Application of proposed mutual reciprocal inspection measurement techniques to a weapon component

PDF Version Also Available for Download.

Description

The shape-measurement technique proposed by Russian scientists for mutual reciprocal inspections (MRI) of plutonium from dismantled nuclear weapons has been applied to a US weapon component. Measurement procedures are described. Results of the measurements are {open_quotes}self-normalized{close_quotes} to remove any classified information and further renormalized to results of previous joint US/Russian measurements of an unclassified plutonium piece. Data are presented in tabular and graphical form, conforming to the method of presentation recommended by Russian experts during the previous measurements.

Physical Description

10 p.

Creation Information

Johnson, M. W.; Frankle, C. M. & Gosnell, T. B. April 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 43 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The shape-measurement technique proposed by Russian scientists for mutual reciprocal inspections (MRI) of plutonium from dismantled nuclear weapons has been applied to a US weapon component. Measurement procedures are described. Results of the measurements are {open_quotes}self-normalized{close_quotes} to remove any classified information and further renormalized to results of previous joint US/Russian measurements of an unclassified plutonium piece. Data are presented in tabular and graphical form, conforming to the method of presentation recommended by Russian experts during the previous measurements.

Physical Description

10 p.

Notes

OSTI as DE97005921

Source

  • Other Information: PBD: Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • May 11, 2021, 6:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 43

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Johnson, M. W.; Frankle, C. M. & Gosnell, T. B. Application of proposed mutual reciprocal inspection measurement techniques to a weapon component, report, April 1, 1997; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc686513/: accessed March 29, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen