Overview of recent KDP damage experiments and implications for NIF tripler performance

PDF Version Also Available for Download.

Description

Considerable attention has been paid over the years to the problem of growing high purity KDP and KD*P to meet damage threshold requirements of ICF lasers at LLNL. The maximum fluence requirement for KD*P triplers on the National Ignition Facility (NIF) is 14.3 J/cm<sup>2</sup> at 351 nm in a 3 ns pulse. Currently KD*P (conventional or rapid grown) cannot meet this requirement without laser (pre)conditioning. In this overview, recent experiments to understand laser conditioning and damage phenomena in KDP and KD*P will be discussed. These experiments have lead to a fundamental revision of damage test methods and test result interpretation. ... continued below

Physical Description

1.3 Megabytes

Creation Information

Carmen, L.; De Yoreo, J.; Jennings, R.; Milam, D.; Runkel, M.; Sell, W. et al. July 14, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Considerable attention has been paid over the years to the problem of growing high purity KDP and KD*P to meet damage threshold requirements of ICF lasers at LLNL. The maximum fluence requirement for KD*P triplers on the National Ignition Facility (NIF) is 14.3 J/cm<sup>2</sup> at 351 nm in a 3 ns pulse. Currently KD*P (conventional or rapid grown) cannot meet this requirement without laser (pre)conditioning. In this overview, recent experiments to understand laser conditioning and damage phenomena in KDP and KD*P will be discussed. These experiments have lead to a fundamental revision of damage test methods and test result interpretation. In particular, the concept of a damage threshold has given way to measuring performance by damage distributions using millimeter sixed beams. Automated R/l (conditioned) damage tests have shown that the best rapidly grown KDP crystals exhibit the same damage distributions at the best conventionally grown KD*P. Continuous filtration of the growth solution and post growth thermal sealing are shown to increase the damage performance as well. In addition, centimeter size beams from multijoule lasers have been used to study stepwise laser conditioning in KDP. These tests have shown that an increase in the damage threshold of ~1.5X is attainable with 8-12 shots of increasing fluence. The experiments show that the damage density (pinpoints/mm<sup>3</sup>) evolves exponentially and once formed, the micron sized bulk pinpoints remain stable against increases in local fluence. The information obtained from damage distributions and conditioning studies has been used with model NIF spatial profiles to determine the probability of damage and the local pinpoint density generated in a tripler. Calculations based on test data have shown that .for well conditioned, high quality rapid growth KDP or conventional growth KD*P the damage probability is less than 3%. Furthermore, the fluence profiles expected on NIF lead to only small numbers of generated pinpoints which are not expected to adversely affect NIF operations. To check the validity of the results, the 37 cm KD*P tripler from the Beamlet laser was mapped for damage. The inspection revealed pinpoint densities of the order of predicted by the damage evolution calculations

Physical Description

1.3 Megabytes

Subjects

Source

  • Third Annual International Conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF), Monterey, CA, June 7-12, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003539
  • Report No.: UCRL-JC-129708
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 3539
  • Archival Resource Key: ark:/67531/metadc686649

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 14, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 6, 2016, 11:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 2
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carmen, L.; De Yoreo, J.; Jennings, R.; Milam, D.; Runkel, M.; Sell, W. et al. Overview of recent KDP damage experiments and implications for NIF tripler performance, article, July 14, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc686649/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.