The Toxicity of Ammonia, Science, American Association for the Advancement of Science (AAAS), Washington, DC, 112:91 ff, 1950 (rdb6265)

R-717, health effects, toxicity

R-717, health effects, toxicity

Toxicity of Ammonia - A Report to the MHAP
[Major Hazards Advisory Panel], North Western
Branch Papers, Institution of Chemical Engineers,
and 9 tables, RDB6A31)

R-717, health effects, toxicity

K. L. Wong, Ammonia, Maximum Allowable Concentrations for Selected Airborne Contaminants in Spacecraft, National Research Council (NRC), Committee on Toxicology, 39-59, 1995 (21 pages, rdb6A32)

study to identify and compare the histopathological changes induced in the respiratory tract of mice by repeated exposures at targets of 0.3, 1.0, and 3.0 times the RD50 concentrations of airborne chemicals, among them R-717 (ammonia); toxicity; health effects: only 11 of the 15 tested irritants induced lesions, among them R-717 which injured the respiratory epithelium; no pathological changes were observed from R-717 at 257 ppm (RD(0.85)), but lesions were found following exposures at 711 ppm (RD(2.35)); injuries from R-717 progressed from moderate for 4 days to severe for 9 days to very severe for 14 days based on exposures of 6 hr/d for 5 d/wk; the authors suggest that a repair mechanism may moderate further injury for the majority of tested chemicals, for which the most severe injuries occurred within the first 4 days, but the intensity of lesions induced by R-717 became more severe with further exposures

Ammonia, chemical infographic 73, Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, Canada, October 1990 (1 page, RDB6269)

R-717, safety, toxicity, flammability, occupational exposure guidance

R-717, health effects, toxicity, exposure and use statistics, controls and protective equipment

Ammonia (CAS 7664-41-7), chemical hazard summary 37, report C88-1E, Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, Canada, 1988 (18 pages with 1 table, rdb6270)

R-717, safety, toxicity, flammability, occupational exposure guidance

Ammonia Health Effects Information, CAS# 7664-41-7, Elf Atochem North America, Incorporated, Philadelphia, PA, undated circa 1995 (2 pages, RDB5B60)

R-717, summary of toxicological and ecological information

Ammonia Toxicity Monograph, The Institution of Chemical Engineers, Warwickshire, UK, 1988 (RDB5151)

R-717, toxicity

Critical Reviews in Toxicology, Chemical Rubber Company (CRC), Cleveland, OH, 5:189 ff, 1977 (rdb6591)

R-717, toxicity

Emergency First Aid Treatment Guide for Ammonia (7664-41-7), U.S. Environmental Protection Agency (EPA), Washington, DC, undated circa 1990 (rdb6268)

R-717, health effects, toxicity
Emergency Response Planning Guidelines - Ammonia, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1988 (4 pages, RDB4B76)
R-717, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

R-717, health effects, toxicity: maximum short-exposure tolerance is 300-500 ppm v/v for 30-60 minutes, 2,500-6,000 ppm are considered dangerous to life, and 5,000-10,000 ppm are reported to be fatal - as reported in RDB5340

Occupational Safety and Health Guideline for Ammonia; National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH; Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Washington, DC; 1992 (7 pages with no figures or tables, available from GPO, also available from JMC as RDB-R-717, toxicity; chemical and physical properties, reactivity, flammability, exposure limits, health hazard information, exposure sources and control methods, medical monitoring, workplace monitoring and measurement, personal hygiene, storage, spills and leaks, special requirements, personal protective equipment, references

R-717, health effects, toxicity

R-744 (Carbon Dioxide)

R-744, toxicity, effects on rats of acute exposure to increased carbon dioxide in the air

R-744, toxicity

D. J. Cullen and E. L. Eger, Cardiovascular Effects of Carbon Dioxide in Man, Anesthesiology, 41:345-349, 1974 (rdb5790)
R-744, health effects, toxicity

F. Flury and F. Zernik, Schädliche gase, dämpfe, nebel, rauch- und staubarten [Dangerous Gases, Fumes, Mists, Smokes, and Dusts], Springer-Verlag (then Verlag von Julius Springer), Berlin, Germany, 1931 (rdb72A6)

R-744, health effects, toxicity

toxicity of R-744 (carbon dioxide): effects of acute exposures on the cardiovascular system; notes that inhalation of carbon dioxide produces sensations usually associated with anxiety; investigation concluded that anxiety-like responses are largely sympathomimetic

F. Herles et al., Influence of Acute Respiratory Acidosis, Induced by Carbon Dioxide Inhalation, on Pulmonary Circulation, Vnitr. Lek., 13(7):692-699, 1967 (8 pages, rdb5793)
R-744, health effects, toxicity

I. Juzwiak and K. Brodzia-Krzesiek, Clinical Studies on Persons Subjected to the Effect of Carbon Dioxide in Comparison to the Environmental Studies in Cellulose and Plastic Industry,
R-744, health effects, toxicity

R-744, health effects, toxicity

A. A. LaVerne et al., Occupational, Accidental, Explorational Carbon Dioxide Inhalation Poisonings and Prevention, Behavioral Neuropsychiatry, 4(12):33-48 (16 pages, rdb5796)
R-744, health effects, toxicity

H. Mitsuda et al., Effects of Carbon Dioxide on Serum Biochemical Patterns and on Histopathological Changes of Organ in Rats, Journal of Nutritional Science and Vitaminology, 28(2): 105-115 (11 pages, rdb5797)
R-744, health effects, toxicity based on studies of male rats anesthetized with a 4/60 mixture of carbon dioxide and oxygen for 3 hours

R. R. Montgomery, untitled toxicity review for carbon dioxide, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, 9 August 1983 (RDB6453)
R-744, summary of published and unpublished toxicity literature

submarine personnel continuously exposed to 30,000 ppm R-744 were only slightly affected provided the oxygen content of the air was maintained at normal concentrations as reported in RDB 5340

R-744, health effects, toxicity

J. M. Stinson and J. L. Mattsson, Cardiac Depression in the Detection of the High Environmental CO₂: A Comparative Study in Rhesus Monkeys and Chimpanzees, Aerospace Medicine, 42(1):78-80, 1971 (3 pages, RDB5815)
R-744, health effects, toxicity

R-744, health effects, toxicity

R-744, toxicity

R-744, toxicity

J. Winter, Arbeitsschutz [Occupational Safety], 104-105, 1937 (rdb6282)
R-744, toxicity, fatalities

Tabulae Biologicae, 3:231 ff, 1933 (rdb6283)
R-744, toxicity: 5-min LC₁₀ human = 90,000 ppm as reported in RTECS

Criteria for a Recommended Standard - Occupational Exposure to Carbon Dioxide, publication 76-194, National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH, 1976 (available from GPO as publication 017-033-00199-5, rdb5787)
R-744, health effects, toxicity

R-744, health effects, toxicity

Occupational Health Guideline for Carbon Dioxide; National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH; Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Washington, DC; September 1978 (available from GPO as part of publication PB83-154609; RDB6280)
R-744, toxicity; identification, exposure limits, health hazard information, chemical and physical properties, monitoring and measuring procedures, respirators and respiratory protection, personal protective equipment, common operations and controls, emergency first aid procedures, leak procedures, references

please see page 6 for ordering information
R-744a
R-744a

R-764
H. Salem and D. M. Aviado (University of Pennsylvania School of Medicine), *Inhalation of Sulfur Dioxide*, Archives of Environmental Health, 2:656-662, 1961 (RDB6939)
R-764, health effects, toxicity

Emergency Response Planning Guidelines - Sulfur Dioxide, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1990 (RDB4B78)
R-764, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

R-7146
D. Lester and L. A. Greenberg (Yale University), *The Toxicity of Sulfur Hexafluoride*, Archives of Industrial Hygiene and Occupational Medicine, 2:348-349, 1950 (2 pages, RDB5A39)
R-7146, toxicity

R-1110
E. Guberan and J. Fernandez, *Control of Exposure to Tetrachloroethylene by Measuring Alveolar Concentrations: Theoretical Approach Using a Mathematical Model*, British Journal of Industrial Medicine, 31:159-167, 1974 (9 pages, rdb6495)
R-1110, health effects, toxicity

V. K. Rowe, D D. McCollister, H. C. Spencer, E. M. Adams, and D. D. Irish, *Vapor Toxicity of Tetrachloroethylene for Laboratory Animals and Human Subjects*, Archives of Industrial Hygiene and Occupational Medicine, 5:566-579, 1952 (14 pages, rdb6507)
R-1110, health effects, toxicity, LC50

R-1113
Emergency Response Planning Guidelines - Chlorotrifluoroethylene, American Industrial Hygiene Association (AIHA), Fairfax, VA, 1992 (rdb-4881)
R-1113, 1-chloro-1,2,2-trifluoroethene, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

R-1114
R. Lafaux, *Practical Toxicology of Plastics*, CRC Press, Incorporated, Cleveland, OH, 205 ff, 1968 (rdb8124)
R-1114 toxicity: small amounts of fluorochemicals R-C318, R-1216, and R-1318 (perfluorooisobutylene, PFIB) are formed by thermal decomposition of R-1114 above 400 °C (752 °F) when air is present

R-1114, tetrafluoroethene, ERPG-1, ERPG-2, ERPG-3, toxicology data, toxicity, safety classification

R-1120
E. M. Adams, H. C. Spencer, V. K. Rowe, D D. McCollister, and D. D. Irish, *Vapor Toxicity of Trichloroethylene Determined by Experiments on Laboratory Animals*, Archives of Industrial Hygiene and Occupational Medicine, 4:469-481, 1951 (13 pages, rdb6508)
R-1120, health effects, toxicity, LC50

C. R. Elcombe, *Species Differences in Carcinogenicity and Peroxisome Proliferation Due to Trichloroethylene: A Biochemical Human Hazard Assessment. Receptors and Other Targets for Toxic Substances*, Archives of Toxicology Supplement, 8:6-17, 1985 (12 pages, rdb65C4)
R-1120, health effects, toxicity

pany, Princeton, NJ, 5:1-393, 1986 (393 pages, rdb-65C0)

R-1120, health effects, toxicity

J. H. Mennear, Toxicology and Carcinogenesis Studies of Trichloroethylene (CAS No. 79-01-6) in Four Strains of Rats (ACI, August, Marshall, Osborne-Mendel) (Gavage Studies), report TR-273 (also identified as NIH publication 88-2529) for the National Toxicology Program (NTP), U.S. Department of Health and Human Services, research Triangle Park, NC, April 1988 (available from NTIS as publication PB88-218896/AS, rdb65D5)

R-1120, carcinogenicity, health effects, toxicity

R. M. Waters, O. S. Orth, and N. A. Gillespie, Trichloroethylene Anesthesia and Cardiac Rhythm, Anesthesiology, 4:1 ff, 1943 (rdb65A1)

R-1120, cardiac sensitization, health effects, toxicity

J. F. White and G. P. Carlson, Epinephrine-Induced Cardiac Arrhythmias in Rabbits Exposed to Trichloroethylene: Role of Trichloroethylene Metabolites, Toxicology and Applied Pharmacology (TAP), 60:458-465, 1981 (8 pages, rdb81A9)

R-1120, cardiac sensitization, health effects, toxicity: chemically-induced arrhythmias did not occur when epinephrine was administered 15-30 minutes after exposure to a sensitizing level of chemical

R-1140

Occupational Safety and Health Guideline for Vinyl Chloride - Potential Human Carcinogen, National Institute of Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, Cincinnati, OH, 1988 (available from GPO as document 1993-750-004/80503, RDB-R-1140, toxicity; properties, exposure limits, health hazard information, recommended medical practices, monitoring and measurement procedures, personal protective equipment, sanitation, common operations and controls, emergency first aid procedures, spills and leaks, waste removal and disposal, respiratory protection, references

R-1150 (Ethylene)

A. B. Luckhardt and J. B. Carter (University of Chicago), Journal of the American Medical Association (JAMA), 80:765-770, 1923 (6 pages, rdb7740)

toxicity tests of the anesthetic effects of R-1150

R-1216

Acute Inhalation Toxicity, report EPA/OTS-878220382 TSCATS 019448, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, circa 1987 (rdb8431)

toxicity tests of R-1216 mutagenicity in both the presence and absence of metabolic activation: significant increases were observed in the number of aberrations, percent abnormal cells, and percentage of cells with more than one aberration compared to controls in both activated and nonactivated cultures at 2900 ppm, 5500 ppm, and above; positive dose-related trends were observed

R-1270 (Propylene)

R-1270, health effects, toxicity: irradiated (to induce decomposition) mixture of 1 ppm R-1270 and nitric oxide produced slight eye irritation, increased to moderate with 2-3 ppm R-1270 as reported in RDB 6A59

B. Beije (Nordic Expert Group), Propene, report 117, Arbete och Hlsa, 1995 (36 pages, rdb8427)

toxicity of R-1270: metabolizes to propylene oxide, which binds to hemoglobin and DNA; chronic inhalation of R-1270 on a long-term causes non-neoplastic toxic changes in the nasal cavity of rats, but not of mice; increases the incidence of chronic focal renal inflammation in male mice and of uterine endometrial stromal polyps and, to a lesser extent, hemangiosarcoma and combined hemangioma in female mice; data on the potential health hazard to humans are limited; because the metabolite, propylene oxide, is carcinogenic to experimental animals, it is not possible at the present time to rule out R-1270 as a human carcinogen

please see page 6 for ordering information
A. M. Caine and C. Reynolds (Tulane University of Louisiana), Electrocardiographic Studies of the Action of Propylene and Some Other Anesthetic Gases, Proceedings of the Society of Experimental Biology and Medicine, New York, 23:488, 1925-1926 (1 page, RDB7739)

R-1270, and others, health effects, toxicity: examination of propylene as a general anesthetic agent

toxicity of R-1270: tests with Sprague-Dawley rats and Swiss mice by inhalation of 0, 200, 1000 or 5,000 ppm v/v R-1270 in air for 7 hr/d, 5 d/wk; groups of 120 male and 120 female rats (high-dose and controls) or 100 male and 100 female rats (mid- and low-dose) were treated for 104 weeks, and groups of 100 male and 100 female mice (each dose and controls) for 78 weeks; animals were kept under observation until spontaneous death; concludes that R-1270 was not carcinogenic as tested

acute toxicity tests of R-1270 in rats with concentrations up to 65,000 ppm for 4 hr produced no observable toxic effects, but only the liver was examined - as reported in RDB 6A72

toxicity tests of R-1270 and others used as fumigants: no appreciable plant damage or eye irritation from propylene-ozone reaction

B. M. Davidson (University of Aberdeen), Study of Intoxication IV. The Action of Propylene, Journal of Pharmacology and Experimental Therapeutics (JPET), 26:33-36, 1925 (4 pages with 1 figure and 1 table, RDB6A64)

toxicity tests of R-1270 in humans by acute inhalation exposures: Inhalation of 64,000 ppm v/v with 20% oxygen for 2½ minutes yields mild intoxication, paresis and in ability to concentrate; the same symptoms are accentuated at 128,000 ppm in 1 minute; unconsciousness results at 240,000 ppm in 3 minutes; concludes that R-1270 is more potent as an anesthetic than acetylene or R-1150 (ethylene) and appears more promising for intended use as an anesthetic

K. Golka, H. Peter, B. Denk, and J. G. Filser (Universität Dortmund, Germany), Pharmacokinetics of Propylene and its Reactive Metabolite Propylene Oxide in Sprague-Dawley Rats, Archives of Toxicology, 13(supplement):240-242, 1989 (3 pages, RDB8426)

R-1270, health effects, metabolism, toxicity

toxicity tests of anesthetic and central nervous system (CNS) effects in cats, dogs, mice, and humans: minimal anesthetic dose (MAD) or minimal narcotic dose (MND) is defined as loss of righting reflex; for R-1150, MAD mouse = 850,000-900,000 ppm v/v and the 1-hr approximate lethal concentration (ALC) is inexplicably indicated as 1,400,000-1,460,000 ppm v/v; for a commercial (E. R. Squibb and Sons) preparation of R-1270, indicated as containing an unidentified impurity, MAD = 400,000 ppm v/v and 1-hr ALC = 400,000-450,000 ppm v/v in mice; anesthetic LOEL = 400,000-500,000 ppm v/v and 1-hr ALC = 750,000-800,000 ppm in dogs; effects are similar in cats and dogs; anesthetic effect to the point of unconsciousness in humans at 350,000-400,000 ppm

R-1270, anesthetic and central nervous system (CNS) effects, health effects, toxicity

R-1270 and others, anesthetic and central nervous system (CNS) effects, health effects, toxicity

R-1270, mutagenic potential, health effects, toxicity: not mutagenic in Salmonella typhimurium as reported in RDB 6A59

M. H. Kahn and L. K. Riggs, Electrocardiographic Studies of the Effects of Propylene as a General
Anesthetic in Man, Annals of Internal Medicine, 5:651-658, 1931 (2 pages with 1 figure and 9 tables, RDB6A67)

R-1270, health effects, toxicity: experimental human exposures at 400,000-750,000 ppm v/v caused reddening of the eyelids, flushing of the face, lacrimation, coughing, and sometimes flexing of the legs in a few minutes when used as a general anesthetic; progress of the anesthesia was otherwise gradual and complete in an average of ten breaths

R-1270, summary of published and unpublished toxicity literature

D. B. McGregor et al., Environmental and Molecular Mutagenicity, 17(2):122-129, 1991 (8 pages, RDB6A69)

R-1270, health effects, mutagenicity, toxicity

R-1270, health effects, toxicity: white mice narcotized by 500,000 ppm v/v

toxicity tests of R-1270 in male rats: concludes that R-1270 is hepatotoxic to rats based on 4-hr inhalation exposures at 50,000 ppm v/v; liver weight to body weight ratios increased and serum enzyme activities were elevated in rats pretreated with polychlorinated biphenyls (PCB); concludes that PCB pretreatment is a prerequisite for R-1270 hepatotoxicity; cytochrome P-450-dependent bioactivation of R-1270 is associated with this hepatotoxicity, but further studies are needed to characterize the mechanism of the PCB-propene interaction

R-1270, health effects, toxicity: irritation as a component of smog

J. A. Quest, J. E. Tomaszewski, J. K. Haseman, G. A. Boorman, J. F. Douglas (National Institute of Environmental Health Sciences), and W. J. Clarke (Battelle Pacific Northwest Laboratories), Two-Year Inhalation Toxicity Study of Propylene in F344/N Rats and B6C3F1 Mice, Toxicology and Applied Pharmacology (TAP), 76(2):288-295, 1984 (8 pages with 2 tables, RDB6A72)

chronic inhalation toxicity tests of R-1270 in groups of 50 male and 50 female Charles River F344/N rats and 50 male and 50 female Charles River B6C3F1 mice by whole-body exposures to 0 (control), 5,000, and 10,000 (4,985 and 9,891 actual for rats and 4,999 and 9,957 actual for mice) ppm v/v for 6 h/d, 5 d/wk, for 103 wk: no compound-related clinical signs were observed in rats or mice, though the latter showed 6% reduced body weights during exposures to 10,000 ppm; survival among all groups was similar; increased incidences of nonneoplastic lesions in the nasal cavity; they consisted of epithelial hyperplasia in female rats exposed to 10,000 ppm, squamous metaplasia in female rats exposed to both treatment concentrations, and squamous metaplasia in male rats exposed to 5,000 ppm; inflammatory changes including an influx of lymphocytes, macrophages, and granulocytes into the submucosa and granulocytes into the lumen in male rats at both treatment concentrations; no signs of lesions were found in the mice; no treatment-related increases or decreases in tumor incidence was detected in either the rats or mice or rats; study concludes that chronic inhalation of R-1270 induces nasal cavity toxicity in rats but not mice, but that the chemical is not carcinogenic to either species as tested

R-1270 and others, anesthetic and central nervous system (CNS) effects, health effects, toxicity: anesthetic effect in white rats at 40,000 ppm v/v as reported in RDB 6A59

R-1270, health effects, inhalation toxicity in humans as reported in RDB 6A59 and 6A67

please see page 6 for ordering information
R-1270, health effects, chronic inhalation toxicity in rats

R-1270, health effects, inhalation toxicity in humans

Properties and Essential Information for Safe Handling and Use of Propylene, Chemical Safety Data Sheet SD-59, Manufacturing Chemists Association (MCA), Washington, DC, 1974 (rdb6A68)

R-1270

Toxicity of R-1270: data on occupational exposures are limited; no relevant human carcinogenicity data were found; R-1270 was tested by inhalation in two studies each in mice and rats, but two of them were inconclusive; a slight increase in the incidence of vascular tumors was observed in female mice in one study; no treatment-related increase in tumor incidence was observed in a rat study; a metabolism study in rats exposed to 50 ppm, approximately one-sixth of the inhaled material was absorbed of which nearly half was later exhaled unchanged; the remainder was eliminated metabolically, through oxidation to propylene oxide; alkylation products of this metabolite were found in hemoglobin and in DNA from mice exposed to propylene by inhalation; although insufficient data are available to evaluate the genetic and related effects of propylene, the metabolite propylene oxide is genotoxic in a broad range of assays; concludes that R-1270 is not classifiable as to its carcinogenicity to humans (Group 3)

Propylene Toxicity Profile, BIBRA Toxicology International, British Industrial Biological Research Association (BIBRA), 1993 (5 pages, rdb8429)

R-1270 vapor is not irritating to the skin, but may be an irritant to the eyes and mucous membranes; the liquefied form causes skin and eye burns; inhalation induces rapid anesthesia and other central nervous system (CNS) effects; nasal inflammation and mild kidney injury were observed in chronic inhalation studies in rats and mice, respectively; shorter exposures yielded liver effects in rodents; evidence of carcinogenicity was insufficient in rats or mice, but DNA binding was detected in mice; the results of mutagenicity assays were inconclusive

Toxicity Study Summary: Propylene, Phillips Petroleum Company, Bartlesville, OK, February 1990 (1 page with no figures or tables, RDB7630)

tests of the acute inhalation toxicity in 5 female and 5 male albino, Sprague-Dawley rats by 4 hr, whole body exposures to 7,217 ppm v/v R-1270 (propylene) in air: no deaths resulted, but animals were hyperactive for 5 min after exposure initiation; all animals showed a body weight increase after exposures, but females showed a slight weight decline on days 2-7 postexposure; no other gross signs or symptoms of intoxication are noted, and no gross pathological changes were found at necropsy; concludes that the 4-hr LC50 rat is >7,217 ppm v/v; respiratory tract irritancy studies in male mice by head-only exposures to 7,228 ppm v/v R-1270 in air for 1 min, repeated 10 minutes later, while monitored by a plethysmograph: half of the test animals showed decreases in respiratory rates up to 25%; concludes that R-1270 failed to produce upper airway irritancy in mice at 7,228 ppm v/v [implies that RD50 exceeds 7,200 ppm]

National Toxicology Program (NTP), *Toxicology and Carcinogenesis Studies of Propylene (CAS No. 115-07-1) in F344/N Rats and B6C3F1 Mice (Inhalation Studies), report TR-272 (also identified as NIH publication 88-2528), U.S. Department of Health and Human Services (DHHS), Research Triangle Park, NC, November 1985 (146 pages with 11 figures and 16 tables available from NTIS as document PB86-145521/AS, also available from JMC as RDB7534)

2-yr chronic inhalation toxicity tests of R-1270 in groups of 50 male and 50 female Charles River F344/N rats and 50 male and 50 female Charles River B6C3F1 mice by whole-body exposures to 0 (control), 5,000, or 10,000 ppm v/v for 6 hr, 1 d, 5 d/wk, for 103 wk: report also summarizes 2 wk and 14-wk pilot studies in groups of male and female rats exposed to concentrations of 0 (control), 625, 1,250, 2,500, 5,000, or 10,000 ppm v/v for 6 hr d, 5 d/wk, for 2 or 14 wk; no compound-related clinical signs were observed in rats or mice in the 2-yr study, though the mice showed 6% reduced body weights during exposures to 10,000 ppm; survival among all groups was similar; increased incidences of nonneoplastic lesions in the nasal cavity; they consisted of epithelial hyperplasia in female rats exposed to 10,000 ppm, squamous metaplasia in female rats exposed to both treatment concentrations, and squamous metaplasia in male rats exposed to 5,000 ppm; inflammatory changes including an influx of lymphocytes, macrophages, and granulocytes into the submucosa and granulocytes into the lumen in male rats at both treatment concentra-
tions; no signs of lesions were found in the mice; no treatment-related increases or decreases in tumor incidence was detected in either the rats or mice or rats; study concludes that chronic inhalation of R-1270 induces nasal cavity toxicity in rats but not mice, but that the chemical is not carcinogenic to either species as tested

R-1316

R-1316, health effects, toxicity

hexafluoropropene oxide (HFPO)

Acute Inhalation Exposure (Six-Hours) of a Dog To Hexafluoropropylene Epoxide (HFPO), Preliminary Report, report EPA/OTS-878220383 TSCATS 019449, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, circa 1987 (rdb8432)

- test of the acute inhalation toxicity of hexafluoropropene oxide (HFPO) in a single male beagle dog exposed to 697 ppm v/v (1000 ppm nominal) for 6 hr: animal died within 24 hr following exposure; no irritation was observed during the exposure, but convulsions were noted 10 min post-exposure; gross necropsy revealed severe pulmonary edema, dark red fluid in the pericardial sac, numerous subepicardial and subendocardial petechial and ecchymotic hemorrhages in the heart, scattered subcutaneous ecchymotic hemorrhages, and dark red kidneys

Acute Inhalation Studies On Hexafluoropropylene Epoxide (CAS 428-59-1), report EPA/OTS-878220381 TSCATS 019447, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, circa 1987 (rdb8430)

- tests of the acute inhalation toxicity of hexafluoropropene oxide (HFPO) in groups of 2 male ChR-CH albino rats by exposures to 500 ppm v/v for 4 hr, 1000 ppm for 4 hr, 2000 ppm for 2½-3 hr, or 4,000 ppm for 1 hr: exposure was lethal to all animals in the 2000 and 4000 ppm groups; clinical signs were normal; gross necropsy revealed acute pulmonary edema and congestion in decedents, but no treatment-related effects in the survivors; concludes that the 4-hr ALC rat = 2000 ppm v/v

Subacute Inhalation Toxicity (CAS 428-59-1), report EPA/OTS-878220386 TSCATS 019452, Haskell Laboratory for Toxicology and Industrial Medicine, E. I. duPont de Nemours and Company, Incorporated, Newark, DE, circa 1987 (rdb8433)

- test of the subchronic inhalation toxicity of hexafluoropropene oxide (HFPO) in 4 male ChR-CD rats exposed to 400 ppm v/v nominal for 4 hr/d for 10 exposures: there were no mortalities; clinical observations included deep respiration and inactivity; necropsy revealed no gross or microscopic effects

Lubricants

- toxicity of polyoxyalkylene glycol (PAG) lubricants: outlines four scenarios chosen to simulate worst-case exposures of drivers, mechanics, or test engineers to a release of an aerosol containing the PAG; reports the time-averaged total airborne particulate concentration over a 20-minute period as 0.1-42 mg/m³; concludes that an adverse pulmonary response in humans is unlikely given the remote likelihood of the four release scenarios and the relatively low toxicity of a PAG aerosol; also notes that an unexpected exposure of mechanics servicing mobile air conditioning (MAC) systems to <0.1 mg/m³ represents a minimal health risk

- lubricants, safety, toxicity

- lubricants, safety, toxicity, sensory irritation, RD50

please see page 6 for ordering information
safety, toxicity

Flammability

R-717 (ammonia), flammability

flammability and other hazards from use of refrigerants

flammability

K. Bier et al. (Universität Karlsruhe, Germany), *Stoffpaare R134a/R152a als ozonunschädliche Alternative zum Kältemittel R12* [Working Pair R-134a/R-152a as an Ozone-Safe Alternative to Refrigerant R-12], *Verbundvorhaben Minderung von FCKW-Emissionen in der Kälte- und Klimatechnik [Program for Reduction of CFC Emissions in Refrigeration and Air Conditioning]*, DKV-Statusbericht [Status Report], Deutscher Kälte- und Klimatechnischer Verein (DKV, German Association of Refrigeration and Air-Conditioning Engineers), Germany, 8:13-21, 1991 (in German, RDB4B91)
R-134a, R-152a, R-134a/152a

R-134a, R-152a, R-134a/152a, thermal stability, flammability, performance

This paper presents experimental studies on the stability and safety of R-134a, R-152a, and their mixtures. The studies examined the possibility of suppressing the relatively high flammability of R-152a by mixing it with R-134a, without substantial loss of the benefits of its low global warming potential.

