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This dissertation is concerned with the study of multigrid methods for 
the solution of elliptic partial differential equations. The primary focus is on 
parallel multigrid methods and the application of multigrid methods to reser- 
voir simulation. Multicolor Fourier analysis is used to analyze the behavior 
of standard multigrid methods for problems in one and two dimensions. The 
relationship between multicolor Fourier analysis and standard Fourier analysis 
is established. Multiple coarse grid methods for solving certain model prob- 
lems in one and two dimensions are considered. For such methods, at each 
coarse grid level we use more than one coarse grid to improve convergence. For 
the application of multiple coarse grid methods to a given Dirichlet problem 
it is convenient to first construct a related extended problem. For solving an 
extended problem with a multiple coarse grid method, a "purification" proce- 
dure can be used to obtain Moore-Penrose solutions of the singular systems 
which are encountered. For solving anisotropic equations, semicoarsening and 
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line smoothing techniques are used with multiple coarse grid methods to im- 
prove convergence. The two-level convergence factors of the multiple coarse 
grid methods are estimated by using a multicolor Fourier analysis. In a special 
case where each of the operators has the same stencil on each of the grid points 
on one level, the exact multilevel convergence factors of the multiple coarse 
grid methods can be obtained. For solving partial differential equations with 
discontinuous coefficients, the interpolation and restriction operators should 
include information about the coeficients of the equations. Matrix-dependent 
interpolation and restriction operators based on the Schur complement can be 
used in nonsymmetric cases. A semicoarsening multigrid solver with matrix- 
dependent interpolation and restriction operators is used in UTCOMP, a three- 
dimensional, mult iphase, mu1 t icomponent , composi tional reservoir simulator 
developed at The University of Texas at Austin. The numerical experiments 
are carried out on different computing systems. The results obtained from the 
analysis and the numerical experiments indicate that the multigrid methods 
are promising. 
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Chapter 1 

Introduction 

For many problems in science and engineering one is faced with the 
need to solve one or more partial differential equations. The use of discretiza- 
tion methods such as finite-difference methods or finite element methods usually 
leads to the need to solve one or more large systems of linear (or nonlinear) 
algebraic equations. The solution of such problems by direct methods or by 
conventional iterative methods can be very costly. 

Multigrid methods offer the possibility of greatly improved conver- 
gence, as compared to iterative methods, for some problems. However, rigor- 
ous analysis of multigrid methods is available for only a very limited class of 
problems. Moreover, standard multigrid methods are not suitable, in general, 
for use with parallel computers. 

In this dissertation we are concerned with three aspects of multi- 
grid methods: a rigorous analysis of standard multigrid methods for a class 
of model problems in one and two dimensions; a description and analysis of 
multiple coarse grid methods which are actually multigrid methods where at 
each coarse grid level more than one coarse grid is used; and a description of 
some applications of multigrid methods to the solution of problems in reservoir 
simulation. 

In Chapter 2, we define the model problems which will be used in 
later chapters. In Chapter 3, we give a brief description of some basic iterative 
methods and polynomial acceleration procedures. 

In Chapters 4 and 5,  we describe the application of standard multigrid 
methods to certain model problems in one and two dimensions. We present two 
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analyses of these methods: one is based on the use of standard Fourier analysis, 
the other is based on the use of a two-color Fourier analysis for problems in 
one dimension and on the use of a four-color Fourier analysis for problems 
in two dimensions. The new multicolor Fourier analysis is especially effective 
when certain smoothing iteration methods such as the red/black Gauss-Seidel 
method are used. We also study the relationship between the standard Fourier 
analysis and the multicolor Fourier analysis and show that they are equivalent 
under a similarity transformation. 

In Chapters 6 to 9, we consider multiple coarse grid methods for solv- 
ing certain model problems in one and two dimensions. For such methods, 
more than one coarse grid is used at every coarse grid level. We consider three 
types of multiple coarse grid methods including multiple coarse grid multigrid 
(MCGMG) methods, frequency decomposition multigrid (FDMG) methods, 
and parallel multigrid (PMG) methods. For each of these methods we first 
construct a related extended problem as described in Chapter 6. The multiple 
coarse grid procedures which we consider can be conveniently defined and ana- 
lyzed for the extended problems. A "purification" procedure is used to obtain 
Moore-Penrose solutions of singular systems which are usually encountered. 

Previous work on parallel multigrid methods by Frederickson and 
McBryan (281 was applicable to periodic problems. Young and Vona [73] consid- 
ered parallel multigrid methods for certain non-periodic problems. However, it 
was necessary to use more complicated operators than those which are involved 
with the extended problems. 

The convergence factors of two-level multiple coarse grid methods 
are estimated by using the multicolor Fourier analysis. The effects of some 
red/black smoothing schemes are also described. 

For anisotropic problems, the PMG methods based on point smooth- 
ing and the standard coarsening schemes are not very efficient. We consider 
a new variant of the PMG methods using semicoarsening and line smoothing 
techniques. We extend the convergence analysis of the multilevel PMG proce- 
dure described by Frederickson and McBryan [29] to the semicoarsening PMG 



3 

procedure for anisotropic problems. 

In Chapters 10 to 12 we consider the applications of standard multi- 
grid methods to problems in petroleum reservoir simulation. Dendy et al. 
[24] used multigrid methods to solve some model problems of the type that 
arise from pressure equations in reservoir simulation. Fogwell and Brakha- 
gen [27] used multigrid methods to solve the equations for incompressible, two 
phase flow in a porous medium. We developed a semicoarsening multigrid 
procedure which can be used to solve systems of linear equations arising from 
the discretization of the governing pressure equation in UTCOMP, a three- 
dimensional, multiphase, multicomponent, compositional reservoir simulator 
developed at The University of Texas at Austin [12] [13]. The governing pres- 
sure equation in the reservoir simulator is an anisotropic differential equation 
which may have discontinuous coefficients and the matrices of the linear systems 
are nonsymmetric. To obtain a fast convergence rate, we use matrix-dependent 
interpolation and restriction operators constructed in a way analogous to the 
Schur complement procedure in our multigrid algorithm. 

The numerical results show that the multigrid methods compete very 
well with other iterative methods as well as with direct methods. We examined 
the performance of the multigrid code on a variety of parallel systems. 



Chapter 2 

Model Problems 

2.1 Introduction 
In this chapter, we define the model problems which will be used for 

the convergence analysis of the multigrid methods discussed in later chapters. 
We consider elliptic partial differential equations on the unit square (unit in- 
terval in each dimension) with Dirichlet boundary conditions. The standard 
3-point and 5-point finite-difference discretizations are used for the problems 
in one dimension and in two dimensions respectively. 

2.2 A One-Dimensional Model Problem 
The 1D model problem we consider is the Poisson equation defined 

on the interval (0 , l )  with Dirichlet boundary conditions: 

- f(z) for x E 0 = (O,I), 

[ 4 9  = 4a, 
Let be defined its 

(2.2.1) 

(2.2.2) 

where N is an integer and xj = j h .  By using the standard finite difference 
discretization process we obtain a set of linear equations: 

4 

(2.2.3) 
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a - - a .I 1 a - 4 

(5 = 1) 

0 1 2 3 4 5 6 7 8  

(x = 0) 

Figure 2.1: Grid Points for a One-Dimensional Problem: h = 118 

where uj = u(z j )  and fj = f ( z j ) .  The difference equations can be written in 
the matrix form as 

Af’u = b (2.2.4) 

where the superscript of the matrix A h  indicates the discretization scheme (e.g. 
“3” indicates the 3-point standard finite-difference scheme). 

In the case of N = 8, the grid SIh is defined a in Figure 2.1 and the 
corresponding discrete problem (2.2.4) is given by 

2 -1 

-1 2 -1 

-1 2 

-1 
-1 

2 -1 

-1 2 
-1 

-1 

2 
-1 

(2.2.5) 
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It can be verified that the eigenvectors of A f ) ,  for the case of lh  = l/8, are 
given by 

sin(pn h) 
sin (2pn h) 
sin( 3p7r h)  
sin(4pnh) 
sin(5pn h) 
sin( 6pn h) 
sin(7pnh) 

, p = 1 ,  ..., 7 

and the corresponding eigenvalues are given by 

1 
h2 $1 = -(2 - 2cospnh), p = 1,. . . ,7. 

(2.2.6) 

(2.2.7) 

2.3 A Two-Dimensional Model Problem 
The 2D model problem we consider is an elliptic problem with Dirich- 

let boundary conditions defined on the unit square as 

(2.3.8) 

where CY > 0. If CY = 1, we have the Poisson problem. If CY > 1 or CY < 1, we 
have an anisotropic problem. 

As in the one dimensional case, we define an (N + 1) x (N + 1) grid 
R h  covering the domain R for some integer N. We assume that a uniform step 
size h = N-l is used for both axis directions. Thus we have 
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Figure 2.2: Grid Points for a Two-Dimensional Problem: h.= 1/4 

where xj  = j h  and yk = kh. The 5-point difference representation of the 
problem (2.3.8) can be written as 

(2.3.10) 

where fj,k = f(xj, yk) and uj,k = U(Zj, yk). The boundary values can be col- 
lected into the right-hand side of the equations. The difference equations can 
be written in the matrix form 

Ah (5) u = b. (2.3.11) 

In the case of N = 4, the grid 0th is defined as in Figure 2.2. For the 
model problem (2.3.8) with CY = 1, the corresponding matrix problem (2.3.11) 



is given by 

0 

r 

4 -1 0 -1 
-1 4 -1 0 -1 

0 - 1 4  0 0 - 1  
-1 0 0 4 -1 0 -1 

1 - -1 0 -1 4 -1 0 -1 
h2 

-1 0 -1 4 0 0 -1 
- 1 0  0 4 - 1 0  

0 -1 0 -1 4 -1 
-1 0 -1 4 

L 

with 

(2.3.12) 

(2.3.13) 
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It can be verified that the eigenvectors of Af), for the case of h = 1/4, 
are given by 

$‘Q) = 

sin(pnh) sin(qah) 
sin(2pnh) sin(qnh) 
sin(3pnh) sin(qah) 
sin(pah) sin(2qwh) 
sin( 2pnh) sin( 2qnh) 
sin( 3 p h )  sin (2qnh) 
sin(pnh) sin(3qnh) 

sin(2pnh) sin(3qah) 
sin(3pnh) sin( 3q7rh) 

and the corresponding eigenvalues are given by 

(2.3.14) 

(2.3.15) 



Chapter 3 

3.1 

Iterative Met hods 

Introduction 
In this chapter we give a brief description of some basic iterative 

methods and polynomial acceleration procedures for solving large sparse ma- 
trix problems arising from finite difference discretizations of elliptic partial 
differential equations. 

We consider the matrix problem 

A u = b  (3.1.1) 

where A is an N x N nonsingular matrix and b is an N x 1 column vector. 

3.2 Basic Iterative Methods 
Let do) be a starting vector. A basic iterative method for solving the 

linear system (3.1.1) can be written in the form 

(3.2.2) 

where 

G = I - Q - l A ,  
k =. Q-lb. 

(3.2.3) 

Here Q is a nonsingular matrix which is called the spZitting matrix. 

10 
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There are two criteria that need to be considered in choosing the 
matrix Q. First, Q should be “close” to A in some sense. (When Q = A ,  the 
method will converge after one step.) Second, Q should be a matrix such that 
Qx = y can be “easily” solved for x for any given y, since in the iteration, the 
system Qx = y needs to be solved for x. For example, Q can be the diagonal, 
the tridiagonal, or the triangular part of A.  

3.2.1 Richardson Method 
The Richardson method, which is probably the simplest iterative 

method, is defined by 

Here the identity matrix I is the splitting matrix and the iteration matrix is 

G = I - A .  (3.2.5) 

3.2.2 Jacobi Method 
The Jacobi method is defined by 

The splitting matrix Q is given by Q = D where D is the diagonal part of A 
and the iteration matrix is given by 

B = I - D-’A. (3.2.7) 

3.3 Acceleration of Basic Iterative Methods 
In this section we consider the acceleration process for symmetrizable 

basic iterative methods. An iterative method with an iteration matrix G (3.2.2) 



12 

is symmetrizable if I - G is similar to a symmetric positive definite (SPD) 
matrix,* i.e. there exists a nonsingular (symmetrization) matrix W such that 
W ( I  - G)W-' is SPD. 

3.3.1 Extrapolat ion 
A symmetrizable basic iterative method itself is not necessarily con- 

vergent because the eigenvalues of G can be less than -1. However, there 
always exists a so-called extrapolation method based on (3.2.2) which is con- 
vergent whenever the basic method is symmetrizable. 

The extrapolation method with extrapolation factor 7 for any basic 
iterative method is defined by 

where 

(3.3.8) 
(3.3.9) 

(3.3.10) 

From (3.3.10), the splitting matrix Q I ~ I  for an extrapolation method 
is given by &[4 = :Q where Q is the splitting matrix of the corresponding 
basic iterative method. If the basic iterative method is symmetrizable, then 
the optimum extrapolation factor y, in the sense of minimizing the spectral 
radius of Gi7], is given by 

(3.3.11) 

*A real N x N matrix A is SPD if A is symmetric and if (u,Av) > 0 for any nonzero 
vector u. 
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where M(G)  and M ( G )  are the largest and smallest eigenvalues of G respec- 
tively. (See e.g. Hageman and Young [35].) From (3.3.11) and (3.3.10), the 
spectral radius of the optimum extrapolation method is given by 

(3.3.12) 

The number of iterations required to reduce the error by a factor of 0.1 can be 
estimated as (see Hageman and Young 1351) 

(3.3.13) 

where K ( 1 -  G) is the condition number of the matrix I - G. 

3.3.2 Polynomial Acceleration 
Let 6 = A-lb be the true solution to equation (3.1,l). We define 

the error vector e(") associated with the nth iterate u(") of the basic iterative 
methods (3.2.2) as 

(3.3.14) 

Since 

(3.3.15) 

it is easy to show that 

(3.3.16) 

For a symmetrizable basic iterative method with extrapolation, the error vector 
is given by 

e(n) = yT1 e(') 

= (7G + (1 - y)l)"e('). (3.3.17) 
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A natural way to generalize the extrapolation procedure (3.3.9) is to use a 
different value for 7 in each iteration instead of a fixed value. The variable 
extrapolation procedure can be written as 

(3.3.18) 

If we let Xi and vi, i = 1,. . . , N ,  be the eigenvalues and the eigenvectors of the 
matrix G respectively and represent e(') in the form 

N 
e(') = k;vi 

i=l 
(3.3.19) 

then from (3.3.18), the nth error of the variable extrapolation procedure can 
be written as 

N 

where 

Here u y )  are the zeros of Pn(x) and are given by 

(3.3.20) 

(3.3.21) 

(3.3.22) * 

We note that Pn(z) is a polynomial of degree n satisfying Pn( 1) = 1. We denote 
by Pn the set of all such polynomials. We seek a polynomial Pn(z) E Pn such 
that 

(3.3.23) 
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for any polynomial Qn(s> f P,. Such a Pn(z) is usually called the optimal poly- 
nomial and the corresponding -$,) are called the optimal variable extrapolation 
fact 0 rs. 

One commonly used polynomial acceleration is the Chebyshev semi- 
iterative method which is defined by 

(3.3.24) 

where 

(3.3.25) 

(3.3.26) 

(3.3.27) 

It can be shown (e.g. Young [70]) that the error reduction matrix of 
the Chebyshev semi-iterative method can be written in the polynomial form 
(3.3.20) with the polynomial given by 

where T,(z) is the Chebyshev polynomial of degree n and M(G) ,  m(G) are the 
largest and the smallest eigenvalues of the matrix G. 

The polynomial defined in (3.3.28) has an optima1 property in the 
sense that 

(3.3.29) 

for m y  polynomial &n(s) f Pn It can also be shown (Young, [70]) that 

(3.3.30) 
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where S(P,(G)) is the virtual spectral radius of Pn(G) and 

(3.3.31) 

The number of semi-iterations required to reduce the error by a factor of 0.1 
can be estimated as 

(3.3.32) 

where K ( I  - G) is the condition number of the matrix I - G. Here we assume 
that K ( I  - G) >> 1. 

Generally the eigenvalues M(G)  and m(G) are not known. In prac- 
tice, estimated values are used initially and these estimated values c m  be 
improved adaptedly during the process. (See Hageman and Young [35]). 

3.4 Optimal Iterative Methods 
The vectors defined in (2.2.6) and (2.3.14) are also called Fourier 

modes. The integers p and q represent the number of half sine waves which 
constitute the Fourier modes. Figure 3.1 shows the relationship between the 
eigenvalues of the extrapolation Jacobi iteration matrix and the Fourier modes 
(eigenvectors of A) for the one-dimensional problem (2.2.4) with N = 64. It 
illustrates that changing the value of 7 can affect the damping factors IX,l 
corresponding to the high-frequency modes (f 5 p 5 N - 1). 

Although the polynomial acceleration process can improve the con- 
vergence rate of the basic iterative methods, there is an intrinsic limitation. 
The idea of a classical polynomial acceleration is to choose the P,(z) so that 
all the coefficients of e(") are as small as possible. In other words, each of the 
coefficients IPn(Xi)l in (3.3.20) should be small. From (3.3.21), it follows that 
in order to make IPn(Xi)l small for a given i one could choose P,(z) so that 
there is a root a t )  near Xi. However, if A; is close to one (low frequency mode), 
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Figure 3.1: Damping Factor of Extrapolation Jacobi vs. Fourier Mode 

choosing some up) near X i  will introduce large factors (1 - up))-' for other 
components. Therefore, to make every P,(Xi) small, the components related 
to the eigenvalues close to one cannot be damped rapidly by a polynomial 
acceleration. 

For the 5-point discrete Laplacian, if we use the Richardson method 
with the optimal polynomial acceleration (Chebyshev acceleration), the number 
of iterations is on the order of 

(3.4.33) 

3.5 Iterative Methods for Red/Black Systems 
In this section, we give a short discussion about some iterative meth- 

ods for red/black systems. These methods are often used with multigrid meth- 
ods. 



1s 

a h  I n n n n 
W w v - v - 
1 5 2 6 3 7 4  

(x = 0) (x = 1) 

0 red black 

Figure 3.2: Red/Black Ordering of Grid Points in 1D: h = 1/8 

For the linear systems arising from finite difference discretizations of 
elliptic partial differential equations, the properties of the matrix A depend on 
the partitioning and ordering of the unknowns in the problem defined in Section 
2.2. The system (2.2.5) corresponds to the natural ordering of f,?h illustrated in 
Figure 2.1, where zi follows x, if xi > xj. Here we give a brief discussion of an 
alternate ordering, namely, red/black ordering. In the 2D cases, the standard 
5-point discretized scheme is assumed. 

In red/black ordering, every other grid point is given the same color 
(Le. all the points with aa odd sequential index number are marked red and all 
the points with an even sequential index number are marked black) and then 
the points are partitioned by their color (e.g. the red points are counted first). 

For the model problem (2.2.1) with N = 8, one red/black ordering 
of the grid points is illustrated in Figure 3.2 and the corresponding 3-point 
finite-difference matrix problem is given by 
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If we let 

(3.5.35) 

then (3.5.34) can be written in the form 

H 

- 
-1 

1 -1 - 
h2 0 

0 - 

0 
-1 
-1 

0 

0 
0 

-1 

-1 
d 

(3.5.36) 

(3.5 * 37) 

(3.5.38) A 

(3.5.39) 

Here we use I, to denote the identity matrix of order n. 



Figure 3.3: Red/Black Ordering of Grid Points in 2D: h = 1/4 

In the two-dimensional case with N = 4, the red/black grid points 
are illustrated in Figure 3.3. For the model problem (2.3.8) with CY = 1, the 
corresponding &point finite difference matrix is given by 

- 
4 -1 -1 0 0 

4 -1 0 -1 0 

4 -1 -1 -1 -1 

4 0 -1 0 -1 
4 0 0 -1 -1 

1 
h2 

-1 -1 -1 0 0 4 

-1 0 -1 -1 0 4 
0 -1 -1 0 -1 4 
0 0 -1 -1 -1 4 

Red/Black Gauss-Seidel (RBGS) Method 

(3.5.40) 

The Gauss-Seidel iteration with red/black ordering is given by 

(3.5.41) 
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One can see from (3.5.41) that all the unknowns with the same color can be up- 
dated simultaneously with red/black ordering. Therefore the RBGS procedure 
can be carried out very efficiently on a vector/parallel machine. 

Red/Black Successive Overrelaxation (RBSOR) Method 

The SOR iteration with red/black ordering is given by 

(3.5.42) 

Like the RBGS method, the SOR method with red/black ordering (RBSOR) 
can be carried out with a high degree of parallelism. 

In the next chapter, we will discuss another kind of acceleration tech- 
nique, namely the standard multigrid technique which can substantially reduce 
the components of the error corresponding to the low frequencies without am- 
plifying the other components too much. The number of cycles needed for 
convergence will be .O( 1) which is independent of h. 



Chapter 4 

Standard Multigrid Method in 1D 

4.1 Introduction 
In this chapter, we give a brief introduction to the standard multigrid 

method (MG), and an analysis of the convergence properties of the method us- 
ing standard Fourier analysis for the one-dimensional Poisson model problem. 
We also give an alternative analysis based on a two-color Fourier analysis pro- 
cedure. We show that this procedure can also be used to analyze the standard 
multigrid method where a red/black ordering iterative method is used as the 
smoothing procedure. In later chapters, this alternative analysis will also be 
used to analyze a multiple coarse grid multigrid method. 

4.2 Standard Multigrid Method 
The standard multigrid algorithm consists of several pre-smoothing 

iterations, a coarse grid correction procedure and several post-smoothing itera- 
tions. The smoothing iterations are carried out by a smoothing iterative method 
which is usually a basic iterative method. The coarse grid correction procedure 
can be described as follows. 

Given an initial guess ulp' of the system 

(4.2.1) 

we wish to solve the correction equation 

22 

(4.2.2) 
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Figure 4.1: Multigrids in 1D: N = 8 

(4.2.3) 

where i ih is the true solut,m of (4.2.1 . If we obtain the solution 6 h  of (4.2.2), 
the solution of the original problem (4.2.1) will be uIp' + 6 h .  

Instead of attempting to solve the correction equation (4.2.2) on the 
original grid, we solve it on a coarse grid. The coarse grid usually consists of 
every other point of the fine grid and the distance between two adjacent points 
is twice as great as on the fine grid. For the case N = 8, the coarse grids are 
shown in Figure 4.1, where there are three levels of grids Qh,  0 2 h ,  and 0 4 h .  

First, we restrict the residual to the coarse grid. The simplest restric- 
tion operator is an injection which is defined by 

An alternate restriction operator is called fur2 weighting which is defined by 
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The next step is to solve the coarse grid correction equation 

A2h62h  = T2h (4.2.6) 

for 6(2h). Here the coarse grid matrix APh is created by using the standard 
finite difference discretization for the original partial differential equation on 
the coarse grid. The coarse grid equation (4.2.6) itself casl be solved using this 
procedure based on an even coarser grid. 

Finally, we interpolate the correction 6(2h) onto the fine grid and add 
the result vector to the old solution. A commonly used interpolation scheme 
is linear interpolation which is defined by 

where we assume that & h ( 0 )  = 0 and &h(1)  = 0. 

For the model problem (2.2.4) with N = 8, the full weighting restric- 
tion of the residual on the finest grid is given by 

1 1 2 1  

The coarse grid matrix on & ? h  is given by 

-1 
Ash=- 1 [ :l :l ; 1 .  

(2h)* 

(4.2.8) 

(4.2.9) 
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The interpolation of the correction vector 62h onto o h  can be written in the 
form 

1 
2 

= -  

- 
1 

2 
1 1  

2 
1 1  

2 
1 

62h (z2) 

62h(x4) 

62h(x6) 

(4.2.10) 

This two-level standard multigrid algorithm, for the solution of A h U h  = bh, 

starting with an initial guess up), is described by 

Algorithm S M G ( A h ,  uf', bh):  

1. Do m l  pre-smoothing iterations using the smoothing iterative method (a 
basic iterative method) to obtain u i .  

2. Compute the residual r h  = bh - A h u i  and restrict the residual to the 
coarse grid to obtain 

3. Solve the coarse grid system 

(4.2.11) 

(4.2.12) 

4. Interpolate the coarse grid correction 62 ,  onto the fine grid and obtain 
the new approximate solution 

(4.2.13) 
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5. Do m3 post-smoothing iterations using the smoothing iterative method 
( 1  ) to obtain and return t ih . 

