A doped-channel heterostructure field effect transistor (H-FET) technology has been developed with self-aligned refractory gate processing and using both enhancement- and depletion-mode transistors. D-HFET devices are obtained with a threshold voltage adjust implant into material designed for E-HFET operation. Both E- and D-HFETs utilize W/WSi bilayer gates, sidewall spacers, and rapid thermal annealing for controlling short channel effects. The 0.5 {mu}m E- HFETs (D-HFETs) have been demonstrated with transconductance of 425 mS/mm (265-310 mS/mm) and f{sub t} of 45-50 GHz. Ring oscillator gate delays of 19 ps with a power of 0.6 mW have been demonstrated using direct coupled FET …
continued below
Publisher Info:
Sandia National Labs., Albuquerque, NM (United States)
Place of Publication:
Albuquerque, New Mexico
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
A doped-channel heterostructure field effect transistor (H-FET) technology has been developed with self-aligned refractory gate processing and using both enhancement- and depletion-mode transistors. D-HFET devices are obtained with a threshold voltage adjust implant into material designed for E-HFET operation. Both E- and D-HFETs utilize W/WSi bilayer gates, sidewall spacers, and rapid thermal annealing for controlling short channel effects. The 0.5 {mu}m E- HFETs (D-HFETs) have been demonstrated with transconductance of 425 mS/mm (265-310 mS/mm) and f{sub t} of 45-50 GHz. Ring oscillator gate delays of 19 ps with a power of 0.6 mW have been demonstrated using direct coupled FET logic. These results are comparable to previous doped-channel HFET devices and circuits fabricated by selective reactive ion etching rather than ion implantation for threshold voltage adjustment.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Baca, A. G.; Sherwin, M. E.; Zolper, J. C.; Shul, R. J.; Briggs, R. D.; Heise, J. A. et al.0.5 μm E/D AlGaAs/GaAs heterostructure field effect transistor technology with DFET threshold adjust implant,
article,
April 1997;
Albuquerque, New Mexico.
(https://digital.library.unt.edu/ark:/67531/metadc686113/:
accessed February 18, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.