R-22/142b

LFL, UFL, combustibility

R-717 (ammonia), LFL, UFL

R. C. Cavestri and E. Falconi (Imagination Resources, Incorporated, IRI), *An Objective Method for Determining Refrigerant Flammability*, presentation 2.3, *ARI Flammability Workshop - Sum-
The paper presents tests of the spread of simulated leaks of R-290 and R-600a in an instrumented room. It examines localized concentrations for flammable gases that are denser than air, with specific attention to the leakage amount, flow rate, and air circulation. The study measured both the time and distance to ignition points as well as the possibility of secondary ignition of other materials. Tests were conducted with leaks from window air conditioners, inside and outside domestic freezers, and from a refrigerant container. The paper concludes that the lower flammability limit (LFL) of a dense gas can be locally exceeded with pooling effect near the floor, even when the quantity limits specified in safety standards (European EN-378 and ASHRAE Standard 15) are satisfied. It recommends that safety limits for flammable gases should consider absolute quantities and heats of combustion, rather than concentrations based on the full room volume.

LFL, UFL

R-717, LFL, UFL, flammability

These charts outline a presentation on flammability testing of hydrofluorocarbon (HFC) refrigerants. The introductory chart notes that ASTM E681 tests at 100 °C (212 °F) are globally the most conservative, but that reported results have differed and may not reflect real-world conditions. A chart summarizes sensitivity tests to test conditions and criteria, including vessel size, ignition sources, and test temperatures and pressures. Current practice and concerns are identified for visual determinations of flammability; definitions are given for "flammability," "flammability," and "propagate." A chart itemizes factors affecting flammability, including stoichiometry changes with humidity and inerting agents, ignition energies, temperature, pressure, and vessel size. Stoichiometric effects are described and illustrated when the hydrogen to fluorine ratio in an HFC are greater than or equal to 1, are less than one, or there is insufficient oxidant present. A series of charts examines the effects of assumptions and variables on heat of combustion calculations. shows the combustion reaction of R-134a, noting that the formation of molecular fluorine is unlikely even though prescribed for heat of combustion calculations by ANSI/ASHRAE Standard 34-1992.
The article provides information on the reactivity and flammability of fluorocarbon refrigerants. A table presents the temperatures at which reactivity begins, T-onset, and at which 50% of the flowing refrigerant is decomposed, T-50%. Data are presented for a nitrogen atmosphere with glass as a catalyst for R-11, R-12, R-32, R-113, R-123, R-124, R-125, R-134, and R-134a and with iron gauze, aluminum, and copper as catalysts for R-12 and R-134a. Data also are presented for reactivity in air (with oxygen) with glass and iron gauze as catalysts for R-12 and R-134a. The reactivities of R-12 and R-134a opposite aluminum are compared, based on the potential for exothermic reactions in chillers when impellers become unbalanced. The authors indicate that there appears to be little or no potential for a spontaneous exothermic halogenation reaction for R-134a with molten aluminum; no reactions are anticipated for R-134a with 2% magnesium alloys or for R-32. The article then addresses the test methods for flammability and provides definitions for combustibility, flammability, a critical flammability ratio (CFR). "Combustibility" describes the chemical process in which an oxidant is reacted rapidly with a fuel to decompose and liberate stored energy. "Flammability" describes a more specific situation in which the reaction is self-sustaining and the flame propagates away from the ignition source. The article discusses flammability test methods, including ASTM E681-85 and the ignition-source modification of ANSI/ASHRAE Standard 34-1992. It discusses the influences and test vessel size, ignition source, pressure, and temperature. Flammability results are reported for R-32, R-125, and R-134a. A table compares flame limits of R-32 based on vessel size and ignition source using published and new data. Four figures map the flammable concentrations of R-134a with oxygen and nitrogen at 100 and 170 °C (212 and 338 °F) at atmospheric pressure, and for 170 °C (38 °F) at 345 and 690 kPa (50 and 100 psia). Ignition conditions are discussed for R-134a in air and compared to those for R-22. The article then addresses the flammability of R-32 blends. It defines the CFR as the percentage of nonflammable refrigerant required to just render a mixture nonflammable at specified temperature and pressure on dilution with air. Values are tabulated for binary blends or R-32/125 and R-32/134a for different vessel sizes. A methodology is illustrated for use in analyzing fractionation scenarios for blends. The study confirms the low reactivity of the hydrofluorocarbons (HFCs) addressed.

flammbility, flame limits, LFL, UFL, combustibility, ignition

R-717 (ammonia), LFL, UFL

N. N. Elias, Ignition of High Speed Hydrocarbon Leaks from Car Air Conditioning, B.E. thesis, School of Mechanical and Manufacturing Engineering University of New South Wales, Sydney, Australia, 1996 (144 pages, rdb8358)
ignition of R-290/600a (50/50) and other hydrocarbons from use as refrigerants and consequent leakage into cars

flame limits of R-717 combusted with methane, influences of naphthenic and paraffinic mineral oils as well as polycester (POE) lubricants, effects of injection of liquid ammonia, measurements of ammonia, carbon dioxide, carbon monoxide, hydrocarbons, oxygen, and nitrous oxides in discharge

R-717; kinetics of reaction with air; survey of published flame limits (LFL and UFL); effects of pressure, temperature, diluents, ignition energy, and burning velocity; mists, droplets, and sprays; autoignition, thermal and explosion hazards
D. L. Fenton and K. S. Chapman (Kansas State University, KSU), *Combustion of Ammonia With and Without Oil Vapor*, final report for 682-RP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 20 May 1994 (RDB4B60)

This report presents a detailed study of the combustibility of ammonia refrigerant, R-717. The first part presents a literature review covering flammability limits, test methods, and the effects of pressure, temperature, inert gas diluents, ignition energy, and form (mists, droplets, or sprays). It also discusses the chemical kinetics of ammonia combustion. The second document discusses flammability determinations using the ASTM E681-85 standard test method, with attention to relative humidity and other test conditions. The third part describes the equipment, procedures, and findings for examination of ammonia flaring (oxidizing) for emergency releases. The last part addresses the influence of lubricating oil and ammonia liquid on the flammability limits. The study reports lower and upper flammability limits (LFL and UFL), based on published studies, of 14.8 and 33.5%, respectively. The flammability range based on tests was found to be 15.15-27.33% for dry air and 15.95-26.85% for air at 50% relative humidity; the limits narrowed to 15.95-26.85% at 100% relative humidity. Lower pressures tended to narrow the flammability range, and the LFL decreases as the ammonia-to-oil mass ratio increases to over 6000 ppm before the flame extinguishes under stable flame conditions.

Charts summarize a risk assessment of R-32/134a (30/70) in a 17.6 kW (5 ton), air-to-air, residential heat pump with attention to the background, information gathering, small- and large-scale testing, a fault tree analysis, and conclusions; charts note current use of hydrocarbon refrigerants in Europe, notably in refrigerators in Germany, packaged air conditioners manufactured in Italy, and ductless air conditioners produced in the UK; document identifies potential ignition sources and test findings; also summarizes full-scale room tests to map the concentrations of simulated refrigerant leaks and to ignite the leaked refrigerant; outlines nine fault tree scenarios; summarizes preliminary estimates of the number of added fires per unit per year due to operation and due to servicing as well as each of them with mitigation measures.

to assess the risk in a typical American home, accounting for geographical differences in installation configurations; concludes that the risk due to fires from substitution of R-32 for R-22 in U.S. air conditioners would result in approximately 200 additional fires per year; notes that the risk is higher in the south based on the practice of enclosing air-handlers in closets; also concludes that the risk with use of R-32/R-134a (30/70) is approximately 20% lower than for R-32 alone; report contrasts these estimates with statistics on U.S. fires noting that approximately 114,000 residential fires per year are attributed to heating systems; report also notes that the results presented "cannot be generalized to more flammable refrigerants such as hydrocarbons."

D. P. Grob (Underwriters Laboratories, Incorporated), Safety Requirements for a Refrigerator That May Use a Flammable Refrigerant, paper 7.2-2, Proceedings of the International Symposium on R22 & R502 Alternative Refrigerants '94 - Performance Evaluations and Commercialization Issues for Air Conditioning and Refrigeration Equipment (Kobe, Japan, 8-9 December 1994), Japan Refrigeration and Air-Conditioning Industry Association (JRAIA), Tokyo, Japan, 174-180, December 1994 (7 pages with 1 table, RDB5432)

flammaribility, blends, fractionation, safety

D. P. Grob (Underwriters Laboratories, Incorporated), Barriers in the U.S.A. to Using Propane as a Refrigerant, R-22 and R-502 Alternatives (Proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 19-20 August 1993), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 109-114, 1994 (6 pages, RDB4526)

G. F. P. Harris and P. E. MacDermott, Flammability and Explosibility of Ammonia, Institute of Chemical Engineering Symposium, University of Manchester Institute of Science Technology, UK, 49-31-39, 1977 (9 pages, RDB6359)

R-717, flammability limits, explosivity, LFL, UFL

E. W. Heinonen and R. E. Tapscott (New Mexico Engineering Research Institute, NMERI), Methods Development for Measuring and Classifying Flammability/Combustibility of Refrigerants: Task 3 - Laboratory Test Results, report DOE/CE/23810-50 also identified as NMERI 1994/44, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, December 1994 (96 pages with 30 figures and 17 tables, available from JMC as RDB5A18)

This report summarizes an investigation of the flammability characteristics of selected blends of refrigerants R-32, R-125, and R-134a using both a novel and conventional measurement methods. A detailed introduction reviews definitions of flammability and the lower and upper flammability limits (LFL and UFL). It also identifies indications of flammability beyond visual and presents the parameters that affect flammability. They include the ignition source, temperature and pressure of the mixture, hu-
midity of the air, size and shape of the test vessel, test vessel materials, turbulence, concentration of the test gas, reactivity and mixing of the components, and altitude and resulting barometric pressure. The report then discusses and schematically illustrates the NMERI explosion sphere and an ASTM E681 test flask. It outlines the data reduction methodology and presents test results for R-32, R-125, R-134a, and blends of them. An analysis of the data examines the sensitivity to the cited parameters. The report presents conclusions regarding the effects of these influences. It recommends procedures for use of both the explosion and E681 apparatus as well as for future study of the effects of humidity and altitude and improvement of the explosion sphere method. It concludes that the method of determining flammability using ASTM E681 is marginally adequate, but can be improved, and that both it and use of the explosion sphere have their own niches for testing. Appendices present the data acquisition instructions, apparatus operating instructions, and tabular test results.

N. Kalkert and H. G. Schecker, Determination of Explosion Limits of Ammonia in Mixtures with Simple Hydrocarbons and Air, German Chemical Engineering, 3:53-56, 1980 (4 pages, rdb9354)

R-717, flame limits

R-32, R-32/134a (35/65), (40/60), and (60/40): flammability, diffusion analysis, combustion under practical conditions; concludes that the combustion behavior of refrigerants is very different under practical conditions than in small-scale (e.g., ASTM E-681) tests

comparison of R-290 with R-22 and R-410A in systems using safety measures, in a blend of R-290/227ea (70/30), and with a indirect (secondary-loop) heat transfer circuit; system considerations; simulated performance; direct and indirect global warming impacts (TEWI); flammability in manufacturing; concludes that the system with safety features to address flammability offers the best performance and lowest TEWI, but requires a 30% increase in cost; the same cost premium can lower TEWI if spent to increase the efficiency of an R-410A system

R-717, flame limits: measured LFL-UFL = 15.15-27.35% in dry air and 15.95-26.55% at 100% relative humidity

M. M. Khan and J. L. Chaffee (Factory Mutual Research Corporation, FMRC), Large-Scale Flammability Tests for Risk Assessment of A2 Refrigerants in a Split System Residential Heat Pump, report J.I. 0DOR7.MT (appended to report DOE-CE/23810-92), Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, April 1998 (60 pages with 28 figures and 3 tables, RDB8605; available from JMC as part of RDB8603)

laboratory tests to evaluate the dispersion and ignition characteristics of R-32 and R-32/134a (60/40) [representing the worst-case of fractionation composition for a nominal 30/70 blend] for likely leak scenarios for a residential, split-system, air-to-air heat pump: documents both concentration mapping from leaks to characterize the size, location, and dynamic behavior of the flammable zone and tests for ignition by selected means in the flammable zones; tests simulated leaks into a room in a quiescent environment, to the outdoors, from the indoor heat exchanger inside the air handler, and into a utility closet; found that slow releases into a room without air flow produced flammable concentrations that persisted for approximately 3 hr in a large portion of the room; catastrophic releases or air movement by a small fan caused enough mixing to reduce concentrations below the lower flammability limit (LFL); leaks into the air handler did not produce flammable concentrations within the air handler where electrical components are located, but a fast leak with the fan off produced flammable concentrations near the floor where the refrigerant leaked out of the air handler; fan operation resulted in concentration dilution to below the LFL in supply ducts

R. A. Kingsbury (Underwriters Laboratories Incorporated, UL), ASTM E681: A Sound Basis for Flammability Testing of Alternative Refrigerants,
This document summarizes tests of R-134a to gauge the effects of temperature and pressure on its flammability. The document defines the terminology used, including flammability, upper and lower flammability limits, and combustion. It describes an autoclave used for the tests and comments on the effects of vessel size and the ignition source used. Flammability diagrams are provided for R-134a with nitrogen and oxygen at 100 °C (212 °F) and 103 kPa (15 psia) and at 170 °C (338 °F), reported as 388 °F and 103, 345, and 689 kPa (15, 50, and 100 psia). The document concludes that R-134a is not flammable at atmospheric pressure at temperatures up to at least 170 °C (338 °F). It estimates that a minimum pressure of 483-517 kPa (70-75 psia) would be required to achieve flammability at 170 °C (338 °F, reported as 388 °F), with a narrow range of flame limits (8-12% R-134a by volume), in air for the vessel size used. It cautions that mixtures of R-134a with air should not be used for pressure leak testing and that the decomposition products of R-134a are irritating and highly toxic. It also recommends use of breathing apparatus if R-134a is exposed to fire conditions.

R-290, safety, flammability

R-22, R-32, R-125, R-134a, R-143a, R-152a, R-32/134a (30/70), ozone depletion potential (ODP), global warming potential (GWP), flammability

R-32/134a, R-32/125/134a

The paper summarizes a study to determine if alternative refrigerants become combustible when sufficient air is present, the mixture is heated and/or pressurized, and a suitable ignition source is provided. It cites prior studies (see RDB3A12 and RDB3A13) that document similar effects for R-22 and other refrigerants containing hydrogen. The paper illustrates and explains the experimental apparatus used and describes the test procedures. A table summarizes a matrix of tests for different ratios of air, temperatures, and pressures. The refrigerants tested included R-11, R-12, R-123, R-134a, R-22/152a/114 (36/24/40) (DuPont MP30), and R-22/152a/124 (36/24/124) (DuPont MP36). The table provides lower and upper vapor combustibility limits for R-134a in air at temperatures of 16-177 °C (61-351 °F) and absolute pressures of 40-2122 (6-308 psi). The document indicates that all of the tested refrigerants were noncombustible with 0-2% air by volume and 82-177 °C (180-351 °F). The authors conclude that all fluorocarbons containing hydrogen will result in combustible mixtures with sufficient air at some temperatures and pressures. R-134a exhibited combustion at elevated pressures when air exceeded 90% and the blends did likewise when air exceeded 80% at elevated temperatures at any pressure. The paper notes the combustion products pose no undue hazard and that most equipment would stop working with the high air ratios required.

R-50, R-717, flammability limits, LFL, UFL

R. W. Sesterhenn (Underwriters Laboratories Incorporated, UL), Flammability Testing of Refrigerants 32 and 32/134a, report 97NK5683, NC2523 (appended to report DOE/CE/23810-92, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, April 1998 (23 pages with 5 tables, RDB8604; available from JMC as part of RDB8603)

laboratory tests of R-32 and R-32/134a (60/40) ignition to assess flammability risks in the event of a leak; concludes that these refrigerants can be ignited by sources such as high-voltage arcs, an abnormally hot wire such as a heating element or from breaking an incandescent light bulb, an open flame, and a compressor contactor (relay) breaking an abnormally high current; also concludes that R-32 can be ignited by a spark at 120 or 240 V with high currents; R-32 was not ignited by operation of wall switches, motors, an electric drill, a halogen light bulb, a low-voltage arc, or the spark from 120 V at usual current.

I. R. Shankland (AlliedSignal Incorporated), Some Issues Related to Flammability Classification of Refrigerants, or When is a Refrigerant Flammable? How Flammable is Flammable?, publication unknown, 1993 (rdb4A05)

J. J. Shepherd, Ammonia Flares: Costs, Codes, Installation and Design Considerations, Technical Papers of the 12th Annual Meeting (Memphis, TN, 4-7 March 1990), International Institute of Ammonia Refrigeration (IIAR), Washington, DC, 111-125, March 1990 (RDB6360)

R-717

refrigerant flammability

c. Rajasekariah, Hydrocarbon Refrigerant Safety in Automobiles, B.E. thesis, School of Mechanical and Manufacturing Engineering University of New South Wales, Sydney, Australia, 1995 (140 pages, rdb8359)

use of R-290/600a (50/50) and other hydrocarbons as refrigerants in mobile air-conditioning (MAC) systems

V. Razmovski, Safety of Hydrocarbon Refrigerants for Car Air-Conditioning Systems, B.E. thesis, School of Mechanical and Engineering University of New South Wales, Sydney, Australia, 1994 (97 pages, rdb8360)

use of R-290/600a (50/50) and other hydrocarbons as refrigerants in mobile air-conditioning (MAC) systems

This report addresses flammability test methods for refrigerants that are difficult to ignite. It focuses on the influence of combustion vessel size on the appearance of the flame. In doing so, it examines the criteria to determine whether a flame will propagate through a uniform mixture, how a flame that just propagates by a proposed test protocol appears, and the angle and size of that flame. The study measured the flame characteristics for two blends, R-134a/152a and R-125/152a, each formulated in varied proportions. The tests were repeated in 12 and 200 L (0.42 and 7.1 ft³) vessels to validate a proposed flame cap angle criterion of π/2 rad (90°) for the smaller vessel for halocarbons. The report concludes that the proposed π/2 rad (90°) "fan" (subtended arc) criterion is appropriate to determine flame propagation in the ASTM Standard E681 test method with spark ignition for the most conservative conditions in 12 L (0.42 ft³) vessels. The report also notes the tests for the blends studied were sensitive to humidity. The report cites, without elaboration, determination of a critical flammability ratio (CFR) of 33.4 ± 1.2% m/m R-32 for R-32/134a in air from a round-robin test with an unspecified number of laboratories.

This article reports data for refrigerant flammability measurements using the ASTM E681 test procedure. Lower and upper flame limits (LFL and UFL) are tabulated for R-11, R-22, R-30 (methylene chloride), R-32, R-50 (methylene), R-113, R-123, R-123a, R-124, R-125, R-134, R-134a, R-140a, R-141b, R-142b, R-143, R-143a, R-152, R-152a, R-161, R-E170 (dimethyl ether), R-218, R-290 (propane), R-C318, R-600 (butane), R-600a (isobutane), R-611 (methyl formate), R-717 (ammonia), and R-7146 (sulfur hexafluoride). The flammability test procedure and apparatus are discussed, including attention to the ignition source, based on recommendations of ASHRAE Standard 34-1992. Flammability limits are compared for R-32, R-141b, and R-142b, to illustrate the influence of alternative ignition sources and conditions. Critical flammability ratios are presented for selected mixtures.

R-717

This article summarizes laboratory tests of the combustibility of pressurized mixtures containing R-22 and air or oxygen, prompted by a fatal industrial explosion. The article reviews prior flammability testing of R-22 and presents thermochemical calculations, using heats of formation, heat capacities, and postulated products. These calculations show that an exothermic reaction between R-22 and air is theoretically possible. The experimental apparatus and procedures used are described followed by discussion of the results. The article notes inconsistencies in the data, which are summarized in a table, and attributes them to vessel geometry, volume-to-surface ratio, ignition influences. Combustion test data for oxygen/R-22 mixtures are tabulated and plotted. The highest heats of combustion appear for mixtures containing 25-40 mole % R-22. These results are compared to predicted stoichiometric values and testing observations. Comparative heats of combustion (HOC) are presented for R-22, R-50 (methane), R-20 (chloroform), and R-2013 (iodoform). The HOC values given are ~419, 844, 373, and 678 MJ/kg-mol (180,000, 380,000, 160,000, and 291,000 Btu/lb-mol), respectively, for the four gases. Combustion products also are listed for air/R-22 and oxygen/R-22 mixtures, though the article notes that identification was distorted by contaminants from reactions between resultant acids and the sample bags used. The authors conclude that pressurized mixtures of R-22 and
air containing at least 50% air are combustible. The heat generated by this reaction is capable of increasing the pressure in a closed container by 6-8 times, but large activation energies are necessary for initiation. Tests of R-11 and R-12 mixtures with oxygen found them not combustible under similar conditions.

H. Shaoqiang, L. Xiaoping, and X. Chunfei (Wanbao Refrigerator Industrial Corporation, China), Refrigerant HFC-152a Flammability Test Results, publication undated, undated circa 1991 (4 pages with 1 table, available from JMC as RDB2512)

This paper assesses the flammability risk of R-152a, which is reported as flammable in concentrations of 4.7-16.8% by volume in air. The authors hypothesized that the highest probability of fires and explosions will occur when enough refrigerant leaked from the freezer evaporator into the fresh-food compartment, with ignition caused by an arc or spark from the thermostat. Concentrations of 5, 10, 15, and 20% R-152a were tested using an electric pulse spark. Ignition was found to be unlikely in the model tested (BCD-158), because of incomplete mixing and the location of the thermostat. The risk would be high in a frost-free refrigerator, requiring an explosion-proof thermostat. The paper concludes that the most likely scenario for a fire is when the concentration reaches 12% and is exposed to an open flame. A person standing near the refrigerator could be injured by a blow from the door opened by fire or explosion, by flames, or both. No deformation or damage to the refrigerator cabinet was observed from test fires.

These presentation charts review fundamental considerations for flammability of hydrofluorocarbon (HFC) refrigerants and offer recommendations on test and ranking methods. The first illustrates the effect of moisture on the flammability of R-245ca and R-245fa, indicating increasing flammability rank with increasing relative humidity, up to approximately 60%. A table lists the combustion reactions and changes in Gibbs free energy and enthalpy (heat) of combustion (HOC) for R-32, R-50, R-143, R-143a, R-152, R-152a, R-170, and R-2290. Two more give the same data, reactions with moisture present, and moisture dependence for R-134a, R-227ea, R-236ea, R-245ca, R-245fa. Tables then show the stoichiometric compositions, ranges between lower and upper flammability limits (LFL and UFL), weighted free energy, HOC, and LFL for the cited refrigerants. A plot shows the HOC dependence of refrigerant concentrations in oxygen for R-32, R-134a, R-152a, and R-245fa. A chart outlines the role of an oxidizing free radical in combustion kinetics. A table and plot show the reaction rate constants at 25 °C (-4 °F), resultant LFL, and relative rate of combustion versus refrigerant concentration. A table and plot suggest and illustrate a flammability ranking dependent on the free energy, reaction rate, and stoichiometric ratio. Another table shows that this ranking is inversely related to the extent of fluorination for hydrofluorocarbon (HFC) refrigerants. The flammability ranges for R-32, R-152a, R-245ca, and R-245fa are plotted as functions of their concentrations in air and the concentration of R-134a as a suppressant. A chart summarizes the chemistry of suppression, listing bromine, chlorine, iodine, and the CF3 radicals as free radical (OH) scavengers. A table gives the ideal gas heat capacities by mole and by weight for the HFCs addressed plus R-125, R-134, R-143, and R-227ea. Another table outlines selection of optimum HFC flammability suppressants. The presentation charts then summarize experimental ranking factors as the lowest concentration in air which results in flame propagation (LFL), range of LFL to UFL, amount of energy released, ease of ignition, and rate of pressure rise or maximum pressure. The conclusions note that all HFCs are potentially combustible, those having fewer hydrogen than fluorine atoms may involve water as a reactant, and that insufficient water is available in air for complete combustion. Further, stoichiometric fuel/air compositions yield the highest HOC, but not necessarily the highest reaction rate. Relative flammabilities can be calculated for screening purposes, molecular criteria for decreasing flammability can predict when refrigerants are...
nonflammable at normal conditions, and refinement of the ASTM E681 test method should be considered. The presentation provides recommendations for experimental determinations of flammabilities of refrigerants, fire hazard risk determinations, and clarification of flammability limits via the ASTM E681 method.

R-717

R-290

LFL, UFL

K. S. Willson and W. O. Walker (Ansul Chemical Company), Flammability Limits in Air ... Methyl Chloride and Mixtures of Methyl Chloride with Dichlorodifluoromethane, Industrial and Engineering Chemistry, 36(5):466-468, May 1944 (3 pages with 2 figures and 1 table, RDB6633)

R-40, LFL-UFL (8.0-18.5% v/v), comparisons with different ignition sources (spark, cigar, cigarette, hot wire, match); R-12/40 (of interest due to R-12 shortages) found to be not flammable when the R-12 fraction is 10% or greater

The report presents an investigation of the lean flammability limit (LFL) that is independent of the ignition source. It defines the limit as the fuel-air mixture that extinguishes an adiabatic flame when the strain rate (i.e., the normal gradient of velocity) is zero. The report explains that no method currently exists to measure this fundamental limit directly, but that measurements with an opposed-flow burner provide a quantifiable basis for extrapolating to the zero value. The report reviews the background, describes the experimental apparatus and procedures, discusses the fundamental flammability limit, and summarizes the equilibrium chemistry involved. The opposed flow burner and burner flow control system are shown schematically. The report then presents measurements and comparisons to the lower flammability limit (LFL) values measured in other studies, including those following ASTM E681. The LFL of methane was measured as 4.9 ±0.1 % v/v in dry air; that for R-32 was found to be 14.0 ±0.8 % v/v in dry air and 14.1 ±0.6 % v/v with 44% relative humidity. No flames occurred with mixtures of R-134a and air at ambient pressure and temperature. Cited advantages of the new method are higher precision and independence from the ignition source.

A. K. H. Wong, Some Implications of the Application of Propane in Domestic Refrigerators, research memorandum 123, Institute of Environmental Engineering, South Bank University, London, UK, June 1989 (RDB5560)

R-290, safety, flammability

Flammability Characteristics of Isotron 141b, preliminary information bulletin, Elf Atochem North America, Incorporated (provided by the former Pennwalt Corporation), King of Prussia, PA, May 1989 (1 page, available from JMC as RDB0521)

Lower and upper flammability limits (LFL and UFL), as a volume percentage of refrigerant in humid air, are given for R-141b based on ASTM E681 tests. The limits cited are 7.4-15.5% at 21 °C (70 °F) and 5.8-16.5% at 120 °C (250 °F). The maximum explosion pressure and maximum rate of pressure rise are tabulated for the same temperatures. Flammability characteristics of ethyl alcohol and R-290 (propane) are presented for comparison. A higher concentration of R-141b is required for flammability. Additionally, R-141b exhibits significantly lower rates of pressure rise and lower heats of combustion.

flammmability data

Results of Testing: Limits of Flammability for Isotron 142b, preliminary information bulletin, Elf Atochem North America, Incorporated (provided by the former Pennwalt Corporation), King of Prussia, PA, May 1999 (4 pages, available from JMC as RDB0526, picture missing)

Lower and upper flammmability limits (LFL and UFL), as a volume percentage of refrigerant in humid air, are given for R-142b based on ASTM E681 tests. The LFL cited is 7.8% at 51 °C (70 °F) using a fuse wire as the ignition source. The cited LFL and UFL, using a match as the ignition source, are 6.9-17.0% at 51 °C (70 °F) and 6.1-17.8% at 120 °C (250 °F). Comparative data are presented for R-600a (isobutane) and ethanol, 1.86-6.5% and 3.46-18.4% respectively. A modified test procedure and the method of determining flammmability limits are presented. Additionally, the effects of humidity, temperature, and ignition source on flammmability testing are discussed.

