Critical heat flux experiments in a heated rod bundle with upward crossflow of Freon 114

PDF Version Also Available for Download.

Description

Critical heat flux (CHF) data were obtained for upward crossflow of R-114 in a heated staggered rod bundle. Data were obtained over a broad range of mass fluxes (135 to 1,221 kg/m{sup 2} sec), inlet subcooling (0 to 55 C), and qualities ({minus}0.42 to 0.92). The present work extends the available database to higher quality, inlet subcooling, and mass flux. The test section is 3.43 cm x 15.24 cm (1.35 in. x 6 in.) in cross section with a total length of 55.88 cm (22 inches) from the top of the inlet flow straightener to the perforated plate at the ... continued below

Physical Description

31 p.

Creation Information

Symolon, P.D.; Moore, W.E. & Wolf, D.F. February 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Critical heat flux (CHF) data were obtained for upward crossflow of R-114 in a heated staggered rod bundle. Data were obtained over a broad range of mass fluxes (135 to 1,221 kg/m{sup 2} sec), inlet subcooling (0 to 55 C), and qualities ({minus}0.42 to 0.92). The present work extends the available database to higher quality, inlet subcooling, and mass flux. The test section is 3.43 cm x 15.24 cm (1.35 in. x 6 in.) in cross section with a total length of 55.88 cm (22 inches) from the top of the inlet flow straightener to the perforated plate at the test section exit. The rod bundle has a triangular pitch with a diameter (D) of 0.635 cm (0.25 in), and a pitch to diameter (P/D) ratio of 1.5. The rod bundle has 165 rods with a 15.24 cm (6 in.) heated length arranged in 55 rows of three rods each. Unheated half rods were positioned on the walls of the test section to maintain the regular rod arrangement and prevent flow bypass along the gaps between the window and the first column of heated rods. A single instrumented heater was positioned five rows upstream from the bundle exit to determine CHF. The last three rows of rods in the bundle were unheated to prevent undetected dryout downstream of the CHF position. Temperature excursions due to CHF were sensed using four imbedded thermocouples (TC) in the heater rod. The four TC temperatures were continuously monitored on a strip chart recorder. The rod heat was gradually increased until CHF was detected. Overall, the data are in good agreement with the Jensen and Tang correlation in the range of application of this correlation. The local minima in CHF which occurs near zero quality is slightly lower in the present experiment than for the Jensen and Tang correlation. At high quality, CHF drops off more rapidly than the Jensen-Tang prediction. Data are now available to extend the existing correlations to higher quality, and higher inlet subcooling.

Physical Description

31 p.

Notes

INIS; OSTI as DE99001880

Source

  • AICHE/ASME national heat transfer conference: current developments in numerical simulation of heat and mass transfer, Baltimore, MD (United States), 10-12 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001880
  • Report No.: KAPL-P--000143
  • Report No.: K--97003;CONF-970824--
  • Grant Number: AC12-76SN00052
  • DOI: 10.2172/319773 | External Link
  • Office of Scientific & Technical Information Report Number: 319773
  • Archival Resource Key: ark:/67531/metadc686199

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 6:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Symolon, P.D.; Moore, W.E. & Wolf, D.F. Critical heat flux experiments in a heated rod bundle with upward crossflow of Freon 114, report, February 1, 1997; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc686199/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.