The procedure from step 2 to step 4 corresponds to the coarse grid correction. 

If we let e?’ = up’ - i i h  be the error before the coarse grid correction 
be the error after the coarse grid correction, where i i h  = and e f )  = uf’ - 

A L l b h ,  then from (4.2.11) to (4.2.13) we have 

and 

(4.2.14) 

(4.2.15) 

Here, we use ch to denote the coarse grid correction matrix. If G is the iterative 
matrix of the smoothing iterative method, the matrix of the standard two-level 
multigrid method Th can then be expressed as 

4.3 Standard Fourier Analysis 

(4.2.16) 

In this section, we present the standard Fourier analysis of the two- 
level standard multigrid method for the matrix problem (2.2.4). We use the 
full weighting restriction defined in (4.2.5) with the corresponding matrix Rh 
and the linear interpolation defined in (4.2.7) with the matrix p h .  Most basic 
iterative methods can be used for smoothing iterations. For simplicity, we use 
the damped Jacobi method with the iteration matrix 

(4.3.1 7) 
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where 7 is the damping factor. For any of the matrices which we will consider 
in the analysis, say 2, it can be shown that 

and 

(4.3. IS) 

(4.3.19) 

(4.3.20) 

where 

(4.3.21) 

Also, we say that the subspace E(P) spanned by v p )  and viN-’) is invariant 
under 2. The matrix .@’I is called the v-transform matria: because in some 
sense it can be regarded as a kind of “transform” of the matrix 2 on the 
v-basis vectors v p )  and viN-’). 

are the projec- 
tions of the fine grid eigenvectors v f )  onto the coarse grid. Thus in the case of 
N = 8, we have the coarse grid eigenvectors 

The eigenvectors of the coarse grid matrix A2h,  

sin( 2pa h) 
p = 1,2,3. 

and the corresponding eigenvalues 

(4.3.22) 

(4.3.23) 
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Without loss of generality, we assume that N is even. If we let p' = 
N - p ,  for p = 1,. . . , 2 '  we can write 

where 

with 

@ I = - [  1 l+c, G-11,  
2 

1 
4 h2 A$) = -(2 - 2 COS 2 p ~ h ) ,  

cp = cospxh. 

(4.3.26) 

(4.3.2 7) 

(4.3.28) 

(4.3.29) 

(4.3.30) 

(4.3.31) 

(4.3.32) 

(4.3.33) 

(4.3.34) 
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From (4.2.15) and (4.3.24) through (4.3.33), we obtain the v-transform 
matrices of the coarse grid correction operator 

and the two level multigrid operator 

py = ( q ) m 2 @ 4 ( q $ ) m 2  = [ :;; 

(4.3.35) 

(4.3.36) 

where 

m1 +m2 1 
2 
1 
2 
1 
2 
1 
2 

tll = -(I - %)(I - 7 + 7%) 7 

t12 = 

t21 = 

-(I + %)(I - 7 + 7%Jrn2(1 - 7 - 7%Irn1 9 

-(I - %)(I - 7 + 7c,)m1 (1 - 7 - 7c,)m2, 

(4.3.37) t22 = -(1+ c,)(l - 7 - yp+? 

From (4.3.35) it is easy to see that the determinant of the matrix @'' is zero. 
Because of (4.3.36), we also have 

det(ff)) = 0. (4.3.38) 

Hence the eigenvalues of f?) are 0 and trace(@')). Therefore, the nonzero 
eigenvalue of the matrix 5??) is given by 

A, = trace(?,)). 

Suppose that the initial error has the expansion 

p=l 

(4.3 s 39) 

(4.3.40) 
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Table 4.1: Two-Level Convergence Factors pm of 1D MG-Jacobi 

If we let m = ml + m2, the upper bound of the convergence factor of the 
two-level SMG is given by 

(4.3.46) 

Table 4.1 lists the two-level convergence factor pm for different values of the 
extrapolation factor 7 in the case of N = 64. As the number of smoothing 
iterations m increases, less convergence improvement is obtained because the 
smoothing iterations cannot reduce the low frequency modes effectively. 

If we let 91 be the ratio of the work required for carrying out coarse 
grid correction to the work required for carrying out one smoothing iteration, 
then the optimal m should be chosen to maximize the function 

(4.3.47) 

When q is large, the optimal m will be large, and when q is small, the optimal 
m will be small. Table 4.2 lists the values of @,,(m) and m for 91 = 1,2,3,4. 
For the cases listed in Table 4.2, m = 2 is the best choice. 
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Table 4.2: !D7(m) vs. m 

4.4 Two-Color Fourier Analysis 
In this section we describe a two-color Fourier procedure for analyzing 

the convergence properties of the two-level standard multigrid method for prob- 
lem (2.2.4). This is an alternative to the standard Fourier analysis. Although 
this analysis gives the same result, it will be more effective for the analysis of 
other schemes. 

We consider two sets of grid points, which we refer to as red points 
(0,) and bluck points (L). Instead of carrying out the analysis in terms of 
the eigenvectors v p )  for p = 1,2,. . . , N - 1 corresponding to the fine grid we 
work in terms of vectors ~i '~) ,  tu:-'') where p = 1,2,. . . , N / 2 ,  which are the 
projections of vf" onto 0+ and n- respectively. 

4.4.1 The Two Coarse Grids 
In the one dimensional case, the fine grid R h  defined in (2.2.2) can be 

partitioned into two coarse grids as red points: 

n+ = (xj I xj € and ( j  = odd)}, (4.4.48) 

and black points 

a- = {xj I xj E and ( j  = even)). (4.4.49) 
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Figure 4.2: Two Coarse Grids for a One-Dimensional Problem: h = 1/8 

Figure 4.2 illustrates these two sets of grid points for N = 8. 

The vectors wP*’) and wk-”) are defined by 

(TI?’); if x; is red 
0 if xi is black 

and 

if x; is red (“ (vf’)i if z; is black 
( W p ) ;  = 

For the case of N = 8, we have 

sin(pwh) 

0 
sin(3pxh) 

0 
sin( 5pxh) 

0 
sin(7plrh) 

9 p =  1, ..., 4 

(4.4.50) 

(4.4.51) 

(4.4.52) 



0 
sin(2prh) 

0 
sin( 4prh) 

0 
sin( 6pa h )  

0 

p = 1,2,3. (4.4.53) 

For convenience of discussion, we define wh (-‘N’2) to be the zero vector. 

We notice that the black grid 0- is the same as the coarse grid 0 2 h  

for the standard multigrid method. It is convenient to write the coarse grid 
matrix in an expanded form so that it can be applied to the vectors wi-”). For 
example, the expanded coarse grid difference matrix defined in (4.2.9) can be 
written as 

0 0 0  
0 2 0 - 1  0 
0 0 0 0 0  

-1 0 2 0 -1 

0 0 0 0 0  
0 - 1 0  2 0 

0 0 0  

(4.4.54) 

Here, we use the superscript “E” to indicate the expanded matrix. Similarly, 
we can write the expanded restriction matrix and the expanded interpolation 
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matrix as 

0 

0 0 0  
1 2 1  

1 
4 

= - 

0 

- 

0 0 0  

1 2 1  
0 0  

and 

(4.4.55) 

(4.4.56) 

respectively. 

4.4.2 Convergence Analysis 
For the two-color Fourier analysis we use the vectors wp”) and wi-”) 

corresponding to the red points (4.4.48) and the black points (4.4.49) respec- 
tively as a basis for the invariant subspace E(p) defined in Section 4.3. For any 
matrix 2 with an invariant subspace E(?’), we can write 

(4.4.57) 
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where 2$) is a 2 x 2 w-trunsfom matrix because it can be regarded as a kind 
of “transform” of the matrix T corresponding to the w basis. Therefore, for 
p = 1 , .  . . , T ,  we have N 

where 

1 
4 h2 = -(2 - 2 cos 2pah), 

B&!w = 1-7 7% 1 
Ycp 1-71. 

(4.4.63) 

(4.4.64) 

(4.4.65) 

(4.4.66) 

(4.4.67) 

Here cp = cos pah. 
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From (4.4.58) through (4.4.67), the w-transform matrix of the coarse 
grid correction operator on the subspace E(P) can be written as 

(4.4.68) 

If we let 

we have 

(4.4.69) 

(4.4.70) 

and the w-transform matrix of the two-level multigrid operator on the subspace 
E(P) can be written as 

(4.4.71) 

(4.4.72) 

(4.4.73) 
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Therefore, for each p ,  the nonzero eigenvalue of the matrix f"; is the trace of 
ff',. If we let the initial error be expressed in the form 

then the error e(l) after one multigrid cycle is given by 

NI2 

p=l 
e(1) = ~ ~ e ( o I  = ~ ( k *  (+'PI + IC* W;*P ( 9, + s w h  - rP 

and for p = 1,. . . , N / 2 ,  we have 

(4.4.74) 

(4.4.75) 

(4.4.76) 

where the t i j  are defined in (4.4.72). In the caise with the extrapolation factor 
-y = 2/3, we have 

1+2" 1+2" 
t 1 1  = &{ (  4 )"'+(',"")"'-"[( )"'-(',"")"']} 

{ (1 
+32")"' ,"")"'} 9 

+ (1 
1 + 2 $  1 - 2 G  

t 1 2  = ' 1 ( ' + ~ " ) " 1 - ( 1 - ~ " ) " 1 - " [ (  4 ) " l + (  )7} 
{ (1 

+32")"' -32")"'} > 
+ (1 

1+2" 1 - 2 G  1+2" 
t 2 l  = A{( 4 ) -+( yl-"[( )"'-(',"">"']} 

(4.4.77) 

and the trace (til + t 2 2 ) ,  as expected, is the same as the trace of the matrix 
f'?) defined in (4.3.44). Thus we get the same result as that obtained from the 
conventional Fourier analysis. 
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4.5 Relation Between the v-basis and tu-basis 
In this section, we discuss the relationship between the v-basis corre- 

sponding to the standard Fourier analysis and the w-basis used in the two-color 
Fourier analysis. By comparing the definition of the v-basis (2.2.6) and of the 
w-basis (4.4.50) and (4.4.51), we have the following relations: 

(4.5.78) 

The relation between the v-basis and the w-basis (4.5.78) can be writ- 
ten in the matrix form 

where 

H1= [; ‘J * (4.5.80) 

We note that 

1 
2 H r l  = -Hi. (4.5.81) 

If we let 2 be any matrix of order N - 1 with invariant subspaces E(P) 
spanned by the eigenvectors $‘I and viN-’), and Zp) and 22) (4.3.20) be the 
transform matrices associated with the v-basis and the w-basis respectively, 
then we have the following result. 

Lemma 4.1 Let @‘I and 22) be defined as in (4.3.2O) and (4.4.57) respec- 
tively. Then the following relation holds: 
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Proof: By using the relation (4.5.79), we have 

(4.5.83) 

when p # N/2, and vr '  and viN-') are linearly independent. Therefore, the 
result follows by comparison to (4.3.20). When p = N/2, we have 

(4.5.84) 

Suppose ANI2 is the eigenvalue of the matrix 2 corresponding to viNf2), and let 

the relation (4.5.82) still holds. 

(4.5.85) 

Lemma 4.1 shows that in any case where the standard Fourier analysis 
or the two-color Fourier analysis can apply, the other can also apply. Since in 
a given situation, one of the two Fourier analyses may be easier, it might be 
appropriate to transform an operator representation form on one basis to the 
corresponding representation form on another basis. For instance, the RBGS 
smoothing operator is not easy to write in the u-basis form, but is easy to write 
in the w-basis form. One can write the v-basis form by using the transformation 
described in Lemma4.1. For example, the red iteration operator on the v-basis 
is 

sp) = ZHlsh, ,  1 (+,P)& 

1 1 1  0 %  1 1  
= 5 [ 1  - 1 ] [ 0  -1] 

(4.5.86) 
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4.6 Red/Black Gauss-Seidel Smoothing 
We now consider the use of the red/black Gauss-Seidel (RBGS) method 

as the smoothing iteration method in the standard multigrid procedure. One 
RBGS iteration can be regarded as consisting of two sub-iterations: a red sub- 
iteration followed by a black sub-iteration. Let the red points and the black 
points be defined in (4.4.48) and (4.4.49) respectively (refer to Figures 3.2 and 
4.2). The red sub-iteration operator Sp) and the black sub-iteration operator 
Si-) are defined by 

1 
( S P ' U h ) j  = { z ( ( U h ) j + l +  (uh)j-1)  j = odd (red), 

(uh)j j = even (black), 

1 
z ( ( U h ) j + l +  (uh)j - l )  j = even (black), 
(Uh)j j = odd (red). 

( s p u h ) j  = { 
(4.6.87) 

(4.6.88) 

for j = 1,. . . , N - 1. These two operators can be written in the w-transform 
matrix form as 

and 

where 

and 

(4.6.91) 

(4.6.92) 
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Let the set of black grid points be used as the coarse grid. If linear 
interpolation of the corrections and the full weighting restriction of the residuals 
are used, the two-level standard multigrid method will converge in one cycle 
with one smoothing iteration on the red grid points that corresponds to the 
operator Sp) defined in (4.6.87). This is because 

and 

(4.6.93) 

(4.6.94) 

where the coarse grid correction operator is defined in (4.4.68). 

Let us now look more closely at this procedure. If we use one red 
sub-iteration for pre-smoothing, the full weighting restriction is equivalent to 
an injection multiplied by i. On the other hand, if we use one red sub-iteration 
for post-smoothing, the linear interpolation is equivalent to a pull back injection 
which is given by 

(4.6.95) 

= f [ .  11- [  2 0  O ] 
h2 0 1-.”p 

(4.6.96) 

1 0 

1-cos2pnrh 
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and the matrix 

(4.6.97) 

is the w-transform-space matrix of the injection restriction operator defined in 
(4.2.4). For the second case, we notice that 

and the matrix 

(4.6.98) 

(4.6.99) 

is the w-transform-space matrix of the pull back injection interpolation operator 
defined in (4.6.95). 

Based on the analysis above, it can be shown that the following 1D 
standard multigrid algorithm converges in one cycle for any given initial guess 
U p :  

1. 

2. 

3. 

4. 

DO one red iteration: ui = sp’ujp) + bh. 

Inject the residual multiplied by 4 on the black points 
1 
2 r 2 h  = - ( b h  - A h u i ) .  

Solve the correction equation on the black coarse grid 

&h&h = r2h.  

Get the final solution by linearly interpolating the coarse grid correction 
and adding the result to the old estimated solution 

uy’ = u; + Ph&h, 

where up’ is the true solution of the problem A h u h  = bh. 
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4.7 Numerical Results 
In this section we present some numerical results of the standard 

multigrid method for the following model equation: 

1 -!g = 64' x E R = (0, l), (4.7.100) 
( u = 1 + 2  x E 80. 

We use the linear interpolation of correction and the full weighting restric- 
tion of the residual in the algorithm. The damped Jacobi method is used for 
smoothing. 

Table 4.3 shows the convergence factors using the two-level scheme 
where y is the extrapolation factor of the damped Jacobi method, and ml 
and m2 are the number of pre-smoothing and post-smoothing iterations re- 
spectively. The grid size we used is 64. The convergence factors listed are the 
average convergence factors of 3 multigrid cycles measured by 

(-)-i. (4.7.101) 

Table 4.4 shows the convergence factors for the same case with six 
levels. In the case of more than two levels, the coarse grid problem (4.2.12) 
is solved by using a similar coarse grid correction procedure based on an even 
coarser grid (&,). In general, this process can be recursively carried out down 
to the coarsest grid on which the problem is solved directly. Figure 4.3 shows 
the schedule for the three-level multigrid method. Because of the shape of the 
diagram, the multigrid algorithm described here is called the V-cycle. 

Comparing these two tables to Table 4.1, one sees that the two-level 
numerical convergence factors are bounded from above by the estimated up- 
per bounds and the multilevel numerical convergence factors are close to the 
corresponding two-level ones. 

One of the nice properties of multigrid methods is that the conver- 
gence factor is independent of the problem size. Figure 4.4 shows that the 
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Figure 4.3: Schedule of Grids for Three-Level V-Cycle MG Method 

Table 4.3: Numerical Convergence Factors of Two-Level 1D SMG-Jacobi 

(09 1) (1,1) (172) (17  3) 

0.50 0.3043 0.1527 0.0822 0.0534 

0.60 0.2455 0.1004 0.0550 0.0410 

0.70 0.3862 0.2096 0.0838 0.0405 

0.80 0.5805 0.4107 0.2434 0.1468 

0.90 0.7758 0.6626 0.5261 0.4212 

-. 

11 1.00 I 0.9711 I 0.9603 I 0.9550 I 0.9543 11 
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Table 4.4: Numerical Convergence Factors of Six-Level 1D SMG-Jacobi 

11 0.60 I 0.2920 I 0.1869 1 0.1095 1 0.0901 11 
11 0.70 I 0.3324 I 0.2724 I 0.1130 I 0.0877 11 

0.80 0.5266 0.4370 0.2152 0.1758 

0.90 0.7390 0.5708 0.4869 0.4351 

U 1 .oo 0.9661 0.9603 0.9082 0.9536 U 

convergence factor has only a minor change when the number of points N 
varies from 32 to 512. In these runs we use 7 = 0.6 and ml = m2 = 1. 

In our experiments, we found that the solution of the system on the 
coarsest grid does not need to be exact to obtain fast convergence. The conver- 
gence factor of a multigrid method will not degenerate as long as the accuracy 
of the solution on the coarsest grid is within a certain limit, say 10 times smaller 
than the average convergence factor. Figure 4.5 shows the residual reduction 
history for using solutions with different accuracy on the coarsest grid. In the 
plot, n is the number of smoothing iterations on the coarsest grid. If the num- 
ber of iterations is more than 8, the result is the same as that using the exact 
solution on the coarsest grid. 
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0.1 : 

0.001 1 a I I 1 

0 os 1 1 .s 2 2s 3 
NumberofMGcydes 

Figure 4.4: Residual Reduction History for Different Problem Sizes (1D) 





Chapter 5 

Standard Multigrid Method in 2D 

5.1 Introduction 
In this chapter, we describe the two dimensional standard multigrid 

method, and extend the convergence analysis of the standard multigrid method 
to the 2D model problem (2.3.11). We again provide both the regular Fourier 
analysis and the multi-color Fourier analysis. 

5.2 Definition of the SMG Algorithm in 2D 
The standard multigrid method in 2D is a direct extension of the 

standard multigrid method in 1D described in the previous chapter. If we let 
xj = j h  and yk = kh with h = 1/N, the fine grid on the area (0, 1)2 is defined 
bY 

The fine grid R h  contains four subsets which are defined by 

One of these subsets (usually 0-,) is used as the coarse grid & for the coarse 
grid correction in the SMG. 
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(279) f L- 

(2931) E o+- 
(5.2.4) 
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5.3 Standard Fourier Analysis 
In the 2D case, for any of the matrices which we will consider in the 

analysis, say 2, it can be shown that 

(5.3.8) 

for some values z!?) depending on (p, q )  where p' = N - p and q' = N - q. We 
can also write (5.3.8) in matrix form as 

where 

and the u-transform matrix is 

Also, we say that the subspace 

(5.3.9) 

(5.3.10) 

(5.3.11) 

(5.3.12) 

is invariant under 2. In some sense the matrix .@q) can be regarded as a kind 
of "transform" of the matrix 2. Note that the rank of the matrix EFq) is 2 
when one of indices p and q, but not both, is N/2, and is 1 when both p and q 
are N/2. 
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For problem (2.3.11), the matrices used in the standard 2D multigrid 
algorithm can be written in the forms 

where 

2 2  2 2  2 2  2 2  

(5.3.13) 

(5.3.14) 

(5.3.15) 

(5.3.16) 

(5.3.17) 

(5.3.18) 

(5.3.19) 

(5.3.20) 

(5.3.21) 

(5.3.22) 
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Table 5.1: Two-Level Convergence Factors of 2D MG-Jacobi 

7 m = l  m = 2  m = 3  m = 4  U 

Herec) = cos(prh/2), c j  = cos(q?rh/2), sg = sin(p?rh/%), and s; = sin(qnh/2). 

From (4.2.15), the v-transform matrix of the coarse grid correction 
operator can be computed by 

(5.3.23) 

The v-transform matrix of the two-level multigrid operator with ml Jacobi 
pre-iterations and m2 Jacobi post-iterations is given by 

(5.3.24) 

Therefore, the convergence factor of the two-level 2D standard multi- 
grid method with the damped Jacobi method as the smoothing iterations can 
be computed by 

(5.3.25) 

where m = ml + m2. Table 5.1 lists the two-level convergence factor Pm in the 
case of h = 1/64 with different values of 7. 
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5.4 Four-Color Fourier Analysis 
The 2D w-basis vectors are defined by 

if(zj,Yk) f 0 s  
otherwise 
N 
2 
- P , Q  = 1,- ,  

j , k =  1, ..., N - 1  
s = ++, -+, +-, - - (5.4.26) 

where the v-basis vp) are defined in (2.3.14). Here, ( p , q )  is the vector index, 
s is the coarse grid index, and (jk) is the vector element index. 

The subspaces E(”) defined in (5.3.12) can also be represented in 
terms of 

(5.4.27) 

If we let 

9 (-+,P,P) (+-,P*d (--,P,P 
, w h  Iwh ywh 

E(P*P) = ( wi++9*9) 
ut 

N p =  1, ...,- 2 

For any matrix 2 with an invariant subspace E(PtQ), we can write 

(5.4.28) 

(5.4.29) 

where ip) is a 4 x 4 matrix which can be regarded as a w-transform matrix 
of 2. 

For each of the operators used in the 2D SMG algorithm, we have 

(5.4.30) 

(5.4.31) 



where 

2 
h2 

= - 

and 

l+a -"cp -cq 0 
-"cp l+a 0 -cq 

-4 0 1Sa -aCp 

0 -cq -acp l+a 
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(5.4.32) 

(5.4.33) 

(5.4.34) 

(5.4.35) 

(5.4.36) 

(5.4.37) 

(5.4.38) 

(5.4.39) 

The w-transform matrix of the coarse grid correction operator is given 
bY 
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The w-transform matrix of the two-level multigrid operator with ml Jacobi 
pre-iterations and m2 Jacobi post-iterations is given by 

Therefore the convergence factor can be calculated by 

(5.4.41) 

(5.4.42) 

The numerical calculation of p(Tim1’m2)) has verified that the convergence fac- 
tors calculated by the four-color Fourier analysis are the same as those calcu- 
lated by the standard Fourier analysis. 

5.4.1 Relationship Between the u-Basis and w-Basis 
Since the w-basis defined in (5.4.26) is constructed from the v-basis 

defined in (2.3.14), there is a linear transform relationship between these two 
sets of bases. By comparing the definitions of the two bases, we have 

(5.4.43) 

where p’ = N - p and Q’ = N - q. Since the wavenumber p‘ (or q’) is larger 
than 5, the corresponding p’ (or q‘) modes are referred as the high-frequency 
modes in the z-direction (or the y-direction). Equation (5.4.43) can be written 
in the matrix form 

(5.4.44) 
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where 

(5.4.45) 

It can be directly verified that the inverse of H2 is given by 

(5.4.46) 

If we let 2 be a matrix of order ( N -  1)2 with the invariant subspaces 
B(PsQ) defined in (5.4.27), and 2iP*’J) and ,?$’*e) be transform-space matrices 
associated with the v-basis and the w-basis respectively, then we have the 
following lemma. 

Lemma 5.1 Let Zp) and ZF‘J) be defined as in (5.3.9) and (5.4.29). Then 
the following relation holds: 

Proof: From (5.4.44), we have 

(5.4.47) 

(5.4.48) 
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We remark that if Zp) has the form 

b c  
a d  
d a  
c b  

d 

C 

b 7  
a - 

the corresponding matrix .@',q) is given by 

[ a + b + c + d  0 0 0 
0 a - b + c - d  0 0 
0 0 a + b - c - d  0 

l o  0 0 a - b - c + d  

(5.4.49) 

(5.4.50) 

5.5 Numerical Results 
The problem we used in our numerical experiments with the 2D stan- 

dard multigrid method is given by 

(5.5.51) 
( 2 1 = 1 + x y  

We use 2D linear interpolation of correction and full weighting restriction of 
the residual in the algorithm. Again, the damped Jacobi method is used for 
smoothing. 