Standard for Refrigerants, standard 2182, Underwriters Laboratories Incorporated (UL), Northbrook, IL, 30 December 1994 (18 pages with no figures or tables, RDB5216)

This standard contains test procedures and methods to evaluate and categorize refrigerants according to their extent of flammmability. The refrigerants covered are intended for use in air-conditioning and refrigeration equipment. The standard comprises a scope defining applicability and exclusions (e.g., efficiency, physiological effects, and toxicity), units of measure, definitions, and sections on flammmability rating, storage containers, fractionation analysis, flammmability testing, and autoignition temperature tests. Refrigerants that exhibit no flame limits (i.e., do not propagate a flame at 100 °C, 212 °F) and additionally do not have an autoignition temperature less than 750 °C (1382 °F) are categorized as "nonflammable." Those with no flame limits but having an autoignition temperature less than 750 °C (1382 °F) are categorized as "practically nonflammable." Refrigerants that propagate a flame are classed as "flammable." The standard prescribes test procedures and conditions to determine the flame limits, measure the autoignition temperature, and categorize blends considering both their as-blended and worst-case fractionated conditions. It also details a procedure to simulate leakage as well as charge and recharge cycles for testing azeotropic and zeotropic blends. A final section specifies requirements for container markings, including manufacturer and refrigerant identities, fire-hazard ratings, and orientation or liquid-phase charging warnings.

flammmability limits, LFL, UFL

flammmability limits, LFL, UFL

Reactivity

Aerodyne Research, Incorporated, Heterogeneous Chemistry of Alternate CFC Oxidation Intermediates with HCFC-21 and Other Chemicals, report EPA 86-920001060 (OTSO454334), Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), Washington, DC, 31 July 1992 (RDB5968)

R-21, R-125 and others, reactivity, environmental impacts

R-125 and others, reactivity

R-142b, R-143a: studies of the thermal kinetics for decomposition in continuous flow systems reveal significant discrepancies based on meth-

please see page 6 for ordering information
TEST AND ANALYSIS METHODS

refrigerant mass-flow rate, instrumentation

refrigerant mass-flow rate, instrumentation

refrigerant mass-flow rate, instrumentation

M. Arnemann, Methoden zur Bestimmung Thermophysikalischer Eigenschaften von Öl-Kältemittel-Gemischen [Methods to Determine Thermophysical Properties of Oil-Refrigerant Mixtures], dissertation, Universität Hannover, Hannover, Germany, circa 1996 (in German, RDB4532)
refrigerant-lubricant properties

J. P. Baiaresque and S. Grabeuil (Dehon Services, France), A User-Friendly Software for Computations of Vapor Compression Cycles with Pure Fluids and Zeotropic Mixtures, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 223-228, July 1996 (6 pages with no figures or tables, RDB6906)

T. J. Bruno, Accelerated Identification of Alternative Refrigerant Products with Standard Chromatographic Retention Parameters, unpublished seminar presentation charts (Winter Meeting of the
Refrigerant Database

A set of charts address methods to provide fast, reliable identification of alternative refrigerant products and contaminants with low cost, simple techniques. The method provides for optimization of more sophisticated quantitative analyses. Charts summarize and illustrate a database of information of fluorocarbon spectroscopy, chromatography, physical properties, and safety. A table compares the information content and costs for identification techniques, including mass spectrometry, infrared spectrophotometry, ultraviolet spectrophotometry, nuclear magnetic resonance, refractive index, and gas chromatography. Further charts outline the limitations of and illustrate resolution measures for gas chromatography. Sample data are presented for R-13, R-14, R-21, R-23, R-32, R-40, R-41, R-114, R-114a, R-114B1, R-115, R-116, R-123, R-124, R-125, R-133a, R-134, R-134a, R-141b, R-142b, R-143, R-143a, R-152a, R-160, R-161, R-215aa, R-215ba, R-216ba, R-217ba, R-217cab1, R-225ca, R-225cb, R-227ca, R-227ea, R-236ea, R-243db, R-245ca, R-245cb, R-245fa, R-236fa, R-253fb, R-262da, R-263fb, R-270aa, R-270da, R-270fa, R-243db, R-270fb, R-280da, R-1112a, R-1112c, R-1112t, R-1113, R-1122, R-1122B1, R-1123, R-1131a, R-1132a, R-1140B1, R-1141, and R-1243. The report identifies a database in preparation for field use to facilitate analyses.

T. J. Bruno, Spectroscopic Library for Alternative Refrigerant Analysis, report NIST Special Publication 794, National Institute of Standards and Technology, Boulder, CO, August 1990 (192 pages, available from GPO as stock number 003-003-03036-8 for $12.00 prepaid, RDB2250)

This report assembles infrared and mass spectra on a range of ethane and ethylene compounds relevant to research of alternative refrigerants. Limiting physical property and safety data also are included. Some compounds addressed are not suited for refrigerant use, but could be found as impurities or as reaction/decomposition products in refrigerant tests. This publication provides an information source to aid in identification of such compounds. The ethane compounds addressed include R-112, R-112a, R-113, R-113B2, R-113a, R-114, R-114a, R-114B2, R-115, R-116, R-117, R-119, R-121, R-122, R-123, R-123B1, R-123B2, R-123aB1, R-124, R-125, R-131, R-131a, R-132b, R-132bB2, R-133a, R-133aB1, R-134, R-134a, R-141, R-141b, R-142B1, R-142b, R-143, R-143a, R-151B1, R-152a, and R-161. Ethylene compounds covered include R-1110, R-1111, R-1112a, R-1112aB2, R-1113, R-1114, R-1120, R-1121, R-1122B1, R-1123, R-1130, R-1130a, R-1131a, R-1132a, and R-1141.

A. P. Cohen (UOP), Test Methods for the Compatibility of Desiccants with Alternative Refrigerants, paper 3662, Transactions (Winter Meeting, please see page 6 for ordering information
This paper presents a method for testing the compatibility of desiccants with alternative refrigerants and associated lubricants. The paper notes that the standard sealed-tube test, following ASHRAE Standard 97-1989, does not hold a sufficient sample to properly characterize desiccants. The new method involves exposure of the materials in a stainless steel cylinder, shown in a photograph. The paper discusses the methods of testing the properties of the exposed desiccants for water content, water capacity, halogen content, crush strength, and attrition resistance. A table summarizes the specific methods along with the required sample mass, precision, and representative ranges of values. The paper shows schematics of the apparatus for each test.

This report summarizes research to improve screening methods for lubricants for air-conditioning and refrigeration compressors. It compares data obtained with a high pressure tribometer (HPT) and those by other methods. The report reviews the general requirements for simulative, specimen testing. It also discusses problems encountered in simulating and testing, the latter by increasing the load or speed to obtain measurable wear in a short period of time. The report notes drawbacks in popular methods, such as Falex(TM) testing and compressor bench tests. The bulk of the report is divided into two parts, the first of which compares HPT data to those obtained by three compressor manufacturers using Falex machines. The specimen data, test parameters, and refrigerant-lubricant combinations are tabulated. Tests were performed using grey cast iron (GCI) with SAE 335 die cast aluminum, SAE 356 die cast aluminum with hardened drill rod, and SAE 380 die cast aluminum and grey cast iron with carburized 1018 steel. The friction and wear data are plotted, typical wear scars shown, and resulting rankings of lubricants are compared to those for three combinations of load and speed with the HPT. The tests employed R-134a and R-32/125/134a (30/10/60) with unidentified polyolester (POE) lubricants as well as R-12 and R-22 with mineral oils. Part II compares accelerated wear data for specific components, supplied by five manufacturers, to data obtained with the HPT and with a Four Ball tester using chrome-alloy steel (AlSI E-52100) balls. The HPT tests used SAE 380 die cast aluminum, carburized 1018 steel, ductile cast iron, and sintered ferrous pins and plates paired and tested to approximate the manufacturer tests. The wear data and lubricant rankings are again tabulated and typical wear scars shown. The tests used R-12 and R-22 with mineral oils, R-22 with two alkylbenzenes, and R-134a with 12 different ester lubricants. Additional tests were performed with the HPT and Four Ball devices in lubricant-air environments, to examine the effects on friction and wear. The report concludes that the lubricant rankings for the conventional and HPT tests are not very good except when a lubricant resulted in relatively large wear. Moreover, the HPT tests conducted in lubricant-air environments yielded results unlike those conducted in pressurized refrigerant environments. While the authors note that the data obtained do not give a clear vision about the development of a new bench test method, they suggest that the HPT is likely to be an improvement based on use of the refrigerant environment. An appendix describes and schematically illustrates the HPT, Falex, and Four Ball testers. The HPT is characterized as representing the temperature and pressure environment found in specific contact points in compressors. Further appendices outline the experimental procedures, measurements, and calculations and summarize the raw data in tables. A final appendix provides references on refrigerant compressor lubrication.

CFC, HCFC, HFC, FC, thermodynamic properties, thermophysical data

EVAP5M simulates the performance of finned-tube evaporators with R-22 or R-407C operating with one-dimensionally mal-distributed air: input data consists of evaporator design data, interactive selection between R-22 and R-407C, and
under stalled rotor conditions for 20,000 repetitions per 24 hr period. The charts review the need and advantages of the proposed method, the history of its development, the test conditions, and discrimination and reproducibility of tests. The presentation concludes that the test method is ready for commercial application and will be in the public domain.

This report presents tests of a simulated stator unit (SSU) to predict the life of motor insulation materials in hermetic motors for air-conditioning and refrigeration equipment. The SSU consists of a laminated electrical steel core simulating the stator stack of a motor. The report recaps development of the SSU and test method as well as earlier proof-of-concept testing (see RDB3A17 and RDB5649). The report describes and illustrates the SSU, its control and data acquisition system, and test procedures. It then summarizes the objectives and preparatory activities for the subject tests, discusses changes in interpretation of capacitance and power dissipation factor results, and outlines the test environment. It details the charging procedures for both a baseline case with R-22 and mineral oil and a test case with deliberately added contaminants. The latter, identified as an "aggressive refrigerant trial," comprises an R-22-oil mixture with five times the refrigerant contaminants allowed under ARI Standard 700-93. The report then presents the test results and explains rejection of 6 of the 14 tests performed, based on apparatus and/or instrumentation failures. It then outlines an analysis of events-to-failure data, post failure conditions, and insulation property measurement (IPM) data. A series of plots shows the IPM results. The report concludes that these tests show a life difference, based on median surges-to-failure measurements, between the baseline R-22-oil mixture and the aggressive refrigerant/lubricant. It discusses changes in the test method and recommendations for future relocation of the winding core temperature thermocouple.

P. F. Ellis II, A. F. Ferguson, and K. T. Fuentes (Radian Corporation), An Improved Accelerated Hermetic Motor Insulation Life Test, Proceedings of
describes development and validation of a test method, identified as the Simulated Stator Unit (SSU) test, for motor insulation systems that combines the IEEE motorette and standardized plug-reversal tests; provides data from tests with R-22 and mineral oil, both with and without added air, moisture, and hydrochloric acid.

This report comprises presentation charts summarizing a study to develop an accelerated test method, to predict the life of motor materials exposed to refrigerant-lubricant mixtures. The charts outline the objectives, namely to conduct a literature search and surveys to identify causes of hermetic motor failures and test methods for insulation for hermetic compressor motors. A further objective is to propose a conceptual test design. Several charts identify failure causes, 76.6% of which were electrical and 89.9% of them involved stator windings. The charts outline the mechanisms of failure and tests currently used in motor development. They include the IEEE Standard 117 and UL Standard 984 motorette tests and a plug-reversal test. The charts outline each of them along with identified advantages and weaknesses. The charts then summarize a simulated stator unit (SSU) device and test method; the SSU is shown in a figure. The anticipated results and advantages of the new approach are listed. The charts conclude with a status summary, indicating completion of the conceptual design and consideration of a prototype as a proof-of-concept demonstration.

11 presentation charts and notes; hydrofluoro-carbon refrigerants, polyolester lubricants, refrigerant and lubricant decomposition after aging in sealed tubes

D. G. Gehring (National Refrigerants), How to Determine Concentration of Water in System Refrigerants, ASHRAE Journal, 37(9):52-53,55, Sep-
This article discusses the relevance of moisture presence in air-conditioning and refrigeration systems, noting that "water is the single most deleterious contaminant" in a system. It identifies recommended concentration limits both in new refrigerants and lubricants. It then discusses sampling and analysis sensitivity to the phase of the sample. A representative calculation shows that higher accuracy can be obtained using liquid-phase samples. The article discusses other parameters and suggests that sampling temperature is virtually insignificant. Two figures correlate the liquid phase fraction to total water in the vapor phase and to water increase in the liquid phase. As shown, the water content from a sample taken from the liquid phase gives nearly the correct concentration of water, provided the container from which the sample is drawn is at least 75% filled with the liquid. The paper also discusses the influence of other parameters, including wall adsorption of moisture, surface coatings that lead to hydrate formation, and hydrolysis reactions with impurities or lubricant additives. The paper explains why water is sometimes visible when an analysis does not reflect it. This discrepancy is attributed to the slow rate at which water dissolves in refrigerant. The paper stresses the importance of using clean sampling and measuring devices to avoid analyses that show higher than actual water content.

This report summarizes an investigation of analytical techniques for development of an accelerated method of compatibility testing. The resulting method was designed to be safe and to produce chemical and thermal stability rankings that are consistent with those from conventional thermal-aging tests, independent of refrigerant-lubricant compositions, and suited for a wide variety of materials. The specimens were aged at 175 °C (347 °F) for four weeks; the R-12 samples were aged only for two weeks. Comparative data using the conductivity screening method, for up to one-week at the same temperature, also are presented. Additional data are provided for ramped temperatures from 175-205 °C (347-401 °F) for R-12, R-22, and R-134a and lubricants, with and without steel catalysts, and for R-22 with added polyester lubricants. The report concludes that there is some agreement between the methods and that the new method may be more sensitive to degradation. It cautions that the new approach should be viewed as a supplement rather than a replacement for conventional methods, pending further testing and evaluation. An appendix shows the gas chromatograms for the pretest and aged refrigerant-lubricant mixtures. A second appendix describes determination of the volatile degradation product fraction. A final appendix identifies the lubricant samples, which included a naphthenic mineral oil (Witco Suniso(R) 3GS), two paraffinic mineral oils (Penreco Sontex 160LT and 200LT), an alkylbenzene (Shrieve Zerol(R) 150), two polyglycols (Dow P-425 and ICI Emkarox(R) RL 118D), and four polyesters (POEs). The POEs include two pentaerythritol ester mixed acids (ICI Emkarate(TM) RL 22H and Mobil EAL Arctic(R) 22A) and two pentaerythritol ester branched acids (Henkel Emery(R) 2928 and Castrol Icematic(R) SW92). The refrigerant specimens were obtained from PCR Incorporated.

This report provides supporting data from an investigation of analytical techniques to develop an accelerated method of compatibility testing. The resulting method was designed to be safe and to produce chemical and thermal stability rankings that are consistent with those from conventional thermal-aging tests, independent of refrigerant-lubricant compositions, and suited for a wide variety of materials. The work expands on earlier screening of techniques that found in situ measurement of electrical conductivity to be the most suitable. This volume com-
prizes a disk with measured data and a description of the data format.

This report presents the results of a literature search. It addresses analytical techniques suitable for development into accelerated screening tests, to evaluate the chemical and thermal stabilities of refrigerant-lubricant combinations. The search focused on chemical stability data for R-12, R-22, R-134a, and other refrigerant candidates as well as thermal analytical techniques. The computerized search sources and approaches are summarized. Identified literature and prepared abstracts are categorized as analyses of chlorine-free refrigerants, analyses of chlorinated refrigerants, and accelerated thermal analytical techniques. Other documents are listed in an appendix. Evaluation criteria for candidate compatibility tests are indicated. Identified methods are discussed, and two differential thermal analytical (DTA) techniques are outlined for further development. Initial results are presented for one method for separate combinations of R-12 and R-22 with mineral oil. The candidate techniques will be evaluated in a second phase of the project.

summarizes the need, development, and proposed procedure for cyclic testing for fatigue to qualify products using high pressure refrigerants without invoking the current safety factors (generally the higher of five times the maximum design pressure or three times potential abnormal pressures).

A. Lasecke (Universität Stuttgart, Viskosität und Wärmeleitfähigkeit als thermodynamic Zustandsgrößen und ihre Darstellung durch Zustandsgleichungen [Viscosity and Thermal Conductivity as Thermodynamic Properties and their Representation by Equations of State], Fortschritt-Berichte VDI, VDI-Verlag, Düsseldorf, Germany, 3(117), 1993 (rdb8467)

J-Y. Lin and M. B. Pate (Iowa State University of Science and Technology), A Methodology for Simultaneously Measuring Thermal Conductivity and Viscosity of Refrigerant Mixtures, Proceedings of the 1994 International Refrigeration Conference at Purdue, edited by D. R. Tree and J. E. Braun, Purdue University, West Lafayette, IN, 43-48, July 1994 (6 pages with 2 tables, RDB84808)

This article describes a pulse-echo technique and ultrasonic transducer developed for real-time, in place measurement of the acoustic velocity of flowing liquid refrigerant. Combined with temperature measurement, the results enable monitoring of oil concentrations in liquid refrigerants. The article reviews the principles, theory of operation, experimental set-up, and procedures used for verification. It also discusses transit-time measurements, pressure effects, and comparisons to prior research findings. Data were taken for R-12 with 0.0-10.64% by mass naphthenic mineral oils (Wilco Sunsole® 3GS and 5GS) and for R-134a with 0.9-9.11% unidentified, ester-based lubricant. The tests covered -22 to 40 °C (-8 to 104 °F). The predicted concentrations based on velocity and temperature measurements and deviations are plotted for water, R-12/mineral oil, and R-134a/ester-based lubricant. Analyses showed that the predicted oil concentration depends linearly on both speed of sound and temperature. Measured data are compared for the new method and the standard technique for determining oil concentration, using ASHRAE Standard 41.4-1984. Uncertainties were of the order of 1/2% by weight at typical system concentrations. A slight dependence of acoustic velocity on pressure was found. The article notes that the technique addressed is limited to liquid-line measurements.

T. F. Morse (Hope Technologies Corporation), Infrared Analysis of Refrigerant Mixtures, report DOE/CE/23810-82, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, 24 January 1998 (36 pages with 20 figures and 1 table, available from JMC as RDB8304)

summarizes tests to assess the viability of using intra-cavity laser spectroscopy to identify refrigerants; discusses use fiber laser intra-cavity spectroscopy (FLICS) in conjunction with the broad gain band width of a thulium fiber laser as...
F. T. Murphy (ICI Klea, UK), R. E. Low (ICI Klea, USA), S. Corr (ICI Klea, UK), and B. E. Gilbert (ICI Klea, USA), Scaling Factors for Compressor Ratings Tables, Stratospheric Ozone Protection for the 90's (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC, 23-25 October 1995), Alliance for Responsible Atmospheric Policy, Arlington, VA, 96-106, October 1995 (11 pages with 6 figures and 3 tables, available from JMC as RDB5A50)

R-404A, R-407A, R-407B, R-507A: compressor performance, calorimeter rating tables, capacity correction, subcooling, extension to other suction gas temperatures and pressures

N. D. T. Rohatgi (Spauschus Associates, Incorporated), Effects of Temperature on Desiccant Catalysis of Refrigerant and Lubricant Decompositions, report DOE/CE/23810-95, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, June 1998 (74 pages with 16 figures and 12 tables, available from JMC as RDB8B42; some of the plots reproduce poorly in black-and-white photocopying; color copies are available for $39.00 additional)

This report summarizes tests and presents resulting plots and correlations to interpolate or extrapolate decomposition rates for refrigerants and lubricants from accelerated, thermal-aging tests. It notes that such tests generally are performed at high temperatures (149 °C, 300 °F) for short aging periods (28 days), but the temperatures are much lower and operating times much longer in actual use. The data and plots provided relate the decomposition rates to aging time, aging temperature, and type of desiccant. The report summarizes tests of 3Å and 4Å molecular sieves and of activated alumina from scale and from trihydrate with R-22 and mineral oil (MO, Witco Suniso® 3GS), R-32 with a mixed-acid polyether (MA-POE, Castrol Icematic® SW32), and R-134a with a MA-POE. The refrigerant-lubricant (RL) combinations and desiccants were tested with steel, aluminum, and copper coupons as catalysts at 40, 60, 80, 100, and 120 °C (104, 140, 176, 212, and 248 °F) in sealed glass tubes. The aged specimens were evaluated for visual changes, lubricant total acid number (TAN), halide ions, and acid anions. The report notes that while there is no correlation between data from sealed-tube tests and actual performance in refrigeration systems, such tests are used to screen materials for compatibility. It concludes that the findings can be used to compare stability of desiccant-refrigerant-lubricant combinations at any reaction temperature, but that a criterion must be chosen for instability or incompatibility. No decomposition was found in the R-134a tests. Temperature is the most important variable in predicting decomposition, which is small below 80 °C (176 °F), at most 2% per year for R-22 and R-32. R-32 and desiccant combinations are more reactive and thus have shorter aging times than R-134a and desiccant combinations.

H. O. Spauschus (Spauschus Associates, Incorporated), G. Freeman, and T. L. Starr (Georgia Tech Research Institute, GTRI), Surface Analysis of Glass from Sealed Tubes After Aging with HFC-134a, presentation charts (ASHRAE Annual Meeting, Baltimore, MD, June 1992), Spauschus Associates, Incorporated, Atlanta, GA, USA, June 1992 (21 pages with 7 figures and 2 tables, available from JMC as RDB2729)

This presentation reported findings of an investigation of the sealed-tube test procedure. The study examined whether fluoride decomposition products, formed in aging hydrofluorocarbons (HFCs) at high-temperature, react with the glass surface. The underlying concerns are that such reactions might destroy evidence of other chemical reactions and might also weaken the tubes, posing a safety risk. These concerns challenge the suitability of the ANSI/ASHRAE Standard 97-1989 test procedure for HFCs, and other refrigerants. The charts outline prior studies for and against fluoride attack of glass and an experiment to investigate the issue. Glass shards from sealed tubes, used in thermal aging tests, were examined by photoelectron spectrometer. No fluoride was detected from any tube except one treated with hydrofluoric acid (HF). The study concluded that R-134a undergoes neither thermal decomposition nor reactions with lubricants, metals, or glass at temperatures as high as 200 °C (392 °F). No evidence was found of fluoride formation in the absence of catalysts, such as molecular sieves. The study also concluded that borosilicate glass tubes are suited as reaction vessels for sealed-tube tests. (See RDB2217, RDB2326, RDB2327, RDB2329, and RDB2526 for related papers)

H. O. Spauschus and D. R. Henderson (Spauschus Associates, Incorporated), New Methods of Determining Viscosity and Pressure of Refrigerant-Lubricant Mixtures, Proceedings of the 1990 USNC/IIAR-Purdue Refrigeration Conference and ASHRAE-Purdue CFC Conference, edited by D. R. Tree, Purdue University, West Lafayette, IN, 173-
This paper describes new methods for measuring viscosity and vapor pressure of refrigerant-lubricant mixtures for compositions of 0-100% and temperatures from -40 to 150 °C (-40 to 300 °F). The equipment and methods also can be applied to fluids for absorption systems. Automatic data acquisition, data reduction, and computer generated graphics are utilized. Typical viscosity-pressure-temperature-composition data are presented to illustrate engineering applicability. The method uses a new viscometer, based on electromagnetic forces and the time required for a metallic piston to traverse a known distance through the fluid.

test methods, refrigerant-lubricant ratios, oil circulation, illustrative tests with R-12 and a paraffinic mineral oil and for R-134a with a polyalkylene glycol (PAG)

This paper summarizes research to improve screening methods for lubricants for air-conditioning and refrigeration compressors. It compares data obtained with a high pressure tribometer (HPT) and those by other methods. The paper notes drawbacks in popular methods, such as Falex™ testing and compressor bench tests. The specimen data, test parameters, and refrigerant-lubricant combinations are tabulated. The friction and wear data are plotted and resulting rankings of lubricants are compared to those for three combinations of load and speed with the HPT. The tests employed R-134a and R-32/125/134a (30/10/60) with unidentified polyolester (POE) lubricants as well as R-12 and R-22 with mineral oil.

H. L. Yu, R. Y Li (Shanghai Institute of Mechanical Engineering, China), and D. K. Chen (Concordia University, Canada). Experimental Comparison on Performance of Rotary Compressors with Different HFC-134a Compatible Lubricants, paper 3908, Transactions (Annual Meeting, San Diego, CA, 24-28 June 1995), American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 101(2):335-340, 1995 (6 pages with 5 figures and 3 tables, RDB6331)

R-134a with five unidentified lubricants compared to R-12 with mineral oil

Analytical Procedures for ARI Standard 700-95, Appendix C to ARI Standard 700, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, 1995 (226 pages with 50 figures and 40 tables, available from ARI for $60.00 to members and $120.00 to others, RDB6305)

This document identifies definitive test procedures to determine the quality of new, reclaimed, and/or repackaged refrigerants for use in new and existing refrigeration equipment. These procedures are identified as referee methods; users must be able to demonstrate that the results of alternative test procedures employed are equivalent. Information is provided on the sensitivity, precision, and accuracy of each method. The tests covered are for determination of acidity, water (moisture) by Karl Fischer coulometric titration, high boiling residue by volumetric and or gravimetric measurement, visual particulate residue, chloride content by silver chloride precipitation, and noncondensable gas content by gas chromatography (GC). The document also identifies GC procedures to determine the purity, and for blends the compositions, of R-11, R-12, R-13, R-22, R-23, R-32, R-113, R-114, R-123, R-124, R-125, R-134a, R-143a, R-401 series blends (R-22/152a/124), R-402 series blends (R-22/125/290), R-404A (R-125/143a/134a (44/52/4)), R-407 series blends (R-32/125/134a), R-408A (R-125/143a/22 (7/46/7)), R-409A (R-22/124/142b (60/25/15)), R-410 series blends (R-32/125), R-500, R-502, R-503, and R-507 [R-507A]. It indicates that standard GC data are not available to determine the compositions of R-405 series blends (R-22/152a/142b/C318), R-406 series blends (R-22/600a/142b), R-411 series blends (R-1270/22/152a), R-412 series blends (R-22/218/142b), R-508 [R-508A], and R-509 [R-509A].

This standard outlines recommended practices to measure the rate of flow of volatile refrigerants using a calorimeter. It is intended for use where the entire flow stream enters the calorimeter as a subcooled liquid and leaves as a superheated vapor or the reverse, identified as evaporator- and condenser-types, respectively. The standard defines the terminology used and calorimeter classifications. It also outlines requirements for values to be determined, standard and confirming test methods, test conditions, and safety. It then details the types and precision of instruments and measurements, describes the apparatus, and test methods and procedures. Schematics show the instrumentation points. The standard identifies the data to be recorded and calculations to reduce the measured data to final values. An appendix illustrates how to calculate the uncertainty in mass flow rate for representative test conditions.

Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

This standard provides a uniform test method to determine the capability of a discharge-line oil separator to remove oil from refrigerant. It defines the terminology used, specifies the data required, specifies the calculations involved, and describes the equipment required for the test. A secondary purpose of the standard is to facilitate and encourage necessary research in this area, by providing two procedures for measurement of oil carryover. The first can be used for high concentrations (≥2500 ppm) with low oil-flow rates (≤7.5 l/min, ≤2 gpm), as in reciprocating-piston compressors, and does not require a chemical analysis. The second can be used for low concentrations and high oil-flow rates, as in oil-injected screw compressors, but requires an infrared spectrophotometer. Both methods are detailed and schematically illustrated. The standard describes the test methods, reviews equipment provisions, specifies the instrumentation requirements, identifies the data to be recorded, and provides calibration procedures and methods to calculate the results.

This standard outlines a uniform method for measuring the waxing tendency of oils in refrigeration systems. The floc point test is based on evaluation of the wax precipitation, at low temperatures, in a mixture containing 90% R-12 and 10% oil by volume. The results are intended for comparisons of different oils.

