A viscoplastic model of expanding cylindrical shells subject to internal explosive detonations

PDF Version Also Available for Download.

Description

Thin cylindrical shells subjected to internal explosive detonations expand outwardly at strain-rates on the order 10{sup 4} s{sup {minus}1}. At approximately 150% strain, multiple plastic instabilities appear on the surface of these shells in a quasi-periodic pattern. These instabilities continue to develop into bands of localized shear and eventually form cracks that progress in a way that causes the shell to break into fragments. The entire process takes less than 100 microseconds from detonation to complete fragmentation. Modeling this high strain-rate expansion and generation of instabilities prior to fragmentation is the primary focus of this paper. Applications for this research ... continued below

Physical Description

8 p.

Creation Information

Martineau, R.L.; Anderson, C.A. & Smith, F.W. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thin cylindrical shells subjected to internal explosive detonations expand outwardly at strain-rates on the order 10{sup 4} s{sup {minus}1}. At approximately 150% strain, multiple plastic instabilities appear on the surface of these shells in a quasi-periodic pattern. These instabilities continue to develop into bands of localized shear and eventually form cracks that progress in a way that causes the shell to break into fragments. The entire process takes less than 100 microseconds from detonation to complete fragmentation. Modeling this high strain-rate expansion and generation of instabilities prior to fragmentation is the primary focus of this paper. Applications for this research include hypervelocity accelerators, flux compression generators, and explosive containment vessels for terrorist threats and power plants.

Physical Description

8 p.

Notes

OSTI as DE99000621

Source

  • 1998 international conference on computational engineering science, Atlanta, GA (United States), 6-9 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000621
  • Report No.: LA-UR--98-1246
  • Report No.: CONF-981009--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 296628
  • Archival Resource Key: ark:/67531/metadc686616

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 29, 2016, 12:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Martineau, R.L.; Anderson, C.A. & Smith, F.W. A viscoplastic model of expanding cylindrical shells subject to internal explosive detonations, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc686616/: accessed August 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.