Tables 5.2 and 5.3 list the convergence factors of the two-level multi- 
grid algorithm and the multilevel multigrid algorithm respectively. The grid 
size we used is 64 x 64. The convergence factors are obtained by averaging the 
convergence factors in 3 multigrid cycles. 

The two-level numerical convergence factors of the two-dimensional 
multigrid method, as in the one-dimensional case, are bounded from above by 
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Table 5.2: Numerical Convergence Factors of Two-Level 2D SMG-Jacobi 

11 0.60 I 0.6061 1 0.3346 1 0.2595 1 0.1788 11 
0.70 0.5511 0.3384 0.1793 0.1194 

0.80 0.3984 0.2911 0.1691 0.1371 

0.90 0.4584 0.1956 0.1134 0.0827 

1-00 0.3185 0.2173 0.1335 0.1196 
Y 

Table 5.3: Numerical Convergence Factors of Six-Level 2D SMG-Jacobi 
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Figure 5.1: Residual Reduction History for Different Problem Sizes (2D) 



61 

4 
8 
E 
K 

0 0.5 1 1.5 2 2.5 3 
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Figure 5.2: Residual Reduction for Different Coarsest Solution Accuracy (2D) 
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the estimated upper bounds presented in Table 5.1 and the multilevel numerical 
convergence factors are close to the corresponding two-level ones. 

Figure 5.1 illustrates the residual reduction factors of the multigrid 
method with different grid sizes. It confirms that the convergence factor of 
multigrid methods is independent of the size of problems. In these runs we 
used y = 0.6 and ml = m2 = 1. The problem sizes are from 8 x 8 to 128 x 128. 
The system on the coarsest grid does not have to be solved exactly. In practice, 
the system on the coarsest grid can be solved approximately by performing a 
few smoothing iterations. Figure 5.2 shows that the difference between the 
convergence factors when the system on the coarsest grid is solved to different 
accuracy. Here n is the number of smoothing iterations performed on the 
coarsest grid. In this case two smoothing iterations are enough. 



Chapter 6 

The Construction of Extended 
Systems 

6.1 Introduction 
In the next two chapters, we will discuss multigrid methods involving 

the use of more than one coarse grid for the 1D problem (2.2.1) and for the 
2D problem (2.3.8). Since such kinds of methods can be more conveniently 
applied to periodic systems, we will first consider periodically extended systems 
corresponding to the problems (2.2.1) and (2.3.8). 

6.2 A Sample Problem in 1D 
We consider the numerical solution of the model problem with the 

Dirichlet boundary condition defined by 

This problem was considered in Chapter 2. 
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(6.2.1) 
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5 0  21 2 2  53 5 4  

(x = 0) (x = 1) 

Figure 6.1: The Original Grid with h = 1/4 

For a grid with grid size h = 1/4 (see Figure 6.1), the standard 3-point 
finite-difference equation system is given by 

(6.2.2) 

where f, = f ( x j ) .  

We now consider the "modified system" given by 

Evidently, if u, given by 

(6.2.3) 

(6.2.4) 
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i3 0 - 4 3  -& -51 0 i1 i 2  i 3  0 -& 

(5 = -1) ( x  = 0) (x = 1) 

... ... - - - - w - w - w 

x-5 5-4 2-3 2-2 2-1 20 x1 22 23 5 4  2 5  

Figure 6.2: The Periodically Extended Grid and the Vector 6 

satisfies (6.2.2), then 6, given by 

0 

U 1  

u 2  

u3 

0 

satisfies (6.2.3). 

6.3 The 

(6.2.5) 

Periodically Extended System in 1D 
We now replace the modified system (6.2.3) by a “periodically ex- 

tended system” involving the entire real line. We construct a vector 8 on the 
entire real line by first extending asymmetrically from the interval [0,13 to the 
interval [-1,1] and then extending it periodically with period 2 to the entire 
real line as shown in Figure 6.2. 

- 

We now define the periodically extended system by requiring that 6 
satisfy the following conditions: 

1. At every grid point x j  = j h  (including j = 0, fl, f 2 , .  . .) we have 
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i i3  0 -63 -62 -61 0 e, 6 2  e3 0 -63 

(x = -1) (5 = 0) (5 = 1) 

- a a ... ... 
.I w - - w - - 

x-5 5 - 4  2-3 5 - 2  2-1 xo 21 22 23 x4 5 5  

Figure 6.3: A Solution of the Periodically Extended System 

... ... 
where iij = ii(xj); 

2. B is periodic with period 2, i.e. 

... ... ... 
uj+2N = 6j (6.3.7) 

for j = 0, fl, f2,. . .; 
3. The sum of the values of {&} over any period of length 2, excluding one 

of the end points, vanishes. 

Let e* given by 

(6.3.8) 

be the solution of t-e modi,.dd system 6 .  , We claim that 6* is a solut 
of the periodically extended system where B* is obtained from ii* by extending 
ii* asymmetrically to the interval [-1,1] and then extending the asymmetric 
vector periodically, with period 2, to the entire real line as shown in Figure 6.3. 
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Suppose now that 6 is any other solution of the periodically extended 
system and let 

z z ",* w = v - u ,  (6.3.9) 

Evidently, & is periodic and the sum of the {&j} taken over any period of 
length 2, excluding one of the end points vanish. Moreover 

(6.3.10) 

where &j = &(xi) for all j. The solution of (6.3.10) can be obtained by 
rewriting (6.3.10) in the form 

(6.3.11) 

Thus, we have 
- 
6 2  = 251-60  

= 2(& - 50) + Goy (6.3.12) 

x = 2(2(&1 - Bo) + 50) - 6 1  

= 3(51-  50) + 50 (6.3.13) 

and so on. In general, we have 

(6.3.14) 
* 

By periodicity, 6 1  - & = 0. Also since the sum of the {Gj} over a period must 
vanish it follows that & = 0. Hence & = 0 and 

", z* v = u .  (6.3.15) 

Therefore, the periodically extended system has a unique solution t*. More- 
over, from i* we can obtain the solution of the modified system. 
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6.4 The Extended System in ID 
We will now show that one can derive a finite-number of equations 

from the periodically extended system such that the solution of the periodically 
extended system, the solution of the modified system and thus the solution of 
the original system can be obtained. 

To derive the extended system, we first consider the equations of the 
periodically extended system corresponding to the points 2-4, x-3,. . . , x4. We 
obtain the system 

(6.4.16) 

We then use the periodicity to replace 6, by %-3,5 -5  by &3 and 5 - 4  by 6 4  and 
we obtain 

x 

-63 +- 264 - 6-3 

j= -2 , -1 ,  ..., 3 
(6.4.17) 

* x 

Since 8-4 = ?;4. We then discard the first equation since it is the same as the 
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last equation and obtain the conditions 

2 - 1 0  0 0 0 0 - 1  
- 1 2 - 1 0  0 0 0 0 
0 - 1 2 - 1 0  0 0 0 
0 0 - 1 2 - 1 0  0 0 
0 0 0 - 1 2 - 1 0  0 
0 0 0 0 - 1 2 - 1 0  
0 0 0 0 0 - 1 2 - 1  

- 1 0  0 0 0 0 - 1 2  

or 

(6.4.18) 

(6.4.19) 

In addition, since &j = 0 for the periodically extended problem we have 

4 c = 0. 
j=-3 

(6.4.20) 

We refer to the system defined by (6.4.19) and (6.4.20) as the extended system. 

It is easy to show that any N x N matrix of the form of A(E) has rank 
N - 1 and has as its null space the one-dimensional subspace spanned by the 
vector 

z = (l,l,.. . , l )T .  (6.4.21) 



70 

Moreover, the vector 

(.‘E’)* 

c - 
-63 
- 6 2  

-61 

0 

61 

6 2  

63 
0 

- - 

- 
satisfies (6.4.18). Hence the general solution of (6.4.18) is 

= (.‘E’)* + CYZ. 

(6.4.22) 

(6.4.23) 

If one requires that the sum of the components of 
vanish, since the sum of the components of (dE))* vanishes. 

vanish, then CY must 

We remark that the process of replacing a vector w by a vector w’ = 
w + CYZ such that the sum of the components of w‘ vanishes is referred to as 
purification. Thus if w is a vector of order N and if w’ is given by 

l N  
N j=1 

w’ = - (- Wj)Z,  (6.4.24) 

then w‘ is the purification vector of w and we let 

20’ = P ( w )  (6.4.25) 
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2 
-1 

-1 - 
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Suppose now that we want to solve aa N x N system of the form 

-1 
2 

0 

0 ... 
-1 ... 

... 

or 

A w = b  

... 
0 ... 

0 
0 

-1 

(6.4.26) 

(6.4.27) 

where the sum of the components of b do not necessarily vanish. Since the sums 
of the rows of A vanish, the system is inconsistent. However, the following 
procedure can be used to obtain an approximate solution 

1. Purify b to obtain b' = P(b). Thus 

b: = bj - CY, j = 1,2, . . . , N 

where 

2. Find a solution, 6, of the consistent system Aw = b'; 

3. Purify 6 to obtain C'P(6). Thus 

where 

(6.4.28) 

(6.4.29) 

(6.4.30) 

(6.4.31) 

L 
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It can be shown (see Appendix A), that the approximate solution of (6.4.26) 
obtained in this way is the same as the “Moore-Penrose solution” of (6.4.26). 
In general the Moore-Penrose solution of a linear system Au = b minimizes 

llb - Aull and IIuII* 
In later chapters we will need to solve linear systems of the form 

(6.4.26) which may not be consistent. 

From the discussion above, the procedure for solving the difference 
equation system 

(6.4.32) 

where h = 1/N, uj = U(Zj)? 3 0  = 0 and ZN = 1, can be described as follows. 

1. Construct the modified system 

where 

2. Construct the periodically extended system 
.., 

e Extend & to get 5; 
* * I I - 

e -Uj-1 + 2Gj - 6j+l = bj ; 
e ii is periodic; 

e sum of {gj] over a period vanishes. 

.%. 

(6.4.33) 

(6.4.34) 
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3. Construct the extended system 

0 use periodicity to get equations for x l - N ,  x ~ - N , .  . . , ZN; 
0 sum of {uy)} vanishes. 

4. Find a solution dE) of the extended system. 

5. Purify i P )  to get (idE))'. 

6. Obtain the solution u* of the modified system by letting 

( U * ) j  = (P)); j = 1,. . . , N - 1. (6.4.35) 

7. The solution of (6.4.32) is the vector u* with two end values and q5b. 

6.5 The Construction of an Extended System 
in 2D 
The discussion in the one-dimensional case can be extended to a two 

dimensional case. We consider the following anisotropic problem in two dimen- 
sions: 

(6.5.36) 



(6.5.37) 

(6.5.38) 

(6.5.39) 
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and 

(6.5.40) 

- 
As in the one dimensional me,  we construct a vector 8 on the entire 

plane by first extending 6 asymmetrically in both the 2- and y-directions from 
the area [0,1l2 to the area [-l,lJ2 and then extending it periodically with 
period 2 in both directions to the entire plane. The 2D periodically extended 
system is defined by requiring that k satisfy 

1. At every grid point ( ~ j ,  Y k )  (including j ,  k = 0, f l ,  f 2 , .  . .) 

2. is periodic with period 2 in both directions; 

(6.5.41) 

3. The sum of { z j , k }  over any period of 2 in both direction, excluding the 
points on any one of the end edges in both directions. 

It can be shown, as in the one-dimensional case, that the solution of the 2D 
periodically extended system is unique. Moreover, the solution of the 2D modi- 
fied problem can be obtained from the solution of the 2D periodically extended 
system. 

We now consider the following extended system in 2D: 

(6.5.42) 
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Figure 6.4: The Original Grid and the Extended Grid in 2D with h = 1/4 

where 
I ,  

bj,k j , k =  1, ..., N - 1  

-Ib-j,k j = 1 - N  ,..., -1; k = l ,  ..., N - 1  

j , k  - {  -bj,-k j = 1 ,  ..., N - 1 ;  k = l - N  ,..., -1 
* b(E) - 
,., 

-b-j,-k j = 1 - N , .  . . ,-1; k = 1 - N , .  . . , -1 

\ 0 j ,  k = 0, N 

or 

(6.5.43) 

This system is defined on the extended grid in the area [-1,1]*. Figure 6.4 
illustrates the extended grid Qf in the case of h = 1/4. It can be shown that 
any 2 N  x 2 N  matrix of the form A@) has rank 2 N  - 1 and that its null space 
is spanned by the vector z defined in (6.4.21). Therefore, we can use the same 
purification procedure in solving the 2D extended system. 



Chapter 7 

Multiple Coarse Grid Methods in 1D 

7.1 Introduction 
In this chapter we discuss a class of multigrid methods where, unlike 

the standard multigrid method, more than one coarse grid is used at each 
coarse grid level. In our discussion we will refer to this class of methods as 
multiple coarse grid (MCG) methods. We are concerned with three classes 
of such methods, namely, multiple comse grid multigrid methods (MCGMG), 
frequency decomposition multigrid methods (FDMG) and parallel multigrid 
methods (PMG). We will use these methods to solve the extended system 
(6.4.19). For convenience of description, we divide the extended system (6.4.19) 
by h2 to obtain an equivalent system which is referred to as 

7.2 MCGMG Methods in 1D 
7.2.1 The Two-Level MCGMG Algorithm in 1D 

Let s j  = j h  with h = 1/N and 

R h = ( X j  I j = I - N ,  ..., N } ,  

(7.1.1) 

(7.2.2) 

be a grid on the interval ( - 1 , 1 ] ,  where N = 2k for some positive integer k. 
We construct two coarse grids in such a way that all the even-numbered grid 
points belong to one coarse grid and all the odd-numbered grid points belong 
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m - w 

2h{ '+ ' -3 -1 1 3 
' 

m n- w w 

-2 0 2 4 
w w - w e 

- 3 - 2 - 1 0  1 2  3 4 
I m m * m h {  ah 

(x = -1) (x = 0) (x = 1) 

Figure 7.1: Two-Level Grids in 1D with h = 1/4 

to another. Then, we have 

(7.2.3) 
(7.2.4) 

Figure 7.1 illustrates the grids on two levels, h and 2h for the case N = 4. 

For problem (7.1.1) a two-level MCGMG algorithm is given in Fig- 
ure 7.2. For the following analysis, we assume that the full weighting restriction 
of residuals and linear interpolation of corrections are used. The full weighting 
restriction is defined by 

(7.2.8) 

(7.2.9) 

and the linear interpolation is defined by 

(7.2.10) 
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Algorithm: MCGMGlD2L(Ah, u f ) ,  bh) 

1. Do ml pre-smoothing iterations using the smoothing iterative method 
(e.g. damped Jacobi method) to obtain u i .  

2. Compute the residual T h  = bh -Ah?&, restrict the residual onto the coarse 
grids and perform purification defined in (6.4.24) if necessary to obtain 

where zit) and zih) are the eigenvectors in the null spaces of A$) and 
A;;) respectively. 

3. Solve the coarse grid systems 

to obtain the purified solutions 62) and 6;;’. 

4. Interpolate 6;;) and 6;;) onto the fine grid to obtain the new approximate 
solution 

5 .  Do m2 post-smoothing iterations using the smoothing iterative method 
and purify the result, if needed, to obtain u c ) .  

Figure 7.2: The 1D Two-Level MCGMG Algorithm 



(7.2.11) 

The coarse grid difference operators are defined by the 3-point difference for- 
mula, e.g. 

(A$,’6;:))(x) = (2h)-2[264i)(~) - J$’(x - 2h) - J!~’(X + 2h)] 
5 f n, 

x E R, 

(A2h (-1 62h (-1 )(x) = (2h)-2[2J$,)(~) - 6$’(Z - 2h) - b;,’(x + 2h)] 
(7.2.12) 

(7.2.13) 

In general, the restriction of a purified vector on the fine grid may not 
be a purified vector on coarse grids. However, we have the following lemma. 

Lemma 7.1 Let bh be a purified vector on the fine grid. If the number of fine 
grid points is 2N for some positive integer N ,  then the full weighting restriction 
of bh on a coarse grid, say b2h, is also a purified vector. In fact the element 
sum of b2h is one half of the element sum of bh. 

Proof: It can be directly verified by using the restriction operator definition. 
In fact, each of the elements of bh contributes half of its value to b2h. 

On the other hand, we have 

Lemma 7.2 Let U2h be a purified vector on a coarse grid. If the number of 
fine grid points is 2N for some integer N ,  then the linear interpolation of U2h 

on the fine grid is also a purified vector U h .  

Proof: It can be directly verified that the s u m  of the elements in U h  is the 
same as the sum of the elements of U2h. 

Therefore, the purification in step 2 of the MCGMGlD2L algorithm 
defined in Figure 7.2 is not needed if the full weighting restriction of residuals 
is used. Moreover, if the Jacobi method is used for smoothing iterations, then 
the purification in step 6 is also not needed. 
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7.2.2 Two-Level Convergence Analysis 
Let v(P), p = 1 - N , .  . . , N, be the Fourier modes (v-basis vectors) 

defined by 

(v(P))j = exp(-ipnjh), j = 1 - N , .  . . , N (7.2.14) 

The two-color Fourier modes (w-basis vectors) are defined by 

(7.2.15) 

where p = 1 - N/2,. . . , Nj2. Note that Vh (p--N) = vpN). In the case of N = 4, 
we have 

exp( 43pxh)  
0 

exp(-ipxh) 
0 

exp(ipxh) 
0 

exp(i3pxh) 
0 

r 0 
exp( -i2p7rh) 

0 
1 

0 
exp(i2pxh) 

0 
exp(i4pxh) 

(7.2.16) 

for p = - l , O ,  1,2. 

We are interested in the combined effect of the two coarse grids on the 
coarse grid correction of the MCGMG algorithm (step 2 to step 6 in Figure 7.2). 
we denote 'iih = ALbh the purified solution Of A h U h  = bh. Let e; = U; - 'iih be 
the error before the coarse grid correction and e l  = ui - i ih be the error after 
the coarse grid correction. We note that both e;, and e: are in the range of Ah. 

From (7.2.5) to (7.2.7) we have 



s2 

where 

Here the Moore-Penrose inverses (A$’)t and (A$i’)+ mean that the two coarse 
grid systems are solved exactly for the purified solutions 64;) and 6;;) respec- 
tively. 

We now show that after one MCGMG cycle, the new error vector has 
no imaginary component. The initial error ep) = ulp‘ - f i h  can be expressed by 
a linear combination of the Fourier modes 

where the coefficients dp,  kp and 2, can be complex values. Since each compo- 
nent in vi-’) is the complex conjugate of the corresponding component in $’, 
ep) is real if and only if 

- 
dp = d-, (7.2.20) 

where z-p is the complex conjugate of LP. After one multigrid cycle, the error 
$1 = ur) - 6 h  is given by 

If we let Th be the operator of the two-level MCGMG method and let 
fz; be the v-transform matrix which is defined by 
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then (7.2.29) can be written in the form 

[ 2 - N ]  =4”[ d p  d p -  N 1 -  
^ (-PI If ptJ = Th,v , which is the case in our analysis, we also have 

(7.2.23) 

(7.2.24) 

From (7.2.24) one sees that after one MCGMG iteration the error is still real. 
In the two-color Fourier analysis, we use the w-basis given by (7.2.15). From 
(4.5.79), we have 

[ :] =Ill [ d p  ] = Hl [ p p  ] = [ ‘-’I. 
dp-N d N - p  I - ,  

If the w-transform matrices fC2 of T h  are given by 

Th(wj;’”I (-id (+,PI (-,PI -(PI 
yWh ) = ( w h  yWh )Th,w 

and f”2 = Th,w A (-PI , which is the case in our analysis, we also have 

Ideally, one would like to have 

= X p d p .  

(7.2.25) 

(7.2.26) 

(7.2.27) 

(7.2.28) 

This is true, for example, for the Jacobi method itself. However, in general, 
because of aliasing in the coarse grid correction process, for a normal standard 
multigrid cycle, we have 

(7.2.29) 



If p p - ~  = 0 and p p  = 0 there would be no aliasing. We will show that this is 
the case for the MCGMG algorithm. 

N , . . . , $ the w-transform matrices of the difference op- Forp= 1 - -  
erator, the interpolation operators, the restriction operators, the coarse grid 
difference operators and the damped Jacobi operator are given by 

where 

(7.2.30) 

(7.2.31) 

(7.2.32) 

(7.2.33) 

(7.2.34) 

(7.2.35) 

(7.2.36) 

(7.2.37) 

(7.2.38) 
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and 

1 - Y  Ycp . - 
- [ 7% 1 - Y l  

(7.2.39) 

(7.2.40) 

(7.2.41) 

The w-transform matrix of the coarse grid correction operator ch can 
be written in the form 

(7.2.42) 

Because of the purification process, the coarse grid correction has no effect on 
the modes w?”) and wi-”). Therefore, cti = I. From (7.2.36) to (7.2.40), 
we have 

(7.2.43) 
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and 

4 h2 1 2 

= [:I 2 - 2 c o s 2 p ? r h Z [ ~  116[ -2% -2c, 2 I (7.2.44) 

Substituting (7.2.43) and (7.2.44) into (7.2.42), we obtain 

(7.2.45) 

By using Lemma 4.1, the corresponding w-transform matrix is given by 

(7.2.46) 

From (7.2.46) one sees that there is no aliasing in the combined coarse 
grid correction because the aliasing on even and odd grid points is of opposite 
sign and therefore cancels. 

An upper bound on the two-level convergence factor of the MCGMG 
algorithm is given by 

p(Th)  = B,"2chBy1 
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Table 7.1: Two-Level Convergence Factors of 1D MCGMG-Jacobi 

(7.2.47) 

Table 7.1 lists the two-level convergence factor p ( T h )  using the Jacobi 
smoothing iteration with the extrapolation factor 7 in the case of N = 64. The 
w-transform matrix of the Jacobi operator is defined in (4.4.67). Comparing 
the convergence factors of the standard multigrid method in Table 4.1, one sees 
that the convergence rate of the MCGMG method will generally be faster than 
the corresponding standard multigrid method for each multigrid cycle. This 
is because the coarse grid correction process of the MCGMG does not have 
aliasing errors. Hence, each pair of components in the error of the problem 
will be damped effectively by the coarse grid correction and by the smoothing 
iterations without affecting each other. On massively parallel machines the 
improved convergence rate is attained at no extra computational cost because 
the coarse grid correction on all coarse grids on each level can be carried out 
simultaneously. 



88 

l 

I 

w w 

-3 1 - 
w w 

-1 3 
a - 

-2 2 
w 0 
0 4 

A t 
t 

w - w - 
-3 -1 1 3 - 

w w 0 
-2 0 2 4 

w - w w w w 0 
- 3 - 2 - 1 0  1 2  3 4 

(x = -1) (x = 0) (x = 1) 

Figure 7.3: Coarse Grids for an Extended Fine Grid: N = 4 

7.2.3 The Multilevel MCGMG Algorithm in ID 
The 2h coarse grids can be divided into even coarser grids in a similar 

way. Figure 7.3 illustrates all the grids on three levels, h, 2h and 4h for the 
case N = 4. Figure 7.4 shows the corresponding hierarchical relations among 
these grids. 

A multilevel MCGMG algorithm is similar to the two-level version ex- 
cept the coarse grid problems in step 3 are solved by using the MCGMGlD2L 
algorithm recursively. For a better understanding of the multilevel MCGMG 
algorithm, we list a three-level MCGMG algorithm in the following. For con- 
venience of representation, we use the symbol instead of 6 to represent the 
solutions and b to represent the right-hand side vectors on all levels. The solu- 
tions on coarse grids should be thought of as corrections to the solution of the 
fine grid. 
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2h 
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a,- 

4h ,c, 
Q++ R+- Q-+ 

Figure 7.4: Hierarchical Relations Among Grids: N = 4 

Algorithm: MCGMGlD3L( Ah, u t ) ,  b h )  

1. Do ml smoothing iterations on A h ~ h  = bh with initial guess Oh. 

2. Compute 

3. Do ml smoothing iterations on 

4. Compute 

(7.2.48) 
(7.2.49) 

(7.2.50) 
(7.2.51) 

(7.2.52) 
(7.2.53) 
(7.2.54) 
(7.2.55) 



6. Correct 

7 .  Do m 2  smoothing iterations on 

90 

(7.2.56) 

(7.2.57) 
(7.2.58) 
(7.2.59) 

(7.2.60) 

(7.2.61) 

with initial guesses vi:) and v$) respectively and purify the results if 
necessary. 