Refrigerant Extraction Test, Copeland Corporation, Sidney, OH, undated circa 1989 (4 pages with 1 table, available from JMC as RDB0005)

This procedure outlines a test to determine the amount of extractable residue in materials that are used in hermetic refrigerant system when exposed to refrigerant environments. Extractables are determined as the fraction of weight loss after exposure to evaporating refrigerant at elevated temperature and pressure. Charging data are provided for R-12, R-22, and R-502.

This procedure outlines a test to determine the effect of materials exposed to a refrigerant-lubricant mixture at operating conditions. The parameters determined are dimensional, including swell, and weight change; visual observations of decomposition also are addressed. The procedure described is based on thermal-aging in a pressure vessel, preceded and followed by measurements.

This procedure outlines a sealed-tube test to rate the quality of lubricants with R-12. It is based on visual inspection of the oil and metal (steel and copper) test strips and the amount of reactivity, determined by gas chromatography, after thermal aging at 175 °C (347 °F) for 3- and 14-day periods.

Compatibility test procedure

please see page 6 for ordering information
Specifications for Fluorocarbon and Other Refrigerants, standard 700-95, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, 1995 (16 pages with 1 table, available from ARI for $10.00 to members and $20.00 to others, RDB6304)

This standard specifies acceptable levels of contaminants for fluorocarbon and other refrigerants, regardless of source (new, reclaimed, and/or repackaged). It is intended for the guidance of manufacturers, refrigerant reclaimers, repackers, distributors, installers, servicemen, contractors, and consumers. It identifies purity requirements and determination procedures for acceptance or rejection of refrigerants, for both new and existing refrigeration and air-conditioning products. These refrigerants include R-11, R-12, R-13, R-22, R-32, R-113, R-114, R-123, R-124, R-125, R-134a, R-143a, R-401A, R-401B, R-402A, R-402B, R-404A, R-405A, R-406A, R-407A, R-407B, R-407C, R-408A, R-409A, R-410A, R-410B, R-411A, R-412A, R-500, R-502, R-503, R-507 [R-507A], R-508 [R-508A], and R-509 [R-509A]. It provides for characterization of refrigerants by gas chromatography and boiling point or boiling point range. It also addresses water (moisture), chloride, acidity, high boiling residue, particulates and solids, noncondensables, and impurities including other refrigerants. The standard outlines procedures of sampling, purity determination, and reporting. A table lists the physical properties and maximum contaminant levels for covered refrigerants. It addresses the boiling point, typical isomer content (including R-113a in R-113, R-114a in R-114, R-123a in R-123, R-124a in R-124, R-134 in R-134a, and R-143a in R-143a), and the cited impurities. An appendix, published separately, describes the test procedures to be used.

Refrigerant-lubricant foamability, foam stability

Standard Method for Measurement of Proportion of Oil in Liquid Refrigerant, ANSI/ASHRAE Standard 41.4-1984, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1984 (8 pages with 2 figures and 1 table, available from ASHRAE for $13 to members and $19 to nonmembers, RDB2924)

This standard outlines a uniform experimental method to determine the concentration of oil, by weight, in single-phase solutions in liquid refrigerant. The standard defines the terminology used and describes the equipment required. Schematics show the sampling vessel and bleeder assembly used. The test procedure entails evacuation, weighing, sampling, and separation of the refrigerant from the oil for a minimum of three samples. The document identifies the data to be recorded and provides equations to calculate the results.

lubricant screening procedure

Test Method for Organic Acid Removal of Adsorbents Used in Liquid Line Filter Driers, proposed research project 1028-TRP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, April 1999 - September 2000 (ASH1028)

This research project will develop a standardized method of test to determine the capability of adsorbents to remove organic acids from circulating refrigerants and lubricants. The work will examine the influences of refrigerant and lubricant selection and demonstrate that the method is suitable both in the presence and absence of water. Organic acids can be produced in refrigeration systems that are not properly maintained or that are not functioning properly. The problem is more acute with growing use of ester lubricants. These oils are hygroscopic by nature and can be hydrolyzed to produce carboxylic acids and alcohols. Carboxylic acids, commonly referred to as organic acids, cause early system failure if allowed to remain free in the refrigerant system. The test solutions will include R-22 with mineral oil (MO), R-134a with a polyolester (POE), and R-410A with a POE. The adsorbents will include a 3A molecular sieve, a 50-50 mixture of molecular sieve and alumina, alumina, and silica gel. This research project is sponsored by ASHRAE Technical Committee 3.3, Contaminant Control in Refrigerating Systems. Proposals are due at ASHRAE Headquarters by 18 December 1998. Further information is available from the ASHRAE Manager of Research (+1-404/636-8400).

IMPACTS

H. König (Solvay Fluor und Derivate GmbH, Germany), Von Montreal nach Kyoto: Auswirkungen von globalen/lokalen Regulierungen von R-22, Mögliche Konsequenzen für FCKW-Ersatzstoffe [From Montreal to Kyoto: Impacts of Global and Local Regulations of R-22, Possible Conse-
reviews the international regulations and projected replacements for R-22 in Germany; discusses the development of equipment and standards for refrigerants as well as alternatives for R-22; examines anticipated measures from the Kyoto Protocol; promotes use of the total equivalent warming impact (TEWI) concept in assessing refrigerant impacts; illustrates show the impacts of the Montreal Protocol on fluorochemical production, resulting bromine and chlorine concentrations in the stratosphere, use of R-22 and long-term alternatives for it in Germany, annual carbon dioxide emissions (for the USA, Germany, Russian Federation, China, and the European Union), comparative global warming potentials (GWPs) of greenhouse gases (GHGs), and the progression of infrared energy absorption by GHGs from 1990-2050.

Costs and Operation

The paper summarizes requirements for a refrigerant to sustain an efficient, reliable system. It briefly outlines both the development of chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants, to fill these needs, and the concerns with ozone depletion and global warming that have arisen since. It then draws generalized conclusions on the compatibility of new refrigerants and lubricants with motor materials, elastomers, and engineering plastics as well as refrigerant-lubricant compatibility. It then outlines materials compatibility considerations, starting with stability, solubility, and lubricity of refrigerants with mineral oils. It discusses the shift from mineral oils to alkylbenzenes, polyalkylene glycols (PAGs), and polyolesters to achieve miscibility with hydrofluorocarbon (HFC) refrigerants. The paper addresses and illustrates moisture absorbance for different generic lubricant types. It then draws generalized conclusions on the compatibility of new refrigerants and lubricants with motor materials, elastomers, and engineering plastics as well as refrigerant-lubricant compatibility. It then outlines materials compatibility considerations, starting with stability, solubility, and lubricity of refrigerants with mineral oils. It discusses the shift from mineral oils to alkylbenzenes, polyalkylene glycols (PAGs), and polyolesters to achieve miscibility with hydrofluorocarbon (HFC) refrigerants. The paper addresses and illustrates moisture absorbance for different generic lubricant types. It then draws generalized conclusions on the compatibility of new refrigerants and lubricants with motor materials, elastomers, and engineering plastics as well as refrigerant-lubricant compatibility. It then outlines materials compatibility considerations, starting with stability, solubility, and lubricity of refrigerants with mineral oils. It discusses the shift from mineral oils to alkylbenzenes, polyalkylene glycols (PAGs), and polyolesters to achieve miscibility with hydrofluorocarbon (HFC) refrigerants. The paper addresses and illustrates moisture absorbance for different generic lubricant types.

R-290, R-290/227ea, cost-based evaluation of propane and propane-blends as replacements for R-22.

The principle of corresponding states is used to evaluate the effects of the thermodynamic characteristics of working fluid performance in refrigeration cycles. Desired characteristics, ex-
pressed in terms of the critical temperature and ideal gas heat capacity using propane as the reference fluid, are examined for various departures from the theoretical (ideal) vapor-compression cycle. The baseline cycle for the comparisons include compressor efficiency and heat transfer limitations in the condenser and evaporator. The paper addresses the modified Benedict-Webb-Rubin (MBWR) equation of state chosen for property calculations, the cycle analysis simulation model, and the application of the model to the selection of alternative refrigerants. The results indicate that modifications to the basic vapor-compression cycle should be considered for refrigerants with two or more carbon atoms to achieve maximum energy efficiency.

This report examines zeotropic mixtures to replace R-22. 15 binary blends of R-23, R-32, R-125, R-134a, R-143a, and R-152a (all hydrofluorocarbons, HFCs) were evaluated using the CYCLE11 simulation program. The rationale for selecting these component fluids is outlined. Efficiency, volumetric capacity, suction pressures, discharge temperatures, and discharge pressures are analyzed and compared. The most promising candidates, R-32/134a and R-32/152a, were tested in a breadboard heat pump. A series of tests to evaluate use of a liquid-line heat exchanger also was performed. The findings indicate that these two zeotropes may be suitable as replacements for R-22, but that multiple tradeoffs exist in performance for different compressor speeds and mixture compositions. Performance improvements of 2 and 14% were found for R-32/152a for the low-temperature heating and high temperature cooling modes, respectively. The ozone depletion potential of this mixture is zero and the global warming potential is approximately one-fourth that of R-22, but the mixture is flammable in the entire composition range. R-32/134a mixtures, containing more than 35% R-32 by mass, yielded slightly improved performance for cooling and slightly lower for heating. Gains of 5% for cooling and 2% for low-temperature heating were measured and compared to R-22 for the equivalent speed and capacities. These results were achieved using the same test apparatus, without optimization for each fluid. Comparative efficiencies and capacities are plotted for the full range of mass fractions at selected operating conditions. An uncertainty analysis is presented in an appendix, but the test results confirm the validity of the modeling approach used.

that known technical barriers have been resolved, and that resolution of remaining lubricant and additive package issues are underway.

Environmental

D. L. Albritton (National Oceanic and Atmospheric Administration), Ozone Depletion and Global Warming, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1-5, 1997 (6 pages with no figures or tables, RDB7B01)

update on the environmental impacts of refrigerant releases

N. L. Allan (University of Bristol, UK) and A. McCulloch (ICI Chemicals and Polymers Limited, UK), Reactions of Hydrofluorocarbons and Hydrochlorofluorocarbons with the Hydroxyl Radical, Atmospheric Environment, 24(9):2417-2420, 1990 (4 pages, rdb7C77)

reaction rates for hydrogen-atom abstraction by hydroxyl radicals for determination of atmospheric lifetimes hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in the atmosphere; presents an approximate correlation between the Mulliken charge on hydrogen and the activation energy for this process; suggests that this relationship should prove useful in predictions of previously unknown rates

This article describes experiments and observations linking chlorine and bromine concentrations with ozone depletion in the antarctic vortex. It briefly reports the findings of the National Science Foundation Ozone Experiment (NOZE I) expedition in the austral spring of 1986. It describes in greater detail the high-altitude mission and in situ measurements of the subsequent Airborne Antarctic Ozone Experiment. Mathematical equations defining the mechanisms of ozone depletion are presented for chlorine and bromine. What sets Antarctic ozone depletion apart in the context of global change is both the severity of the phenomenon and the unusual decoupling of physical and chemical time constraints that control transformation rates in a specific region of the atmosphere. The article concludes that the dramatic reduction in ozone over the antarctic continent would not have occurred had CFCs not been released to the atmosphere.

L. G. Anderson, Atmospheric Chemistry of 1,1,1,2-Tetrafluoroethane, Atmospheric Environment, 15(9):1579-1582, 1981 (4 pages, rdb6547)

R-134a

D. L. Albritton (National Oceanic and Atmospheric Administration), Ozone Depletion and Global Warming, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1-5, 1997 (6 pages with no figures or tables, RDB7B01)

update on the environmental impacts of refrigerant releases

N. L. Allan (University of Bristol, UK) and A. McCulloch (ICI Chemicals and Polymers Limited, UK), Reactions of Hydrofluorocarbons and Hydrochlorofluorocarbons with the Hydroxyl Radical, Atmospheric Environment, 24(9):2417-2420, 1990 (4 pages, rdb7C77)

reaction rates for hydrogen-atom abstraction by hydroxyl radicals for determination of atmospheric lifetimes hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in the atmosphere; presents an approximate correlation between the Mulliken charge on hydrogen and the activation energy for this process; suggests that this relationship should prove useful in predictions of previously unknown rates

This article describes experiments and observations linking chlorine and bromine concentrations with ozone depletion in the antarctic vortex. It briefly reports the findings of the National Science Foundation Ozone Experiment (NOZE I) expedition in the austral spring of 1986. It describes in greater detail the high-altitude mission and in situ measurements of the subsequent Airborne Antarctic Ozone Experiment. Mathematical equations defining the mechanisms of ozone depletion are presented for chlorine and bromine. What sets Antarctic ozone depletion apart in the context of global change is both the severity of the phenomenon and the unusual decoupling of physical and chemical time constraints that control transformation rates in a specific region of the atmosphere. The article concludes that the dramatic reduction in ozone over the antarctic continent would not have occurred had CFCs not been released to the atmosphere.

L. G. Anderson, Atmospheric Chemistry of 1,1,1,2-Tetrafluoroethane, Atmospheric Environment, 15(9):1579-1582, 1981 (4 pages, rdb6547)

R-134a

Atmospheric and Environmental Research, Incorporated (AER), Estimates of the Global Warming Potential of C3F8, Rhône-Poulenc Chemicals, Bristol, UK, October 1994 (14 pages with 3 figures and 5 tables, RDB95C04)

R-218, atmospheric lifetimes, radiative forcing factors, global warming potential (GWP)

E. P. Banks, P. N. Sharratt (University of Manchester Institute of Science and Technology, UMIST, UK), E. P. Johnson, and E. K. Clarke (Atlantic Consulting, UK), Extending TEWI to the Production of Fluorocarbons, Global Warming Conference, Austria, circa 1997 (10 pages with 1 figure and 1 table, RDB8B44)

presents a total equivalent warming impact (TEWI) analysis for production of R-227ea by a process involving R-20 (chloroform) as an intermediate and that also yields R-1114 and R-1216 through a further step involving R-22 as an intermediate; describes the production steps for R-20, R-22, R-1114, R-1216, and finally R-227ea; presents a TEWI study for R-227ea with direct (release-related) and indirect (energy-related) effects that include planned and unplanned losses as well as ultimate disposal when used as a fire suppressant; concludes that one third of the TEWI occurs in production of R-227ea

J. Barry et al., 1,1,1,3,3-Pentafluorobutane (HFC-365mfc): Atmospheric Degradation and Contribution to Radiative Forcing, International Journal of Chemical Kinetics, 1997 (rdb8102)

R-365mfc, environmental impact and fate, reaction rate constant

R-125 and others

please see page 6 for ordering information
Comparative Global Warming Impacts of Electric Vapor-Compression and Direct-Fired Absorption Equipment, report TR-103297, Electric Power Research Institute (EPRI), Palo Alto, CA, August 1993 (82 pages with 26 figures and 10 tables, RDB44440)

This report compares the global warming impacts of electric vapor-compression and gas-fired absorption-cycle equipment for air-conditioning systems. It outlines alternatives to replace chlorofluorocarbon, and eventually also hydrochlorofluorocarbon, refrigerants. The report notes that absorption chillers do not use ozone-depleting refrigerants, but substitution of alternative refrigerants in vapor-compression equipment also offers radically-reduced or eliminated potential for stratospheric ozone depletion. Net global warming impact (or "total equivalent warming impact", TEWI), therefore, provides a better indication of environmental preferable. Examination requires consideration of both direct and indirect effects. The direct component relates to release of refrigerants that are greenhouse gases, and the indirect to carbon dioxide production in powering the equipment. The report compares the global warming potential (GWP) of common and alternative refrigerants, reviews prior studies, and presents the methodology and data used. The analyses address energy use both for chillers, at multiple efficiency levels, and associated heat rejection by cooling towers. The report then reviews historical trends and regional variations in carbon dioxide emissions for generation of electricity - the "carbon dioxide factor" (CDF). Tabular data are provided on a regional basis for the generation fuel mix, average CDF, and CDF corresponding to typical load profiles to cool commercial buildings. The generation data cover Canada, Mexico, and the United States; the regional data cover only the USA. The report presents chiller performance data, refrigerant loss data, and values used to define two scenario's used for the study. It then summarizes national and regional comparisons, reflecting generation differences. The results show that electric vapor-compression chillers consistently result in lower net warming impact than direct-fired absorption chillers. The analyses also indicate that improved performance, available at lower cost premiums than those associated with absorption chillers, offers further potential for warming reduction. Integration of thermal storage, for peak-demand reduction, offers an advantage over alternative use of gas-fired absorption-cycle chillers. Parametric analyses are presented to test the sensitivity of this finding to varied use assumptions. The report concludes with a discussion of means to reduce net warming impacts and a perspective on the occurrence of global climate change.

J. M. Calm (Engineering Consultant), Comparative Global Warming Impacts of Electric Vapor-Compression and Direct-Fired Absorption Equipment, report TR-103297, Electric Power Research Institute (EPRI), Palo Alto, CA, August 1993 (82 pages with 26 figures and 10 tables, RDB44440)

This report compares the global warming impacts of electric vapor-compression and gas-fired absorption-cycle equipment for air-conditioning systems. It outlines alternatives to replace chlorofluorocarbon, and eventually also hydrochlorofluorocarbon, refrigerants. The report notes that absorption chillers do not use ozone-depleting refrigerants, but substitution of alternative refrigerants in vapor-compression equipment also offers radically-reduced or eliminated potential for stratospheric ozone depletion. Net global warming impact (or "total equivalent warming impact", TEWI), therefore, provides a better indication of environmental preferable. Examination requires consideration of both direct and indirect effects. The direct component relates to release of refrigerants that are greenhouse gases, and the indirect to carbon dioxide production in powering the equipment. The report compares the global warming potential (GWP) of common and alternative refrigerants, reviews prior studies, and presents the methodology and data used. The analyses address energy use both for chillers, at multiple efficiency levels, and associated heat rejection by cooling towers. The report then reviews historical trends and regional variations in carbon dioxide emissions for generation of electricity - the "carbon dioxide factor" (CDF). Tabular data are provided on a regional basis for the generation fuel mix, average CDF, and CDF corresponding to typical load profiles to cool commercial buildings. The generation data cover Canada, Mexico, and the United States; the regional data cover only the USA. The report presents chiller performance data, refrigerant loss data, and values used to define two scenario's used for the study. It then summarizes national and regional comparisons, reflecting generation differences. The results show that electric vapor-compression chillers consistently result in lower net warming impact than direct-fired absorption chillers. The analyses also indicate that improved performance, available at lower cost premiums than those associated with absorption chillers, offers further potential for warming reduction. Integration of thermal storage, for peak-demand reduction, offers an advantage over alternative use of gas-fired absorption-cycle chillers. Parametric analyses are presented to test the sensitivity of this finding to varied use assumptions. The report concludes with a discussion of means to reduce net warming impacts and a perspective on the occurrence of global climate change.

J. M. Calm (Engineering Consultant), Comparative Global Warming Impacts of Electric Vapor-
N. J. Campbell (ICI Klea) and A. McCulloch (ICI Chemicals and Polymers Limited, UK), The Climate Change Implications of Manufacturing Refrigerants - A Calculation of 'Production Energy' Contents of Some Common Refrigerants, Transactions of the Institution of Chemical Engineers (IChemE), 76(B):239-244, August 1998 (6 pages with 2 figures and 2 tables, RDB8815)

analysis of the effect of energy use in manufacturing refrigerants on total equivalent warming impact (TEWI): substances addressed include R-12, R-22, R-184a, R-600a, R-717, and cyclopentane; concludes that emissions associated with the energy to produce them is insignificant compared to later effects in their life cycles when used in refrigerators or chillers

W. K. Chang and C. S. Criddle, Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by Methanotrophic Mixed Culture MM1, Biodegradation, 6:1-9, 1995 (9 pages, rdb65C1)

R-22, R-123, R-134a, R-142b, environmental fate

R. J. Cicerone, R. S. Stolarski, and S. Walters (University of California, Irvine, UCI), Stratospheric Ozone Destruction by Manmade Chlorofluoromethanes, Science, 185:1165-1167, 1974 (3 pages, rdb3241)

C. M. Cisson, G. A. Rausina and P. M. Stonebraker, Human Health and Environmental Hazard Characterization of Lubricating Oil Additives, paper 11.7, Ecological and Economical Aspects of Tribology (proceedings of the Ninth International Colloquium), Technische Academie Esslingen, Germany, 1994 (RDB6377)
lubricants, safety, environmental impacts

lubricants, safety, environmental impacts

D. L. Cooper, T. P. Cunningham (University of Liverpool, UK), N. L. Allan (University of Bristol, UK), and A. McCulloch (ICI Chemicals and Polymers Limited, UK), Potential CFC Replacements: Tropospheric Lifetimes of Potential CFC Replacements: Rate Coefficients for Reaction with the Hydroxy Radical, Atmospheric Environment, 26A(7):1331-1334, 1992 (4 pages with 1 figure and 3 tables, RDB5829)
tropospheric lifetimes of R-E134a, R-E143, R-E152, R-E152a, R-E161, R-E227ca1, R-E227ca2, R-E227ea1, R-E236ca1, R-E245ca1, R-E245ca2, R-E245cb2, R-E245fa2, R-E254cb2, R-E254fa1, R-E254fb1, R-E263fb1, and other candidate alternative refrigerants - as reported in RDB 7815

M. F. De Flaun, B. D. Ensley, and R. J. Steffen, Biological Oxidation of Hydrochlorofluorocarbons (HCFCs) by a Methanotrophic Bacterium, Bio-/Technology, 10(12):1576-1578, 1992 (RDB65B1)
refrigerant decomposition, destruction, disposal, environmental fate

environmental impact, fluorochemical refrigerants, GWP

W. B. DeMore (Jet Propulsion Laboratory, JPL, California Institute of Technology), Experimental and Estimated Rate Constants for the Reactions of Hydroxy Radical with Several Halocarbons, Journal of Physical Chemistry, 100:5013-5820, 1996 (8 pages, rdb8103)
environmental reactions

W. B. DeMore (Jet Propulsion Laboratory, JPL, California Institute of Technology), Rate Constants for the Reactions of OH with HFC-134a (CF3-CH2-F) and HFC-134 (CHF2-CHF2), Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere (STEP-HALOCSIDE/AFEAS Workshop, Dublin, Ireland, 23-25 March, 1993), University of Dublin, Ireland, 1-6, 1993 (6 pages with 6 tables, RDB8544)
R-134, R-134a, environmental reactions

W. B. DeMore (Jet Propulsion Laboratory, JPL, California Institute of Technology), Rates of Hydroxyl Reactions with Some HFCs, Optical Methods in Atmospheric Chemistry (proceedings of the

please see page 6 for ordering information
SPIE), publication 1715, International Society of Optical Engineering, 72-77, 1992 (6 pages, rdb-5845)
R-125, R-134, R-134a, and others; environmental reactions

refrigerant decomposition, destruction, fate

E. O. Edney and D. J. Driscoll, Laboratory Investigations of the Deposition of Oxidation Products of Hydrochlorofluorocarbons (HCFCs) and Hydrofluorocarbons (HFCs) to Aqueous Solutions, Water, Air, Soil Pollution, 66(1-2):97-110, 1993 (14 pages, rdb5952)
R-125 and others, environmental fate of refrigerants

E. O. Edney and D. J. Driscoll, Chlorine Initiated Photo-oxidation Studies of Hydrochlorofluorocarbons (HCFCs) and Hydrofluorocarbons (HFCs): Results for HCFC-22 (CHClF2), HFC-41 (CHF3), HFC-124 (CClF2CHF2), HFC-125 (CF3CF2F), HFC-134a (CF3CHF2), HFC-143b (CCl3CHF), and HFC-152a (CH2FCF3), International Journal of Chemical Kinetics, 24(12):1067-1081, 1992 (15 pages, rdb5953)
R-22 (CH2F2), R-41 (CHF3), R-124 (CHF2CF3), R-125 (CHF2CF2F), R-134a (CH3CF3), R-142b (CH3CCl3), R-152a (CH2F2), environmental fate of refrigerants

E. O. Edney, B. W. Gay, and D. J. Driscoll, Chlorine Initiated Oxidation Studies of Hydrochlo-rofluorocarbons (HCFCs): Results for HCFC-123 (CF3CHCl3) and HFC-141b (C2F5CH3), Journal of Atmospheric Chemistry, 12:105-120, 1991 (16 pages, rdb653C)
R-123 (CHCl2F3), R-141b (CH3CFC3), environmental fate of refrigerants

S. Fan, M. Gloor (Princeton University), J. D. Mahlman (National Oceanic and Atmospheric Administration, NOAA), S. Pacala, J. L. Sarmento (Princeton University), T. Takahashi (Columbia University), and P. P. Tans (NOAA), A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models, Science, 282:44-246, 16 October 1998 (5 pages with 3 figures and 2 tables, RDB9109)
direct and indirect global warming, TEWI, comparison of vapor-compression using R-134a, transcritical cycle using R-744 (carbon dioxide), Stirling cycle, and thermoelectric air conditioners for mobile air conditioners (MACs)
Refer to page 6 for ordering information.

detailed summary of the Second IPCC Assessment

alternative refrigerants, lifetime, atmospheric reactions

presents a life cycle assessment (LCA) to compare the net global warming (GW) impact of R-134a to an R-290/600a (propane/isobutane) blend; distinguishes the method from total equivalent warming impact (TEWI) approaches by inclusion of refrigerant production implications; concludes that R-134a shows a 22-52% greater GW impact than the hydrocarbon blend, based on selected leakage and driving scenarios; notes that volatile organic compound (VOC) emissions are similar for the two options, with each slightly higher in some scenarios

E. P. Johnson, E. K. Clarke (Atlantic Consulting, UK), E. P. Banks, and P. N. Sharratt (University of Manchester Institute of Science and Technology, UMIST, UK), Fire Extinguishers: A Case Study of CFC Replacements (Part I), *International Journal*
discusses the relevance of total equivalent warming impact (TEWI) analyses in the context of life-cycle assessment (LCA); discusses allocation issues for production processes with multiple products and recovery inferences for products that are not recycled to extinction; presents a TEWI study (essentially repeated from RDB88B44) for production of R-227ea by a process involving R-20 (chloroform) as an intermediate and that also yields R-1114 and R-1216 through a further step involving R-22 as an intermediate; describes the production steps for R-20, R-22, R-1114, R-1216, and finally R-227ea; presents a TEWI study for R-227ea with direct (release-related) and indirect (energy-related) effects that include planned and unplanned losses as well as ultimate disposal when used as a fire suppressant; concludes that one third of the TEWI occurs in production of R-227ea.

contrasts recent findings [see RDB9105] of a large carbon dioxide (CO2) sink in North America with other findings that suggest its magnitude is smaller, that identify potential flaws or uncertainties in the data and methods, and another potential sink in tropical South America that challenges the implied balance; describes the findings of the North American sink as controversial and likely to draw criticism in the international debate on control measures for global warming; the discussion notes that some of the North American uptake may be transient based on climate changes from volcanic activity; it also notes opinions that existence of the sink is less important than changes to it.

M. K. W. Ko, N-D. Sze (Atmospheric and Environmental Research, Incorporated, AER), Calculations of Global Warming Potentials and Atmospheric Lifetimes, report CTR97-51/P97-134, Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), Washington, DC, 1997 (6 pages with 1 figure and 2 tables, RDB88B45)

estimates of the atmospheric lifetime (τatm), global warming potential (GWP), and halocarbon GWP (HGWP) for R-227ea, R-226fa, R-245ca, R-245eb, R-245fa, R-365mfc, and R-43-10mec (identified in the report as "R-43-10mec"); the GWP and HGWP for R-245eb, R-245fa, and R-43-10mec were calculated with infrared (IR) absorption cross sections and reaction rate constants specified by AFEAS; those for the remaining compounds were calculated from published sources identified by the authors (referenced in the report) and from data in the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment.

