Damage in unidirectional graphite/epoxy laminates containing a circular hole

PDF Version Also Available for Download.

Description

In this paper, a damage mechanics model is described for determining progressive damage processes in unidirectional graphite/epoxy composite plates containing a central hole subjected to off-axis uniaxial tension. The inelastic behavior of these composite materials is attributed to the irreversible thermodynamics processes involving energy dissipation and stiffness variation caused by damage initiation and accumulation, The mechanical response of the composites is investigated by using a nonlinear finite element procedure formulated with a set of damage coupled constitutive equations. Separate damage criteria are derived for fiber failure and for matrix or fiber/matrix interaction failure in unidirectional composites. Validation of the damage ... continued below

Physical Description

9 p.

Creation Information

Yang, Fan; Chow, C.L. & Fang, H. Eliot October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, a damage mechanics model is described for determining progressive damage processes in unidirectional graphite/epoxy composite plates containing a central hole subjected to off-axis uniaxial tension. The inelastic behavior of these composite materials is attributed to the irreversible thermodynamics processes involving energy dissipation and stiffness variation caused by damage initiation and accumulation, The mechanical response of the composites is investigated by using a nonlinear finite element procedure formulated with a set of damage coupled constitutive equations. Separate damage criteria are derived for fiber failure and for matrix or fiber/matrix interaction failure in unidirectional composites. Validation of the damage model is achieved by comparing the numerical prediction and experimental data obtained from a Moire interferometry technique. It has been found that failure of the composite material near the hole region takes the form of an extensive damage zone. The macrocrack initiates at the material point near the hole boundary with a high damage value and propagates along the direction of damage zone extension. Preliminary results indicate that the proposed damage model is an effective method of studying progressive failure behavior of unidirectional composite laminates containing a circular hole and can be readily extended to examine the damage response of composite structures.

Physical Description

9 p.

Notes

OSTI as DE96015190

Source

  • 1996 international mechanical engineering congress and exhibition, Atlanta, GA (United States), 17-22 Nov 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96015190
  • Report No.: SAND--96-2323C
  • Report No.: CONF-961105--12
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 385585
  • Archival Resource Key: ark:/67531/metadc686224

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 13, 2016, 1:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yang, Fan; Chow, C.L. & Fang, H. Eliot. Damage in unidirectional graphite/epoxy laminates containing a circular hole, article, October 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc686224/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.