(7.2.64) 

9. Do m 2  smoothing iterations on A h u h  = bh with initial guess Oh and purify 
the results if necessary. 

Here we used the purification notation T’(v,z) defined in (6.4.24). In the case 
of N = 4, there can be three levels. On the second level, the two 2h coarse 
grid systems are given by 

2 -1 0 -1 
-1 2 -1 0 
0 -1 2 -1 

-1 0 -1 2 

(v2h) -3  

(V2h)-l  

( v 2 h ) l  I ( v2h)3  
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(1.2.65) 

Here we use V2h and b2h to represent the fine grid vectors which consist of the 
coarse grid vectors v 2 h  (+) , v 2 h  (-1 and b2h (+I , b2h (-) respectively. 

On the third level, the four 4h coarse grid systems are given by 

(b4h)-3  ( b y 9 0  (++I 
= [ (b4h)l ] = [ (++) ] = b4h ' 

(b4h 11 
(7.2.67) 

(7.2.68) 
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(7.2.69) 

(7.2.70) 

Here each of the fine grid vectors W4h and b4h consists of four corresponding 4h 
coarse grid vectors. On the third level, the grid points on a coarse grid are not 
always distributed symmetrically about zero. The systems (7.2.67) and (7.2.68) 
may not be consistent in general. However, as we showed in Lemma 7.1, for 
the full weighting of residuals, purification of the right hand sides is not needed 
as long as the number of grid points can be divided by 2. 

7.2.4 Numerical Results 
The problem we used for the numerical experiments of a MCG method 

is the Poisson equation defined in (4.7.100). In solving the extended problem, 
we use the MCGMG algorithm with linear interpolation of corrections and 
full weighting restriction of residuals. The damped Jacobi method is used for 
smoothing. 

In our experiments, the grid size is chosen to be h = 1/64. Tables 7.2 
and 7.3 list the convergence factors of the two-level algorithm and the multilevel 
scheme algorithm respectively. In this case, we use a six-level scheme which is 
the maximum number of levels allowed (2* = 64). y is the extrapolation factor 
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Table 7.2: Numerical Convergence Factors of Two-Level 1D MCGMG-J 

11 0.6 I .149 I .0913 I .0672 11 - 
0.7 .192 .OB22 .0642 
0.8 .294 .163 .0911 4 

0.9 .400 .297 .143 

1 .o 306 .471 .448 

of the damped Jacobi method, ml and m2 are the number of pre-smoothing 
and post-smoothing iterations respectively. The convergence factors are the 
average values of 5 multigrid cycles. 

From these two tables, one sees that the numerical &level convergence 
factors are close to the numerical 2-level convergence factors which are bounded 
by the theoretical upper bounds given in Table 7.1. 

To see that the convergence factors of the MCGMG algorithm are 
independent of the problem size, we used the MCGMG algorithm to solve 
problem (4.7.100) with different grid sizes. Figure 7.5 plots the convergence 
histories of the runs with grid sizes N = 16,64,256, and 512. The maximum 
number of levels were used (Le. 4, 6, 8 and 9 levels respectively). The other 
parameters are m = 1 and 7 = 0.6. The figure shows that the convergence 
factors are almost constant for problem sizes N = 64,256, and 512. Also the 
convergence factors remain the same at each cycle. 
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Table 7.3: Numerical Convergence Factors of Six-Level 1D MCGMG-J 

0.7 .195 ,132 .110 
0.8 .296 .164 .122 

0.9 .401 .298 .226 

1 .o .507 .472 .449 

1 

0.1 

3 
a 3 

0.01 

0.001 

o.oO01 
0 1 2 3 4 

Number of MG cydes 

Figure 7.5: Convergence Histories for Different Problem Sizes 

t 
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7.3 FDMG Methods in 1D 
7.3.1 The Two-Level FDMG Algorithm in 1D 

We now consider a multigrid method for solving the extended problem 
(7.1.1), which is similar to the “robust” multigrid method of Hackbusch [34] and 
which we refer to as the frequency decomposition multigrid method (FDMG 
method). 

The procedure of the FDMG method is the same as the procedure of 
the MCGMG method defined in Section 7.2.1 except that some of the opera- 
tors are defined in a different way. In the FDMG method one uses different 
interpolation operators and different restriction operators on the different grids 
at each level. The restriction operators are defined by 

(7.3.71) 

(7.3.72) 

and the interpolation operators are defined by 

The coarse grid difference operators are defined by 

(7.3.73) 

(7.3.74) 

(7.3.75) 
(7.3.76) 



In the case of problem (2.2.4) with N = 4, for example, we have 

2 1 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0 1 2 1 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 1 2 1 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 2 1  
0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  
- 1 2 - 1 0  0 0 0 0 
0 0 0 0 0 0 0 0  
0 0 - 1 2 - 1 0  0 0 
0 0 0 0 0 0 0 0  
0 0 0 0 - 1 2 - 1 0  
0 0 0 0 0 0 0 0  

- 1 0  0 0 0 0 - 1 2  

(7.3.77) 

(7.3.78) 

The interpolation matrices Pi'), and Pi-) are the transposes of the correspond- 
ing restriction matrices Rh (+) , and Rl-) respectively multiplied by a factor of 2. 



The coarse grid matrices can be written in the form 

2 0 - 1 0  0 0 - 1 0  
0 0 0 0 0 0 0 0  

- 1 0  2 0 - 1 0  0 0 
0 0 0 0 0 0 0 0  
0 0 - 1 0  2 0 - 1 0  
0 0 0 0 0 0 0 0  

- 1 0  0 0 - 1 0  2 0 
0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  
0 1 0 0  3 0 0 0 3 
0 0 0 0 0 0 0 0  I 

1 0 3 0 1 0 0 3 0 0  
0 0 0 0 0 0 0 0 

A$;) = - 

0 0 0 3 0 1 0 0  3 
0 0 0 0 0 0 0 0  I 0 3 0 0 0 3 0 10 
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(7.3.79) 

(7.3.80) 

It should be noted that the matrix A g )  is consistent with the differential equa- 
tion (2.2.1) while the matrix A$i) is not. In some sense, the correction obtained 
from grid 52+ is more important than that obtained from grid s1, in this case. 
As in the MCGMG algorithm, if the coarse grid problems are solved using the 
same FDMG method recursively, one gets a multilevel version of the FDMG 
dgori t hm. 

7.3.2 Two-Level Convergence Analysis 
We first consider the coarse grid correction operator. It is easy to 

verify that the w-transform matrices of the the operators Rh , , h , (+) R(-) p(+) 
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^(+,PI = 
ph,w 

have the following forms: 

’[-. 2 1 1 ,  

[ - ~ ] 9  

1 - <  
h2 

-.If 1 [ a ]  
r 

[ 1  -.]$[ -. - ~ ] ~ [  -% ] 
1+3<  

h2 

(7.3.81) 

(7.3.82) 

(7.3.83) 

(7.3.84) 

(7.3.85) 

(7.3.86) 
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The w-transform matrix of the coarse grid correction operator can then be 
calculated by 

1 - c ,  & [  0 A]  

The eigenvalues of this matrix are given by 

To study the eigenvalues of et;, we first discuss the function 

xm(l - x) 
1 + 3 x  f m ( 4  = 

(7.3.87) 

. 

(7.3.88) 

(7.3.89) 

For the function fm(x) we have the following lemma. 

Lemma 7.3 For any positive integer m, the function fm(x) given b y  (7.3.89) 
has a unique maximum point in the interval (0,l). 

Proof: By (7.3.89) we have 

(7.3.90) 

The roots of the equation 

-3mx2 + (2m - 4)x + m = o (7.3.91) 



100 

are 

The larger root satisfies 

m - 2 + 24(m - 

1 m - 2 + 2(m - L 1 - - > 0  
m 

+ 4 
51 = 3m 

1 

> 3m 
and 

m - 2 +  2m - 1 + 4 = I -  3 - f i < 1  
3m < 3m 

The other root 
m - 2 - 2 J- 

m - 2 +  2(m - 3) 
z2 = 

3m 
= -- m + l  < O  e 3m 3m 

(7.3.92) 

(7.3.93) 

(7.3.94) 

(7.3.95) 

The conclusion follows from the negative coefficient of the second order term 
in w. Here we used the relations 

for any two positive numbers a and b. 

Table 7.4 lists the maximum values of function (7.3.89) with the cor- 
responding position z for m = 1 to 4. 

By substituting cg with x in (7.3.88), we can compute the spectral 
radius of the combination operator of the coarse grid corrections of the two-level 
1D FDMG algorithm: 

(7.3.96) 

Thus we have the following result. 
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Table 7.4: Maximum Values of Function f m ( x )  = 

m x = <  f m ( 4  = P 

1 0.3333333 0.1111111 

2 0.5773502 0.0515668 
3 0.6990558 0.0331937 
4 0.76759 18 0.0244283 

Theorem 7.1 The convergence factor of the two-level 1D FDMG algorithm 
without any smoothing iterations for the model problem (2.2.4) does not exceed 
1 
3’ 
- 

This convergence factor is consistent with the result obtained by Tu- 
minaro [64]. Figure 7.6 illustrates the relation between the convergence factor 
IX,l and the frequency mode index p. It shows that the coarse grid correc- 
tion operator of the FDMG method eliminates effectively three modes in the 
error: the highest, the lowest and the middle frequency modes. The largest 
convergence factor is 5 and this corresponds to the modes with p M % and 
P ” z .  7N 

7.3.3 Effect of Smoothing 
Now we consider the FDMG algorithm with smoothing iterations. We 

examine three basic iterative methods defined in Chapter 2, the Jacobi method, 
the RB-GS method and the RB-SOR method. 

Smoothing by the Red/Black Gauss-Seidel (RBGS) Method 

We are interested in investigating the behavior of the FDMG algo- 
rithm with RBGS smoothing iterations. First we consider the case with one 
red sub-iteration before the coarse grid correction. From (7.3.87) and (4.6.91), 
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Figure 7.6: Two-Level Convergence Factors of 1D FDMG 
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we have 

- % - 
1 + 3c; 

-2% I + < ] [ ;  71 
1 - 3 2  2% 

The spectral radius of ch,w&$+) is given by 

(7.3.97) 

(7.3.98) 

This shows that the red sub-iteration does not improve the convergence factor of 
the FDMG with the restriction and interpolation operators defined in (7.3.71) 
and (7.3.73). We now consider the use of one black sub-iteration before the 
coarse grid correction. From (7.3.87) and (4.6.92), we have 

r 1 

The spectral radius of c h , w s i - )  is given by 

(7.3.99) 

(7.3.100) 

The black sub-iteration improves the convergence factor bound from 1/3 to 
1/9. We now examine the FDMG algorithm with both red and black smoothing 
sub-iterations. If we perform one red sub-iteration first followed by one black 
sub-iteration, from (7.3.87), (4.6.91) and (4.6.92), the w-transform matrix of 
the FDMG operator is given by 
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(7.3.101) 

By comparing to (7.3.99) and considering (7.3.100), we know that the spectral 
radius of Ch,wSi-)S~' is i. If we use the black sub-iteration first, then we have 

(7.3.102) 

It is obvious that the spectral radius of Ch,.&,+'Si-' and ch,wsi-)si+) are the 
same. 

If m > 0 steps of RBGS iteration are used, the spectral radius 
(+I (-1 Ch,w(Sh Sh )" can also be calculated. From (4.6.92) and (4.6.91), we have 

(7.3.103) 

From (7.3.102) and (7.3.103) we have the spectral radius of Ch,w(S(;"Si-')m: 

(7.3.104) 

Similarly it can be shown that p(ChJSh (+I Sh (-1 )") has the same expression as 

(7.3.104). Thus we have the following result. 

Theorem 7.2 The two-level convergence factor of the 1D FDMG algorithm 
with rn RBGS iterations as the smoothing iteration is bounded by (7.3.104). 
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Specifically we have 

(7.3.105) 

Smoothing by the Jacobi Method 

Since the coarse grid correction in the FDMG algorithm works partic- 
ularly well on the modes with p close to 1, N / 2 ,  and N ,  the smoothing iteration 
should be chosen to damp the other modes (e.g. p = y). We consider the use 
of m steps of simple Jacobi iteration. From (4.4.70) with 7 = 1, we have 

I 1 " 1 if misodd 

From (7.3.87), the w-transform matrix of the 1D FDMG operator 
with m Jacobi iterations can be written in the following forms. For m odd we 
have 

C"+l 1+c; -2% - p  - 
1 + 3 g [  2% 1-32]. 

The eigenvalues of this matrix are complex numbers: 

cm"[(l P - .",) f 24-1 xp = 
1+3$  

(7.3.107) 

(7.3.108) 
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The moduli of these two eigenvalues are the same and are given by 

(7.3.109) 

When m is even, we have 

- p  cm+l [ -2% 1 + c q  

1+3$  1 - 3 <  2% 

It is easy to verify that the eigenvalues of this matrix are given by 

(7.3.110) 

xp = f (7.3.1 1 1 )  

In general, we have 

m > 0. (7.3.112) 

Thus we have the following result. 

Theorem 7.3 The two-level convergence factors of the l D  FDMG algorithm 
with m Jacobi relaxations are bounded by the values spec$ed in (7.3.112). 

Specifically from Table 7.4, the convergence factors of FDMG with one or two 
Jacobi relaxations are respectively 

p(Ch,J3h) 5 0.227083 

~ ( c h , ~ ( B h ) * )  5 0.1821913. (7.3.1 13) 

Smoothing by the Red/Black SOR Method (RBSOR) 
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In this section, we are concerned with using the red/black SOR method 
(RBSOR) as the smoothing method in the FDMG algorithm. Like the RBGS 
method, the RBSOR procedure defined in (3.5.42) can also be partitioned into 
two sub-iterations defined by 

(7.3.1 15) : ( ( u h ) j + l +  ( u h ) j - 1 )  + (1 - w ) ( u h ) j  j = even, 
( u h ) j  j = odd. 

( L i - ) u h ) j  = { 
for j = 1,. . . , N - 1. Here the odd-numbered points are red and the even- 
numbered points are black. The corresponding w-transform matrices are given 
bY 

(7.3.1 16) 

and 

(7.3.1 17) 

From (7.3.87) and (7.3.117), the to-transform matrix of the FDMG with one 
black SOR sub-iteration can be written in the form 

(7.3.1 18) (w - 2)cp + w g  (1 - w)( 1 + <) 
1 + (2w - 3)< 2(1- w).p 

- - 
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Table 7.5: Convergence Factors of 1D FDMG SOR vs. w 

-I 

W P 

1 .oo 0.1111 

-01 ~~ I 0.0880 II 
1.02 0.0784 

1.03 0.0577 

-1.04- I 0.0665 II 
1.05 0.0745 

1.06 0.0816 
> - 

If we let 

then the spectral radius of this matrix is 

(7.3.1 19) 

where A = (a(p,w) - d(p,w))' + 4b(p,w)c(p,w). We are looking for a w* such 
that 

(7.3.121) 

We solve this optimization problem numerically. The relationship 
among the spectrum of p ( e t i i ( - * P * u ) ) ,  the mode index p and the iteration 
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Figure 7.7: Two-Level Convergence Factors of 1D FDMG with B-SOR 
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parameter w is plotted in Figure 7.7. Table 7.5 lists the two-level convergence 
factors of 1D FDMG with one black SOR sub-iteration ( p )  vs. the corresponding 
iteration parameter o. Like the RBGS, the red sub-iteration has little effect 
on the performance of the 1D FDMG algorithm. 

7.4 PMG Methods in 1D 
7.4.1 The Two-Level PMG Algorithm in 1D 

In this section we consider a class of parallel multigrid algorithms 
(PMG) for solving the extended problem (7.1.1). In the MCGMG method 
one averages the two coarse grid corrections. This is equivalent to what one 
would get by using a single grid at each level but with different scale or grid 
spacing hr = 2-l. The combined restriction and interpolation operators can be 
regarded as smoothing operators on the single grid. In fact, one could consider 
more general operators with the PMG methods. 

The two-level PMG algorithm for the solution of the extended matrix 
problem Ahuh = bh, starting with an initial guess uf) ,  is described in Figure 7.8. 
As in the MCGMG algorithm, the coarse level problem in step 4 can be solved 
by transfering to an even coarser level. This process can be repeated down to 
the coarsest level where the problem is solved directly. If more than two levels 
are involved, one has a multilevel PMG algorithm. 

To show that the MCGMG method with averaging is equivalent to a 
PMG method in the two-level case, it is enough to show that the combination 
of the restriction operators, the combination of the interpolation operators 
and the combination of the coarse grid difference operators in the MCGMG 
method are equivalent to the corresponding operators in the PMG method. 
This is because that the two coarse grid problems in the MCGMG method are 
solved independently. 

For solving the 1D extended system (7.1.1) using the PMG method, 
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Two-Level Algorithm PMG(Ah, u f ) ,  bh): 

1. Carry out ml pre smoothing interations to get u6. 

2. Compute the residual: r h  = bh - A h U i .  

3. Carry out one restriction-like smoothing operation, possibly 
full weighting: 

r Z h ( z )  = ( & J h ) ( Z )  = f ( r& - h)  + h ( z )  + rib(% + h) ) ,  
or injection rZh(z) = (Rhrh)(z) = r h ( z )  

and then purify r2h if needed. 
4. Solve the correction equation for the 2h scale 

AzhSzh = r2h  

5. Carry out one interpolation-like smoothing operation, possibly 
1’ inear: 

( b h ) ( Z )  = ( h 5 2 h ) ( Z )  = f [ 6 2 h ( 5  - h)  + 2 6 2 h ( 5 )  + 62h(S  + h) ] ,  
or injection: (6h)(z) = (P&,)(z) = ( b 2 h ) ( z )  

and update the solution ut = ui + 6h 
6.  Carry out m 2  post smoothing iterations and purify the result, 

if needed, to obtain the new solution ut ’ .  

Figure 7.8: The PMG Algorithm 
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the coarse level difference matrix is defined by 

which can be written in the form 

and 

From (7.2.12), (7.2.13), (7.4.123) and (7.4.124), one sees that the coarse grid 
difference operator of the PMG method is the same as the combination of the 
two coarse grid difference operators of the MCGMG method. 

Similarly, the full weighting operator Rh of the PMG method defined 
in Figure 7.8 is the combination of of the two restriction operators Rr) and 

of the MCGMG method defined in (7.2.8) and (7.2.9). The linear inter- 
polation operator p h  of the PMG method is the combination of the two coarse 
grid interpolation operators Pl+’ and Pi-) of the MCGMG method defined 
in (7.2.10) and (7.2.11), multiplied by 0.5. As in the MCGMG methods, the 
purification of the residual is not needed if the full weighting operator is used 
for the restriction-like smoothing. The system on the coarse level can also be 
solved by using the two-level PMG algorithm on the coarse level in which case 
one has a three-level PMG algorithm. If this process is carried out recursively, 
one gets a multilevel PMG algorithm. 

Although the PMG method we discussed here seems to be similar 
to the MCGMG method, they are two different classes of methods in general. 
For instance, with the MCGMG methods one could use different operators 
on different coarse grids on a given level, while with the PMG methods one 
would normally use the same operator on different coarse grids on a given level. 
On the other hand, in the PMG methods, the coarse level operators can use 
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any neighboring grid points; while in the MCGMG methods the coarse grid 
operators can only use the grid points of the corresponding finer grids. For 
example, in the MCGMG methods the restriction of residuals on the 4h grids 
one only uses points at the related 2h grids, while in the PMG methods one 
could use any points on the 2h level. 

7.4.2 Two-Level Convergence Analysis 

Pi') and PL-) are given by 

The w-transform matrices corresponding to the operators A2h t+) , A2* (-) , 

1 -(2 - 2 cos 2p7rh), 
AZh,w 4h2 

1 
4h2 

A(+rp) = 

A$;;) = -(2 - 2 cos 2pnh), (7.4.125) 

(7.4.126) 

For full weighting restriction operators Ri+) and we have 

(7.4.127) 

The At' is defined in (4.4.63). For the coarse grid correction operator 
Ch we have 

(PI ^(PI -1R(P) p) = I -  Ph,w(Ah,w) h,w h,w 

1 %  (7.4.128) 
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Comparing (7.4.128) to (7.2.42), one sees, that in this case, the PMG method 
is equivalent to the MCGMG method. If the trivial injection is used instead of 
the full weighting operator Rh, we have 

= o  

1 -% 

-% 1 
(7.4.129) 

This means that for the 1D model problem (7.1.1), the coarse grid correction 
of the two-level PMG method is exact. This two-level convergence result can 
be extended to the multilevel case. 

Theorem 7.4 The multiIevel PMG method with the injection restriction of 
residuals and the linear interpolation of corrections is exact for the l D  model 
problem (?.l.l), if the solution on the coarsest level is exact. 

Proof: By induction, the result follows (7.4.129). 



Chapter 8 

Multiple Coarse Grid Multigrid 
Methods in 2D 

8.1 Introduction 
In this chapter, we extend the discussion of the multiple coarse grid 

methods (MCG) to two-dimensional cases. The three classes of MCG methods 
described in the previous chapter, namely MCGMG methods, PMG methods 
and FDMG methods, are considered here for the two-dimensional extended 
system (6.5.41). Again, for convenience, we will divide (6.5.41) by h2 to get an 
equivalent system 

AhUh = bh.  (8.1.1) 

8,2 MCGMG Methods in 2D 
8.2.1 The Two-Level MCGMG Algorithm in 21) 

If we let sj = j h  and yk = kh with h = 1/N, the fine grid on the area 
(-1, 112 is defined by 

On this fine grid, the four coarse grids can be defined by (5.2.2) which are 
illustrated in Figure 8.1 in the case of N = 4. 

A two-level MCGMG algorithm in 2D is a straightforward extension 
of the corresponding two-level MCGMG algorithm in 1D defined in Figure 7.2. 

115 
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Figure 8.1: Coarse Grid Points for a 2D Problem with h = 1/4 
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Algorithm: MCGMG2D2L(Ah, ur', bh) 

1. Do ml pre-smoothing iterations using the smoothing iterative method 
(e.g. damped Jacobi method) to obtain u6. 

2. Compute the residual f h  = bh - Ahui, restrict the residual onto each 
of the four coarse grids and perform purification defined in (6.4.24) if 
necessary to obtain 

where 2;" is the eigenvector in the null space of A 2 .  

3. Solve the coarse grid systems 

(8.2.3) 

(8.2.4) 

5. Do m2 post-smoothing iterations using the smoothing iterative method 
to obtain and return uh (1) . 

Figure 8.2: The 2D Two-Level MCGMG Algorithm 



For a problem Ahuh = bh with a given initial guess u t ) ,  a two-level MCGMG 
algorithm in 2D is given in Figure 8.2. 

A specific version of the MCGMG algorithm is determined by the 
selection of operators Rk), Pi"' and A$!. In the following analysis, we assume 
that the full weighting restriction of residuals defined in (5.2.3) and a simple 
injection mapping of corrections &(z, y)  = 62h(x, y) are used. This choice of 
the restriction operators and the interpolation operators is equivalent to that 
using the injection restriction operators and the linear interpolation operators 
with an averaging factor of 1/4. The coarse grid difference operators are defined 
by the 5-point difference formula on the corresponding coarse grids 

' J  

(8.2.7) 

s = ++, -+, +-, -- 
For smoothing iteration, we use the Jacobi method or the SOR method in 
red/black ordering. 

I As in the one dimensional case, if the coarse grid linear systems them- 
selves (8.2.4) are solved using the two-level MCGMG algorithm 

6;s = MCGMGZD(A%,O, r$'), (8.2.8) 

one gets a three-level two-dimensional MCGMG algorithm. This process can 
be done recursively and one gets a multilevel 2D MCGMG algorithm. 

8.2.2 Two-Level Convergence Analysis 
For p ,  q = 1 - N ,  . . . , N ,  let v(P**) be the two dimensional Fourier 

modes (v-basis vectors) defined by 

(vt'*))j,k = exp( i rh(p j  + qk)), j ,  k = 1 - N , .  . . , N .  (8.2.9) 
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The four-color Fourier modes (the w-basis vectors) 
the four coarse grids s = ++, -+, +-, --, are defined by 

corresponding to 

(8.2.10) 

j,k = 1 - N, ..., N 
(8.2.1 1) 

for p, q = 1 - N/2,. . . , N/2. 