CF3 radicals (formed by photo-degradation of R-116, R-123, R-124, R-125, R-134a, R-218, R-227ea, R-245fa, and others), atmospheric chemistry, kinetic data, estimates of ozone-depletion potentials (ODPs), uncertainties

M. K. W. Ko, N-D. Sze, G. Molnar (Atmospheric and Environmental Research, Incorporated, AER), and M. J. Prather (National Aeronautics and Space Administration, NASA), Global Warming from Chlorofluorocarbons and Their Alternatives: Time Scales of Chemistry and Climate, Atmospheric Environment, 27A(4):581-587, 1993 (7 pages with 6 figures and 2 tables, RDB86B01)

R-10, R-11, R-12, R-22, R-113, R-114, R-115, R-140a: lifetime, radiative forcing, calculated equilibrium, resultant surface warming; results show that "for likely substitution scenarios, the warming due to halocarbons will correspond to 4-10% of the total expected greenhouse warming at the year 2100," but that uncontrolled growth of their use could result in a doubling of that effect.

presents a 0-dimensional computer model to calculate temperature forcing by halocarbons between 1985 and 2100; applies the model to parametric production scenarios for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), methyl chlorofluorocarbon (R-140a) and carbon tetrachloride (R-10); divides HCFCs and HFCs into two groups by their global warming potentials (GWPs), namely R-22, R-125, R-134a, R-142b, and R-143a with relatively high GWP and R-123, R-124, R-141b, and R-152a with relatively low GWP; the choice of HCFCs and restriction of HCFC and HFC applications could be the most important factors in determining the impact of halocarbons on future global warming once use of CFCs is restricted; uncontrolled use of HCFCs and HFCs from the high GWP group could increase earth's equilibrium temperature by 0.28-0.66 °C (0.50-1.19 °F) by 2100 compared to use of HCFCs and HFCs from the low GWP group; with phasenoout of both CFCs and high-GWP HCFCs and HFCs by 2000 and with containment measures for low-GWP HCFCs, the long-term climatic impact of halocarbons could become lower than the present impact of halocarbons; the same holds if there is a rapid total phase-out of radiatively active halocarbons

investigates the impact of halons, chlorofluorocarbons (CFCs), and hydrochlorofluorocarbons (HCFCs) on global warming using an improved 0-dimensional computer model; results show that unrestricted use of HCFCs and hydrofluorocarbons (HFCs) to replace CFCs and halons may result in an equilibrium temperature increase at the earth's surface of 0.38-0.75 °C (0.68-1.35 °F) by 2100; indicates that this increase can be reduced by 40% with better housekeeping, recycling, and destruction of halocarbon wastes; phasenoout of HCFCs by 2035, to protect the ozone layer, could increase temperature forcing to 0.66-1.16 °C (0.83-2.09 °F) if these HCFCs are replaced by HFCs and no emission-reducing measures are implemented; restricted use of HCFCs with containment technologies for those with low global warming potentials (GWP) and phasenoout of those with high GWP could reduce global warming compared to total HCFC phasenoout with HFC replacement

investigates the impact of halocarbon use on global warming during the next century; describes a computer model to calculate the influence on the equilibrium temperature at the earth's surface following projected applications of specific halocarbons having significant global warming potentials (GWP); projects that emissions from refrigeration and mobile air conditioning (MAC) will contribute the most to temperature forcing if hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are used without restriction to replace chlorofluorocarbons (CFCs) and halons; projects that R-22 and R-134a will contribute the most to calculated temperature forcing; also projects that R-125, R-134a, and R-143a - mainly from refrigeration and MAC emissions - will be the most important contributors to global warming if HCFCs are phased-out to protect the ozone layer

A set of charts address methods and consequences of reducing R-23 emissions in the manufacture of R-22. The introduction outlines the chemical processes to produce R-21, R-22, and R-23, by reacting R-20 (chloroform) with hydrogen fluoride (HF) in the presence of an antimony catalyst. Hydrogen chloride (HCl) is shown to be a byproduct in all three cases. The charts identify a goal of reducing greenhouse gas emissions, and R-23 in specific, as part of the October 1993 Climate Change Action Plan (CCAP). Further charts outline optimization of the reaction kinetics and identify factors to do so. An alternative option, noted as high cost, is to destroy the R-23 that results as a byproduct. The presentation notes that R-23 emissions will decrease, as R-22 production decreases and with production facility rationalization. It concludes that industry is hopeful of reducing R-23 emissions by 50% of the 1990 level by the year 2000, but that chloroform and HF availability and R-22 pricing will drive the R-22 market, rather than R-23 reduction initiatives.

R-22, R-404A, R-717 (ammonia), global warming, direct and indirect effect, TEWI

J. E. Lovelock (University of Reading, UK), Atmospheric Halocarbons and Stratospheric Ozone, Nature, 252:292 ff, 1974 (rdb3522)

Potential for stratospheric ozone depletion; examination of sources for chlorine and bromine

This landmark publication documents measurements in 1970-1972 in the northern and southern hemispheres. It notes that chlorofluorocarbons (CFCs) were found in the air and sea "wherever and whenever they were sought." [The work by Lovelock is what drew the attention of F. S. Rowland and M. J. Molina to examine the atmospheric fate of CFCs.]

J. E. Lovelock (University of Reading, UK), Atmospheric Fluorine Compounds as Indicators of Air Movements, Nature, 230:379 ff, 1971 (rdb3129)

This landmark publication documents the first known measurements of atmospheric concentrations of a chlorofluorocarbon (CFC), R-11. [The work by Lovelock is what drew the attention of F. S. Rowland and M. J. Molina to examine the atmospheric fate of CFCs.]

J. D. Mahlman (National Oceanic and Atmospheric Administration, NOAA), Uncertainties in Projections of Human-Caused Climate Warming, Science, 278:1416-1417, 21 November 1997 (2 pages with no figures or tables, limited copies available from JMC as RDB8B24)

Policy-independent evaluation of the scientific confidence levels in predictions based on climate models of global warming and its impacts: categorizes aspects of climate change as "virtually certain facts", "virtually certain projections" (>99% confidence), "very probable projections" (>90% confidence), "probable projections" (>67% confidence), and "incorrect projections" (not supported by climate science or models); discusses the policy implications; concludes that none of the recognized uncertainties can make the problem go away and human-caused greenhouse warming will continue slowly, but inexorably, for a long time into the future; also concludes that the severity can be modest or large, depending on how remaining uncertainties are resolved and on the success in reducing emissions of long-lived greenhouse gases

March Consulting Group (UK), UK Emissions of HFCs, PFCs, and SF₆ and Potential Emission Reduction Options, UK Department of the Environment, Transport and the Regions (DETR), London, UK, January 1999 (RDB8132)

Assesses usage and emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and R-7146 (SF₆, sulfur hexafluoride) in the UK as greenhouse gases; provides information to support development of a national climate change strategy; examines the technical feasibility and cost implications of potential measures to limit future emissions; identifies 1995 UK emissions for the six gases or groups of gases controlled under the Kyoto Protocol as well as the main markets in which HFCs, PFCs, and SF₆ are used as well as additional emission sources, such as HFC emissions from R-22 production and PFC emissions from aluminum manufacturing; projects future emission for various scenarios; concludes that supermarket refrigeration, mobile air conditioning (MAC) systems, and R-23 release from R-22 manufacture will be three of the five sources collectively amounting to half of emissions of HFCs, PFCs, and SF₆ by 2010; stresses the need for a strategy to reduce emissions and examines measures to do so

March Consulting Group (UK), Use and Emission of Selected Halocarbons: CFCs, HCFCs, HFCs, PFCs and SF₆, UK Department of the Environment, Transport and the Regions (DETR), 1996 (available from Her Majesty's Stationery Office (HMSO), Edinburgh, UK; rdb8B37)
fluorochemical use and emissions, leakage

March Consulting Group (UK), CFCs in the UK Refrigeration and Air Conditioning Industries - Usage and the Scope for Substitution, UK Department of the Environment, Transport and the Regions (DETR), London, UK, 1992 (rdb8B38)

fluorochemical use and emissions, leakage

A. McCulloch (ICI Chemicals and Polymers Limited, UK) and N. J. Campbell (ICI Klea), The Climate Change Implications of Producing Refrigerants, Natural Working Fluids '98 (proceedings of the Gustav Lorentzen Conference - meeting of Sections B and E, Oslo, Norway, 2-5 June 1998), International Institute of Refrigeration (IIR), Paris, France, 149-155, 1998 (8 pages with 2 figures and 1 table, RDB8609)

analysis of the effect of energy use in manufacturing refrigerants on total equivalent warming impact (TEWI): substances addressed include R-12, R-22, R-134a, R-600a, R-717, and cyclopentane; concludes that emissions associated with the energy to produce them is insignificant compared to later effects in their life cycle when used in refrigerators or chillers

A. McCulloch (ICI Chemicals and Polymers Limited, UK) and P. M. Midgley (M&D Consulting, Germany), Estimated Historic Emissions of Fluorochemicals from the European Union, Atmospheric Environment, 32(9):1571-1580, April 1998 (10 pages with 3 figures and 8 tables, RDB8B34)

sales quantities within Europe for R-11, R-12, R-22, R-113, R-114, and R-115 for 1986-1996 broken down between refrigeration, foam blowing, solvent, and aerosol uses; calculated emissions and annual emission rates for the same fluorochemicals and years; estimated sales and emissions for the same uses in 1995 and 1996 for R-22, R-123, R-124, R-134a, R-141b, and R-142b as well as calculations for 1991-1996

A. McCulloch (ICI Chemicals and Polymers Limited, UK), Sources of Hydrochlorofluorocarbons, Hydrofluorocarbons, Fluorocarbons and Their Potential Emissions During the Next Twenty-Five Years, Environmental Monitoring and Assessment, 31(1-2):167-174, 1994 (8 pages, rdb5C30)

calculates potential production and emissions of R-22, R-32, R-123, R-125, R-134a, R-141b, R-142b, and R-143a for the next 25 years based on historic data for what they replace, declared manufacturing capacities, and anticipated effects of international controls; notes that they are influenced as much by improvements to containment as by primary demands; projects that consumption of hydrochlorofluorocarbons (HCFCs) will nearly cease, but demand for R-134a could double, from approximately 150,000-

300,000 t/y (165,000-331,000 ton/yr) between 1995 and 2020; demand for R-32 could rise to 90,000 t/y (99,000 ton/yr) in the same period

A. McCulloch (ICI Chemicals and Polymers Limited, UK), P. M. Midgley (M&D Consulting, Germany), and D. A. Fisher (E. I. duPont de Nemours and Company, USA), Distribution of Emissions of Chlorofluorocarbons (CFCs) 11, 12, 113, 114 and 115 Among Reporting and Non-Reporting Countries in 1986, Atmospheric Environment, 28(16):2567-2582, 1994 (16 pages with 4 figures and 6 tables, RDB5506)

R-11, R-12, R-113, R-114, R115, production and emission data

reviews the history of chlorofluorocarbons (CFCs) and related chemicals and current understanding their role in stratospheric ozone depletion; discusses sources of stratospheric chlorine, atmospheric concentrations, ozone photochemistry, recent developments, and alternatives to CFCs; concludes that heterogeneous chemistry in the lower stratosphere enhances ozone depletion both directly and indirectly, that responses by governments and industry are moving toward alternatives to CFCs, but that recovery of the ozone layer will not occur until the middle of the next century due to the long atmospheric lifetimes of chemicals involved; provides projections of how CFC demands might be replaced by 2000; notes that approximately 74% of future demand can be met by conservation measures and use of non-fluorocarbon alternatives, but that hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) alternatives will be required for the remaining 26%

R-365mfc, environmental impact and fate

This paper compares the total equivalent warming impacts (TEWI) of current and older air-conditioning and refrigeration equipment. The introduction reviews the two components of TEWI, namely direct (release of refrigerant) and indirect (energy related) effects. The paper then presents the methods used to calculate TEWI by converting the direct effect to equivalent emissions of carbon dioxide. A note addresses selection of the integration time horizon (ITH) to determine the global warming potential (GWP) for this calculation.

The paper discusses the dependence of TEWI on application factors, including service life, operation, refrigerant choice and associated GWP, system efficiency, and refrigerant charge and make-up rates. Typical values are tabulated for centrifugal chillers, low-temperature supermarket refrigeration systems, residential air conditioners, and domestic refrigerators. The table compares these data for equipment manufactured in 1970 and 1995. The paper briefly reviews the influences of regional generation mixes and changes on emissions; representative data are cited. Four plots then compare the direct, indirect, and total (TEWI) effects for the cited examples. A second table illustrates the sensitivity to changes in GWP and efficiency for an air conditioner. The influences are shown graphically in a plot of constant TEWI as functions of the GWP and efficiency. The paper concludes that small variations in performance have greater impact on TEWI than large variations in GWP. It cautions against dismissal of working fluids based on an arbitrary GWP threshold.

P. M. Midgley (M&D Consulting, Germany) and D. A. Fisher (E. I. du Pont de Nemours and Company, USA), The Production and Release to the Atmosphere of Halocarbon Alternatives to CFCs (HCFC-142b, HCFC-141b, and HFC-134a, Atmospheric Environment, 1997 (rdb7A41)

R-134a, R-141b, and R-142b production and emission data

P. M. Midgley (M&D Consulting, Germany) and A. McCulloch (ICI Chemicals and Polymers Limited, UK), Estimated National Releases to the Atmosphere of Chlorodifluoromethane (HCFC-22) During 1990, Atmospheric Environment, 31:809-811, 1997 (3 pages, rdb7A40)

production and emission data for R-22

M. J. Molina and F. S. Rowland (University of California, Irvine, UCI), Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom Catalysed Destruction of Ozone, Nature, 249:810-812, 1974 (3 pages with no figures or tables, RDB0929)

The paper briefly reviews the influences of regional generation mixes and changes on emissions; representative data are cited. Four plots then compare the direct, indirect, and total (TEWI) effects for the cited examples. A second table illustrates the sensitivity to changes in GWP and efficiency for an air conditioner. The influences are shown graphically in a plot of constant TEWI as functions of the GWP and efficiency. The paper concludes that small variations in performance have greater impact on TEWI than large variations in GWP. It cautions against dismissal of working fluids based on an arbitrary GWP threshold.

estimates of the tropospheric lifetime and ozone-depletion potentials (ODP) for 53 one- and two-carbon hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs): examines relationships among carbon-hydrogen bond strength, activation energy for removal of hydrogen by the hydroxyl radical (OH), tropospheric lifetime, and ODP; presents algorithms for to estimate tropospheric lifetimes of HCFCs based on the molecular weight and composition; presented formula predicts lifetimes for molecules with atmospheric lifetimes below 30 years with a root-mean-square (rms) error of a factor of 2.4; also presents an algorithm to calculate ODPs based on the tropospheric lifetime; overall rms error of calculating ODP from the structure is cited as a factor of 2.5; provides data for R-20, R-21, R-22, R-23, R-30, R-31, R-32, R-40, R-41, R-120, R-121, R-121a, R-122, R-122a, R-122b, R-123, R-123a, R-123b, R-124, R-124a, R-125, R-130, R-130a, R-131, R-131a, R-
This report presents experimental measurements and calculations to determine global warming potential (GWP) values for R-134a and R-E143a (CH$_3$OCF$_3$). It reviews their reactions with hydroxyl radicals (OH) and outlines the experimental procedure used to measure rate constants for OH reactions. It then presents the experimental data including spectral measurements in the ultraviolet and infrared ranges. The apparatus and spectra are shown. The report concludes with discussion and tabulation of global warming potentials for integration time horizons (ITHs) of 20, 50, 100, 200, and 500 years. The data for R-134a are compared to GWP values published by others. The results for R-134a show lower GWPs than published in the *Scientific Assessment of Ozone Depletion* by the World Meteorological Organization.

S. Pinnock et al., *Radiative Forcing of Climate By Hydrochlorofluorocarbons and Hydrofluorocarbons*, *Journal of Geophysical Research* (JGR), 100:23227-23238, 1995 (12 pages, rdb8109)

This paper presents the influences on stratospheric chlorine concentrations of eight scenarios of regulated halocarbon emissions. It notes that atmospheric chlorine concentrations have increased from 0.6 ppb, a century ago, to 2 ppb in the late 1970s, when the ozone hole was recognized to have first occurred. It rose to more than 3 ppb by 1990, predominantly from industrial halocarbons and their photochemical byproducts. The paper suggests that predicted ozone depletion from concentrations of 3-5 ppb...
are modest, approximately 1-2% in the tropics and 4-6% at high latitudes. Chemical models are unable to predict the extent of changes when chlorine exceeds 5 ppb. The paper reviews the known sources of chlorine, indicating that natural sources make up only 20% and those listed in the 1987 Montreal Protocol another 50%. A table summarizes a numerical model used to calculate the atmospheric abundances of individual halocarbons. They include R-11, R-12, R-113, R-114, and R-115 as well as other compounds and hypothetical substitutes. The paper discusses uncertainties such as the timing of atmospheric response, due to the lag for air to travel from the upper troposphere to the middle stratosphere, and delays between halocarbon production and emission. It then describes and plots the impacts for eight regulatory options. They include changes in the timing, extent, substitutes, compliance, and uncertainties for phaseout of halocarbons. The paper concludes that stratospheric chlorine and bromine levels may return to those prevalent before the onset of the ozone hole, but only if more stringent regulations are applied to halocarbon production.

V. Ramaswamy, M. D. Schwarzkopf (National Oceanic and Atmospheric Administration, NOAA), and W. J. Randel (National Center for Atmospheric Research, NCAR), Fingerprint of Ozone Depletion in the Spatial and Temporal Pattern of Recent Lower-Stratospheric Cooling, Nature, 382:616-618, 15 August 1996 (3 pages with 3 figures, RDB9103)

discusses interactions between stratospheric ozone depletion and global warming with specific attention to the diminished radiative forcing from stratospheric ozone, a natural greenhouse gas, due to halocarbon emissions: notes that data from satellite and ground-based instruments indicate that a reduced ozone level in the lower stratosphere for the middle to high latitudes in both hemispheres between 1979 and 1990; examines the radiative forcing of the surface-troposphere system from these ozone losses; compares it with that due to the increased concentrations of the other main radiatively active gases (carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons) over the same time period; indicates that significant negative radiative forcing results from ozone losses in middle to high latitudes; also indicates that the negative radiative forcing was caused by the CFCs and other gases; concludes that the net decadal contribution of CFCs to the greenhouse climate forcing is substantially less than previously estimated since the anthropogenic emissions of CFCs and other halocarbons are largely responsible for the observed ozone depletion.

HFCs, ozone depletion, ODP

V. Ramaswamy and M. M. Bowen (Princeton University), Effect of Changes in Radiatively Active Species upon the Lower Stratospheric Temperatures, Journal of Geophysical Research (JGR), 99(D9):16909-16921, 20 September 1994 (13 pages with 9 figures and 3 tables, RDB9104)

examines the thermal effects in the lower stratosphere due to changes in radiatively active chemicals; compares the influences that increase radiative forcing to those that decrease it, including both well-mixed greenhouse gases to tropospheric aerosols and stratospheric ozone loss to increases in tropospheric ozone; notes that perturbations in the concentrations of radiatively active species leads to temperature decrease in the lower stratosphere; indicates that tropospheric ozone increases enhance lower stratospheric cooling beyond that caused by stratospheric ozone depletion.

CFCs and alternative refrigerants

R-11, R-12, and others, environmental impacts

summarizes results from the third phase of a study to compare the global warming impacts of alternative technologies for air conditioning, refrigeration, and appliance insulation; focuses on refrigerants and insulation blowing agents to replace those being phased out under the Montreal Protocol; analyses use a systems approach to determine the total equivalent global warming impact (TEWI) for refrigerants and blowing agents with zero ozone depletion potential (ODP), existing not-in-kind (NIK) technologies, and NIK technologies not yet commercialized; assesses the impacts of R-22, R-134a, R-141b, R-152a, R-236ea, R-245ca, R-245fa, R-290 (propane), R-356mff ("R-356mff", R-356mfc, R-404A, R-407C, R-410A, R-502, 507A, R-717 (ammonia), R-744 (carbon dioxide), R-22/142b, cyclopentane, other hydrocarbons, engine-driven systems, absorption-cycle chillers and heat pumps, desiccant dehumidification, advanced vapor-compression systems, and evacuated panel insulation; covers refrigerator freezers, unitary air-conditioning equipment, supermarket refrigeration systems, chillers, and automobile air conditioners; notes that TEWI is not the only criterion that must be considered, but that safety, costs, local factors, reliability, and other considerations also apply; concludes that energy efficiency and reduced refrigerant emissions are the most effective means to mitigate future anthropogenic contributions to climate change.
clency and reduced refrigerant emissions are the most effective means to mitigate future anthropogenic contributions to climate change.

R-32 and others, atmospheric reactions

questions whether local concentrations of trifluoroacetic acid (TFA) could build to unacceptable levels, particularly in water bodies characterized by little or no outflow and high evaporation rates; suggests that enhancement of solute concentrations in shallow groundwater in arid regions also could lead to high local concentrations; notes that TFA is resistant to abiotic degradation processes such as photolysis and hydrolysis and also that it is virtually unmetabolizable by most plants and animals; acknowledges that hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are necessary as alternatives to replace chlorofluorocarbons (CFCs), but notes that TFA is likely to be an extremely persistent compound that may not be universally benign when alternative fluorocarbons are released in kilotonne quantities

relative infrared (IR) absorption by weight and by mole of R-11, R-12, R-13, R-14, R-21, R-22, R-32, R-41, R-113, R-113a, R-114, R-115, R-118, R-121, R-122, R-123, R-123a, R-125, R-131, R-131a, R-132b, R-134, R-141, R-141b, R-142b, R-143, R-143a, R-152a, R-152a, R-161, R-217ba, R-218, R-225da, R-236ea, R-236fa, and R-744; IR absorption and hydrocarbon global warming potential (HGWP) of R-11, R-12, R-22, R-113, R-22, R-123, R-125, R-141b, R-142b, R-143a, and R-152a

global warming, direct and indirect effect, TEWI, efficiency and emission trends

H. W. Sidebottum (University College Dublin, Ireland) and J. Franklin (Alternative Fluorocarbons Environmental Acceptability Study, AFEAS, USA), The Atmospheric Fate and Impact of Hydrochlorofluorocarbons and chlorinated Solvents, Pure and Applied Chemistry, 68(9):1757-1769, 1996 (13 pages with 6 figures and 1 table, RDB7754)

examines the atmospheric behavior of hydrochlorofluorocarbons (HCFCs) and chlorinated solvents, described as two classes of volatile chlorinated aliphatic compounds used on a large scale with considerable societal benefits: paper addresses R-22, R-123, R-124, R-141b, and R-142b in the HCFC group and R-30, R-140a (methyl chloroform), R-1110, and R-1120 in the solvent group; concludes that with the exception of R-140a (methyl chloroform), these compounds make only a small or insignificant contribution to stratospheric ozone depletion, global warming, photo-chemical smog, acid rain, or chloride or fluoride levels in precipitation; identifies the atmospheric degradation paths and products for the cited compounds

documents that ozone-depleting emissions have slowed and, in some cases stabilized or declined

R-131, ODP, GWP

ODP

please see page 6 for ordering information

ODP

R. S. Stolarski and R. J. Cicerone (University of California, Irvine, UCI), Stratospheric Chlorine: A Possible Sink for Ozone, Canadian Journal of Chemistry, 52:1610-1615, 1974 (6 pages, rdb3240)

R-32, R-125, R-141b, R-143a, atmospheric reactions

atmospheric reactions

analysis shows that trifluoroacetate (TFA) concentrations could become appreciable, within several decades, in the local surface waters of seasonal wetlands for conditions of high evapotranspiration where removal by degradation and seepage is limited: observes that TFA will not have any biological effects in wetlands if its concentration is limited to the projected global average rainwater concentration, but that enhanced concentrations may be concerns for some conditions [This analysis incorporated emission projections provided by the U.S. Environmental Protection Agency (EPA) for R-123, R-124, and R-134a; the R-123 release data are much higher than those from other sources. These data would accelerate the effect discussed, but not change the ultimate conclusions.]

R-141b, R-142b, and others, environmental impacts, atmospheric reactions

R-123, R-125, and others, atmospheric reactions

R-125 and others, atmospheric reactions, lifetime

R-125 and others, atmospheric reactions, lifetime

influence of energy-related (indirect effect) emission on total equivalent warming impact (TEWI): discussion of direct (refrigerant emission) and indirect effects, carbon dioxide releases per kWh electricity generated by country, and effect of load profiles and time-of-day load shifting; effects of storage and use of absorption systems for peak demand reduction; comparative efficiencies of a compressor for R-12, R-22, R-134a, R-290 (propane), R-502, and R-717 (ammonia) for air conditioning and refrigeration
calculated and projected impacts on stratospheric ozone from natural and anthropogenic chemicals

This series of 19 presentation charts provides an update on the understanding of stratospheric ozone depletion, global warming, and their linkage. The summary of ozone depletion draws on the "Scientific Assessment of Ozone Depletion: 1994" by NOAA, NASA, UNEP, and WMO [see RDB5301 and RDB5302]. It addresses confirmation of ozone loss, the current and projected extents of that phenomenon, relationship to man-made emissions, consequences of hydrochlorofluorocarbon (HCFC) and hydrofluoro-carbon (HFC) use, and implications for policy making. A plots shows the cumulative equivalent chlorine loading of natural and anthropogenic chemicals for 1979-2054. Another depicts the global consumption of chlorofluoro-carbons (CFCs) for 1986-1992. It reveals that consumption outside the developed countries is projected to exceed that in developed countries in 1994. A third figure shows global consumption of CFC refrigerants by major countries or groups of countries. The charts then outline key issues anticipated to surface in the next meeting of Parties to the Montreal Protocol. The update on global warming capsulizes the "1994 Report of the Scientific Assessment Working Group" of the IPCC [see RDB4B10]. A series of charts indicates the levels of scientific confidence in climate change and resultant impacts. Two final charts introduce and summarize an investigation by Oak Ridge National Laboratory (ORNL) of total equivalent warming impacts [see RDB-5509].

D. Hartmann (University of Washington), S. Vogel (science writer), and L. Farrow (National Oceanic and Atmospheric Administration, NOAA), *Reports to the Nation on our Changing Planet: Our Changing Climate*, report 4. University Corporation for Atmospheric Research (UCAR) Joint Office for Science Support, fall 1997 (28 pages with 10 figures, RDB9109)

explains in simple terms the effects that have and are changing the climate, both natural and of human origin (anthropogenic): explains the dynamic climate system, factors that may change it, the greenhouse effect, changes in greenhouse gases including refrigerants, and the role of aerosols with emphasis on sulfate aerosols and the sunscreen effect; discusses climate changes in the past century, prediction of climate change, use of models to predict future changes, and directions for the future

atmospheric chemistry and environmental impacts of HCFCs and HFCs including R-22, R-23, R-32, R-123, R-124, R-125, R-134a, R-141b, R-142b, and R-143a with comparisons to R-11, R-12, and R-744 (carbon dioxide); atmospheric lifetimes, ozone depletion potential (ODP), halocarbon global warming potential (HGWP), gas-and aqueous-phase atmospheric degradation products, heterogeneous and aqueous phase chemistry, formation of toxic or noxious products including trifluoroacetic acid (TFA, CF₃CO₂H) in rainwater

T. J. Wallington, W. F. Schneider (Ford Research Laboratory), D. R. Worsnop (Aerodyne Research, Incorporated, USA), O. J. Nielsen, J. Sehested (Risø National Laboratory, Denmark), W. J. DeBruyn, and J. A. Shorter (Boston College, USA), *The Environmental Impact of CFC Replacements - HFCs and HCFCs, Environmental Science and Technology*, 28(7):320A-326A, 1994 (7 pages, rdb5C34)

environmental impacts

W. C. Wang (University of Science, Malaysia), *Climate Effects Due to Increasing Atmospheric Trace Gases and their Induced Ozone Changes, Ozone Depletion: Implications For The Tropics* (proceedings of the International Conference on Tropical Ozone and Atmospheric Change, Penang, Malaysia, 20-23 February 1990), edited by M. Ilyas, United Nations Environment Programme (UNEP), Nairobi, Kenya, 292-301, 1991 (10 pages, RDB-7C76)

ozone depleting effects from releases of R-11, R-12, R-22, R-113, R-115, R-123, R-124, R-141b, R-142b, and others; environmental impacts

please see page 6 for ordering information
examine the atmospheric distributions, lifetimes, and degradation products of R-123, R-134a, R-141b, R-142b, and R-152a; concludes that R-123 and R-152a are removed relatively rapidly in the troposphere by reaction with hydroxyl radicals; also concludes that R-141b has the greatest potential of the five compounds to increase chlorine loading in the lower stratosphere.

