FIDAP capabilities for solving problems with stiff chemistry

PDF Version Also Available for Download.

Description

In support of the Motorola CRADA, the capabilities of the computational fluid dynamics code FIDAP (Fluid Dynamics International) for simulating problems involving fluid flow, heat transport, and chemical reactions have been assessed and enhanced as needed for semiconductor-processing applications (e.g. chemical vapor deposition). A novel method of treating surface chemical species that uses only pre-existing FIDAP commands is described and illustrated with test problems. A full-Jacobian treatment of the chemical reaction rate expressions during formation of the stiffness matrix has been implemented in FIDAP for both the Arrhenius-parameter and user-subroutine methods of specifying chemical reactions, where the Jacobian terms can ... continued below

Physical Description

33 p.

Creation Information

Torczynski, J.R. & Baer, T.A. September 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

  • Torczynski, J.R. Sandia National Labs., Albuquerque, NM (United States). Energetic and Multiphase Processes Dept.
  • Baer, T.A. Gram, Inc., Albuquerque, NM (United States)

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In support of the Motorola CRADA, the capabilities of the computational fluid dynamics code FIDAP (Fluid Dynamics International) for simulating problems involving fluid flow, heat transport, and chemical reactions have been assessed and enhanced as needed for semiconductor-processing applications (e.g. chemical vapor deposition). A novel method of treating surface chemical species that uses only pre-existing FIDAP commands is described and illustrated with test problems. A full-Jacobian treatment of the chemical reaction rate expressions during formation of the stiffness matrix has been implemented in FIDAP for both the Arrhenius-parameter and user-subroutine methods of specifying chemical reactions, where the Jacobian terms can be calculated analytically or numerically. This formulation is needed to obtain convergence when reaction rates become large compared to transport rates (stiff chemistry). Several test problems are analyzed, and in all cases this approach yields good convergence behavior, even for extremely stiff fluid-phase and surface reactions. A stiff segregated algorithm has been developed and implemented in FIDAP. Analysis of test problems indicates that this algorithm yields improved convergence behavior compared with the original segregated algorithm. This improved behavior enables segregated techniques to be applied to problems with stiff chemistry, as required for large three-dimensional multi-species problems.

Physical Description

33 p.

Notes

OSTI as DE96014898

Source

  • Other Information: PBD: Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96014898
  • Report No.: SAND--96-2148
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/383631 | External Link
  • Office of Scientific & Technical Information Report Number: 383631
  • Archival Resource Key: ark:/67531/metadc686904

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 13, 2016, 1:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Torczynski, J.R. & Baer, T.A. FIDAP capabilities for solving problems with stiff chemistry, report, September 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc686904/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.