We first consider the coarse grid correction operator c h .  As in the 
discussion of the 1D case, the coarse grid correction operator can be written in 
the form (referring to (7.2.18)) 

(8.2.12) 

We note that there is no factor 1/4 before the combination of the coarse grid 
corrections because the simple injection mapping of corrections is used. For 
p , q  = 1 - N/2,. . . , N/2 and (p, q )  # (O,O), the w-transform matrices of the 
operators on the basis 

are given by 

(8.2.14) 

(8.2.15) 

(8.2.16) 

(8.2.17) 
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where s = ++, -+, +-, -- . The w-transform matrix of the coarse grid cor- 
rection operator can be written in the form 

where for the selected operators we have 

1 
1 
h2 = - (1+ cr - ac; - C i ) I ,  

(8.2.18) 

(8.2.19) 

(8.2.20) 

(8.2.21) 

where c, and G are cosprh and cos q?rh respectively. At') is given in (5.4.35). 
The w-transform matrix of the coarse grid correction operator can then be 
calculated using (8.2.18) to (8.2.21) and (5.4.35): 
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where 

(8.2.22) 

(8.2.23) 

From (8.2.2), (5.4.49) and (5.4.50), the corresponding u-transform matrix is 

1 111 + 772 + 773 0 

91 - 1 2  + 773 0 
0 0 

c y  = 

1 0 0 

-a 

0 0 
0 0 

0 

771 - 772 - 773 
91 -I- 92 - 93 

0 

(8.2.24) 

Here we see that the ahsing  errors caused by each of the coarse grids are 
eliminated. 
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We now consider the two-level multigrid operator given by 

where Gh is the smoothing operator. If we let Gp) be the w-transform matrix 
of the smoothing iteration operator, the two-level convergence factor of the 
MCGMG algorithm can be calculated by 

(8.2.26) 

Suppose the damped Jacobi method is used for smoothing iterations. 
The damped Jacobi operator is defined by 

B , = I -  Ah 7h2 
2(1+ a) 

and the corresponding w-transform matrix is given by 

(8.2.27) 

From (5.4.35), we have 

where 

(8.2.28) 

(8.2.29) 
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and 

where 

I 
cobi smoothing iterations can be then calculated by 

(8.2.31) 

If we let m = ml + m2, it can be verified by calculation that 

(8.2.32) 

(8.2.33) 

.I"' = 'llcim) + v2cim) + v3cim), 

Kim' = 172cim) + vlcim) + v3c4 (m) 7 

Kim)  = we!"' + vldm) + v2dm) ,  

Kim' = r]3cjm) + v2cim) + vldm). 
The convergence factor of the two-level MCGMG algorithm with Ja- 

(8.2.34) 

Table 8.1 lists values of p(T'). Here the number of smoothing it- 
erations rn = 1 and the number of grid points N = 64. It shows that at 
extrapolation factor 7 = 0.66, ~(TL) reaches a minimum of 0.319. 

Table 8.2 shows the relationship between the convergence factor and 
the coefficient a. One sees the deterioration of the convergence in anisotropic 
cases. We will discuss this issue in the next chapter. 

In the case of using the Red/Black SOR iterative method defined 
in (3.5.42) for smoothing, the tu-transform matrices corresponding to the red 
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Table 8.1: Convergence Factors of MCGMG-Jacobi vs. 7 (a = 1) 

4 P 

0.50 0.4763 
0.60 0.3771 

II 0.65 0.3276 

0.66 0.3190 
0.67 0.3390 
0.70 0.3989 
0.75 0.4988 

II 1.00 0.9982 

Table 8.2: Convergence Factor of MCGMG-Jacobi vs. a (7. = 0.66) 

n I II 
U I P Q 

0.00001 or 100000 0.998623 
0.00010 or 10000. 0.998414 
0.00100 or 1000.0 0.996334 
0.01000 or 100.00 0.98086 1 
0.10000 or 10.000 0.863659 

1 0.3 19042 .. L 
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sub-iteration (the first formula in (3.5.42)) and to the black sub-iteration (the 
second formula in (3.5.42)) are given by 

and 

(8.2.35) 

0 0 

0 1  l o  * 
respectively, where 

(8.2.36) 

(8.2.37) 

and 

t 3  = - wcq (8.2.38) 1 +a' 
If the black unknowns are updated first followed by the red ones, we have 

Otherwise, we have 

[ 1 - w  t 2  t 3  0 

(8.2.39) 

1 
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where 

(8.2.41) 

From (8.2.2), (8.2.39) and (8.2.40), one obtains the ut-transform ma- 
trix of the two-level MCGMG algorithm using SOR smoothing with red/black 
or black/red ordering 

(8.2.42) 

and 

Yl P2 P3 Y4 

1 Y4 P3 P 2  Yl 

where 

and 71, q 2 ,  and q3 are defined in (8.2.23) 
lemma. 

(8.2.43) 

(8.2 -44) 

Therefore we have the following 
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Table 8.3: Convergence Factor of MCGMG-SOR vs. w (CY = 1) 

W P 

0.50 0.4795 

II 0.70 I 0.2828 II 
II 0.90 I 0.0900 II 

~ 

0.92 0.0712 

0.94 0.0795 

0.1240 

0.2788 

0.5288 

Lemma 8.1 The matrices f"?) (8.242) and Ti:'') (8.2.43) have the same 
eigenvalue set. 

Proof: It is easy to see that there is a permutation relation between the 
matrices f ' . (vh' ,q)  h,y and f'(br,?'4?) h iw . This means that the matrix fir?) is similar to 
the matrix Th,w (brtP,Q) . 

We notice that the nonzero eigenvalues of the matrix when 
w = 1, can be written as 

A = p1 f p4. (8.2.45) 

In the case of N = 64, we use a numerical procedure to compute the convergence 
factor defined by 

(8.2.46) 

Table 8.3 lists the convergence factors of the MCGMG with the SOR 
smoothing iteration with red/black ordering for different values of w. The con- 
vergence factor is about 0.0712, when w is 0.92. Table 8.4 lists the convergence 
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Table 8.4: Convergence Factor of MCGMG-SOR vs. Q (w. = 0.92) 

factors in anisotropic cases. Here again, the performance of the algorithm 
deteriorates in the cases where a # 1. 

8.2.3 Numerical Results 
We used the multilevel 2D MCGMG algorithm corresponding to the 

two-level algorithm defined in Figure 8.2 to solve the extended system of the 
test problem (5.5.51). In the algorithm we used linear interpolation of correc- 
tions, full weighting restriction of residuals and the damped Jacobi smoothing 
iterations. 

Table 8.5 shows the convergence factors of the MCGMG algorithm 
for the case with the grid size N = 64. We use a six-level scheme which 
is the maximum number of levels allowed (26 = 64) in this case; (26 = 64) 
in this case. 7 are the extrapolation factors of the damped Jacobi method, 
ml and m2 are the number of pre-smoothing and post-smoothing iterations 
respectively. The convergence factors are the average values of 5 multigrid 
cycles. Comparing to the theoretical results in Table 8.1, one sees that the 
numerical convergence factors are below the theoretical upper bounds. From 
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Table 8.5: Numerical Convergence Factors of 6-level 2D MCGMG-J 

.244 I .141 I .114 11 
0.6 .190 .125 .lo2 

0.7 .154 .116 ,093 

0.8 .146 .lo8 .085 

0.9 .188 .129 .094 r r  .241 I .206 I .I86 II 

Table 5.3, one also sees that the MCGMG methods converges much faster than 
the correponding standard multigrid methods. 

8.3 FDMG Methods in 2D 
8.3.1 The Two-Level FDMG Algorithm in 2D 

As in the 1D cases, the procedure of the 2D FDMG algorithm is 
the same as that of the 2D MCGMG algorithm defined in Figure 8.2. In the 
FDMG algorithm, different restriction and interplolation operators are used 
on different coarse grids. The restriction operators, corresponding to the four 
coarse grids R++, !I++, (E) R++ (E) and R++ (E) respectively, are defined by 
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The four corresponding interpolation operators are defined by 
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(8.3.52) 

(8.3.53) 

(8.3.54) 

If the operators are written in matrix form, it can be shown that 

Pi"' = ( R j y  s = ++, -+, +-, - - . (8.3.55) 
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The operators of the coarse grid systems are constructed by 

s = ++, -+, +-, - - (8.3.56) 

This completes the description of the 2D FDMG algorithm. 

If more than two levels are involved, each 2h coarse grid can be can- 
sidered a fine grid for the 4h level and thus has four 4h coarse grids related to 
it. The 2h restriction operators can then be defined similarly with h replaced 
by 2h. 

8.3.2 Two-Level Convergence Analysis 
For simplicity, we use the index numbers 1,2,3, and 4 to represent 

++, -+, +-, and -- respectively. The w-transform matrices of the restriction 
operators Rt), PPI and A!$ can be written in the forms of (8.2.19), (8.2.21), 
and (5.4.35) respectively. Thus for the restriction operator we have 

(8.3.57) 

where cp = cosprh and cq = cosq~rh. The w-transform matrix of the interpo- 
lation operator is given by 

(8.3.58) 
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The w-transform matrix of the coarse grid operator is given by 

where 

644  = 
- - 

r 

c 1 1  

L 

5 2 2  

- 

544  - 
(a.3.59) 

(8.3.60) 

The w-transform matrix of the coarse grid correction operator is then given by 

We can make a similarity transformation by multiplying 
of the 6'::) and to the left side, and we have 

to the right side 
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If we let 

then from (8.3.59), the matrix At:). Therefore we have the following lemma. 
is the main diagonal part of the matrix 

Lemma 8.2 The coarse grid correction of the FDMG algorithm is equivalent 
to a block Jucobi iteration applied to the matrix A h  = &A&. 

Proof: From (8.3.62), we know that 6::) is similar to applying a Jacobi 
iteration to At'). Since all subspaces E(P*p) are the invariant subspace w.r.t. 
c h  , the conclusion follows. 

If matrix At$ is a diagonal matrix, the coarse grid correction is 
exact. In order to obtain the spectral number of @'$, we rewrite (8.3.61) in 
the form 

(8.3.65) 
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Table 8.6: Convergence Factor of FDMG Without Smoothing vs. h 

h P 
0.329036 

0.332694 
0.333326 

0.333247 
0.333313 

1 
8 
1 

16 
1 

32 
1 
64 
1 

128 

- 
- 
- 
- 

r) 

where 

and 

(8.3.67) 

The convergence factor of the coarse grid correction of the FDMG is bounded 
by 

(8.3.68) 

Table 8.6 gives the upper bound of the convergence factor ( p )  for 
different mesh sizes ( h ) .  Table 8.7 shows that this bound remains valid in 
anisotropic cases. The convergence factor as a function of the Fourier modes 
is plotted in Figure 8.3. 

We first consider using the damped Jacobi method for smoothing 
iterations. The w-transform matrix of the two level FDMG operator is given 
bY 
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Table 8.7: Convergence Factor of FDMG Without Smoothing vs. CY 

CY P 

10-4 0.333326 
10-3 0.333326 

0.333326 

II 10-1 I 0.333326 II 
II 1 oo I 0.333326 II 
II 10+l I 0.333326 II 
II I 0.333326 II 
II 10+3 I 0.333326 II 
U 10+4 0.333326 U 

Abs (lambda) 

0.3 
0.25 

0.2 
0.15 

0.1 
0.05 

30 

Fourier mode q 
Fourier mode p 30 

Figure 8.3: Convergence Factor of FDMG with no Smoothing vs. Fourier Mode 
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where @$ is given in (8.3.61) and B ( P * q )  Y,W is given by 

where 

From (5.4.42) and (8.3.69), the two-level convergence factor can be 
calculated. Table 8.8 lists the convergence factors with the different values of 
7. Table 8.9 lists the convergence factors with different values of anisotropy 
parameter a. Figure 8.4 illustrates the convergence factor vs. the Fourier 
modes with the optimal 7 for the Poisson equation (a = 1). 

We now consider using the red/black SOR method for smoothing 
iterations. The w-transform matrix of the two-level operator is given by 

(8.3.72) 

where is defined in (8.3.61) and $,?'J't9) is defined in (8.2.39). 

Table 8.10 lists the convergence factors of the two-level FDMG vs. w. 

Table 8.11 lists the convergence factors vs. the anisotropic parameter cy. The 
optimal value of u (to make p ( T h )  minimum) is around 1.2. The distribution 
of the convergence factor of the two-level FDMG algorithm on the Fourier 
mode domain is shown in Figure 8.5. With the grid size 64 x 64, the two-grid 
convergence rate of the FDMG with one RB-SOR iteration as a smoother is 
about 0.1126 at cy = 1. 

(8.3.70) 

(8.3.71) 
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Table 8.8: Convergence Factors for FDMG-Jacobi vs. 7 (a = 1) 

n 7 P II 
-0.50 I 0.2741 II 

0.70 0.2481 

1 .oo 0.2047 

II 1.20 I 0.1716 I I  
-~ 

1.23 0.1666 
1.30 0.1910 

II 1.50 I 0.2713 II 

Table 8.9: Convergence Factor of FDMG-Jacobi vs. Q (7* = 1.23) 
.. 

a P 

0.0001 0.2706 

II 
~~ II 0.0010 I 0.2704 

II 0.0100 I 0.2881 II 
0.1000 0.3029 
1.0000 0.1666 

II 10.000 I 0.3029 II 
II 100.00 I 0.2881 II 

1000.0 0.2704 
10000. 0.2706 
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I- - 

Convergence factor 

0.15 

0.1 

0.05  

30 

Fourier mode g 
Fourier mode p 30 

Figure 8.4: Convergence Factor of FDMG-Jacobi vs. Fourier Mode 

Table 8.10: Convergence Factor of FDMG-SOR vs. w (CY = 1) 

c 0 P II 
ll 0.50 I 0.2670 II 
II 0.70 I 0.2336 II 
II 0.90 I 0.1940 II n 1 .oo I 0.1704 II 
II 1.10 I 0.1437 II 
II 1.20 I 0.1130 II 

1.21 0.1126 

1.30 0.1308 

U 1.50 0.1772 U 
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Table 8.11: Convergence Factor of FDMG-SOR vs. Q (w. = 1.21) 

Q P 

0.0001 0.1410 

0.0010 0.1431 

II 0.0100 I 0.2867 
II 0.1000 I 0.2884 

II 1 .oooo I 0.1126 
I1 10.000 I 0.2884 

100.00 0.2867 

10000. 0.1410 

Convergence factor 

0.1 

0.05 

30 

Fourier mode q 
Fourier mode p 30 

Convergence factor 

0.1 

0.05 

30 

Fourier mode q 
Fourier mode p 30 

Figure 8.5: Convergence Factor of FDMG-SOR vs. Fourier Mode 
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Comparing the convergence factors of FDMG method with and with- 
out smoothing, one sees that both the Jacobi iteration and the SOR iteration 
provide much improvement for the convergence rate in some value ranges of cr 
but have little effect in others. 

8.4 PMG Methods in 2D 
8.4.1 The Two-Level PMG Algorithm in 2D 

A two-dimensional PMG algorithm is a straighforward extension of 
the one-dimensional PMG algorithm defined in Figure 7.8. The only difference 
is that all the operators in a two dimensional PMG method are defined on 
a single two-dimensional grid. Therefore, the 1D PMG algorithm defined in 
Figure 7.8 can also represent a 2D PMG algorithm with the operators Rh, Ph 
and A2h replaced by corresponding 2D operators. 

For the following analysis, we assume that the restriction-like smooth- 
ing operator is defined by 

(Rhbh)(z ,  Y) = G(sh(" - h, Y 4- h) 4- 2 6 h ( z ,  Y 
1 

h)  + 6h(Z 4- h, Y + h) 

+%(z - h, Y) + 46h(z, Y) + 2&(z + h, Y) 
+ b h ( z -  h, Y - h) + 26h(z ,  Y - h) 4- b h ( z  4- h, 9 - h))  
(z,Y) E a h  (8.4.73) 

and the interpolation-like smoothing operator is defined by 

For problem (8.1.1), coarse level finite-difference operator A 2 h  is defined by 
(8.2.7) but on the same grid ah.  We will use the 2D Jacobi method defined in 
(8.2.27) for smoothing iterations. 

8.4.2 Two-Level Convergence Analysis 
All the operators in the PMG algorithm we selected are defined on 

a single grid. Each of these operators, when being applied to a Fourier mode, 
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will reduce to a scalar function multiplied by the Fourier mode. Therefore, 
the standard Fourier analysis of the PMG methods becomes particularly con- 
venient. 

We denote by Xp,,(K) the scalar function of the operator K associated 
with the Fourier mode v$p)  (8.2.9). It can be shown that 

(8.4.76) 

and 

where cp = cosprh. Since the operator R h  is the identity operator, the two- 
level coarse grid correction operator can be written in the form 

and we have 

(8.4.79) 

Here Aih denotes the Moore-Penrose inverse of A2h.  We note that Xo,o(Ch) is 
not defined. However, X,,,(Ch) can be treated as a function Xc,(a, b) of a = ~p 

and b = cq. Since Fourier mode v p )  has been removed from the purified 
solutions, one can redefine XO,O(ch)  by 

(8.4.80) 
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For the Jacobi iteration operator (8.2.27) we have 

Y 4 w ( 4 )  = 1 - S + P X , , ( A h ) .  

Since the two-level PMG operator is given by 

(8.4.81) 

(8.4.82) 

where rn = ml + m2, the two-level convergence factor of the PMG algorithm 
is bounded by 

(8.4.83) 

By numerical calculation, the convergence factors p(Th)  of the 2D PMG method 
are the same as those listed in Tables 7.1 and 7.2. This is because the con- 
figuration of our two-level PMG algorithm is equivalent to the corresponding 
two-level MCGMG algorithm. 

8.4.3 Multilevel Convergence Analysis 
We now consider the multilevel PMG algorithm in 2D. We recall that 

the two-level PMG operator on level L is given by 

(8.4.84) 

where SL is a smoothing operator. In the multilevel PMG algorithm, the 
system on level L - 1 is solved by applying the multilevel PMG algorithm on 
level L - 1. Let ML and ML-~ be operators corresponding to a multilevel PMG 
cycle on levels L and L - 1 respectively. On level L - 1, if the system 

(8.4.85) 



144 

is solved by applying one multilevel PMG cycle with the initial guess 
then we have 

= 0, 

(1) (1) uL-l - - L - I  = eL-l 
(1) 

= ML-1 ( u L - 1 -  GL-I) 

= - M ~ - 1 i i ~ - 1  

= ML-leL-l 
(0) 

= -ML-lAL-lbL-l. (8.4.86) 

In other words, applying one multilevel PMG cycle is equivalent to using 

Therefore, replacing Ai- ,  by (I - ML-~AL- , )  in (8.4.84) we have 
( I  - M L - ~ A ~ - ~ )  t to approximate AL-,. Here we assume (8.4.85) is consistent. 

ML = S~(I - R ~ ( I  - M ~ - ~ ) A L - ~ A ~ ) .  (8.4.87) 

If we assume that all the operators in (8.4.87) are commutative, then 
we have the following recursive relations: 

ML = SL(I - &(I - M L - ~ ) A ~ - ~ A L )  
= sL(1 - B&-,A~(I  - M ~ - ~ ) )  
= SL(I - R ~ A L A ~ )  + sLRLAL-~ALML-~ 

= TL + (SL - TL)ML-I (8.4.88) 

In general, we have 

Mi = Z + (Si - Z ) M i - l .  (8.4.89) 

In the case of h = 2-L, there are at most L + 1 levels. Suppose we 
use L + 1 levels in the PMG algorithm. We denote by Alur = bl a linear system 
on level I with grid spacing or scale hl = 2-l, I = 0,. . . , L. 

For the class of model problems considered, the use of the Moore- 
Penrose solution is equivalent to defining 

X O , O ( ~ Z )  = 1 (8.4.90) 
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(see Frederickson and McBryan 1311). Here Xo,o(Mz) is the scalar function of 
the operator MI associated with the Fourier mode vp”) defined in (8.2.9). Thus 
we have 

Lemma 8.3 Let 

P(Mz)  = l - - N ~ p , q g v  m a  l ~ P , d W l .  

For any 1 E (1,. . . , L} ,  the multilevel PMG operator MI satisfies 

P ( M - 1 )  5 P ( M )  

Proof: First, we show that 

We note that 

cos(2pnh) = cos(pnZh), 
cos(2qnh) = cos(qn2h). 

For 1 = 2 we have, from (8.4.89), 

Since 

X2,,2,(Mo) = Ao,o(Mo) = 1 

the relation (8.4.96) reduces to 

A2P,2*(Ml) = X2P,2 , (S l )  = &,,(So) = Xp,,(Mo) 

(8.4.92) 

(8.4.93) 

(8.4.94) 
(8.4.95) 

(8.4.96) 

(8.4.97) 

(8.4.98) 
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Now assume that relation (8.4.93) holds for Mz-1. Then we have 

Thus, we have 

(8.4.100) 

for p ,  q = 1 - N ,  . . . , N and therefore, relation (8.4.92) is proved. 

We now give an upper bound of the convergence factor of the multi- 
level PMG algorithm. 

Theorem 8.1 Let 

holds on level I ,  then we have 

P(ML)  5 01. 

(8.4.101) 

(8.4.102) 

(8.4.103) 

Proof: The proof is based on the fact that (8.4.101) is valid for all the levels. 
In fact, since 

(8.4.104) 
(8.4.105) 
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we have 

(8.4.106) 

A sharper upper bound on the convergence factor of the multilevel 
PMG algorithms can be obtained by using information on more than two levels. 
Let 

We define 

and 

Theorem 8.2 Let 

(8.4.1 11) 



14s 

where u 2 1. If 

holds on one of the levels, then we have 

P(ML) L (8.4.1 13) 

Proof: Suppose that p ( A 4 1 - k )  5 a,. For level I we have 

Here we use the property that the inequality (8.4.111) is valid for any I = 
v, . . . , L. From Lemma 8.3 and repeatedly applying the result of the proof to 
level 1 + u and so on, we obtain that ~ ( M L )  5 6,. 

Theorem 8.1 is a special case of Theorem 8.2 with u = 1. When u > 1, 
the upper convergence bound 0, will be sharper than 61. The assumption 
p(A&) 5 u, is not a major restriction, since an PMG algorithm usually 
works more effectively on a coarse level than on a fine level. 

Table 8.12 lists the upper bound of the multilevel convergence factors 
u, defined in (8.4.111) for the model problem (2.3.8) with a = 1. The val- 
ues are obtained by using grid size N = 64, and performing one Jacobi post 
smoothing iteration and no pre-smoothing. The result shows that the multi- 
level convergence bounds a, are very close to the two-level convergence bound 
p. In other words, the two-level convergence bound is a good estimate for the 
multilevel convergence bound. 
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Table 8.12: Multilevel Convergence Factors for PMG-Jacobi vs. 7 (a = 1) 

- - - 
-50 .4992 .4980 .4977 ,4924 -4798 .4762 
.60 .4536 .4524 ,4519 .4455 .4193 .3771 

II .70 r.4156i-.414<~ .4137 I .4064 I .3990 I .3989 II 
11 '.80 I .5989 I -5989 I .5989 I .5989 I .5989 I .5987 11 
11 .90 I .7989 I .7989 I .7988 I .7988 I .7988 I .7985 11 
11 1.00 I .9988 1 .9988 I .9988 I .9988 I .9986 I .9982 11 



Chapter 9 

Semicoarsening and Line Smoothing 

9.1 Introduction 
The convergence rate of the standard multigrid methods usually de- 

teriorates for the problem 

(9.1 . l )  

where the coefficient a > 0. If Q >> 1 or cy << 1, we will refer to such problems 
as anisotropic problems. 

Two techniques, namely block-wise smoothing and semicoarsening, 
are commonly used to restore the efficiency of the standard multigrid methods. 
In this chapter we consider applying these two techniques to the parallel multi- 
grid methods (PMG) and give multilevel convergence analysis of the resulting 
algorithm. 

9.2 Convergence of SMG in an Anisotropic 
Case 
Let 

A ~ u  = b (9.2.2) 

be the linear equation system defined in (2.3.10) which corresponds to the 5- 
point difference representation of (9.1.1) on a two-dimensional grid S2h with 

150 
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Figure 9.1: Four Subsets of the Fourier Modes 

grid spacing h = 1/N. An initial error vector can be represented by a linear 
combination of (N - 1)2 Fourier modes v(**Q), where p and q represent the 
number of waves in the 2- and y-directions respectively. We can divide the set 
of the Fourier modes into four subsets OLH, OHH,  OLL and OHL as illustrated 
in Figure 9.1. Here the subscripts L and H indicate that the modes in the 
subset belong to low and high frequency respectively. For instance, a mode in 
RLH has low frequency in the s-direction and high frequency in the y-direction. 