M. A. Wright, Biodegradation of ICI Synthetic Lubricants, PhD thesis, Cranfield Institute of Technology, UK, 1993 (rdb7c01)

This article outlines analyses of R-123 as an example of a chemical that is being phased out under the Montreal Protocol based on chlorine content, but which offers important and offsetting environmental benefits. The dominant use of R-123 is in centrifugal chillers. The analyses show that R-123’s low ozone depletion potential (ODP) of 0.014 coupled with time-based emissions yield an inconsequential impact on chlorine-bromine loading (CBL). The CBL impact is shown to be 0.002% of the total and 0.007% for a combination of worst-case projections, but much lower at the time of the CBL peak from other anthropogenic emissions. In contrast, R-123’s short atmospheric lifetime (τ_{atm}) of 1.4 years and low global warming potential (GWP) for 100-year integration of 90 are very favorable. Combined with thermodynamic efficiency that is 3-5% higher than alternatives and 9-20% higher in current equipment, R-123 use offers an important means to reduce greenhouse gas emissions. The paper notes that there is no single measure to compare ozone depletion and global warming effects, but the negligible impact on CBL does not justify discarding an important option to address global warming. The article cites other chemicals slated for phaseout that also may have indiscernible ozone impacts, among them R-13B1 (halon 1000), R-124, and R-280faB1 (halon 3001). It speculates that R-123 probably would have survived phaseout had the global warming regulations been implemented before those for ozone depletion. The article concludes that use of single measure ODP controls places excessive emphasis on the process rather than the objectives, that containment and recovery would suffice to address beneficial chemicals with short τ_{atm}, and that associated energy use must be considered along with GWP in assessing the impacts of global warming concerns. The article also notes that careless elimination of options can be more harmful than beneficial for compounds with short τ_{atm} and the potential for energy savings.

D. J. Wuebbles, A. K. Jain, and Z. Li, The Atmospheric Lifetime and Estimated Global Warming Potentials for Perfluoropropylene (C_3F_8), University of Illinois at Urbana-Champaign, Urbana, IL, 1997 (3 pages with no figures or tables, RDB7c32)

τ_{atm} and GWP for R-1216

D. J. Wuebbles, Z. Li, and K. O. Patten, Estimated Ozone Depletion Potentials and Global Warming Potentials for 1-C$_3$F$_7$I, 1-C$_3$F$_5$I, and 1-C$_3$F$_{13}$I, University of Illinois at Urbana-Champaign, Urbana, IL, 1997 (9 pages with 2 figures, RDB7C32)

atmospheric lifetimes (τ_{atm}), ODP, and GWP for the perfluoroalkyl iodides R-217ca1, R-319mccf1, and R-51-13mcccf1

D. J. Wuebbles (University of Illinois at Urbana-Champaign) and D. E. Kinnison (Lawrence Livermore National Laboratory, LLNL), Predictions of Future Ozone Changes, International Journal of Environmental Studies, 51:269-283, 1996 (15 pages with 4 figures, RDB7207)

numerical models of global atmospheric chemistry, Chlorine/Bromine Loading, equivalent stratospheric chlorine predictions based on assumed compliance with the Copenhagen Amendments to the Montreal Protocol, changes in stratospheric ozone from chlorofluorocarbons (CFCs) and other halocarbons

D. J. Wuebbles (University of Illinois at Urbana-Champaign), Three-Dimensional Chemistry in the Greenhouse, Journal of Climatic Change, 34:397-404, 1996 (8 pages with no figures or tables, RDB7208)

editorial comment on atmospheric modeling of chemical processes in the troposphere and stratosphere; evolution from simplified weighing functions, such as the Global Warming Potential (GWP), to one- (1-D), two- (2-D), and three-dimensional (3-D) models; comparative computational burdens; application and limitations of chemical models for climate studies; complexity of tropospheric processes and consequent, interim reliance on 2-D models

D. J. Wuebbles (University of Illinois at Urbana-Champaign), Weighing Functions for Ozone De-
indices for environmental concerns from chemical releases; atmospheric concentrations and lifetimes; model-calculated and semiempirical approaches for ozone depletion potential (ODP); time-dependent effects; relative radiative forcing, global warming potential (GWP) and dependence on the integration time horizon, absolute global warming potential (AGWP) to avoid the reference basis, and other GWP formulations; direct and indirect GWPs; limitations on use of ODP and GWP indices; tabular data for R-11, R-12, R-12B1, R-13B1, R-1311, R-14, R-22, R-23, R-32, R-40B1 (methyl bromide), R-50 (methane), R-113, R-116, R-123, R-124, R-125, R-134a, R-140a (methyl chloroform), R-141b, R-143a, R-152a, R-744 (carbon dioxide), R-744A (nitrous oxide), and R-7146

D. J. Wuebbles (Lawrence Livermore National Laboratory, LLNL), *The Role of Refrigerants in Climate Change*, *International Journal of Refrigeration* (IJR), 17(1):7-17, January 1994 (11 pages with 9 figures and 3 tables, RDB7B17)

reviews the role of refrigerants in affecting climate with attention to ozone depletion and global warming; summarizes the basic mechanisms of global warming and tabulates the relative radiative forcing effects of R-11, R-12, R-22, R-114, R-115, R-123, R-124, R-134a, R-141b, and R-152a; discusses the atmospheric concentrations and trends for these fluorochemicals (due to emissions from refrigerant and other uses); discusses the potential response of climate including surface temperatures, feedback effects, and significance of climate change; tabulates the global warming potentials (GWPs) for the cited refrigerants and discusses policy analyses; paper concludes that the increased radiative forcing (warming effect) of atmospheric concentrations of chlorofluorocarbons (CFCs) and related halocarbons is comparable in magnitude to the offsetting negative forcing (cooling effect) from stratospheric ozone loss due to these chemicals; the replacements will have a smaller warming effect, but there should be less cancellation for these ozone-friendly compounds

D. J. Wuebbles (Lawrence Livermore National Laboratory, LLNL) and J. Edmonds, *Primer on Greenhouse Gases*, Lewis Publishers, Chelsea, MI, USA, 1991 (230 pages, rdb3972)

global warming, greenhouse gases, environmental impact

This paper summarizes theoretical analyses of the influence of chlorocarbon emissions on the atmosphere and to stratospheric ozone depletion in particular. Prior analyses focused on R-11 and R-12. The new results indicate that R-10 (carbon tetrachloride), R-113, and R-140a (methyl chloroform) also could contribute significantly. The paper briefly reviews the scientific understanding of ozone depletion and the evolution of model calculations. It then outlines 15 scenarios developed by the Organization for Economic Cooperation and Development (OECD), and three added cases, to assess potential growth and decline in chlorocarbon releases. The calculated changes in total column ozone are tabulated for 1950-2100 for the 18 scenarios. Steady state projections are included for scenarios reflecting constant emissions following 1980 and the same with increased R-10 emissions. Plots summarize the changes in total ozone with time for the 18 scenarios. A table summarizes the relative efficiencies of halocarbons for the no-growth scenario, noting that R-11 and R-12 account for approximately 70% of the ozone loss at steady state conditions. A figure shows the changes in local ozone concentrations by altitude, at selected times, for the no-growth scenario. Two others depict variants with increases and decreases of 7% per year in chlorocarbon emissions after January 2000. The paper concludes with discussion of changes in surface temperature from increased concentrations of R-11 and R-12, by their actions as greenhouse gases. An appendix describes the LLNL Transport-Kinetics Model used.

This paper discusses the interactions of anthropogenic influences on stratospheric ozone. Chlorocarbon, carbon dioxide, nitrous oxide, and NOx emissions are identified as coupled perturbations. The paper summarizes calculations of changes due to chlorocarbon emissions, how the other perturbations may have influenced the actual change in ozone, and how both may influence future changes in ozone. It concludes that increasing CO2 concentrations will have a large offsetting influence to ozone
losses from chlorocarbons by altering the atmospheric temperature, and thereby the air density and chemical reaction rates. It postulates that increases in CO$_2$ and NO$_x$ concentrations may lead to an increase in total ozone. This finding points to the complexity of modeling global-scale chemical and climatic effects.

R-227ea, R-236ea (CHF$_2$CHFCF$_3$), R-245ca (CH$_2$FCF$_2$CF$_2$H), and R-356mff (CF$_3$CH$_2$CH$_2$CF$_3$, identified in the paper as R-356ff or HFC-356ff)

tropospheric lifetime of R-E125, R-E134, R-E143a, R-CE216 and others - as reported in RDB 7B15

Alternative Fluorocarbons Environmental Acceptability Study, AFEAS, Washington, DC, 1997

This booklet presents eleven summaries addressing the environmental aspects of alternative fluorochemicals, including those used as refrigerants. The first two summarize the cooperative research efforts by industry under the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS) and Programme for Alternative Fluorocarbon Toxicity Testing (PAFT), to examine the acceptability hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) as chlorofluorocarbon (CFC) replacements. A summary of the Montreal Protocol on Substances that Deplete the Ozone Layer reviews the history of this international accord to phase out production of CFC and HCFC refrigerants among other chemicals. It also recaps the schedules under the Protocol as well as the U.S. Clean Air Act and European regulations. A summary on Production and Sales of Fluorocarbons reviews and provides a plot of the worldwide production of R-11, R-12, R-22, R-113, R-114, R-115, R-134a, R-141b, and R-142b for 1980-1995. It highlights key changes in production between 1994 and 1995 and shows a plot of CFC production by year on an ozone depletion potential (ODP) weighted basis. A summary on Atmospheric Chlorine: CFCs and Alternative Fluorocarbons reviews the mechanisms of stratospheric ozone depletion and plots the ODP values used in the Montreal Protocol and projected chlorine-bromine loading (CBL, identified as equivalent halogen loading) through the year 3000. A synopsis of the Contributions of Greenhouse Gas Emissions to Climate Forcing Relative to CO$_2$ discusses radiative forcing, a parameter used to describe the perturbation of the heat balance in modeling the earth-atmosphere system. It explains the basis for global warming potentials (GWPs) and the quantitative influence of integration time horizon (ITH) on analyses of impacts. A table provides estimates for the atmospheric lifetimes and GWP values for 20, 100, and 500 yr ITH. A sheet on Total Global Warming Impact and TEWI explains the significance of direct (emission related) and indirect (energy related) effects of alternative technologies and fluids.

Two plots show the radiative forcing associated with the direct (refrigerant and insulation blowing agent) and indirect components of use of a refrigerator freezer. The discussion notes that the direct effect is much smaller and eliminated within 100 years, whereas significant carbon dioxide from the associated energy production persists more than 500 years later. The summary discusses the outlook for "not-in-kind" alternative technologies, suggesting that efficiency improvement for conventional technologies is more promising to mitigate future climate change. A review of the Breakdown Products of Alternatives outlines the mechanisms and consequences of CFC, HCFC, and hydrofluorocarbon (HFC) breakdown. It notes that they readily decompose into simple inorganic species in the lower atmosphere, that the ultimate breakdown products are acidic compounds that are washed out in rain, that the acidic concentrations are so low as to have no appreciable effect, and that the alternatives do not contribute to photochemical smog formation in urban areas. A further summary of the Environmental Fate of Trifluoroacetyl Halides addresses the atmospheric breakdown of R-123, R-124, and R-134a, producing trace quantities of trifluoroacetyl halides. These halides hydrolyze, in cloud water droplets or surface waters, to form trifluoroacetate (TFA) acid and hydrofluoric or hydrochloric acid. The fate of TFA ions is discussed. While not expected to have an impact on humans, plants, animals, or microorganisms, further study of the ultimate physiochemical and biological fate is underway. A summary on TFA and Seasonal Wetlands responds to a published analysis that suggests
TFA buildup in transient wetlands. The summary outlines factors that may enhance local TFA concentrations in rain and in wetlands. It also discusses the assumptions used in the analyses and interprets the findings. A sheet on UV-B Radiation Measurements discusses the importance of the ozone layer in shielding ultraviolet-B (UV-B) radiation in sunlight as well as efforts to monitor and observed trends of incoming UV-B intensity. A Glossary of Terms defines terminology for discussion of the atmospheric effects of alternative fluorocarbons.

Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, report 94-26, Jet Propulsion Laboratory (JPL), California Institute of Technology, 1994 (rdb8105)

alternative refrigerants, lifetime, atmospheric reactions

estimated emissions in the USA of carbon dioxide (R-744), methane (R-50), nitrous oxide (R-744A), halocarbons, sulfur hexafluoride (R-7146), criteria pollutants (carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds, VOCs), and other greenhouse gases: the halocarbons addressed include R-10 (carbon tetrachloride), R-11, R-12, R-14, R-22, R-23, R-30 (methylene chloride), R-113, R-116, R-125, R-134a, R-140a (methyl chlorofrom), R-141b, R-142b, R-143a, R-152a, R-227ea, R-31-10, and R-43-10; limited data or discussion also are provided for halons, R-20 (chlorofrom), R-114, R-115, R-123, R-124, and R-236fa; the halocarbon data are presented collectively for the bromofluorocarbon (BFC, halon) and individually and collectively for the chlorofluorocarbon (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC), perfluorocarbon (HFC) groups; depending on the substance, data cover the period from 1989 through 1997; estimated emissions are from all uses - refrigerant release, transport, and degradation of organic compounds

global warming, greenhouse gases, environmental impact

Guideline Methods of Calculating TEWI, a BRA Specification, British Refrigeration Association, Bourne End, UK, 1996 (rdb8608)

standard methods to calculate the total equivalent warming impact (TEWI) for refrigeration-related uses of substances that behave as greenhouse gases, including refrigerants

Handbook of Environmental Fate and Exposure Data for Organic Chemicals, edited by P. H. Howard, 1989-1993 (4 volumes totalling more than 2400 pages, rdb6105)

Production, Sales and Atmospheric Release of Fluorocarbons through 1996, Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), Washington, DC, 1998 (124 pages with 3 figures and 47 tables, RDB8B35)

R-11, R-12, R-22, R-113, R-114, R-115, R-124, R-134a, R-141b, R-142b, production and emission data

Scientific Assessment of Ozone Depletion: 1994, chaired by D. L. Albritten, R. T. Watson, and P. J. Aucamp, report 37, World Meteorological Organization (WMO), Global Ozone Research and Monitoring Project, Geneva, Switzerland; United Nations Environment Program (UNEP), Nairobi, Kenya; National Oceanic and Atmospheric Administration (NOAA), Washington, DC, USA; National Aeronautics and Space Administration (NASA), Washington, DC, USA; February 1995 (582 pages, with 146 figures and 76 tables, available from WMO, RDB5301)

This definitive work, the seventh in a series, updates the assessment used in governmental and international decision-making for protection of the stratospheric ozone layer. The volume addresses common questions about ozone depletion, observed changes in ozone and source gases, atmospheric processes responsible for these changes, simulations of global ozone, consequences of ozone change, and scientific information for future decisions. It was prepared by 13 international panels, consisting of 230 of the world's leading experts in the atmospheric sciences, and subjected to an intensive peer review by 147 scientists. The product summarizes understanding of the stratospheric ozone layer and its relation to humankind. The assessment was initiated in November 1992 by
the 4th meeting of the parties to the Montreal Protocol in Copenhagen. The results are scheduled for consideration by the parties to the Protocol in 1995 at the 5th meeting in Vienna. The report provides internationally recognized values for atmospheric lifetimes, response times, chlorine and bromine loading, ozone depletion potential (ODP), and global warming potential (GWP) for natural and anthropogenic chemicals impacting the global environment.

Scientific Assessment of Ozone Depletion: 1994 - Executive Summary, chaired by D. L. Albritton (National Oceanic and Atmospheric Administration, NOAA, USA), R. T. Watson (National Aeronautics and Space Administration, NASA, USA), and P. J. Aucamp (Department of National Health, South Africa), report 37 Executive Summary, World Meteorological Organization (WMO), Global Ozone Research and Monitoring Project, Geneva, Switzerland, 1994 (40 pages with 9 figures, available from WMO, also available from JMC as RDB5302)

This report summarizes the definitive assessment used in governmental and international decision-making for protection of the stratospheric ozone layer. The volume addresses the major scientific findings and observations, supporting evidence, related issues, and implications. The second portion responds to common questions about ozone depletion. It discusses how chlorofluorocarbons get to the stratosphere, evidence of stratospheric ozone destruction by chlorine and bromine, and that the majority of the chlorine in the stratosphere comes from human-made (anthropogenic) sources. It also examines whether changes in the sun's output could be responsible, the first appearance of the antarctic ozone hole, and why it occurred there rather than over the northern hemisphere. The summary concludes with discussion of the increase in ground-level ultraviolet radiation, the severity of the ozone depletion, and whether it will get worse. The executive summary and underlying report summarize understanding of the stratospheric ozone layer and its relation to humankind.

Production data and trends

REGULATORY ACTIONS

CCAP

CCAP

International

This report is one of seven prepared to assess the status of technologies impacted by the Montreal Protocol and to assess whether the control measures of the Protocol are sufficient to meet the goals of reducing ozone depletion. It is based on a review of the current state of knowledge on technical, scientific, environmental, and economic issues related to stratospheric ozone protection. The Technical Options Committee (TOC) examined options and trends for achieving compliance and assembled projections for refrigerant uses. The peer-reviewed report was prepared, pursuant to Article 6 of the Protocol, by an international panel representing approximately 100 firms, organizations, and government agencies and 22 countries. It addresses the Protocol and reassessment procedure, refrigerant data, domestic refrigeration (including refrigerators and other appliances), commercial refrigeration, cold storage and food processing, industrial refrigeration, air conditioning and heat pumps, chillers, transport refrigeration, and mobile air conditioning, mobile air conditioning, heating-only heat pumps and heat recovery, refrigerant conservation, developing country aspects, research coordination and information dissemination, historical chlorofluorocarbon (CFC) consumption and future demand and supply, historical hydrochlorofluorocarbon (HCFC) consumption
and future demand, and alternative refrigeration technologies.

This document contains the complete texts of the Vienna Convention and the Montreal Protocol as amended. These international treaties are formally titled the Vienna Convention for the Protection of the Ozone Layer and the Montreal Protocol on Substances that Deplete the Ozone Layer. They are administered under the auspices of the United Nations Environment Programme (UNEP). Together with the handbook [see RDB6904], the update summarizes the resulting control measures, the signature and ratification status by treaty and amendment for the 165 Parties (countries plus the European Union) that have adopted them, and the rules of procedure for meetings of the Parties. The decisions of the Parties and annexes to the Montreal Protocol, that relate to its interpretation, at meetings in Helsinki (April-May 1989), London (June 1990), Nairobi (June 1991), Geneva (July 1992), Copenhagen (November 1992), Bangkok (November 1993), Nairobi (October 1994), Vienna (December 1995), San José (November 1996), and Montreal (September 1997) are presented and indexed to the Articles to which they pertain. The handbook and update list approved destruction procedures and essential use exemptions, composition and procedures (terms of reference) for scientific and economic assessment panels, remedies for noncompliance, procedures for and details of the Interim Multilateral Fund and Multilateral Fund to assist Article 5 (developing) countries, finance of and procedures for the Trust Fund for administration of the treaties, and declarations adopted from 1989 through 1995. They include the Helsinki Declaration on Protection of the Ozone Layer (1989); declarations by Australia, Austria, Belgium, Canada, Denmark, Finland, Germany, Liechtenstein, Netherlands, New Zealand, Norway, Sweden, and Switzerland on advancing the phase out of chlorofluorocarbons (CFCs) to not later than 1997 (1990); a resolution on more stringent measures for ozone depleting substances (1990); statements by Austria, Denmark, Germany, Finland, Norway, Sweden, and Switzerland on more control measures (1991); a resolution on methyl bromide (1992); statements on representation of Yugoslavia (1992); a memorandum on hydrochlorofluorocarbons (HCFCs) (1993); and declarations on methyl bromide (1993), by countries with economies in transition (1993), on the Multilateral Fund (1994), on HCFCs (1995), and methyl bromide (1995). The update then lists sources, contacts, and publications for further information, primarily from United Nations and international organizations. A concluding section presents the evolution of the Montreal Protocol from its original text through successive amendments. The Vienna Convention was adopted on 22 March 1985 and entered into force on 22 September 1988. The Montreal Protocol was adopted on 16 September 1987 and entered into force on 1 January 1990, and 10 August 1992, the Copenhagen Amendment on 23 November 1992 and 14 June 1994, and the Montreal Amendment on 15-17 September 1992 and 1 January 1999. Entry into force follows ratification, accession, acceptance, or approval by prescribed numbers of Parties.

National

Refrigeration Safety Regulation, translated by the Japan Refrigeration and Air Conditioning Industry Association (JRAIA), Tokyo, Japan, circa 1990 (36 pages, RDB1132)

refrigerant safety, Japanese High-Pressure Gas Control Law (law number 204 of 1951), R-12, R-13, R-14, R-21, R-22, R-40, R-170, R-290, R-500, R-502, R-600, R-600a, R-717, R-1150, and others

SUBSTITUTE REFRIGERANTS

performance tests of blends

M. Barreau (Elf Atochem S.A., France), Present European Environmentally-Friendly HCFC Substitutes in Stationary Air Conditioning, The Earth Technologies Forum (proceedings, Washington, DC, 26-28 October 1998), Alliance for Responsible
status of substitutes in Europe with focus on R-32, R-125, R-134a, R-143a, and blends containing them, notably R-404A, R-407C, and R-410A: outlines phaseout schedules for chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and replacement projections

K. Berglóf (AKA Kyla AB, Sweden) and J. Morley (DuPont Fluoroproducts, UK), Practical Experience in the Use of R-407C in Small Chillers and Heat Pumps in Sweden, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 7-12, July 1996 (6 pages with 2 figures and 1 table, RDB-6747)

results from developmental, laboratory testing of R-407C in low-charge chiller systems; concludes that R-407C is a viable substitute for R-22 in direct expansion systems including ground-source heat pumps; notes that approximately 1500 heat pumps using R-407C are in operation in Sweden

M. S. Bhatti, A Critical Look at R-744 and R-134a Mobile Air Conditioning Systems, paper 970527, (SAE International Congress and Exposition, Detroit, MI), Society of Automotive Engineers (SAE), Warrendale, PA; republished in Automotive Climate Control Design Elements, special publication 1239, SAE, 117-141, 1997 (25 pages, rdb8349)

comparison of R-134a and R-744 (carbon dioxide) in mobile air-conditioning (MAC) systems

review of candidate fluorinated ethers (HFE), alcohol, amine, silicon, and sulfur compounds: provides an extensive tabular summary including formulae, normal boiling points, atmospheric lifetimes, flammability indications (ratios of substituent fluorine to fluorine plus hydrogen counts), toxicity, and stability; several potential alternatives are identified for further study, but the effort and expense necessary to qualify a new refrigerant are described as enormous; based on current information, none of the candidates appears to have the balance of performance, safety, environmental characteristics, ease of manufacture, and cost needed to challenge hydrofluorocarbons (HFCs), but further opportunities may be identified by relating properties to molecular structures

findings of a five-year test of retrofits of domestic refrigerators to R-290/600: concludes that R-290/600 (50/50 molar) is an excellent alternative for retrofit of domestic refrigerators where flammability creates no danger; moreover, the hydrocarbon blend is an attractive choice in countries with developing economies, where users cannot afford more-expensive options or replacement; paper notes that unless an inexpensive and environmentally-friendly service refrigerant is allowed, illegal trade in R-12 is likely

R-744, carbon dioxide, possibilities and limitations for use in unitary air conditioners and heat pumps; cycle efficiency; plots compare the coefficient of performance and operating pressure ratio against evaporating temperature, based on isentropic compression, for R-22, R-134a, R-744, and the Carnot cycle; expansion options including expanders; concludes that R-744 offers the advantages of low toxicity and cost, nonflammability, and wide availability, but its inherently low efficiency and high operating pressures will remain serious challenges in the near term

application of approximate relationships between molecular structure and the macroscopic properties of a fluid to identify candidate refrigerants for centrifugal compressors; tabulates the normal boiling point, flammability and molecular mass of R-11, R-113, R-114, R-E236ea1, R-236fa, R-E236fa1, R-245ca, R-245ca1, R-E245cb1, R-245fa, R-E245fa1, R-E254cb1, R-325pcc (identified in the paper as R-
329cca), R-E329pcc1 (identified as R-E329cca1), R-C336, R-338mcf (identified as R-338cfa), R-E338mfc2 (identified as R-E338cfa2), R-338ea, R-E347mfc2, R-E347sc1, R-365fcb, R-356nff (identified in the paper as R-356nfa), R-43-10mee (identified as R-410mee); concludes that a compromise may be needed between flammability and thermodynamic performance for hydrofluorocarbons (HFCs), based on the conflicting advantages of high hydrogen content for performance and high fluorine content to avoid flammability.

examines use of R-123 as an alternative to R-11 in air-conditioning, refrigeration and heat pump systems: discusses the theoretical coefficient of performance (COP) in Rankine cycles and the pressure ratios (PR) for heat pumps using R-123; plots the pressure ratio and theoretical as functions of the appropriate temperature for refrigeration and heat pumps systems.

R. Döring (Fachhochschule Münster, Germany), H. Buchwald, and C. von Eynatten (Solvay Fluor und Derivate GmbH, Germany), Gemische aus R134a und R23, pvTx-Messungen sowie Ergebnisse weiterer experimenteller und theoretischer Untersuchungen [Mixtures of R-134a and R-23, pvTx Measurements along with Results of Further Experimental and Theoretical Investigations], DKV-Tagungsberichte, Deutscher Kälte- und Klimatechnischer Verein (DKV, German Association of Refrigeration and Air-Conditioning Engineers), Germany, 20(1/2):65 ff, 1993 (in German, rdb812)

pressure, volume, temperature, and concentration data and analyses for R-23/134a blends.

J. D. Douglas (AIL Research, Incorporated), E. A. Groll, J. E. Braun, and D. R. Tree (Purdue University), Evaluation of Propane as an Alternative to HCFC-22 in Residential Applications, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 1996 (8 pages with 9 figures and 3 tables, RDB-7C29)

S. Engelking and H. H. Kruse (Forschungszentrum für Kältetechnik und Wärmepumpen GmbH, FKW, Germany), Development of Air Cycle Technology for Transport Refrigeration, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 1996 (8 pages with 7 figures and 2 tables, RDB929)

R-729 (air), air-cycle refrigeration, turbine-compressor/turbine-expander and pressure-wave prototypes; performance comparison to R-22 vapor-compression cycle equipment; concludes that the pressure-wave machine (PWM) is preferable to the turbo expander and compressor approach for efficiency and cost.

R-729 (air), concludes that air-cycle refrigeration is less efficient than conventional vapor-compression systems, but that improvements in component efficiencies may enable use; discusses applications in aerospace and surface transportation, automobiles, buildings, and food freezing and preserving.

S. Göktun (Istanbul Technical University, Turkey), Overview of Chlorine-Free Refrigerants for Centrifugal Chillers, Energy, 20(9)937-940, September 1995 (4 pages, rdb820)

describes criteria for ideal working fluids in centrifugal chillers; compares the environmental and thermophysical properties of candidates; identifies R-245ca and R-E245fa as promising alternatives to R-11 for the low-capacity range, and R-134a as the best retrofit refrigerant for R-12 in medium capacities; identifies R-236ca, R-363cb, R-236ea, R-236fa, and R-E134 as promising refrigerants to replace R-114 in high-capacity chillers.

R-134a, R-32/134a (33.77/66.23) [50/50 molar].

