Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report

PDF Version Also Available for Download.

Description

It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` ... continued below

Physical Description

[50] p.

Creation Information

Clapp, N.E.; Hively, L.M. & Stickney, R.E. March 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

Physical Description

[50] p.

Notes

OSTI as DE97007946

Source

  • Other Information: PBD: [1999]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97007946
  • Report No.: ORNL/TM--13436
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/325739 | External Link
  • Office of Scientific & Technical Information Report Number: 325739
  • Archival Resource Key: ark:/67531/metadc686172

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Jan. 19, 2016, 2:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Clapp, N.E.; Hively, L.M. & Stickney, R.E. Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report, report, March 1, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc686172/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.