In the standard multigrid method, the standard coarsening scheme 
(Le. the coarsening process being carried out in two directions) is used. The 
Fourier modes in subset OLL can be reduced by the coarse grid correction effi- 
ciently and the Fourier modes in the other subsets are supposed to be damped 
by the smoothing iteration operator. In an isotropic case (a = l), a point-wise 
smoothing scheme (e.g. the damped Jacobi method) works well. However, 
in an anisotropic case, most point-wise smoothing operators are generally un- 
able to efficiently damp the Fourier modes in OHL when a << 1 or in OLH 
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when CY >> 1. This difficulty also exists when a PMG method is used for an 
anisotropic problem. 

9.3 Line Jacobi Method 
For the grid point (sj,yk), the 5-point discrete anisotropic operator 

Ah defined in (2.3.10) can be written in the form 

(9.3.3) 

The damped s-line Jacobi method for the problem A ~ u  = bh is defined by 

(9.3.4) 

From (3.2.3), the matrix for the damped s-line Jacobi method is given by 

where the splitting matrix &("I is given by 

The eigenvalues of the matrix Bv) are given by 

(9.3.5) 

(9.3.6) 

(9.3.7) 

where cp = cosprh, and cq = c o s q ~ h , .  Choosing an appropriate value of 7, 
e.g. 7 = 2/3, the absolute values of the eigenvalues v(Bt))(P*q) are less than 
1/3 in the subsets i - 2 ~ ~  and i - 2 ~ ~  for any value of a. 

Similarly, it can be shown that the absolute values of the eigenvalues 
of the y-line Jacobi method are small in the subsets i - 2 ~ ~  and n~jy .  In the 
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case of Q << 1, where a multigrid algorithm loses efficiency in L?HL, one uses 
the s-line Jacobi smoothing iteration; while in the case of CY >> 1, where 
a multigrid algorithm loses efficiency in OLH, one uses the y-line smoothing 
iteration. If one uses both s-line and y-line Jacobi smoothing together in the 
standard multigrid method, one can damp all the Fourier modes efficiently. 

9.4 Semicoarsening Scheme 
In the standard coarsening scheme, the coarse grids are constructed 

by coarsening the fine grid in all axis directions (e.g. the x- and y-directions in 
2D) .  In the semicoarsening scheme, however, the coarse grids are constructed 
by coarsening the fine grid only in one direction. 

We assume that the coarsening process is carried out in the y-direction. 
We use the subsript I to represent the level of the grids ( I  = 1 denotes the coars- 
est level and 1 = L denotes the finest level). On grid 5 2 1  the grid spacing the 
y-direction (the coarsening direction) is hl = 2’-Lh and the grid spacing in the 
s-direction is h. The grid 52, is given by 

(9.4.8) 

where xj  = j h  and y k  = khl. For the model problem (2.3.8) with h = hL = 1/8, 
the coarse grid f l ~ - l  is shown in Figure 9.2. 

Since no coarsening is carried out in the z-direction, the modes with 
high-frequency waves in the x-direction can be represented on the coarse grids. 
The coarse grid correction procedure can damp the modes in 5 2 ~ ~  as well as 
QLL (see Figure 9.1). Therefore, the smoothing iteration procedure only needs 
to damp the modes in RHH and 5 2 ~ ~ .  In a general case, the semicoarsening 
scheme can be used with the line smoothing iteration. For example, we can 
use the y-direction coarsening with the s-line smoothing iteration. 
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(W ( n L - 1 )  

Figure 9.2: 2D Semicoarsening Coarse Grids: h = 1/8 

9.5 Semicoarsening SMG 
For the model problem (2.3.8), the difference equations 

t-21 are given by 

( A l U l ) ( Z ,  y) = hr2((2 + 2a1)+, y) - Q1+ - h, y) 

on the grid 

where 

h: L-I q = - a = 4  a. 
h2 

(9.5.10) 

The value a1 is the anisotropic coefficient on level I which is four times as large 
as crl+l. Therefore, a strong coupling in the y-direction on the fine level weakens 
on coarse levels. 

The standard multigrid method using the semicoarsening scheme can 
be described as follows. 
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Algorithm SCSMG(A2,  bz, uz): 

1. Carry out rnl pre-smoothing iterations using the damped s-line Jacobi 
iterative method to obtain uf. 

2. Compute the residual rz = bz - Alui. 

3. Restrict the residual to the coarse grid to obtain 

1 

(.,y) E Rz-1 (9.5.11) 
rz-l(z,Y) - - -(+, 4 Y + hz) + 2rr(z, Y) + y d z ,  Y - hl) )  

4. Solve the correction equation on the coarse grid 

for 61-1. In the case of more than two levels 

(9.5.12) 

(9.5.13) 

and at the coarsest grid, solve the problem directly. 

5. Interpolate the coarse grid correction 6z-1 onto the fine grid 

and 

u; = u; 4- 6[* (9.5.15) 

6. Carry out m2 post-smoothing iterations using the damped z-line Jacobi 
iterative method and return the new solution. 
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The 2D standard multigrid method using the semicoarsening scheme 
is analogous to a 1D standard multigrid method in the sense that both restric- 
tion of residuals and prolongation of corrections are performed in one direction. 

Now we give a brief two-level convergence analysis for this algorithm. 
Since the coarsening process is carried out only in the y-direction, we consider 
eigenvectors v?’*) and v?’~-’) defined in (2.3.14) as a pair of aliasing vectors. 
If we let 

(9.5.16) 

and apply the operators on it, for p = 1, .  . . , N - 1 and q = 1,. . . , N/2, we 
have 

where 

(9.5.17) 

(9.5.18) 

(9.5.19) 

(9.5.20) 

(9.5.21) 

1 ,  0 

4 - .p) + 1 + cq (9.5.22) 

l + c *  cq-1 ? 1 = - 
2 ’ [  (9.5.23) 

1 
= - ( 2 4  h2 - 5)  + (1 - Ci), (9.5.24) 
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Table 9.1: Two-Level Convergence Factors for SCSMG 

7 
cy 0.5 0.6 0.7 0.8 

0.00001 0.00001 0.0017 0.0035 0.0050 
0.0001 0.0001 0.0145 0.0291 0.0437 
0.001 0.0010 0.0623 0.1253 0.1883 

0.01 0.0096 0.0883 0.1817 0.2751 

0.1 0.0714 0.0883 0.1821 0.2766 
1 0.1999 0.1600 0.1820 0.2767 

10 0.2439 0.1951 0.1791 0.2744 
100 0.2494 0.1995 0.1611 0.2547 
1000 0.2499 0.1999 0.1500 0.1000 

10000 0.2500 0.2000 0.1500 0.1000 
100000 0.2500 0.2000 0.1500 0.1000 

(9.5.25) 

(9.5.26) 

Here cp = cos(p?rh) and cq = cos(qnh). The v-transform matrix of the coarse 
grid correction operator can be computed by 

(9.5.27) 
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The two-level convergence factor is given by 

(9.5.28) 

The numerical values of the two-level convergence factors of the SCSMG method 
for different values of the coefficient Q and the extrapolation factor -y are listed 
in Table 9.1. It shows that the SMG method using the semicoarsening scheme 
together with line smoothing iterations works well in cases when a is either 
very small or very large. 

9.6 Semicoarsening PMG Algorithm 
We now consider applying semicoarsening and line smoothing tech- 

niques to the PMG methods. Since the coarsening process is only carried out 
in one direction, the system only needs to be extended in that direction. For 
the model problem (2.3.8) with h = 1/8, the extended grid and the original 
grid are shown in Figure 9.3. 

The procedure of the semicoarsening PMG method (SCPMG) is de- 
scribed in Figure 9.4. Comparing to Figure 7.8 one sees that the restriction-like 
smoothing and the interpolation-like smoothing of the semicoarsening PMG 
methods is analogous to those used in 1D PMG methods. In the following 
analysis we assume that the full weighting operator is used for restriction-like 
smoothing and the trivial injection is used for interpolation-like smoothing. 

The difference operator on level I is given by 

where cq is defined in (9.5.10). 
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Figure 9.3: 2D Semicoarsening Extended Grids: h = 1/8 
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Algorithm SCPMG(Ah, u f ) ,  bh):  

1. Carry out ml pre-smoothing interations to get ui.  
2. Compute the residual: r h  = bh - Ahuk. 

3. Carry out one restriction-like smoothing operation, possibly 
full weighting: 

r 2 h ( 5 ,  y) = ( R h r h ) ( Z ,  3) 

= a ( r h ( Z ,  !/ - h )  + 2rh(x, y) + r h ( 5 ,  y + h ) ) ,  
or injection rZh(5 ,  y) = ( R h v h ) ( S , y )  = f h ( Z ,  y) 

4. Solve the correction equation for the 2h scale 

A2h62h = r2h 

In the case of more than two levels, this can be done by using 
the procedures: 

62h = P M G ( A 2 h 9  0, r 2 h ) .  

At the coarsest level, the problem is solved directly. 
5. Carry out one interpolation-like smoothing operation, possibly 

6 .  Carry out m2 post-smoothing iterations to get the new solution 

Figure 9.4: The SCPMG Algorithm 
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9.6.1 Two-Level Convergence Analysis 
If the damped 2:-line Jacobi iterative method is used for smoothing 

iteration, the matrices of all the operators used in the SCPMG algorithm have 
the same eigenvector set defined by 

(9.6-30) 

for p = 1,. . . , N  - 1 and q = 1 - N ,  . . . , N. In this case the standard Fourier 
analysis on the two-level SCPMG algorithm is very simple because the 21- 

transform matrix of any of the operators degrades to a single eigenvalue. 

For the eigenvector v p ) ,  the corresponding eigenvalue of the differ- 
ence operator A1 is given by 

2 Ap) = - [q(1 - .p) + 1 - c*,] 
h: 

(9.6.31) 

where cp = c o s p h  and cpl = cosqxhl = c0s2~"q~h.  From (9.6.31), one sees 
that ap) is always positive and therefore, the systems on each of the levels is 
nonsingular. At level I - 1, we have 

(9.6.32) 

where we use the relation cPl,* = 2cil - 1. The corresponding eigenvalue of the 
restriction-like operator Rl is given by 

@d= 1 + 4 1  . (9.6.33) 

The corresponding eigenvalue of the damped 2-line Jacobi iteration matrix is 
given by 

2 

(9.6.34) 
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Table 9.2: Two-Level Convergence Factors for SCPMG-LJ 

L 7 
0.5 I 0.6 I 0.7 I 0.8 

_ _ _ _ ~  ~ ~ ~ ~ 

0.00001 0.00001 0.0034 0.0067 0.0050 

0.0001 0.0001 0.0291 0.0583 0.0101 

0.001 0.0010 0.1250 0.2510 0.0875 

0.01 0.0098 0.1771 0.3640 0.3770 

0.1 0.0832 0.1771 0.3649 0.5509 

1 0.3331 0.1999 0.3646 0.5539 

II 10 I 0.4759 I 0.3712 I 0.3588 I 0.5494 11 
100 0.4972 0.3968 0.3227 0.5101 

1000 0.4995 0.3995 0.2995 0.1995 
~ - 

10000 0.4887 0.3997 0.2998 0.1998 

100000 0.4997 0.3997 0.2998 0.1999 
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From (9.6.31), (9.6.32) and (9.6.33) and noticing that the interpolation- 
like smoothing is the trivial injection, the corresponding eigenvalue of the coarse 
grid correction matrix Cg,l is given by 

( P d  ^(P,P) - l $ P d  &$?¶I = 1-4 ( 4 - 1  1 I 

(9.6.35) 

Therefore, from (9.6.34) and (9.6.35), the eigenvalue of the matrix of the two- 
level SCPMG operator with m damped line Jacobi smoothing iteration is given 
by 

p q m )  = (Bl (PPI )" $PPI y,J 

The convergence factor of the two-level SCPMG algorithm can then 
be calculated by 

(9.6.37) 

Table 9.2 lists the convergence factors of the two-level SCPMG with 
damped line Jacobi smoothing iteration (SCPMG-LJ) with different values of 
the extrapolation factor 7 for problem (2.3.8) with different values of a. The 
result is obtained numerically with the grid size N = 64. 

9.6.2 Modified Line Jacobi Method 
Using the line Jacobi smoothing iteration the convergence speed of the 

standard multigrid method cannot be improved very much by using the PMG 
method. However, a modified Jacobi method can improve the performance 
of the PMG in an anisotropic case [64] [66]. Now we show that the modified 
Jacobi method can also improve the performance of the SCPMG. 
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L 

Table 9.3: Two-Level Convergence Factors for SCPMG-MLJ 

cr 0.8 0.9 1.0 1.1 

0.00001 0.0037 0.0017 0.00001 0.0017 

0.1991 F t -  0.2000 
0.2000 * 0.2000 
0.2000 

10000 0.1999 =I= 100000 0.1999 

0.1400 

0.1391 

0.1398 

0.1004 

0.0999 
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The modified damped z-line Jacobi method for the problem Alu = br 
is defined by 

The eigenvalues of the corresponding iterative operator are given by 

(9.6.39) 

Table 9.3 gives the convergence factors of the two-level SCPMG with the mod- 
ified line Jacobi smoothing iteration (SCPMG-MLJ). The case is the same as 
that used in creating Table 9.2. We note that a good choice of the extrapolation 
factor y is around 1.1 in this case. 

g p 4 )  = 1 - 4 1  - + y 2  + ar(1- .p)' 

9.6.3 Red/Black Line SOR Method 
We now consider using the red/black line SOR method for smoothing 

iteration. One red/black line SOR iteration can be considered as two sub- 
iterations, the black sub-iteration and the red sub-iteration which are defined 
respectively by 

if k is odd, 

(9.6.40) 

and 
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We will use Si-) to represent the black sub-iteration operator and S:+) to 
represent the red sub-iteration operator. 

It will be easier to perform the two-color Fourier convergence anal- 
ysis for the SCPMG with a red/black ordering smoothing iteration. In the 
semicoarsening scheme, the fine grid is divided into two coarse grids and the 
corresponding w-basis vectors are given by 

j , k , p  = 1 ,..., N - 1 
N 

q = 1, ...,- 
2 

s=+,- 

where are defined in (8.2.9), and R+ and R- are defined by 

If we let 

(9.6.42) 

(9.6.43) 

(9.6.44) 

the w-transform matrices of the operators AL and A L - ~  defined in (9.6.29), PL 
defined in (9.5.14), Si,) defined in (9.6.41) and Si-) defined in (9.6.40) can be 
written in the form 

(9.6.45) 

r 1 

A?:? = -(2Q(l 1 - .p) + 1 - Ci)  h2 (9.6.46) 
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(9.6.47) 

(9.6.48) 

(9.6.49) 

(9.6.50) 

So the representation of the whole red/black line SOR operator is given by 

g p  - ̂(+,P&) -(-*Pd - (9.6.51) 
1 - w  

- s L  SL 

From (9.6.45), (9.6.46) and (9.6.47), the w-transform matrix of the coarse grid 
correction operator is given by 

(9.6.52) 

where 

(9.6.53) 4 1  - .p> 
2 4 1  - .p) + 1 - c;. t =  

The w-transform matrix of the two-level SCPMG-SOR operator is 
given by 

(9.6.54) 
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where 

(9.6.55) 
(9.6.56) 
(9.6 -57) 
(9.6.58) 

Here 7 is defined in (9.6.50) and t is defined in (9.6.53). The eigenvalues of the 
matrix f'FVq) are given by 

(9.6.59) 1 
2 A = -(til + t22) f d(t11 - t22)2 + 4f12t21). 

Hence the convergence factors of the two-level SCPMG-SOR algorithm can be 
calculated by 

(9.6.60) 

Table 9.4 lists two-level convergence factors of the SCPMG with the 
red/black line SOR smoothing iteration for problem (2.3.8) with different values 
of a. The result is obtained by numerical procedure with the grid size N = 64. 
The iteration parameter w is 0.89. 

9.7 Multilevel Convergence Analysis 
The multilevel convergence analysis of the SCPMG methods can be 

carried out in a similar way to the analysis of the PMG methods discussed in 
Chapter 8. Let Mi be the multilevel SCPMG operator on level I defined by 

(9.7.61) 

for 1 = 1, ..., N and 

(9.7.62) 
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Table 9.4: Two-Level Convergence Factor of SCPMG-SOR w = 0.89 
n 

II 0.00001 I 0.000197 ll 
0.0001 0.001 706 
0.001 0.007008 
0.01 0.008256 
0.1 0.025835 
1 0.043987 
10 0.087332 

II 100 I 0.107490 II 
II 1000 I 0.109689 n 

10000 0.10991 1 
100000 0.109933 
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All the operators in (8.4.87) corresponding to the SCPMG algorithm are com- 
mutative, it can be shown that MI and Ml-1 have the recursive relation (8.4.89). 

The following theorem gives an upper bound on the convergence factor 
of the multilevel SCPMG algorithm. 

Theorem 9.1 Let 

(9.7.63) 

holds on level I, then we have 

(9.7.64) 

(9.7.65) 

Proof: The proof is based on the fact that (9.7.63) is valid for I = 1 , .  . . , L.  In 
fact, because 

(9.7.66) 
(9.7.67) 
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Table 9.5: Multilevel Convergence Factors for SCPMG-MLJ 

7 
cy 0.8 0.9 1.0 1.1 

0.00001 0.0203 0.0181 0.0163 0.0148 

0.0001 0.1349 0.1218 0.1109 0.1019 
0.001 0.2381 0.2174 0.2000 0.1851 
0.01 0.2381 0.2173 0.1999 0.1851 

0.1 0.2379 0.2169 0.1995 0.1847 

1 0.2380 0.2174 0.2000 0.1851 

1000 

10000 0.2000 0.1017 0.0465 0.0999 
100000 0.1999 0.0996 0.0042 0.0999 

Now assume that p(Ml-1) 5 01 holds. For level I we have 

(9.7.69) 

Table 9.5 gives the multilevel convergence factors of the SCPMG method with 
the modified line Jacobi smoothing iteration (SCPMG-MLJ). The case is the 
same as that used in creating Table 9.2. We note that a good choice of the 
extrapolation factor +y is around 1.1 in this case. 



Chapter 10 

Matrix-Dependent Interpolation and 
Restrict ion 

10.1 Introduction 
The coefficients of many differential equations of real problems (e.g. 

petroleum reservoir simulations) are discontinuous. They might have jumps 
of several magnitudes across some inner boundaries. In these cases, the linear 
interpolation and full weighting restriction operators are not accurate and the 
multigrid methods will show a slow convergence rate. To overcome this diffi- 
culty, the interpolation and restriction operators should include some informa- 
tion about the coefficients. In this chapter we discuss several matrix-dependent 
interpolation and restriction operators. 

10.2 Discontinuous Diffusion Coefficients 
We are concerned with solving the differential equation 

a au a au 
--,(1)- - -&I- +au = f (x,y) E R, / dx dx dy dy (10.2.1) 

on a bounded region R in R2. The coefficients a(') are positive and is nonneg- 
ative. CY;, 0 and f are allowed to be discontinuous across internal boundaries 
in R. 

The finite difference representation of problem (10.2.1) can be derived 
by the integral approximation approach (see e.g. Young and Gregory [71] or 
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Varga [65]): 

where 

The corresponding matrix format can be represented by 

(10.2.2) 

(10.2.3) 

(10.2.4) 

In the case of di) having jumps at some places in the domain, Vu 
will also have jumps at these places. The approximation accuracy of linear 
interpolation depends on the continuity of Vu, and only smooth functions can 
be accurately interpolated onto the fine grid by linear interpolation. Therefore, 
a multigrid algorithm with a linear interpolation operator does not provide the 
usual fast convergence rate. 

Noticing that the product of a(i) and Vu are continuous, a natural 
way to overcome this difficulty is to construct an interpolation operator in such 
a way that the continuity of a(')Vu is reserved. Obviously, the interpolation 
operator must include some information about a(;). For linear system (10.2.2), 
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this is equivalent to using the matrix A h .  In the remainder of this chapter, 
we will discuss the construction of the matrix-dependent interpolation and 
restriction operators in standard coarsening cases as well as in semicoarsening 
cases. 

10.3 Standard Coarsening Cases 
10.3.1 Matrix-Dependent Interpolat ion 

For convenience, we represent Ah in the difference stencil form at 
Point ( z j ,  Y k )  as 

(10.3.5) 

where 

(10.3.6) 

and the other five elements are defined in (10.2.3). For the near boundary grid 
points, the corresponding undefined elements are set to zero. Since we treat 
each grid point in the same way, the subscript j ,  k is often dropped if there 
is no ambiguity. We generally consider the 9-point difference formula cases, 
so that the discussion can be applied to the matrix problem arising from the 
9-point discretization scheme. 

Let the fine grid be divided into four subsets a++, R-+, R+-, and 
R-- defined in (5.2.2) and let subset R-- be used as the coarse grid R2h. 

The interpolation operator Ph is constructed in such a way that after 
the coarse grid correction, the elements of the new residual vector will not get 
larger on the points which do not belong to the coarse grid R2h. This can be 
achieved by requiring 

(10.3.7) 



175 

we require that 

Based on (10.3.9), the interpolation 6h = Ph62h can be defined by 

(10.3.9) 

(z,y) E at_+ (10.3.10) 
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where for (z, y) E 52-- 

and 

(10.3.11) 

The interpolated corrections generated by the interpolation operator 
(10.3.10) will not cause a large residual on the fine grid. In fact AhS@) is zero 
at any point (3, y) E sZ++ and is approximately zero at any point (5, y) E fit,+ 
or (z ,y)  E a+-. 

The transpose of the interpolation matrix can be used as the restric- 
tion matrix. Specifically for any point (5,  y) E C L ,  the restriction r 2 h  = Rhrh 
is defined by 

(10.3.13) 
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where p(") ,  p(") ,p(") 
(10.3.12). 

,p(""), p("') ,p(") and p("") are defined in ( 10.3.1 1) and 

After the interpolation and the restriction operators have been con- 
structed, the coarse grid operator A2h can be defined by 

It can be shown that the A2h is a %point stencil operator if Ah is also a $point 
stencil operator. 

10.3.2 Coarse Grid Matrix 
We use .%h to denote the vector on the grid a h  with all its elements 

unity. We have the following lemmas. 

Lemma 10.1 If the row sums of the matrix Ah are zero and the values A('), 
S(L) and a(') are not zero, then the interpolation operator Ph defined in (10.3.10) 
has the property 

Proof: We use A(R) denote the row sum of the matrix Ah. By direct calculation 
from (10.3.11) and (10.3.12), we have 

(10.3.16) 

(10.3.17) 
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and 

Since the restriction matrix is the transpose of the interpolation matrix, we 
have 

(z2h)=Rh = (Zh)=- (10.3.19) 

Lemma 10.2 If the conditions in Lemma 10.1 are valid and the coarse grid 
problem is defined by  A2h62h = r2h with A2h = RhAhPh, and r2h = &rh, then 

1. The sum of elements ofr2h is equal to the sum of elements of rh; 

2. Every row sum of matrix A2h equak zero if every row sum of matrix Ah 
equals zero; 

3. Every column sum of matrix A2h equals zero i f  every column sum of ma- 
trix Ah equals zero; 

4. A2h is a nine-diagonal matrix with a nine-point digerence stencil. 

Proof: All four parts can be verified by direct calculation. For part (1) to part 
(3) ,  we have 

(ZZh)=r2h = (z2h)TRhrh 
= (z(h))=rh, 

A2hZ2h = RhAhPhZ2h 
= RhAhZh,  

(z2h)=A2h = (z2h)=RhAhPh 
= (Zh)TAhPh. 

(10.3.20) 

(10.3.21) 

(10.3.22) 
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Part (4) is based on the fact that for any row of the matrix Rh, there are at 
most nine columns of the matrix A& such that their inner product is not 
zero. 

For the Poisson problem with homogeneous Neumann boundary con- 
ditions, the linear system Ahuh = bh,  arising from a conservative discretization 
scheme, is singular but solvable. The row sums, the column sums and the sum 
of elements of B@) are all zeros. Because of Lemmas 10.1 and 10.2, the linear 
systems constructed on all coarse levels are also singular and solvable. 

10.4 Semicoarsening Interpolat ion 
If a semicoarsening scheme is used in multigrid methods, the interpo- 

lation and restriction are applied only in the coarsening direction. We consider 
two-dimensional cases with the y direction as the coarsening direction. The 
extension of the discussion to higher dimensional cases is straightforward. The 
coarse grid is defined in (9.4.8). 