- compares environmental, performance, safety, and application factors for R-134a, R-152a, R-600a (isobutane), R-22/152a, R-32/152a, R-125/152a, R-143a/152a (possibly R-134a/152a - text contradicts table), and R-290/152a use as refrigerants in domestic refrigerators; identifies two R-22/152a blends that are commercially used in China, namely ZC-1 and ZC-2; indicates that R-32/152a shows promise for future use [the blend formulations are not given and inconsistencies in the data preclude precise determination, but the ZC and "promising" blends appear to be approximately R-22/152a (23/77), R-22/152a (68/42), and R-32/152a (6/94)]

- simulated performance of R-744 (carbon dioxide) in transcritical cycles for refrigerated shipping containers (RC) and ships ("reefers"); calculations indicate lower energy consumption compared to systems using R-22 or R-134a; identifies an ejector and expander system to further reduce energy use; notes that R-744 was the dominant refrigerant in these applications until 1965 (now dominantly R-22) and suggests that its use should be resumed for environmental reasons; indicates an average refrigerant loss rate of 20 %/yr in these systems

F. J. Keller, H. Liang, and M. Farzad (Carrier Corporation), *Assessment of Propane as a Refrigerant in Residential Air Conditioning and Heat Pump Applications, Refrigerants for the 21st Century* (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 57-65, 1997 (9 pages with 1 figure and 5 tables, RDB7B07)

- evaluation of the performance, costs, and environmental impacts of R-290 (propane) in a residential, air-to-air, split-system heat pump and in a window air conditioner; comparisons to R-22 and R-410A

- R-744, mobile air-conditioning (MAC) systems

- discusses theoretical and experimental differences between R-290 (propane), R-407C, and R-410A as replacements for R-22; compares their thermodynamic performance and capacities; presents a new method for fatigue tests [see RDB8B19 for expanded version of this paper in English]

- evaluation of higher compression ratios

H. H. Kruse (Forschungszentrum für Kältetechnik und Wärmepumpen, FKW, Germany) and H. König (Solvay Fluor und Derivate GmbH, Germany), *System Comparison of R-22 Replacement Refrigerants, The Earth Technologies Forum* (proceedings, Washington, DC, 26-28 October 1998), Alliance for Responsible Atmospheric Policy, Arlington, VA, 225-236, October 1998 (12 pages with 8 figures and 1 table, RDBB19)

- discusses theoretical and experimental differences between R-290 (propane), R-407C, and R-410A as replacements for R-22; compares their thermodynamic performance and capacities; presents a new method for fatigue tests [see RDB8C03 for partial version of this paper in German]

H. H. Kruse (Universität Hannover, Germany), *Energy Savings When Using Hydrocarbons as Refrigerant, Stratospheric Ozone Protection for the 90's* (proceedings of the International CFC and Halon Alternatives Conference, Washington, DC, 23-25 October 1995), Alliance for Responsible At-
Refrigerant Database

Page 435

mospheric Policy, Arlington, VA, 386-395, October 1995 (10 pages with 9 figures and 7 tables, available from JMC as RDB55B10)

R-C270; R-290; R-600; R-600a; R-601 (n-C5 or pentane); R-601b (2,2-dimethylpropane); R-1250 (propadiene); R-1270; R-29/600; R-29/600/-601; R-29/600a (28/72); (46/60), (50/50), and (72/28); R-290/601 (R-290/n-C5); butene, 2-methyl-1,3-butadiene, 2-methylbutane, 1,2-pentadiene, 1,4-pentadiene, pentene

S. L. Kwon, J. Berge, and L. Naley (Thermo King Corporation), Evaluation and Implementation of R-502 Alternatives for Transport Refrigeration, Proceedings of the 19th International Refrigeration Conference at Purdue (23-26 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 63-70, July 1996 (6 pages with 5 figures and 1 table, RDB7671)

reviews the performance requirements for transport refrigeration, outlines a test program for R-404A, R-407A, R-407B, and R-507A; tabulates the composition, molecular weight, critical properties, ozone depletion potentials (ODPs), halocarbon global warming potentials (HGWP's), and flammability for them; describes component modifications; provides plots of the discharge temperatures and pressures and of the comparative fuel consumptions and capacities for R-404A, R-407A, R-407B, and R-507A

P. D. de Larminat (York International, France), New Developments to Expand the Use of Ammonia, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 80-84, 1997 (5 pages with no figures or tables, RDB7609)

use of R-717 (ammonia)

G. Lorentzen (Norges Tekniska Hogskole, NTH, Norway), The Use of Natural Refrigerants - A Complete Solution to the CFC/HCFC Predicament, New Applications of Natural Working Fluids in Refrigeration and Air Conditioning (proceedings of the meeting of IIR Commission B2, Hannover, Germany, 10-13 May 1994), International Institute of Refrigeration (IIR), Paris, France, 21-36, 1994 (7 pages with 8 figures and 1 table, RDB5328)

R-290, R-717, R-718, R-744

R-407C, R-32/125/134a, capacity modulation by composition management, composition change, simulation, zeotropic blend, multisplit (multicool) air conditioner

This article reviews the criteria required of refrigerants and the reasons chlorofluorocarbons (CFCs) were originally investigated. A systematic examination, based on molecular structure, reveals a range of compounds that should be environmentally acceptable and still retain desired attributes. 860 compounds were screened, resulting in 51 fluids warranting further examination. The article notes that the number of compounds from which to choose alternatives is limited; the chlorofluorocarbon family - including fluorocarbons and hydrocarbons - remains the clear choice by virtue of stability, thermodynamic properties, health and safety characteristics, and familiarity. Some compromise with traditional criteria (e.g., capacity, flammability, and efficiency) will be needed. Present refrigerants resulted from more than 30 years of research and development. Careful scientific and technological planning are required to effect a significant change, and to avoid a new solution that introduces more problems than it solves.

safety measures for use of R-717 (ammonia) with emphasis on its classification as a toxic and combustible substance in Germany; illustrates approaches that minimize the refrigerant charge amount, through advanced chiller technologies, and that locate the chillers in machinery rooms; discusses allowed locations, refrigerant amounts, ventilation requirements, and machin-
R-407C, R-410A, and others

This paper examines the performance changes in an inverter-driven heat pump using R-407C. The nominal 23\% mass fraction was found to increase to 27.8\% as surplus refrigerant was retained in the accumulator, resulting in a 6\% increase in heating capacity. The test facility is shown schematically and test conditions are tabulated. Plots show the composition shifts of the components with refrigerant accumulation. Further plots show the changes in suction and discharge pressure as well as the capacity at both low and high speed heating operation, 30 and 90 Hz respectively, with accumulation. Capacity and coefficient of performance (COP) ratios are plotted for increasing surplus refrigerant ratios for both the heating and cooling modes. Two final plots compare measured and predicted heating capacity and COP with changes in the circulating R-32 fraction.

examination of R-744 (carbon dioxide) in transcritical cycles for air-conditioning and heat pump applications; theoretical and experimental findings for dual-mode (heating and cooling) heat pumps; heat pump water heaters (HPWH), and air- and water-cooled chillers; comparisons to R-22 and R-134a

examines R-407E as a replacement for R-22: indicates that R-407C was formulated in light of revised flammability test methods to offer higher efficiency and lower global warming potential (GWP) than R-407C and lower discharge pressures than R-410A while maintaining similar pressure to R-22 and nonflammability; compares the capacities, coefficients of performance (COP), and discharge pressures of a range of R-32/125/134a formulations including 28/17/55, 30/18/52 30/22/50, 30/0/70, 30/-10/60, 25/20/55, 25/15/60 (R-407E), and 25/-10/65; presents tests of R-407E in a 2.8 kW (0.8 ton) residential, split-system, room air conditioner; examines a cycle modification to incorporate a liquid-liquid heat exchanger to improve efficiency with the blend; concludes that R-407E offers higher COP improvement than expected from theoretical cycle analyses due to better heat transfer and lower suction pressure losses, that R-407E offers lower GWP and discharge pressure but higher COP compared to R-407C, and that incorporation of the liquid-liquid heat exchanger improves the cooling COP with R-407E by 5-6\% over R-407C in a conventional cycle

use of R-718 (water) as a refrigerant with illustrations for of a single-stage ice machine serving a mine and a two stage system using ammonia-water absorption for the second stage; comparison coefficients of performance (COPs) for R-718 and "conventional" refrigerants

J. W. Pillis (Frick Company), Expanding Ammonia Usage in Air Conditioning, R-22 and R-502 Alternatives (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 19-20 Au-
This paper presents tradeoffs for R-717 (ammonia) use in systems of different sizes. The author identifies good efficiency, high heat transfer coefficients, zero ozone depletion and global warming potentials (ODP and GWP), and low cost as positive aspects. He also cites favorable piping sizes, tolerance to water contamination, near insolubility in mineral oils, and ammonia's self-alarming smell to warn of leaks. Toxicity, flammability in the range of 16-27% concentration in air, and incompatibility with copper are cited as negative aspects. A figure shows the efficiencies of R-12, R-22, R-134a, and R-502 relative to that of ammonia for -40 to 4 °C (-40 to 40 °F) assuming isentropic compression. The paper indicates that ammonia probably is not competitive in small refrigeration and air-conditioning systems based on incompatibility with copper, use of which results in systems that are simple to fabricate, are virtually leak free, and offer simple methods for field repairs. The paper discusses design changes required for oil return, need to develop low-cost motors that are compatible with ammonia, and consequences of high discharge temperatures with air-cooled condensing. Two plots show the discharge temperatures of R-22, R-134a, and ammonia at 55 °C and 130 °F as functions of evaporating temperature. The paper notes that ammonia is widely used in large refrigeration systems, notably in industrial applications, based on favorable thermodynamic characteristics and low costs. It also notes that the zeotropic alternatives to R-22 would be a major concern in these applications due to their size, opportunities for leaks, potential for fractionation, and consequent servicing complexity. R-134a is not a good choice due to poor low-temperature efficiency, and the pressures associated with R-32 would necessitate new compressor designs. With R-22 phaseout, ammonia is suggested as the best choice. The paper discusses its advantages for these systems and notes that typical use of open drives, steel pipe for strength and durability, and evaporative condensers overcome the concerns cited for small systems. With zeotropes excluded for chillers in large air-conditioning systems, due to wide use of flooded evaporators and service considerations, ammonia and azeotropes are suggested as alternatives. The paper describes requirements for greater ammonia use including development of cost-competitive, enhanced heat exchangers fabricated with steel, aluminum, or other materials. Based on part-load efficiency, screw or reciprocating-piston compressors would be favored over multistage centrifugal compressors, needed for the high pressure differentials. Two installations of large ammonia chillers are described. Medium-sized chillers as cited as a market segment where ammonia use could increase. Several new packaged chillers, using ammonia, are cited as examples. The paper then discusses impediments to broader use of ammonia, among them toxicity and flammability. Several building code requirements are discussed and contrasted with a table showing the effects of exposure to increasing concentrations of ammonia. Some of the code requirements are suggested to be arbitrarily stringent. The author concludes that ammonia is not the answer for all or even a majority of air-conditioning systems, but that it is a good solution in many installations. He suggests caution to avoid over-regulation of ammonia use and a need to develop codes and standards that provide safe systems, without unnecessary restrictions and cost requirements.

D. M. Robinson and E. A. Groll (Purdue University), Using Carbon Dioxide in a Transcritical Vapor Compression Cycle, Proceedings of the 1996 International Refrigeration Conference at Purdue (23-28 July 1996), edited by J. E. Braun and E. A. Groll, Purdue University, West Lafayette, IN, 529-336, July 1996 (8 pages with 6 figures, RDB9923)

Literature review of R-744 in refrigeration, suitable applications, and research needs; thermodynamic modeling

A. Sekiya (National Institute of Materials and Chemical Research, NIMC, Japan) and S. Misaki (Research Institute of Innovative Technology for the Earth, RITE, Japan), Development of Hydrofluoroethers as Alternative Refrigerants and Other Applications, Proceedings of the International Conference on Ozone Protection Technologies (Baltimore, MD, 12-13 November 1997), Alliance for Responsible Atmospheric Policy, Arlington, VA, 28-33, November 1997 (8 pages with 1 figure and 7 tables, RDB8323)

Systematic examination of candidate hydrofluoroether (HFE) refrigerants: tabular comparison of the normal boiling point, critical temperature and pressure, liquid density, specific heat ratio, atmospheric lifetime, global warming potential (GWP), and ozone depletion potential of R-11, R-123, R-245fa, R-E347mcc3 (identified in the paper as "HFE-347mcc"), and R-E347mmy1 ("HFE-347mmy"), of R-114, R-E227ea1 ("HFE-227ea1"), and R-E245cb1 ("HFE-245cb"), of R-12 and R-134a, and of R-22, R-407C, and R-410A; thermal stability of R-E245cb1 with lubricants and metals (aluminum, copper, and steel); comparison of the electric resistance and dielectric constant of R-E245cb1 to those of R-22, R-113, and R-134a; cycle performance compa-
This paper discusses the performance, cost, and safety implications for use of R-290 (propane) in an 8.8 kW (2½ ton) single-package, air-cooled, unitary air conditioner. Test results are tabulated for R-22 and propane, the latter after replacement of the compressor with one having an 18% larger displacement. The table compares the capacity, input power, resultant energy efficiency ratio (EER), refrigerant charge amount, suction and discharge temperatures and pressures, and liquid temperatures at standard rating conditions. The paper notes that the capacity and efficiency are higher with propane and the larger compressor, while the discharge temperature and pressure are favorably lower. It notes that propane is more compatible than R-22 with most materials used, is readily available, is approximately 1/6th the cost of R-22, is nontoxic, has no ozone depletion potential (ODP), and near zero global warming potential (GWP) - approximately 0.2% that of R-22. Also, the charge size would be less than half. The paper then summarizes the findings of a risk assessment for propane use in a 12.3 kW (3½ ton) air conditioner, based on an independent analysis and a product evaluation by an independent test laboratory. They were performed by Arthur D. Little (ADL) and Underwriters Laboratory (UL), respectively. Modifications to isolate the refrigerant in the evaluation unit are outlined, as are further findings identified by the independent evaluation. A subsequent cost estimate by the manufacturer found that these safety requirements would increase the product cost by 30% over one with R-22. The increment was estimated to be even higher for a unitary, split-system air conditioner. The paper concludes that while propane was deemed to be an excellent refrigerant, the cost to use it would far exceed that to switch to a nonflammable, hydrofluorocarbon (HFC) blend.

This paper discusses the performance, cost, and safety implications for use of R-290 (propane) in an 8.8 kW (2½ ton) single-package, air-cooled, unitary air conditioner. Test results are
ceeds those of R-12 and R-134a, is compatible with common materials, and has run without problem for two years in a retrofit test.

Alternatives to Chlorofluorocarbons, bulletin AG-1 (document H-16411-2), DuPont Chemicals, Wilmington, DE, January 1992 (8 pages with 3 figures and 3 tables, available from JMC as RDB4511)

This bulletin discusses nine alternative refrigerants including five hydrochlorofluorocarbons (HCFCs) - R-22, R-123, R-124, R-141b, and R-142b - and six hydrofluorocarbons (HFCs) - R-23, R-32, R-125, R-134a, and R-152a. It briefly outlines testing for safety and performance and provides a figure contrasting the ozone depletion (ODP) and halocarbon global warming potentials (HGWP) of these refrigerants. A second figure shows their relative photochemical reactivity, or relative contribution to ground-level smog. Tables summarize the range of applications - including as refrigerants, blowing agents, and for other uses - of these fluids and their physical properties. The tabulated data include chemical name and formula, molecular weight, boiling and freezing points, critical parameters (temperature, pressure, specific volume, and density), heat of vaporization, flammability limits in air, ODP, halocarbon GWP (HGWP), Toxic Substances Control Act (TSCA) inventory status, and recommended chronic exposure limit for toxicity. A plot shows the vapor pressure relation to temperature; R-11, R-12, R-113, and R-114, R-500, R-502 also are shown for reference.

R-245fa, physical properties, environmental data, toxicity (4-hr LC₅₀ >200,000 ppm, cardiac sensitization >20,000 ppm, no toxicity at 100,000 ppm), compatibility, foaming characteristics, trial as a foam blowing agent, foam aging effects.

Identification

Center for Global Environmental Technologies (CGET), Halocarb© Computer Program and Halocarbon Nomenclature, Technical Update Series CGET3, New Mexico Engineering Research Institute (NMERI), Albuquerque, NM, 22 March 1994 (computer disk with software and 8 page documentation with 3 tables, limited copies available from JMC as RDB4674)

This software determines the International Union of Pure and Applied Chemistry (IUPAC) name, halon number, and molecular weight for halocarbons from the structural chemical formula. It does not handle unsaturated, cyclic, or branched-chain compounds. The program runs on DOS-based computers. The documentation reviews the IUPAC nomenclature rules, ASHRAE Standard 34 numbering system, composition-designating prefixes, and halon numbering system. Tables summarize the composition-designating prefixes and conventions for isomer suffixes. Some of the numbering and prefix conventions presented are extensions to those adopted in Standard 34.

This document presents a system of uniform nomenclature to identify organic chemicals, including most common refrigerants. The rules were formulated and adopted by the IUPAC Commission on the Nomenclature of Organic Chemistry. The sections (A-F and H) incorporated in this publication cover hydrocarbons; fundamental heterocyclic systems; characteristic groups containing carbon, hydrogen, oxygen, nitrogen, halogens, sulfur, selenium, and/or tellurium; organic compounds containing elements that are not exclusively carbon, hydrogen, oxygen, nitrogen, halogens, sulfur, selenium, and tellurium; stereochemistry; general principles for the naming of natural products and related compounds; and isotopically modified compounds. The rules respond to a stated belief "that differences in nomenclature frequently hinder the accurate and intelligible conveyance of information from one chemist to another, so tending to hamper understanding and progress." [An attempt is being made to conform to the definitive IUPAC rules in citing chemical names in the Refrigerant Database, though application of these rules is sometimes challenging.]

Assignment of Refrigerant Container Colors, ARI Guideline N-1995, Air-Conditioning and Refrigeration Institute (ARI), Arlington, VA, 1995 (12 pages, with 1 table, available from ARI for $10.00 for members and $20.00 for nonmembers, RDB6601)

This guideline sets color standards for containers for existing, new, and reclaimed refrigerants. It further provides a means by which ARI can
assign colors as new refrigerants are introduced, and maintains a record of those assigned and available. The guideline also recommends a container color (light green grey) for refrigerants that are not produced in sufficient quantities to qualify for individual colors. While color coding is not intended as a substitute for reading cylinder labels and markings, the guideline facilitates distinction among refrigerant containers by content. Four groups are identified, namely those for liquids at 20 °C (68 °F) normally packaged in drums, low-pressure fluids, high pressure fluids, and flammable (red band) refrigerants or mixtures. A table summarizes color assignments and corresponding color matching data. Refrigerants with assigned colors include R-11 (orange), R-12 (white), R-13 (light blue, sky), R-13B1 (pinkish-red, coral), R-14 (yellow-brown, mustard), R-22 (light green), R-23 (light blue grey), R-113 (dark purple, violet), R-114 (dark blue, navy), R-116 (dark grey, battleship), R-123 (light blue grey), R-124 (dark green, DOT green), R-125 (medium brown, tan), R-134a (light blue, sky), R-401A (pinkish-red, coral), R-401B (yellow-brown, mustard), R-401C (blue-green, aqua), R-402A (light brown, sand), R-402B (green-brown, olive), R-404A (orange), R-407A (lime green), R-407B (cream), R-407C (medium brown, brown), R-408A (medium purple, purple), R-409A (medium brown, tan), R-410A (rose), R-410B (maroon), R-500 (yellow), R-502 (light purple, lavender), R-503 (blue-green, aqua), and R-507A (blue-green, teal).

ABSORPTION AND ADSORPTION

presents estimates for the transport properties of mixtures of R-22 with dimethyl formamide (DMF), R-22/DMF, over a wide range of temperatures and compositions; predicts density, viscosity, thermal conductivity, specific heat, surface tension, and thermal diffusivity using estimation methods; describes the correlations, developed to express each of these properties as a function of temperature and composition, to facilitate design of vapor-absorption systems

This report presents the results of a computer simulation study aimed at comparing the potential performance of lithium bromide (LiBr) and ternary nitrate aqueous mixtures in a heat pump. The falling-film heat transfer coefficient for the ternary nitrate mixture is estimated to be lower than that for LiBr by about one-third. Due to a lack of measured thermophysical properties, the estimates relied on extrapolations. The results show that the ternary nitrate mixture may be operated up to 260 °C (500 °F) boost temperature, which is approximately 80 °C (176 °F) higher than what has been demonstrated with LiBr. In higher temperature regimes, the nitrates show the potential for 10% higher COPs and a marginally greater absorber capacity than LiBr. Experimental measurements of the falling film heat transfer coefficient, subcooling, and thermophysical properties are required to make a more definitive investigation.

thermodynamic and transport properties of R-32/DMAC (N,N'-dimethylacetamide); performance comparison for use of R-22, R-32, R-124, and R-134a as the refrigerant with DMAC as the absorbtent in a single stage absorption heat pump that uses a jet ejector as a mixer and pre-absorber; comparison shows that R-32/DMAC has the highest coefficient of performance (COP), but requires a circulation ratio and is valid only at generator temperatures exceeding 115 °C (239 °F); R-22/DMAC gave the best overall performance

examines use of R-134a as a refrigerant in absorption-cycle systems with different organic absorbents; discusses use of dimethylether tetraethyleneglycol (DMETEG), N-methyl epsilon-caprolactam (MCL), and dimethylethylenurea (DMEU) as candidate absorbents; presents calculation procedures for the working pair R-134a and DMETEG; presents temperature-pressure-concentration curves based on vapor-liquid equilibria (VLE) measurements;
also presents enthalpy-concentration diagrams calculated using excess thermodynamic properties of the mixture; outlines measurements of the density and viscosity of the working fluids; summarizes thermal stability tests of R-134a with DMETEG, which found no changes in either of the phases; compares the performances of the investigated working fluids based on a computerized simulation program for a single-stage absorption cycle using a jet ejector as a mixer and preabsorber; the coefficient of performance (COP) for the three combinations were similar (R134a-DMEU reached 0.49, R134a-MCL 0.47, and R134a-DMETEG 0.46), but the value of the circulation ratio for R134a-DMETEG was lower than for the other two pairs; recommends R-134a-DMETEG as the best of the three candidate working pairs

reviews the historical development and penetration of absorption refrigeration; contrasts differences in driving factors and acceptance among Japan, the United States, and other countries; outlines the development status of triple-effect absorption chillers, other advanced designs, heat pumps, heat transformers, and other heat-activated technologies; paper notes that efficiency improvements offered by triple-effect designs are offset by relatively large increases in first cost that will limit its competitive advantage; concludes that while absorption use exceeds a niche classification in some areas of the world, it does not in the United States; the paper indicates that technology breakthroughs are unlikely with mature technologies and that there is no evidence to project a significant change

R-717/718 (ammonia/water), performance calculation, cycle optimization

This report provides documentation for updates to ABSORB, a simulation program for modeling chemical absorption heat pump systems of varying configuration. A number of improvements and enhancements have been incorporated to improve the robustness, flexibility, and applicability of this code; these modifications include: 1) a revised strategy of solving the system equations, 2) increased modularization of the program, and 3) the first efforts to employ the code to determine an optimum economic design of a heat pump system. A listing of the Fortran source code for ABSORB is included as an appendix. The listing excludes the optimizing package NPSOL, which is proprietary and must be separately obtained. User documentation to run ABSORB is published separately in report ORNL/Sub/43337/2.

G. Grossman (Technion, Israel), M. Wilk, and R. C. DeVault (Oak Ridge National Laboratory, ORNL, USA), Simulation and Performance Analysis of Triple-Effect Absorption Cycles, Transactions, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 100, 1994 (rdb6927)

performance calculation, cycle optimization

performance analyses for cooling and heating in an R-718 (water) / lithium chloride + lithium nitrate (2.8:1 by mole) system with comparisons to water / lithium bromide (LiBr) in single- and double effect cycles and variants

please see page 6 for ordering information

- effect of additives such as n-octagonal to lithium bromide (LiBr) solutions: results show that regenerator heat transfer improves with higher pressure and lower concentrations; solution heat transfer is not significantly affected by addition of the n-octanol surfactant

- experimental study of ammonia/salt and ammonia/water-salt systems: mass diffusivity of ammonia/salt absorbent solutions is lower than that of ammonia/water; use of surfactant additives

This document updates the series of reports on absorption fluids and data, ORNL/Sub/84-47989/1,2,3, with data developed and published primarily between 1985-1988, and by citation of 44 additional references. Seventy-four worldwide publications containing data relating to properties of binary, ternary, and multicomponent absorption fluids are identified. The fluids discussed include combinations of 9 different refrigerant compounds, as well as 30 single, 7 binary, and 1 ternary absorbent compounds.

- enthalpy-concentration charts as well as Dühring equations and charts for water/lithium bromide (H_2O/LiBr) and water/lithium chloride (H_2O/LiCl) solutions for use in absorption cycle equipment for 0-227 °C (32-441 °F) concentrations (weight fractions) of 0.30-0.75 for H_2O/LiBr and 0.10-0.50 for H_2O/LiCl

- examination of R-718 (water) / LiBr + Li + LiCl + LiNO_3 (100:75:41:25 mole ratio, 1.00/1.16/-0.20/0.20 by mass): tests in a direct fired, switchable single- or double-effect absorption cycle heat pump using treated sewage effluent as the heat source and sink tests showed a 5-10% increase in the coefficient of performance (COP) and higher output temperatures compared to R-718/LiBr

- thermodynamic data, thermophysical properties

- lithium bromide water, enhanced surface tubes, heat transfer

Refrigent Database

summarizes a performance analysis of the methyamine-sodium thiocyanate - as refrigerant-absorbent - vapor-absorption refrigeration system; provides polynomial equations to estimate the thermodynamic properties of the working pair; compares the thermal efficiency of this system to that of ammonia-water (R-717/-718) and ammonia-sodium thiocyanate absorption cycles; concludes that the methyamine-sodium thiocyanate pair offers the highest coefficient of performance (COP) of the three

Develop Improved Design Techniques for Aqueous LiBr Falling Film Absorption Through Application of an Innovative and Nonintrusive Temperature Measurement Technique, proposed research project 798-URP, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, in planning (ASH-0798)

The project is being evaluated by ASHRAE Technical Committee 8.3, Absorption and Heat-Operated Machines. Further information is available from the ASHRAE Manager of Research (+1-404/636-8400).

This report summarizes the findings of the International Energy Agency (IEA) research project on Working Fluids and Transport Phenomena in Advanced Absorption Heat Pumps (Annex XIV).

NOT-IN-KIND TECHNOLOGIES

not-in-kind (NIK) technology, thermoacoustic refrigeration using R-704 (helium), R-7131 (xenon), and R-704/7131 (50/50) as the refrigerant

These proceedings provide background papers and summary comments on alternative technologies for air-conditioning, refrigeration, and insulation. The papers address blowing agents for insulating foams, including R-245ca, R-245eb, R-245fa, R-356, R-601 (pentane), R-718 (water), and cyclopentane, as well as a screening of hydrofluoropropylene isomers. They also address nonorganic fibers, gas-filled and vacuum panels, aerogels and aerogel panels, and other materials and not-in kind (NIK) technologies. A paper on air conditioning and refrigeration cycles details comparative primary energy requirements for compression and absorption systems, with selected power supply systems. Others address gas-fired systems, water-zeolite absorption, Stirling cycles, thermoacoustic refrigeration, use of water as refrigerant and heat transfer fluid, direct and indirect use of outdoor air and groundwater, storage for desiccant cooling systems, and air cycles. Papers on alternative refrigerants address R-C270 (cyclopropane), R-290 (propane), R-600 (n-butane), R-600a (isobutane), R-290/600a blends, R-717 (ammonia), R-729 (air), and R-744 (carbon dioxide).

These proceedings provide an assessment and background papers on alternatives to, and anticipated advances in, air-conditioning and refrigeration systems using fluorocarbon refrigerants. They address a number of vapor compression areas, including use of hydrocarbons and ammonia as refrigerants; free-piston, oil-free compressor developments; Stirling cycle refrigeration; compression-absorption hybrid cycles; sonic and thermoacoustic compression; hydraulic and Malone cycle hydraulic refrigeration.

please see page 6 for ordering information
tion; and advanced fluorocarbon systems. They also address absorption, adsorption, sorption, metal hydride, evaporative, desiccant, magnetic refrigeration, and thermoelectric cooling technologies. The introduction outlines the process followed and invitation of expert speakers, to outline the not-in-kind (NIK) and advanced technologies. It also identifies a panel assembled to conduct the sessions and compile technology summaries. These summaries are included along with the workshop agenda, list of participants, presented papers or presentation charts, questions addressed to speakers, and for those received responses. This workshop was one of two, the second held in Germany, on the subject.