10.4.1 Pointwise Scheme 
In this scheme, the elements of the interpolation matrix Ph at point 

(5 ,  y) depend only on the elements of Ah at this point and its neighbor points. 
The interpolation 6@) = is defined by requiring 

(10.4.23) 

Therefore, we have 

(10.4.24) 
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where for (2, y)  E a- 

(10.4.25) 

The transpose of the interpolation matrix is used as the restriction 
matrix and r2h = R h r h  is defined by 

where p(") and are defined in (10.4.25). 

The interpolation and restriction operators defined here still have 
properties (10.3.15) and (10.3.19). If the conditions in Lemma 10.1 are true, 
then the coarse grid matrix A 2 h  = still has the properties described in 
Lemma 10.2. 

10.4.2 Blockwise Scheme 
In the interpolation (restriction) process of the semicoarsening multi- 

grid methods, we treat a two-dimensional case as a one-dimensional case and 
each unit is a line in the x-direction. Therefore it will be more accurate if 
we consider all the points on the whole s-line together rather than individual 
points in the interpolation process. 

The matrices A h  can be written in the block form with each block 
row corresponding to points on one s-line. In the case of a five 2-lines grid, for 
example, the block form of the matrix A h  is given by 

(10.4.27) 



If we let &(yk) denote the sub-vector of Sh corresponding to the points on the 
2-line with y = gk, then we require 

Based on (10.4.28), the interpolation Sh = Ph&h is given by 

where the matrices are given by 

(10.4.29) 

(10.4.30) 

Unfortunately, this definition would lead to a nonsparse interpolation and 
therefore lead to nonsparse coarse grid operators. In practice, p(n)(yk-l) and 
p(')(yk+l) can be defined as diagonal matrices which are approximations to 
-AL:l,k-lAk-~,k and -A;:l,k+lAk+l,k in the following sense 

(10.4.31) 

Here, z' is the vector with all unit elements. The interpolation (10.4.29) can 
now be written in the form 

where p(")(z ,  yk-1) and p(")(z ,  ~ k + ~ )  are the diagonal elements corresponding to 
position 2 in the matrices P(n)(yk-l) and P(')(Y~+~) respectively. 



182 

As in the pointwise scheme, the transpose of the interpolation matrix 
is used as the restriction matrix and ~ 2 h  = Rhrh is defined by (10.4.26). 

The calculation of the diagonal matrices ~(~l(yk-1) and ~ ( ' ) ( y k + ~ )  in- 
volves solving small three-diagonal systems. For example, to calculate P(.)( ~ k + ~ ) ,  

we need to solve the equation 

for vector v' which is the the main diagonal of P ( " ) ( y k + l ) :  

P(S)(?Jk+l)  = IG. (10.4.34) 

In order to make the whole algorithm effective, (10.4.33) need not be solved 
exactly. Usually one cycle of a low dimensional multigrid iteration is good 
enough (See Smith [SO]). 

Since the interpolation operator defined in (10.4.31) still holds the 
property of Lemma 10.1, the coarse grid matrix A 2 h  = R h A h P h  still has the 
properties described in Lemma 10.2. 

10.4.3 Schur Complement Scheme 
It is well known that the Schur complement scheme for solving a linear 

equation system can be considered as a two-level multigrid method ([17], [2]). 
Based on the Schur complement scheme, we can construct the interpolation 
and the restriction operators. 

We use the partition of unknowns based on the so-called zebra or- 
dering. We mark all the odd numbered z-lines red and all the even numbered 
z-lines black. We then reorder the position of unknowns in such a way that 
the red unknowns are counted first. The linear system can then be expressed 
in the form 

(10.4.35) 



183 

The solution procedure of the Schur complement method may be described as 
follows. First we solve a smaller Schur complement linear system 

and 

After becomes known, we solve 

(10.4.36) 

(10.4.37) 

(10.4.38) 

(10.4.39) 

for u,. 

If we consider the black nodes as the coarse grid, then the Schur 
complement method can be viewed as a two-level multigrid method where 
(10.4.36) is the coarse grid linear system. The matrix A, in (10.4.36) can be 
written in the form 

(10.4.40) 

where Ib is the identity matrix on the black node set and Tb, and T!b must be 
determined. 

Equation (10.4.38) can be considered as the restriction operation b, = 
Rb and the restriction operator R is given by 

(10.4.41) 



184 

By comparing (10.4.40) to (10.4.37)) one can see that if Tbr is defined 
by (10.4.41)) the coarse grid matrix A, defined by (10.4.40) is independent 
of T,b. In other words, there is no restriction for choosing the interpolation 
operator as far as tthe coarse grid matrix A, is concerned. 

Equation (10.4.39) can be considered as the interpolation operation 
u = Pub. If we let b, = 0, the interpolation operator P is given by 

(10.4.42) 

In the case of five s-lines, the nine-diagonal matrix A, arising from 
the discretization of differential equation (10.2.1) can be written in the form 

- 
AlJ 

A =  A5,5 
A2,l A2,3 A2,2 

4 3  A4,5 

A3,3 

- 
Al,2 
A3,2 A3,4 

A5,4 

4 4  

(10.4.43) 

where each Ai,j is a tridiagonal sub-matrix. The corresponding T,b and Tbr will 
be 

(10.4.44) 
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and 

1 

(10.4.45) 

The Schur complement linear system (10.4.36) is generally a dense 
system even if the original matrix A is sparse. However, we can use the diago- 
nal approximation of the sub-matrices in Trb and Tbt to construct the 3-point 
interpolation operator and the 3-point restriction operator and to keep the 
coarse grid matrix A, a nine-diagonal matrix. 

From (10.4.44) and (10.4.42), the interpolation 6h = Ph&h is defined 
bY 

(10.4.46) 

where the diagonal matrices P(")(gk- l )  and P ( " ) ( Y ~ + ~ )  are given by 

From (10.4.45) and (10.4.41), the restriction r2h = Rhrh is defined by 

(10.4.47) 

(10.4.48) 
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where the diagonal matrices R(n)(yk) and R ( " ) ( g k )  are given by 

(10.4.49) 

Here z' is a vector with all unit elements. 

Comparing the interpolation operator and the restriction operator 
derived from the Schur complement scheme to those derived from the blockwise 
scheme, we find that the interpolation operators are actually the same although 
they come from different points of view. The restriction operator from the Schur 
complement scheme uses the information of the transpose of the matrix A. In 
the case of nonsymmetric problem, the matrix R is in general not equal to 
the transpose of the matrix P. Since the Schur complement scheme does not 
require a symmetric problem, the interpolation operator and the restriction 
operator constructed from the Schur complement scheme are also suitable in 
nonsymmtric cases. 



Chapter 11 

A Compositional Reservoir Simulator 

11.1 Introduction 
One of the target application fields of multigrid methods is in reservoir 

simulation. Numerical reservoir simulation refers to the development and usage 
of a mathematical model or simulator which describes the flow of fluids in a 
permeable medium. In general, the reservoir simulator requires the numerical 
solution of a set of coupled, nonlinear partial differential equations describing 
complex physical processes in a three-dimensional domain. 

The most complex simulators are those used for the simulation of 
enhanced oil recovery processes. Enhanced oil recovery processes involve the 
injection of chemicals, solvents or heat into the underground reservoirs in order 
to supplement the natural energy and to increase the recovery of the trapped 
oil from the reservoir rock. 

Those methods using solvents such as carbon dioxide or enriched gas 
are called miscible gas flooding. Miscible gas flooding processes typically in- 
volve the multiphase flow of a large number of components. This process can 
be represented by a mathematical formulation involving a set of coupled, highly 
nonlinear, time-dependent partial differential equations [59]. 

Two basic methods for solving multiphase coupled equations are the 
implicit pressure explicit saturation method (IMPES) and the fully implicit 
method. In the IMPES method, the gridblock pressure is solved for implicitly 
using explicit dating of saturation dependent terms. After the pressure solution 
is obtained, the saturations are explicitly updated by substituting the results 
in the material balance equations. In the fully implicit method, the coupled 
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equations are solved simultaneously. Since the number of unknowns is the 
number of grid points multiplied by the number of phases, the method becomes 
expensive per time step for multidimensional problems. However, the fully 
implicit method has much better stability properties. This means that one is 
able to take much larger time steps in general. Therefore, the fully implicit 
method may solve the simulation problem faster due to its ability of taking 
larger time steps in comparision to IMPES. 

The governing partial differential equations, due to their nonlinear 
nature, must be solved by using numerical methods such as finite-difference or 
finite-element methods. In the petroleum industry, the most popular methods 
are those involving finite-difference techniques. Thus the partial differential 
equations are discretized using finite-difference approximations of time and 
spatial derivatives. This leads to a system of algebraic equations that must be 
solved at each time level numerically. 

Because the performance of a miscible process depends heavily on the 
accuracy of the solution of the governing nonlinear miscible flooding equations, 
both a fine mesh and very small time steps are needed. Thus, a very large 
amount of computer time, as well as a large amount of storage, is required for 
field simulation. The solution of the governing equations takes a large part of 
the total computer time and usually determines the storage needed. Therefore 
it is especially important to use a highly efficient numerical method to solve 
the governing equations. 

In this chapter we discuss the mathematical formulation of UTCOMP, 
a three-dimensional, multicomponent, multiphase miscible-flooding simulator 
developed at The University of Texas at Austin [12], [13]. 

11.2 Description of the Simulator 
UTCOMP is an isothermal, three-dimensional, miscible-flooding com- 

positional simulator. In a compositional model, the principles of mass conser- 
vation and phase equilibria are employed to compute phase pressures, satura- 
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tions and phase compositions at each grid block in the reservoir. Compositional 
models are usually required when the fluid properties are dependent on compo- 
sition and pressure in petroleum reservoir simulation. Such reservoir processes 
include 

1. miscible flooding by carbon dioxide or enriched gas injection; and 

2. depletion of volatile oil reservoirs or gas condensate reservoirs. 

The model permits a maximum of four phases to flow simultaneously: 
(1) an aqueous phase, (2) an oil phase, (3) a gas phase and (4) an additional 
nonaqueous liquid phase. Water is only allowed in the aqueous phase. Water 
is slightly compressible and water viscosity is constant. 

The model also assumes that the reservoir is surrounded by imper- 
meable zones so that no-flow boundaries exist. The permeability tensor is 
orthogonal and aligned with the coordinate system. The adsorption of the 
rock is negligible. The fluid flow in the reservoir is characterized by Darcy’s 
law for multiphase flow. The injection and production of fluids can be treated 
as source or sink terms. 

The solution scheme is analogous to IMPES. In this procedure, we 
first solve the pressure equation implicitly for the grid block pressure by using 
explicit dating of saturation dependent terms. Then we solve the material 
balance equations explicitly for the total concentration of each component in 
moles. Finally, we obtain phase compositions for each component by flash 
calculations. 

11.3 Mass Conservation Equations 
Multicomponent, multiphase flow in porous media occurs as a trans- 

port of chemical species in multiple homogeneous phases under the influence 
of four forces: viscous, gravity, dispersion (or diffusion) and capillary forces. 
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The mass conservation of each component should hold at each point in the 
reservoir. 

The law of mass conservation for component K can be written in the 
following form: 

aw, - - - + V . F , - R , = O ,  at (1 1.3.1) 

where W,, @, and R, are the mass accumulation, flux and source terms respec- 
tively. If equation (11.3.1) is expressed in terms of moles per unit bulk volume 
per unit time, the accumulation term can be expressed in terms of the sum of 
the moles in each phase. Since hydrocarbon is not permitted in the aqueous 
phase nor water in the hydrocarbon phases, the accumulation terms can be 
written in the form 

~ = n , + 1  
( 11.3.2) 

where 4 is porosity, ( 1  is the molar density of phase I, Sl (saturation) is the 
fraction of the pore space occupied by phase I, and x,1 is the mole fraction of 
component K in phase I. Here we assume that there are np = 4 phases and 
the phase index is in the following order: (1) aqueous phase, (2) oil phase, (3) 
gas phase and (4) an additional nonaqueous phase. We also assume that there 
are n, hydrocarbon components and a water component (the index number is 

flux and 
The flux of component K can be represented as a sum of convective 
dispersive flux: 

(11.3.3) 
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-b 

where iil is the superficial velocity (flux) of phase j and If,[ is the dispersion 
tensor. Physical dispersion in the simulator is modeled using the full dispersion 
tensor: 

-b + 

K K l  = (11.3.4) 

-8 

Each element of l?,r is a function of the flux ill and the saturation Sr. 
The relationship between the flux and the pressure gradient in each 

phase is described by the multiphase version of Darcy's law for Auid flow in 
porous media: 

( 1 1.3.5) 

-8 

where is the absolute permeability tensor, X,r is the relative mobility, 71 is 
the specific weight of phase I and D is depth. The relative mobility is defined 
as 

Sr A,, = - 
Pl 

( 1 1.3.6) 

where k,r is the relative permeability of phase I and ~1 is the viscosity. 
+ 

In most cases the absolute permeability tensor Z is assumed to be a 
diagonal tensor given by: 

kz 1 (11.3.7) 

where kz, ky and kz are the components of the permeability tensor in the x, y 
and z directions respectively. If these three values are the same, the medium 
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is called isotropic, otherwise it is anisotropic. An anisotropic medium typically 
occurs under most reservoir conditions. 

The source terms are determined by the well conditions. Thus 

R, = - K = 1, ..., n c + l  (1 1.3.8) 

where & is the bulk volume of a grid block and qK is the molar flow rate of 
component K which is positive for injection. For grid blocks which do not 
include a well, qx is set to zero. 

vb 

Substituting (11.3.2), (11.3.3) and (11.3.8) into equation (11.3.1), one 
obtains the mass conservation equations in moles: 

K = 1, ..., n c + l  (1 1.3.9) 

Equation (11.3.9) is a set of coupled, nonlinear differential equations with 
n,np + 6np + 2 variables. There exist ncnp - n, + 6np + 1 other independent 
functional relationships among these variables (see Chang [13]). Therefore the 
system is solvable. 

Since the solution scheme is analogous to IMPES, only the pressures 
are solved implicitly. In fact, each of the phase pressures is related to a refer- 
ence phase pressure PJ and the capillary pressure which is a function of phase 
saturations and compositions (see Chang [13]). Thus only one variable, the 
phase pressure PJ needs to be solved implicitly. 

11.4 The Pressure Equation 
The pressure equation in UTCOMP is derived on the assumption 

that the pore volume V,(P) ,  which is a function of the pressure P only, is filled 
completely by the total fluid volume &(P,I?) which is a function of pressure 
P and the total number of moles of each component N,: 

&(P,f i )  = V,(P) (1 1.4.10) 
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Differentiating both sides of equation (11.4.10) with respect to time using the 
chain rule gives 

~ W P  ne+1 av, alv, av,ap --+ --=-- 
dP dt  &=I dN, dt dP dt 

(1 1.4.11) 

Since the formation is assumed to be slightly compressible, the pore 
volume V, is approximately a linear function of the pressure P 

v, = vp”[l + Cf(P - PO)] (1 1.4.12) 

where Vp” is the pore volume at some constant pressure Po and cj is a constant 
coefficient. 

The accumulation term, in units of moles of component n per volume 
vb is given by 

(1 1.4.13) 

The mass conservation equation (11.3.9) can then be written in the form of the 
net change for component IE in moles 

n =  1, ..., nc+l (11.4.14) 

Substituting equations (11.4.12) and (11.4.14) into equation (11.4.11), 
we have 

n c + l  dP + L q ,  = v o c  
&=l *dt 

where 

(11.4.15) 

(1 1.4.16) 
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If the pressure of phase 2,  the oil phase, is chosen to be solved as the 
reference phase pressure, PJ = P2, then other pressures can be expressed by 
the relations 

( 1 1.4.17) 

where P,Zl is the capillary pressure between phase 2 (oil phase) and phase I .  
Pc21 is assumed to be a known function of saturation. 

Substituting (11.4.14) and (11.4.17) into (11.4.15), and using the mul- 
tiphase fluid flow version of Darcy’s law (11.3.5), we have the final expression 
for the pressure equation 

(11.4.18) 

11.5 The Finite-Difference Form of the Pres- 
sure Equation 

The discretized form of the pressure equation (11.4.18) is obtained 
using the central difference scheme in space and the backward difference scheme 
in time. The transmissibilities for phase I are given by 

( 1 1.5.19) 

(1 1.5.20) 



- 2AXiA3'j(LZ(Z);k*+ 
( q ) : k f $  - Azk AZkkl + 

( k z ) i j k  ( k ) i j k f l  

We denote the central difference operator as A ,  e.g. 
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(11.5.21) 

and define 

(11.5.24) 

(1 1.5.25) 

The finite difference form of equation (11.4.18) can be written in the 
form 

av, (YC, - -)n, ap  u k  PE+' v k  - (AA"AP"+')ijk = (& - & ) c k  

+At(Br - Bg" + B:) (1 1.5.27) 
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where B,", B; and Bz are the collection of terms corresponding to capillary 
pressure, the gravity and the physical dispersion respectively. The term related 
to capillary pressure is given by 

(11.5.28) 

The gravity term is given by 

where 

(1 1.5.29) 

(1 1.5.30) 

(7~);~ ik and (7i);k.i are expressed similarly but with differencing being car- 
ried out in the y and z directions respectively. The contribution due to physical 
dispersion is given by 

where 
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,(11.5.32) 

Ag(Jz)<jk and Az(J2)ijk can be expressed in a similar way but with the differ- 
encing being carried out in the y and z directions respectively. 

A "volumetric error" term, (K - Vp), is added in equation (11.5.27) 
to account for the discrepancy in pore volume and fluid volume at the previous 
time step. It reflects the fact that the pressure obtained at the previous time 
step may not have been computed exactly. 

The coefficient matrix of the resulting linear system is a nonsymmet- 
ric, seven-diagonal matrix. 



Chapter 12 

Numerical Results 

12.1 Introduction 
In this chapter we present the numerical results of multigrid methods 

for solving both model problems and real reservoir simulation problems on 
parallel machines. The problems may be strongly anisotropic. The coefficients 
are often nonconstant with jumps across some inner boundaries. 

The motivation of our experiments is twofold. First we want to ex- 
amine the performance of the multigrid methods in solving real problems (here 
we use reservoir simulation problems). Second we want to test the performance 
of the multigrid methods on currently available parallel machines. 

12.2 The Multigrid Algorithm 
We are concerned with a multigrid algorithm which should be robust 

for solving a relatively broad range of problems in the sense that the algorithm 
should obtain an expected convergence rate without special treatment. The 
multigrid algorithm we used in our numerical experiments is a semicoarsening 
multigrid algorithm (SCMG). 

To handle an anisotropic problem, plane smoothing iterations in the 
coarsening direction are needed. The plane smoothing iterations are required to 
solve many 2D matrix problems. If a 2D direct method or an iterative method 
is used to solve these 2D matrix problems, the effect of the whole 3D multigrid 
method may not be attractive [5]. One way to overcome this difficulty is to 
use a 2D multigrid method to solve these 2D problems [24]. Since the solution 

198 
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of the 2D problems is part of the smoothing iterations, they need not to be 
solved exactly. In practice, one multigrid V-cycle is adequate for solving the 
2D problems. Thus the 3D multigrid method can be very effective in solving 
anisotropic problems. 

To handle problems with discontinuous coefficients, matrix depen- 
dent interpolation operators and restriction operators should be used. The 
interpolation and restriction matrices we used are obtained using the Schur 
complement approximation method. This is because the reservoir simulation 
problems we used are nonsymmetric. 

The coarse grid matrices are constructed using (10.3.14). Since the in- 
terpolation operation and the restriction operation only involve three points in 
the coarsening direction, the coarse grid operators have 15-diagonal structure. 

For smoothing iterations, the zebra line Jacobi method is used in 2D 
cases. In 3D cases, the zebra plane Jacobi method is used. 

12.3 Implementation 
12.3.1 Coarsening Direction 

Although the choice of the coarsening direction does not affect the 
performance of the multigrid algorithms on a serial scalar machine, this may 
not be the case on a parallel machine. Without loss of generality, we assume 
that ny > n,. If we choose the y-direction as the coarsening direction, the 
parallel smoothing work of each V-cycle will be 

where W ( z )  is the number of parallel operations for an x-line of nodes per level. 

In a 2D multigrid algorithm for solving anisotropic problems, a line 
smoothing iteration method is often used. In this case, W ( z )  PS d(n,), where d 
is some constant. It is obvious that dn, log(n,) < dn, log(n,). Therefore, the 
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coordinate direction in which the number of points is largest should be chosen 
as the coarsening direction for a semicoarsening multigrid method on parallel 
machines. Figure 12.1 illustrates the semicoarsening grids in three levels. 

12.3.2 Data Partition 
In our current code, we use a one-dimensional parallel scheme. Each 

of the grids is partitioned into subgrids in one direction. Each of the processor 
nodes holds a subproblem defined on one of the subgrids. One of the reasons 
for choosing this partition is to reduce communication costs since each of the 
nodes has at most two neighbors. For a parallel system with high start-up com- 
munication costs, having fewer neighbors can reduce the total communication 
costs. 

The parallel direction is chosen as the same as the coarsening direc- 
tion. Since the number of points in this coordinate direction is the largest, the 
number of levels which can utilize all of the processor nodes will also be largest. 
Thus the algorithm will have the maximum parallel efficiency. 

As mentioned earlier, in a 3D multigrid algorithm with plane smooth- 
ing iterations, the 2D subproblems can be effectively solved by using 2D multi- 
grid methods. By using the one-direction parallel scheme, the 2D multigrid 
algorithm can be carried out in one node. Thus parallel computing can be 
done on a large granularity scale. 

12.3.3 Below C-Level 
One of the major parallel implementation concerns of the semicoars- 

ening multigrid method is the “below C-level” problem (see Briggs et al. [ll]). 
Below a certain level, the number of the partitions is smaller than the number 
of processors. The communication between the nodes becomes complicated 
because of two reasons: some nodes are idle and neighbor partitions do not 
reside on the physical neighbor nodes. 
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Level L Level L - 1 Level L - 2 

Figure 12.1: Semicoarsening Grids in Three Levels 



202 

There are several ways to overcome this difficulty. One way to do 
that is to avoid this situation by not going below the C-level, which is called 
the “U-cycle” in Briggs et al. 1113. However, if the number of nodes is quite 
large, this approach will degrade performance. 

Another way to do this is to have one or a group of nodes obtain 
all data from the others, complete the below C-level part of a V-cycle, and 
then pass the data to the other nodes. In a semi-coarsening case, the global 
copies of the current problem are distributed to all nodes in the semi-coarsening 
direction. This approach does not scale well. For a moderate number of nodes, 
however, parallel performance is good (Smith [SO]). 

A more natural way is to have all processors do their portion of the 
job. Those nodes that are allocated no unknowns are set idle and then re- 
awakened upon returning to high levels. This is the approach used by both 
Hempel and Schuller [37] and Briggs et al. [ll]. In a semi-coarsening case, the 
implementation can be simpler. 

Since we do coarsening in only one direction, each processor has at 
most two neighbors. Each processor keeps a record of its neighbors’ identifi- 
cation numbers for all levels and its own “sleep-level.” Below its “sleep-level” 
the processor goes to sleep and above this level it awakens. Communication in- 
cludes the inner boundary data exchange and global partial summary data. If 
a red/black smoothing scheme is used, another flag is needed for each processor 
to indicate whether the inner boundary is red or black. 

12.3.4 Storage Space 
In the SCMG algorithm, the matrices at each level, such as the re- 

striction matrices &, the interpolation matrices p I ,  and the problem matrices 
AI,  should be constructed and saved at the so-called preprocessing stage. 

Since the coarse grid matrices AI for 3D problems generally have 
15 nonzero diagonals, the space for storing all the A, should be larger than 
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7 N  =+ 15N. For matrices PI and RI,  only two diagonals need to be stored, so 
the storage space for these matrices is 4N. 

If the 2D SCMG algorithm is used for plane smoothing iterations, 
we have to consider storing the 2D matrices at coarse levels. There are two 
strategies for generating the 2D coarse grid matrices. We can compute all 
of the 2D matrices for all levels and save them for later use. This approach 
requires a very large amount of storage space but can save CPU time. We 
can also calculate the 2D matrices whenever the 2D SCMG routine is called. 
This approach requires a very small amount of storage space but increases the 
computation time. 