RESEARCH PROGRAMS

This paper outlines research needs stemming from introduction of alternative refrigerants and the concurrent desire to maintain or increase equipment efficiency. Its purpose is to seed interest in and identify sponsorship opportunities for necessary research. The paper briefly reviews potential impacts of refrigerants on ozone depletion and global warming. It then discusses vapor-compression and absorption cycles and equipment. Starting with their components, it identifies research needs to utilize alternative refrigerants. Research of heat exchanger enhancement, fundamental boiling heat transfer, and influences of lubricants are among the topics addressed. Design issues for compressors, both positive displacement and centrifugal, are surveyed with emphasis on discharge valve requirements, impeller improvement, oil-free possibilities, and seal refinement. Research needs are cited for materials compatibility and lubricants, composition management for zeotropic blends, and leak sensor requirements. The paper then discusses opportunities for not-in-kind technologies including absorption, adsorption (or desiccant), Stirling, and other cycles. It also mentions needs relating to distribution systems, training of service personnel, and conversions to alternative fluids. The paper mentions ongoing research by the Air-Conditioning and Refrigeration Technology Institute (ARTI) and provides a tabular summary of agencies funding research of air conditioning and refrigeration. They include the ARTI, American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE), Electric Power Research Institute (EPRI), Gas Research Institute (GRI), U.S. Department of Energy (DOE), and U.S. Environmental Protection Agency (EPA).

M. O. McElinden (National Institute of Standards and Technology, NIST, USA) and L. Vamling (Chalmers University of Technology, Sweden), The Need for, and Availability of, Fluid Property Data: Results from Annexes XIII and 78XVIII, proceedings of the 4th International Energy Agency (IEA) Heat Pump Conference (Maastricht, The Netherlands, 26-29 April 1993), IEA Heat Pump Centre, Sittard, The Netherlands, April 1993 (12 pages, available from JMC as RDB3703)

AFeas

Alternative Fluorocarbons Environmental Acceptability Study, program description, AFeas, Washington, DC, September 1995 (4 pages with 1 figure and 1 table, available from JMC RB5536)

This leaflet introduces the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), initiated in December 1988. The program was formed to assess the potential impacts of chlorofluorocarbon (CFC) refrigerant alternatives on the environment. AFEAS is a cooperative research effort sponsored by 11 leading chemical producers. Results were incorporated as an appendix to the Scientific Assessment under the Montreal Protocol on Substances that Deplete the Ozone Layer. Further findings were reported in workshops and as inputs to the 1991 and 1994 assessment updates. The leaflet outlines the overall goals. The first was to identify and help resolve uncertainties regarding potential environmental effects of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). The second objective was to stimulate prompt dissemination of scientific information to the research community, government decision makers, affected industries, and the general public. A table lists alternatives to CFCs, including HCFCs R-22, R-123, R-124, R-141b, R-142b, R-225ca, and R-225cb, as transitional substances, and HFCs R-32, R-125, R-134a, R-143a, and R-152a. The summary notes that scientific studies show that use of HCFCs and HFCs to replace CFCs will reduce the
amount of atmospheric chlorine, and thus decrease the risk of ozone depletion. Unlike CFCs, these alternatives will break down readily in the lower atmosphere, forming products with negligible contribution to either acid deposition or ozone pollution. Some of the HCFCs and HFCs can be expected to form trifluoroacetyl halides that will dissolve in water to form trifluoroacetic acid. While the concentrations are so low that adverse effects are unlikely, this issue is being investigated further. A figure shows the potential future contributions from all greenhouse gases. A cited AFEAS study of global warming, co-funded with the U.S. Department of Energy, indicates that HCFCs and HFCs often provide substantial improvements in energy efficiency over CFCs in many applications. Moreover, they do not accumulate in the atmosphere to the same extent as CFCs, and have smaller potential to contribute to the greenhouse effect. The leaflet notes that AFEAS-funded research has been completed, but the organization will be continued for three years to stay abreast of scientific developments.

Research Summary, Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), Washington, DC, January 1993 (76 pages, RDB3610)

ARI

This report summarizes the progress and accomplishments of the Alternative Refrigerants Evaluation Program (AREP). AREP is described as a cooperative program to provide data on the performance of R-22 and R-502 equipment with alternative, non-ozone-depleting refrigerants in a quick and efficient manner. The report reviews the history of the program and cooperation by more than 30 manufacturers in Canada, Europe, and Japan in addition to those in the United States. It outlines the objectives, namely to identify alternatives, establish testing protocols, conduct tests, and publish the results. Test were conducted with 26 refrigerants, which are tabulated. They included R-134a; R-290 (propane); R-717 (ammonia); R-29/32/134a (15/70/50); R-32/125 (50/50) [R-410A] and (60/40); R-32/125/134a (10/70/20) [R-407B], (23/25/52) [R-407C], (24/16/60), (25/20/55), and (30/10/60); R-32/125/290/134a (20/55/5/20); R-32/134a (20/80), (25/75), (30/70), and (40/60); and R-125/143a (45/55) as potential replacements for R-22. They also included R-23/32/125 (5/25/70), R-32/125/134a (10/70/20) [R-407B] and (20/40/40) [R-407A], R-32/125/143a (10/45/45), R-125/134a (45/55) and (50/50) [R-507A], and R-125/143a/134a (44/52/4) [R-404A] as potential replacements for R-502, an azeotrope of R-22 and R-115. The evaluations comprised compressor calorimeter, system drop-in, soft-optimized compressor, and soft-optimized system tests. They were complimented by performance simulations by the National Institute of Standards and Technology (NIST), heat transfer tests by three universities under contract to the Electric Power Research Institute (EPRI), and heat transfer tests by one manufacturer. The resulting reports are available through the ARTI Refrigerant Database; similar future studies will be accepted and also distributed through the database. The report notes that performance was generally inferior with drop-in tests, but close to or better than with R-22 or R-502 with optimized systems. Final evaluation of the data and refrigerant selections are left to individual manufacturers. The report concludes that the program was an unqualified success and proposes continued international cooperation through both discussion forums and cooperative testing.

This document lists reports under review or available from the Alternative Refrigerants Evaluation Program (AREP) [see RDB5250]. It lists the company performing the tests, refrigerants evaluated, type of test, ARTI Refrigerant Database number, length, and approval status for each report. This list is still being revised as final reports are approved.

ARI Research Compendium, Air-Conditioning and Refrigeration Institute, Arlington, VA, October 1996 (122 pages with 2 figures and 1 table, available from JMC as RDB5211)

This document outlines research needs and activities to resolve issues of importance to the air-conditioning and refrigeration (ACR) industry and to assist in the identification of new ACR technologies. It summarizes the role of the Air-Conditioning and Refrigeration Institute (ARI) and outlines its research program, covering refrigerants, energy conservation, and building environment. It then summarizes the R-22 Alternative Refrigerants Evaluation Program (AREP) and the Air-Conditioning and Refrigeration Database.
tion Technology Institute (ARTI) Materials Compatibility and Lubricant Research (MCLR) Program. The compendium also describes other research activities, including evaluations of joining techniques for copper tubing and of flammable and toxic refrigerants. It briefly outlines assistance to national laboratories and information exchange and dissemination efforts. An appendix presents the objectives, justification, background, industry actions, and status of research addressing long-term alternative refrigerants; R-22 alternatives; R-503 alternatives; R-123 alternatives; measurement and classification of the flammability and combustibility of refrigerants and blends; global warming mitigation by refrigerant recycling; methods for recovery, reclamation, and recycling refrigerants; refrigerant monitoring and leak detection technologies; analyze the quality of refrigerants; and determine the composition of refrigerant blends. The appendix similarly presents projects in the areas of energy conservation and building environment. A second appendix summarizes the AREP tests, conclusions, and heat transfer research. A final appendix presents the objectives, research contractor, status, and related information for 25 MCLR Program projects of which eight are completed, twelve are on-going, and five are in planning. The reports resulting from the AREP and MCLR program are individually identified in and distributed through the ARTI Refrigerant Database.

ARTI

This paper summarizes research completed in Phase I of the Materials Compatibility and Lubricant Research (MCLR) Program, reviews progress on Phase II, and discusses the studies planned for Phase III. It emphasizes those projects examining alternatives for R-22 and R-502. It notes the focus of the initial phase as compatibility with motor materials, elastomers, and plastics; chemical and thermal stability; miscibility of lubricants and refrigerants; and thermophysical properties for ten alternative refrigerants and four types of lubricants. They include four hydrochlorofluorocarbons (HCFCs), namely R-22, R-123, R-124, and R-142b, and six hydrofluorocarbons (HFCs), namely R-32, R-125, R-134, R-134a, R-143a, and R-152a. The lubricant classes included mineral oil (MO), alkylbenzene (AB), polyolester (POE), and polyglycol (PAG). A table summarizes the results of compatibility studies of motor materials with R-22/MO and R-32, R-125, R-134a, and R-143a with a POE for magnet wires; varnishes; sheet, sleeving, and lead wire insulations; tapes, and tie cords. The paper indicates that projects for the second phase address compatibility with desiccant materials; viscosity, density, and gas solubility of refrigerant-lubricant mixtures; and development of accelerated test methods for chemical and thermal stability and for the life of motor materials. An illustrative table indicates the miscibility of a POE lubricant at 5, 25, and 60% concentrations in R-32/125 (60/40), R-32/125/134a (30/10/60), R-32/134a (30/70), R-125/143a (45/55), and R-404A - R-125/143a/134a (44/52/4). Two figures show the modified sealed tube used for electrical conductivity and stability measurements and the measured conductivity of R-11, R-12, and R-22 with MO at 175 °C (348 °F). Two further figures illustrate a simulated motor stator test specimen and a high pressure tribometer for development of test methods. The paper identifies six projects being investigated for the third phase. They include compatibility of process fluids from manufacturing with HFCs, compatibility of additives to POEs with HFCs, development of low-cost, environmentally acceptable flushing and clean out methods, investigation of motor burnout products, fractionation of zeotropes, and development of an improved flammability test method. The paper also notes an ongoing project to facilitate location of refrigerant and lubricant information, the ARTI Refrigerant Database. The paper identifies the members of the MCLR Advisory committee and acknowledges major sponsorship of the MCLR Program by the U.S. Department of Energy.

This paper summarizes a joint industry-government program, the ARTI Materials Compatibility and Lubricants Research (MCLR) Program, to
address the issues associated with adopting potential new refrigerants in air-conditioning and refrigeration equipment. It highlights the key results for materials compatibility with focus on stability, miscibility, motor materials, elastomers, plastics, desiccants, and other areas. It also summarizes sponsored research of thermophysical properties, electrohydrodynamic (EHD) enhancement of heat transfer, improved test methods, and the operations and safety aspects (flammability, fractionation, and toxicity) of alternative refrigerants. It similarly addresses the products of compressor-motor burnouts, lubricant circulation, lubricant foaming, flushing and clean-out methods, system contaminant levels, evaluation of R-245ca as a low-pressure refrigerant, and information dissemination. The paper acknowledges major sponsorship of the MCLR Program by the U.S. Department of Energy.

Summaries of technical progress are posted for current and completed projects, as well as those open for bids, in the Materials Compatibility and Lubricant Research (MCLR) Program. The program supports critical research to accelerate introduction of substitutes for chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants. It addresses refrigerant and lubricant properties, materials compatibility, and test methods development. This work is jointly funded under a grant from the U.S. Department of Energy and cost sharing by the air-conditioning and refrigeration industry. Summaries identify the title, objective, contractor, principal investigator, and project status for each project. They also indicate report availability and briefly summarize the work, materials tested, and findings. [These reports are available through the ARTI Refrigerant Database along with other MCLR reports and conference papers.]

ASHRAE

1997-1998 ASHRAE Research Plan, American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1 January 1997 (24 pages with 7 tables, RDB7269)

This list of prospective research subjects identifies 290 proposed projects, 51 designated as priority status. The projects are grouped into eight project classifications, based on approved funding guidelines. Projects relating to refrigerants fall in several of these categories, primarily including the fourth and sixth highest areas, Environmentally-Safe Materials and Refrigeration Systems. The research areas were proposed by ASHRAE Technical Committees, Task Groups, and other committees; they were prioritized by ASHRAE's Research and Technical Committee. The highest priority group (three stars) includes research of Thermophysical Properties of R-23, Chloride, Fluoride, and Acidity Measurements of CFC, HCFC, and HFC Refrigerants, and Evaporation of Ammonia Outside Smooth and Enhanced Tubes with Miscible and Immiscible Oils. The next classification includes Investigation of Major Sources of Refrigerant Emissions and Feasible Methods for Reducing These Emissions and The Effects of Inundation and Miscible Oil upon Enhanced Condensation Heat Transfer of Alternative Refrigerants for HVAC Applications. It also includes HFC Refrigerant-Lubricant Modelling for Gas Solubility and Lubricant Viscosity, identified as a high-risk project. The one-star priority group includes Transport Property Data for Refrigerant Blends and Measurement of Solubility, Viscosity, and Density of R-32/125 (R-410 Series) Refrigerant-Lubricant Mixtures. Among nonpriority projects are: Assessment of Vibration Insulation Material Compatibility with R-22, Alternative Refrigerants, and Ethylene Glycol Mixtures, Boiling and Condensation in a High-Vibration Environment, Thermophysical Properties of R-245ca, Comprehensive Thermodynamic Property Data for Refrigerant Blends, Measurement of R-22 and Alternative Refrigerant Leakage Rates from Open-Shaft Compressors, Double-Walled Heat Exchangers for Class 2 Refrigerants, Heat and Mass Transfer Additives in Aqua-Ammonia Systems, Experimental Evaluation of the Heat Transfer Impacts of the Use of an Immiscible and Insoluble Lubricant-Refrigerant Pair, Boiling and Two-Phase Flow of Ammonia and Ammonia-Oil Mixtures in a Corrugated Passage Simulating a Plate Heat Exchanger, Performance Comparison of Different Refrigerants in Flat-Plate, Microchannel Evaporators, Nonequilibrium Effects of Evaporation and Condensation of Zeotropic Refrigerant Mixtures, Identification of Tradeoffs Among Secondary Coolants in Various Very Low Temperature Applications, Develop Solubility and Viscosity Data for Various Oil-Refrigerant Mixtures at High Discharge Temperatures and Pressures, Performance of a Suction-Line Capillary-Tube Heat Exchanger, Performance of an Adiabatic Capillary Tube with Zeotropic Mixtures, Effect of Motion of an Ammonia-Air Mixture in an Enclosed Space on Explosivity, Separating Velocities for Ammonia in Horizontal and Vertical Vessels, Refrigerant Piping Pressure Drop
PAFT

Programme for Alternative Fluorocarbon Toxicity Testing, program description, PAFT, Washington, DC, September 1995 (4 pages with 1 table, available from JMC as RDB63C36)

This leaflet outlines the Programme for Alternative Fluorocarbon Toxicity Testing (PAFT), which was initiated in December 1987. The program was designed to expedite the development of toxicology data for possible substitute fluorocarbons, to replace chlorine-containing compounds such as chlorofluorocarbons (CFCs). PAFT is a cooperative research effort sponsored by 16 of the leading CFC producers from eight countries. Five PAFT program sectors are identified including PAFT I to address R-123 and R-134a, PAFT II for R-141b, PAFT III for R-124 and R-125, PAR IV for R-225ca and R-225cb, and PAFT V for R-32. The leaflet summarizes a basic test schedule consisting of studies of acute toxicity, chronic toxicity and carcinogenicity. It notes that further tests were added according to the expected exposure regime of the chemical. Among them were dermal toxicity, neurotoxicity, ecotoxicology, and metabolism studies. These studies have been completed except for a general study of the mechanistic, metabolic, and pharmacokinetic aspects of fluorocarbon toxicology. The leaflet documents inputs from PAFT to the international and national processes addressing CFC phaseout and to the scientific community. It identifies the member companies and testing laboratories that participated, the latter from Europe, North America, and Japan. It also provides brief summaries of findings for R-32, R-123, R-124, R-125, R-134a, R-141b, R-225ca, and R-225cb. The document concludes with a description of the operation of PAFT and list of presentations and publications.

NEDO

MISCELLANEOUS DOCUMENTS

M. C. Adams (University of Utah Research Institute), J. J. Beall (Calpine Corporation), S. L. Eney (Northern California Power Agency), and P. N. Hirtz (Thermochem, Incorporated), The Application of Halogenated Alkanes as Vapor-Phase Tracers: A Field Test in the Southeast Geysers, Transactions, Geothermal Resources Council, 15:457-463, October 1991 (7 pages with 8 figures, RDB8B30)

field test of R-12 and R-13 to map flow paths in hydrogeological studies; notes that R-12 displayed significant decay in the geothermal field, but that R-13 showed little or none; also notes that the R-12 decay was reduced for some conditions, possibly movement outside an oxidized zone surrounding the injection well or other geochemical conditions

J. J. Beall (Calpine Corporation), M. C. Adams (University of Utah Energy and Geosciences Institute), and P. N. Hirtz (Thermochem, Incorporated), Evaluation of R134a as an Injection Water tracer in the Southeast Geysers, Transactions, Geothermal Resources Council, 22:569-573, 20-23 September 1998 (5 pages with 6 figures and 1 table, RDB8B31)

test of R-134a to replace R-13 in mapping flow paths in hydrogeological studies; laboratory tests of the chemical stability of R-134a at 280 °C (536 °F)

J. J. Beall (Calpine Corporation), M. C. Adams (University of Utah Research Institute), and P. N. Hirtz (Thermochem, Incorporated), R-13 Tracing of Injection in the Geysers, Transactions, Geothermal Resources Council, 18:151-159, October 1994 (9 pages with 9 figures and 1 table, RDB8B32)

field tests of R-13 to map flow paths in hydrogeological studies; differences in recovery rates between low- and high-pressure reservoirs and those with low and high liquid saturation; suggests that R-13 stays in solution until boiling occurs; consequent detection of high R-13 concentrations identifies wells with potential to produce high injection-derived steam rates; notes that R-12 displayed significant decay in the geothermal field, but that R-13 showed little or none; also notes that the R-12 decay was reduced for some conditions, possibly movement outside an oxidized zone surrounding the injection well or other geochemical conditions
The search program offers several automated features to simplify searches including optional prompting by search category, an automated "thesaurus" of synonyms and related terms, chain searches to broaden or narrow prior searches, a "wildcard" capability to allow entry of word segments, and a configuration capability to customize a number of options. Both the report and computerized versions include instructions to obtain cited documents or subscriptions for database updates.

J. M. Calm (Engineering Consultant), Copper in Air Conditioning and Refrigeration - Supplement to the ARTI Refrigerant Database, report JMC-/ARTI/CDA-9901D, Air-Conditioning and Refrigeration Technology Institute (ARTI), Arlington, VA, and the Copper Development Association (CDA), New York, NY, January 1999 (104 pages with no figures or tables, available from JMC as RDB9133)

This document provides bibliographic citations for more than 600 publications that may be useful in research, design, and application of air-conditioning and refrigeration (ACR) equipment. Summaries or brief descriptors of the content, materials addressed, and key conclusions are provided for the majority. This supplement to the ARTI Refrigerant Database increases the information provided, by focusing on the suitability of and application data for copper and copper alloys with refrigerants. The key concentration areas are application data, compatibility, and heat transfer (including surface enhancement). An introduction outlines the reasons copper is the preferred fabrication material in many ACR components. It cites the metal's superior heat transfer properties, corrosion resistance, ease of fabrication and joining, strength, and machinability. It also notes the latitude afforded by copper, brass, bronze, and other alloys in manufacturing processes such as casting, forging, machining, drawing, sintering, and forming. A concluding section provides descriptions of both the Refrigerant Database and the Copper Data Center (CDC) database.

This paper presents tabular summaries of selected physical, safety, and environmental (atmospheric lifetime, ozone depletion potential, ODP, global warming potential, GWP) data for alternative and candidate refrigerants along with comparative information for those that have been or are being replaced. The alternatives include both those in commercial production or development and a number that are still being evaluated, such as hydrofluoroethers and fluorinated amines. The two tables, one sorted by designation and the other by normal boiling point (NBP), provide data in both metric (SI) and inch-pound (IP) units for a total of 186 compounds and blends. The paper also describes a large database, consisting of refrigerant profiles, compatibility and toxicity data summaries, and bibliographic references. This database offers a means to locate thermodynamic and transport property, compatibility, performance, safety (flammability and toxicity), environmental, and other data on alternative refrigerants. It also addresses associated lubricants, retrofit procedures and experience, as well as test and analysis methods to qualify refrigerants and refrigerant-lubricant combinations. The paper describes the refrigerant profiles, which encompass more than 200 parameters, depending on the information available for individual refrigerants, for nearly 500 single-compound refrigerants and blends.

summary of the findings for commercial refrigeration from an international assessment for the United Nations Environment Programme (UNEP) Technical Options Committee (TOC) report on refrigeration, air conditioning, and heat pumps: outlines the uses of refrigerants in central systems, condensing units for split systems, and stand-alone equipment; discusses uses of R-717 (ammonia), R-744 (carbon dioxide), and hydrocarbons as replacements for fluorochemical refrigerants; describes progress in application of indirect systems and containment (leak reduction)

J. G. Crawford (The Trane Company), Heat Pump Technology on the Horizon, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 104-110, 1997 (7 pages with 3 tables, RDB7B12)

reviews factors driving the forecast of technologies for heat pumps: the factors specifically ad-
dressed are the functions of a heat pump, diversity of demand, energy sources, thermal source and sink, heat pumping process, compression mechanisms, thermal distribution subsystem, efficiency trajectory, frosting, and refrigerant selection; concludes that vapor-compression systems will remain dominant due to intrinsic efficiency advantages, but that absorption cycle use and water-source will increase for some applications; screw and scroll compressor penetration will increase while rolling-piston rotary compressors may lose market share; R-22 will remain the dominant refrigerant for several years and then be replaced by hydrofluorocarbon (HFC) blends as R-22 is phased out; an appendix examines the suitability of evaporative cooling as a not-in-kind (NIK) with a conclusion that comfort cannot be maintained for many common conditions; a second appendix examines use of absorption chillers to replace electric-driven vapor-compression systems; it finds that absorption may be economically attractive, but will not reduce global warming.

summarizes the highlights and conclusions of 16 invited papers that provide updates and projections on refrigerant trends and research; covers environmental concerns including stratospheric ozone depletion and global warming, trade-offs in refrigerant selections, hydrofluorocarbon (HFC) and other organic fluids including hydrofluoroethers, alternatives to HFC technologies, hydrocarbons, R-717 (ammonia), R-744 (carbon dioxide), and secondary heat transfer loop systems; concludes that a consensus option was neither expected nor developed, that HFCs will be dominant for decades if not perturbed by new regulatory measures, and that the search for new and refinement of existing technologies will continue.

H. M. Hughes (AlliedSignal Incorporated), Contemporary Fluorocarbons, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 117-121, 1997 (5 pages with 1 figure and 4 tables, RDB7B14)

reviews the transition from chlorofluorocarbon (CFC) to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants: reviews current refrigerants and CFC and HCFC alternatives noting R-123 as the primary alternative for R-11, R-134a for R-12 and R-500, R-23 for R-13, R-410A for R-13B1, no replacement for R-113, R-236fa (planned) for R-114, R-404A and R-507A for R-502, and R-508B for R-503; presents a tabular comparison of the influences of subcooling on the choice among R-11, R-123, and R-245fa; indicates that R-245fa has emerged as the most likely candidate to replace R-123 by a process of elimination, and that transport property advantages for R-245fa may overcome its thermodynamic shortcomings; also indicates that R-410A "has been selected for the majority of applications" to replace R-22, but notes a role for R-407C at least for the short-term.

· definitive atomic weights used to calculate the molecular mass of refrigerants.

summary of the findings for air conditioners and heat pumps from an international assessment for the United Nations Environment Programme (UNEP) Technical Options Committee (TOC) report on refrigeration, air conditioning, and heat pumps: provides an estimate of the current inventory of units and the quantity of R-22 used in them (239 million units containing approximately 423 kt, 930 million lb), outlines the options to replace R-22 with specific mention of R-290 (propane), R-407C, R-410A, and R-744 (carbon dioxide); discusses retrofit options with focus on R-407C; predicts demand for R-22 in developed and developing countries through 2015 and estimates the portion that can be met with recycled R-22; summarizes a model to estimate refrigerant needs based on leakage data, production projections, and assumptions for product life.
review of the recent history and status of use of hydrocarbons as refrigerants in domestic refrigeration, air-conditioning and heat pump systems, and commercial refrigeration; also addresses standards for refrigerant safety applicable to hydrocarbon use, related research, and projections for hydrocarbon use

K. S. Sanvordenker (Consultant), Status of CFC and HCFC Alternatives, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 111-116, 1997 (6 pages with no figures or tables, RDB7B13)

status chlorofluorocarbon (CFC), CFC alternative, hydrochlorofluorocarbon (HCFC), HCFC alternative, hydrofluorocarbon (HFC), and HFC alternative refrigerants: concludes that there is an adequate supply of CFCs for near-term service needs and that conversion from CFCs to HFCs is successful; notes that conversion from HCFCs to HFCs is "on its way although not at commercial levels"; presents both a historical perspective and a rationale why HFCs should become permanent replacements for CFCs and HCFCs

status of alternative refrigerant use in Japan

summary of the findings for refrigerant management from an international assessment for the United Nations Environment Programme (UNEP) Technical Options Committee (TOC) report on refrigeration, air conditioning, and heat pumps: outlines the past and current coverage of refrigerant recovery, recycling, and reclamation in the assessment; tabulates annual rates of refrigerant recovery, reclamation, and sales from 1987-1995 in France; similarly summarizes losses from R-11 and R-12 chillers; discusses the need for measures to increase refrigerant conservation to reduce emissions

P. Weiss and J. Goguet (Elf Atochem S.A., France), Current and Projected Use of Refrigerants in Europe, Refrigerants for the 21st Century (proceedings of the ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD, 6-7 October 1997), American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 38-43, 1997 (6 pages with 4 figures, RDB7B05)

review of the European market for refrigerants: current and projected uses in domestic, commercial, industrial, and transport refrigeration; trends in mobile and stationary air conditioning; concludes that while the market is dominated by fluorochemicals, their use is projected to shrink significantly; use of hydrocarbons (largely R-600a, isobutane) and R-717 (ammonia) is expected to increase from 10-12% to approximately 15%, largely based on increased use of R-717 in industrial refrigeration; notes that more than 90% of refrigerators sold in Germany use R-600a with high use in Austria and Switzerland as well

describes black market scams, identifies those involved, and outlines a sting operation

This manual outlines technologies for reduction and substitution of chlorofluorocarbons (CFCs) and other ozone-depleting substances (ODSs). It is intended to assist ODS users to develop the
most effective measures for each application. Section III.4 addresses leak prevention and use reduction for refrigerants as well as research and development of substitute refrigerants and technologies to use them. It briefly summarizes reduction measures for centrifugal chillers, automobile air conditioners, commercial refrigeration, transport refrigeration, and refrigerators. Other sections of this document review regulatory measures for refrigerants, toxicity and safety evaluation of alternatives, and the physical properties of ODSs and their alternatives.
The Refrigerant Database is supported, in part, by U.S. Department of Energy (Office of Building Technology) grant number DE-FG02-91CE23810, Materials Compatibility and Lubricant Research (MCLR) on CFC-Refrigerant Substitutes. Federal funding supporting the MCLR program constitutes 93.57% of allowable costs. Additional funding and in-kind support is provided by the air-conditioning and refrigeration industry, through the Air-Conditioning and Refrigeration Institute (ARI), and for the Refrigerant Database - by copper producers and fabricators, through the Copper Development Association (CDA), and in-kind cost sharing by James M. Calm, Engineering Consultant. Development of the database is part of the MCLR Program, managed by the Air-Conditioning and Refrigeration Technology Institute (ARTI). Support by the cited parties does not constitute an endorsement of the views expressed in the database.