12.4 Parallel Machines 
12.4.1 Intel iPSC/SSO 

The Intel iPSC/860 system is a MIMD parallel machine. The iPSC/860 
system consists of up to 128 compute nodes, each with an Intel i860 proces- 
sor and up to 64 MByte of memory. Each processor is capable of performing 
up to 80 million single-precision or 60 million double-precision floating point 
operations per second (MFLOPS). 

The hardware for message passing that resides on each node board 
links the processors together in a physical hypercube configuration. Each mes- 
sage initiating from a node takes about 65 microseconds of CPU time to es- 
tablish its path through the cube. The message is then passed along at the 
peak hardware bandwidth of 2.8 MByte/sec. Because each node has a direct 
connect routing module which is separate from the processor, message passing 
through intermediate nodes do not interrupt those processors, so there is no 
performance penalty for communicating between nonadjacent nodes. 

To run an executable program, the user must allocate a cube consist- 
ing of all or part of the nodes in the system. If the user successfully obtains 
a cube, he is the owner the cube and no one else can obtain the processors in 
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the cube until the user releases the cube. 

12.4.2 Connection Machine 5 
A CM-5 system is a massively parallel MIMD computer. It may con- 

tain thousands of computational processing nodes and one or more control pro- 
cessors. Every node is connected to two scalable interprocessor communication 
networks, the Data Network and the Control Network. Each processing node 
is a general-purpose computer with its own local memory. Nodes can execute 
the same (SIMD-style) instruction or independent (MIMD-style) instructions. 
A whole CM-5 system can be divided into groups, known as partitions, with 
a separate control processor, known as a partition manager. Each partition is 
viewed as an independent machine by users. 

The operating system on a CM-5 uses a time-sharing scheme. Each 
user gets the whole partition during his time slice. The CM-5 timer functions 
take this into account automatically. 

There are two parallel programming models supported by the CM-5, 
the data parallel model and the message passing model. 

To use the data parallel model, codes should be written in a high- 
level parallel language (e.g., CM Fortran which is similar to Fortran 90, C*, 
or *Lisp). Some of the most important features of CM Fortran are the ar- 
ray operations. In these advanced parallel languages, an array is treated as a 
“parallel variable” and can be used as a single operand of an arithmetic oper- 
ator or a single argument of an intrinsic function. By using this model, users 
can concentrate on the logical design of their applications and let the advanced 
compilers, assemblers, and other system software deal with many details associ- 
ated with parallel processing, such as layout across nodes, and synchronization 
of operations. 

Although many underlying detail problems related to parallelism no 
longer need to be taken care of in the data parallel model, the array shape 
conversion problem must be dealt with. The curren L version of CM Fortran 
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does not allow passing a front-end array (a Fortran 77 array) to a subroutine 
that expects a CM array, or passing a CM array to a subroutine that expects a 
front-end array. It also does not allow resizing or reshaping a CM array across 
subroutine boundaries. 

In our multigrid codes, one section of a one-dimensional array in the 
calling routine is interpreted as a multidimensional array in the called subrou- 
tine. This is not trivial in CM Fortran although it can be easily done in Fortran 
77. 

One way to solve this problem is to declare the storage space as a 
one-dimensional CM array in the calling routine and to pass the proper section 
of the array to the called subroutine. Inside the called subroutine, a intrin- 
sic function RESHAPE is used to create a multidimensional CM array from 
elements of the one-dimensional array. 

The other way is to declare the space as a one-dimensional FE (Front- 
End) array in the calling routine and to pass the relavant part of it to the 
subroutine as in Fortran 77. Inside the called subroutine, two transfer subrou- 
tines, CMFJEARRAY-TO-CM and CMF-FEARRAYJROM-CM, are used 
to transfer the multidimensional FE array to and from the multidimensional 
CM array. We have chosen this approach in our codes for convenience and 
efficiency. 

In the message passing model, users take care of communication at 
the procedure level. Users must specify explicitly the locations where commu- 
nication is involved. This model gives users great flexibility. When operation 
of arrays includes procedure calls, the data parallel model usually cannot help 
and the message passing model has to be used. 

On the CM-5, the message passing model is supported by the CM 
message-passing library (CMMD). CMMD provides common message passing 
subroutines, global operation subroutines, parallel input/output modes and 
node timing functions. The CMMD timers measure three values: busy time 
(cpu time), idle time, and elapsed time with microsecond precision. 
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12.5 Parallel Virtual Machine 
PVM is a software package developed jointly at Oak Ridge National 

Laboratory and The University of Tennessee, which allows concurrent comput- 
ing on heterogeneous networked computers via sockets. Users run an appli- 
cation program using PVM just like on a real parallel machine. PVM takes 
care of data format transformations between different types of machines. The 
communication subroutines are provided in a library (libpvm3.a). 

Although a group of different types of machines can be used under 
PVM, the execution time is limited by the slowest one if each of the machines 
accepts the same mount  of work. In this case, the work load should be carefully 
distributed among the networked machines based on their processing speeds to 
obtain the maximum speedup. In our case, we used 16 SUN4 workstations 
which are networked with Ethernet-10 with a speed 10 Mb/sec. 

The performance of PVM depends on the performance of the local 
computer system, especially on the speed and reliability of the local network. 
In order to reduce communication contention and minimize network traffic, 
each node keeps the whole set of data and only exchanges the updated inner 
boundary data. 

The nodes in a PVM system are real computers, and usually have 
more processing power than the corresponding processor nodes of a real par- 
allel machine. However, the communication speed might be slow compared to 
those of real parallel machines since the speed of the networks is usually slower 
than the data channels in a real parallel computer. Subtasks of an application 
program should, therefore, have a moderately large level of granularity in order 
to get a reasonable speedup result. 
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12.6 Numerical Results 
12.6.1 Anisotropic Problems 

The first problem is the 2D anisotropic problem defined by (2.3.8) 
with the finest grid size 100 x 100. 

The second problem is a 3D anisotropic problem defined by 

with the finest grid size 20 x 20 x 20. 

The initial guess u@) is set to zero. The average residual reduction 
factor is obtained by averaging the residual reduction factors over 5 V-cycEes 

(12.6.3) 

where r p )  = b~ - A L U ~ ) .  The convergence results for the 2D and the 3D prob- 
lems are presented in Tables 12.1 and 12.2, respectively. In these two tables, 
the average convergence factors are listed vs. different anisotropic coefficients 
situations. For both problems, the convergence factors for the anisotropic cases 
are smaller than those for the isotropic cases. 

A standard measure of the speedup of an algorithm is defined by 

(12.6.4) 

where T@') is the wall clock time for solving a problem on N computational 
processors and T(l)  is the wall clock time for solving the same problem with the 
best serial code on one computational processor. In our experiments, T(') is 
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Table 12.1: Convergence Factor of SCMG in 2D Anisotropic Cases (NX=100, 
NY = 100) 

Coefficients TO 7.5 Average 
cy Convergence Factor 

1000 7.166 x lo-' 6.777 x 6.240 x 

100 1.210 4.279 x 5.125 x lom2 
10 1.348 1.513 x 1.023 x lo-' 

1 1.338 1.798 x lo-' 1.061 x lo-' 
0.1 1.398 4.454 x 10-6 7.955 x 10-2 

0.01 1.400 1.589 x 6.471 x 

0.001 1.400 1.885 x lo-' 4.225 x 

approximated by the time for solving the problem with the same parallel code 
on one processor. A measure of the efficiency is defined by 

(12.6.5) 

The efficiency is used to measure processor ultilization. 

Tables 12.3, 12.4 and 12.5 list the speedup and efficiency of the SCMG 
algorithm for the 2D and 3D anisotropic problems defined in (2.3.8) and (12.6.2) 
on the CM-5 and iPSC/SSO parallel systems and the networked SUN4 work- 
stations under PVM, respectively. The numerical results are obtained for the 
problems with different sizes of grids and on different numbers of processors. 
Here we use T'omp, Tcomm and Tsol to represent the time for computation, 
communication and solution, respectively. In a multi-user system such as the 
CM-5, we use the CPU time instead of the wall clock time because the wall 
clock time depends on the number of user processes running on the system. 
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Table 12.2: Convergence Factor of SCMG in 3D Anisotropic Cases (NX=20, 
NY=20, NZ=20) 

Coefficients TO r5 Average 
a, P ,  Y Convergence Factor 

1, 1, 1 1.225 1.967 x 6.936 x 
~~p ~~ 

I 100, 1, 1 I 0.4224 I 2 . 5 4 2 ~  1 3.597 x ~~ 11 
1, 100, 1 0.4225 1.058 x 10’l2 4.783 x 

1, 1, 100 1.341 1.233 x lo-’ 3.915 x 
~~ 11 100, 100, 1 I 0.2470 I 4.463 x I 4.481 x 11 

11 1, 100, 100 I 1.281 1 1.577 x 1 6 . 5 7 7 ~  11 
100, 1, 100 1.281 1.575 x 6.577 x 

10000, 100, 1 5.291-3 2.475 x 8.590 x 

10000, 1, 100 0.4325 2.486 x 3.564 x 

1, 10000, 100 0.4323 3.064 x 3.716 x 
~ ~~ 

100, 10000, 1 0.7479 3.766 x 3.470 x 

100, 1, 10000 1.341 8.755 x lo-* 3.656 x 

1, 100, 10000 1.342 8.755 x lo-’ 3.656 x 
i 
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Table 12.3: Speedup and Efficiency of SCMG on the CM-5 

Size 

8*8*128 

8*8*32 1 

2 
4 
8 
16 
32 

16*512 1 
2 
4 
8 
16 
32 

0.37 1.10 1.52 5.09 0116 

5.26 0 5.31 1 1 

0.82 0.49 
0.56 0.69 1.29 4.12 0.26 
0.47 1.10 1.66 3.20 0.10 

1.33 0 1.46 1 1 
0.62 I 0.12 I 0.85 I 1.72 I 0.86 11 
0.31 0.24 0.65 2.25 0.56 
0.17 0.43 0.69 2.12 0.27 
0.10 0.86 1.06 1.38 0.09 
0.07 1.56 1.73 0.84 0.03 - 
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Table 12.4: Speedup and Efficiency of SCMG on the iPSC/860 

Size Nodes Tcomp Tcomm TsOl Speedup 

4*4*128 1 5.51 0 5.77 1 
2 2.87 0.07 3.00 1.92 
4 1.48 0.13 1.64 3.52 1 t7t7 I 0.76 I 0.18 I 0.96 I 6.01 

0.39 0.24 0.65 8.88 
0.19 0.30 0.51 11.31 

8*8*32 I 1 I 3.32 I 0 1 3.37 I 1 

2 1.74 0.05 1.81 1.86 
4 0.98 0.09 1.10 3.06 
8 0.61 0.14 0.78 4.32 
16 0.43 0.18 0.65 5.18 
32 0.40 0.22 0.66 5.11 

16*512 1 0.411 0 0.420 1 

2 0.223 0.071 0.301 1.40 
4 0.122 0.101 0.230 1.83 
8 0.071 0.117 0.192 2.19 
16 0.044 0.129 0.176 2.39 

I 32 I 0.025 1 0.138 0.167 2.51 

Efficiency 

1 
0.96 
0.88 
0.75 
0.56 
0.35 

1 
0.93 
0.77 
0.54 
0.32 
0.16 

1 
0.7 
0.46 
0.27 

0.15 
0.08 
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8 

16 

Table 12.5: Speedup and Efficiency of SCMG on a Cluster of SUN4 Using PVM 

1.18 6.29 0.79 

0.81 9.16 0.57 

Size I Nodes I Tmmp Speedup I Efficiency 

4 5.17 3.56 0.89 

8*8*32 

4*4*128 1 1 7.42 1 ,I-, 1 1 1 3.96 0.94 

4 2.11 3.52 0.88 

1 4.13 1 1 

2 2.32 1.78 0.89 

4 

8 

1.38 2.99 0.75 

0.88 4.69 0.59 

I 16 0.65 6.35 0.40 

4 0.69 1.75 0.44 
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The timing results on the CM-5 system are obtained using the timing 
subroutines in the CMMD library. These timers can be used to measure busy 
time and idle time on each node with microsecond precision. Timing on the 
iPSC/SSO is performed using the dclock() function which can measure the cpu 
time with 100 ns precision. Timers on the networked workstations under PVM 
depend on the timing utilities available on the workstations. Here we use the 
UNIX system call getrusageo on the SUN4 workstations. In Table 12.5, only 
computation times are listed because low-speed communication channels and 
repeatedly resending lost messages makes the communication time very large. 

The computational time decreases as the number of node processes 
increases. The communication time increases as the number of node processes 
increases. If the increase in the communication time is larger than the decrease 
in the computation time, the solution time will increase. 

Speedup depends on the problem size, domain shape and the ratio of 
the computational work to the communication work. Speedup becomes larger 
when the problem size is larger. This is because the cost of the serial portion of 
the process becomes negligible compared to the parallel portion. The domain 
shape affects the ratio of the computational work to the communication work. 
The longer the shape is in the parallel direction the larger the speedup that 
can be obtained. 

1 2.6.2 Reservoir Simulation Problems 
We have implemented a semicoarsening multigrid (SCMG) method 

and have used the code in the multicomponent, multiphase miscible flooding 
simulator UTCOMP as a solver for the numerical solution of the linear systems 
of equations arising from the discretization of the governing pressure partial 
differential equations. We give some numerical results which show that the 
SCMG solver is very efficient and stable. 

The first three cases are two-dimensional carbon dioxide flooding sim- 
ulations with multiphase flow and heterogeneous field-scale conditions. In these 
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cases, the effects of gravity, physical dispersion, capillary pressure, phase behav- 
ior, and heterogeneity are combined and simulated for carbon dioxide flooding 
on a field scale using stochastic permeability fields. A detailed description of 
these cases can be found in [48]. The grid size of these three cases are 80 x 10, 
80 x 20 and 80 x 80 corresponding to the cases M2DCLL671, M2DCLL672 and 
M2DCLL679 in [48] respectively. The simulations contain up to three phases 
and three components. 

We run these three cases on a CRAY Y-MP supercomputer. The 
resulting linear systems are highly nonsymmetric. For comparison, we have 
also run the cases with some other numerical solvers, such as the biconjugate 
gradient method (BCG), the biconjugate gradient square method (BCGS) [40], 
the ORTHOMIN method (OMIN) [72] and the banded Gaussian elimination 
method (DIR). The incomplete LU decomposition (ILU) or the modified incom- 
plete LU decomposition (MILU) [53] is used as a preconditioner for the CG-like 
methods. For the modified incomplete LU decomposition preconditioner, the 
modification factor w is set to 0.9. (The discussion of the modification factor 
w can be found in [56].) The simulation is carried out for 200 simulation days 
for the first two cases and 50 simulation days for the third case. The timing 
results are listed in Tables 12.6, 12.7 and 12.8 where Tsol is the CPU time for 
solvers, Ttot is CPU time for the whole simulation runs and Rsol is the ratio 
of Tsol based on the SCMG method. 

For all three cases, the performance of the multigrid method is very 
good. It is about 17 times faster than the OMIN(1LU) method which is the 
second fastest method for case 3. For case 1, the size of the linear system is 
the smallest one (80 x 10) in our experiments and the banded direct solver is 
faster than all the other CG-like methods except the SCMG method which, by 
contrast, is still about 3 times faster than the direct method. 

In our experiments, we also consider two three-dimensional water- 
flooding simulation cases which use the reservoir and fluid properties of the 
Monahans Clearfork reservoir, located in West Texas, operated by Shell Oil 
Co [47]. Up to three nonaqueous phases and six components are considered in 
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Table 12.6: Timing Results for Case 1 (80 x 10) 

Solver qol(sec-) Ttot b e 4  
SCMG 10 21 3 
OMIN(M1LU) 127 332 
BCGS(M1LU) 121 324 
BCG(M1LU) 132 336 

DIR 27 231 
... 

Table 12.7: Timing Results for Case 2 (80 x 20) 

11 OMIN(M1LU) I 406 I 951 I 21 11 
B C G S (MILU) 390 927 20 
BCG(M1LU) 407 949 21 

143 I 685 8 II 
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Table 12.8: Timing Results for Case 3 (80 x 80) 

OMIN(1LU) 1922 2734 17 

BCGS( ILU) 2406 3237 21 

BCG(1LU) 3197 4030 28 

DIR 7036 7842 62 - 

these two simulation cases. We refer to these two cases as Cases 4 and 5 corre- 
sponding to Runs SIM21HWlC and SIM46DW1 in [48], respectively. In Case 
4, a three-dimensional unconditioned stochastic permeability field is generated 
and a grid of 10 x 10 x 8 is used for a real range of 1980 x 1980 x 20ft3. In 
case 5, a three-dimensional stochastic permeability field conditioned with core 
data are used with a grid of 10 x 10 x 16. I )  

We run these two cases on a DECalpha workstation. The simulations 
are carried out until the number of pore volumes injected is equal to 0.1. All 
these runs are successful. For most time steps it takes only one or two cycles for 
convergence of the SCMG method. For these two three-dimensional cases, the 
CG-like iterative methods are faster than the SCMG method. One reason is 
that the current implementation of SCMG needs an initializing process which 
takes a large amount of time if only a few multigrid cycles are performed. 
Another reason is that the numbers of grid points in the coarsening direction 
used in these two cases are too small to obtain usual multigrid efficiency. 



Chapter 13 

Conclusions 

13.1 Review of Dissertation 
In this dissertation we studied multigrid methods for the numerical 

solution of elliptic partial differential equations. The primary focus of our study 
was on parallel multigrid methods and the application of multigrid methods to 
reservoir simulation. 

In Chapter 2, we described the model problems in 1D and 2D and the 
corresponding linear systems which will be used in later chapters. In Chap- 
ter 3, we briefly discussed some basic iterative methods, including the Jacobi 
method. We also discussed polynomial acceleration procedures such as Cheby- 
shev acceleration and conjugate gradient acceleration. 

In Chapters 4 and 5, we discussed the standard multigrid methods. 
We gave a convergence analysis of the standard multigrid methods for a class 
of model problems in 1D and 2D using both standard Fourier analysis and a 
multicolor Fourier analysis. The new multicolor Fourier analysis is equivalent 
to the standard Fourier analysis since there is a similarity transformation rela- 
tionship between the two bases. However, the multicolor Fourier analysis can 
be more conveniently used in the analysis of the standard multigrid methods 
using red/black smoothing iteration methods. 

In Chapters 6 to 9, we considered three types of multiple coarse grid 
methods (MCG). In the multiple coarse grid multigrid methods (MCGMG) 
more than one coarse grid is used and the interpolation and restriction oper- 
ators on each of the coarse grids on one level are the same. In the frequency 
decomposition multigrid methods (FDMG) more than one coarse grid is used 
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but the interpolation and restriction operators on each of the coarse grids on 
one level are different. In the parallel multigrid methods (PMG) one averages 
all the coarse grid corrections on one level. 

In Chapter 6, we considered an extended problem corresponding to 
a given problem with Dirichlet boundary condition. A similar discussion can 
be applied to other boundary conditions such as the Neumann-type boundary 
condition. The MCG methods can be more effectively applied to the extended 
system. In the MCG procedure to solve the extended system, we used a purifi- 
cation process to obtain Moore-Penrose solutions of singular systems. 

In Chapters 7 and 8, we described and analyzed three types of MCG 
methods including MCGMG, FDMG and PMG in one and two dimensions. 
Multicolor Fourier analysis was used in our analysis. We derived convergence 
factors of the two-level procedures for MCG methods with various smoothing 
iteration methods including the damped Jacobi method and the red/black SOR 
method. We showed that with an MCGMG procedure or a PMG procedure 
with a certain type of smoothing iteration (e.g. the damped Jacobi method) 
the "aliasing error" caused by the coarse grid correction process on each of 
the comse grids was eliminated and thus the convergence was improved. The 
analysis showed that using the red/black SOR smoothing iteration method led 
to a better MCGMG convergence rate than using the damped Jacobi method. 
We showed that the convergence factors of the FDMG method without any 
smoothing iterations were bounded from above by 1/3. The coarse-grid cor- 
rection of the FDMG method is in fact equivalent to a block Jacobi iteration 
applied to a similarity transformation of the given system. 

In Chapter 9, we considered a variant of PMG methods using the 
semicoarsening and line smoothing techniques to solve anisotropic problems. A 
multilevel convergence analysis of the semicoarsening PMG method (SCPMG) 
for an anisotropic problem was given. The results of the analysis show that 
the multilevel convergence factor of the SCPMG method with one line Jacobi 
smoothing iteration is bounded from above by 0.5 for the anisotropic model 
problem with the coefficient ratio being from to lo5. If the modified 
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line Jacobi smoothing iteration proposed by Tuminaro [64] is used then the 
convergence factor can be bounded by 0.2. The bound of the convergence 
factor can be reduced further to 0.11 if the red/black SOR smoothing iteration 
is used. 

In Chapters 10 to 12, we considered the application of multigrid meth- 
ods to petroleum reservoir simulation. We developed a multigrid code using 
the semicoarsening and the line (plane) smoothing techniques for UTCOMP, a 
three-dimensional, multiphase, multicomponent, compositional reservoir simu- 
lator developed at The University of Texas at Austin. The governing equation 
in the reservoir simulator is an anisotropic differential equation which may have 
discontinuous coefficients. The matrix problem arising from the discretization 
of the governing equation is nonsymmetric. Special matrix-dependent interpo- 
lation and restriction operators were used to handle the discontinuous coeffi- 
cients. The numerical results showed that the multigrid procedure we used were 
competitive with the Gaussian elimination method and with standard iterative 
methods. The multigrid algorithm has also been implemented on a variety of 
parallel systems such as the CM-5, iPSC/860 and networked workstations un- 
der PVM. From the results of the numerical experiments, we observed that the 
speedup depends on the size of the problem to be solved and the computing 
environment. 

13.2 Summary of Contributions 
In this dissertation we introduced a new multicolor Fourier analysis, 

described and analyzed the multiple coarse grid methods including a new one 
based on the use of semicoarsening and line smoothing techniques, and applied 
multigrid methods to reservoir simulation. 

In our analysis of two-level multigrid methods we used a multicolor 
Fourier analysis based on the partitioning of coarse grids. It can be conveniently 
used in cases where more than one coarse grid is used and/or a multicolor 
smoothing iteration is used. The connection between standard Fourier analysis 
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and multicolor Fourier analysis is derived. 

We studied the coarse grid methods (MCG), where at each coarse 
grid level more than one coarse grid is used to improve convergence perfor- 
mance. Three types of MCG methods were considered, including multiple 
coarse grid multigrid methods (MCGMG), frequency decomposition multigrid 
methods (FDMG) and parallel multigrid methods (PMG). 

We constructed an extended system corresponding to a given prob- 
lem with Dirichlet boundary conditions. The extended system is periodic and 
thus can be conveniently handled by MCG methods. We used a purification 
process to obtain the Moore-Penrose solution of the singular systems which 
were encountered. 

We considered a new variant of PMG methods using semicoarsening 
and line smoothing techniques to handle anisotropic problems. A multilevel 
convergence analysis was carried out. 

We applied multigrid methods to petroleum reservoir simulation. We 
developed a multigrid code using semicoarsening and line (plane) smoothing 
techniques for solving the governing pressure equation of a three-dimensional 
reservoir simulator. We used special matrix-dependent interpolation and re- 
striction operators in the code which can be used for solving the pressure equa- 
t ion with discontinuous coefficients. 

We systematically performed numerical experiments of the multigrid 
method on a variety of parallel systems such as the CM-5, iPSC/SSO and net- 
worked workstations under PVM. 

13.3 Future Research 
The performance of an MCG method largely depends on the choice of 

the interpolation and restriction operators. Since the operators can be chosen 
differently on different coarse grids, there are a large number of possible choices. 
A further study should be carried out on the choice of operators for the MCG 
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methods. 

The analysis of the MCG methods should be extended to three- 
dimensional cases to see if the performance declines. A broader class of prob- 
lems should be considered. Such problems include elliptic problems with mixed 
boundary conditions. The use of MCG methods for solving equations with dis- 
continuous coefficients should also be considered. 

Semicoarsening techniques can be used with the FDMG methods. A 
semicoarsening FDMG method has fewer coarse grids and therefore the algo- 
rithm has a simpler structure. With the semicoarsening scheme, the interpola- 
tion and restriction operators are also much simpler. In a higher dimensional 
case, this advantage is greater. 

In reservoir simulation, the solution can be very smooth in some re- 
gions and oscillatory in others. For such cases it might be more efficient to 
use a grid with more resolution in some regions. Using local mesh refinement 
techniques, the efficiency of a multigrid method can be further improved. 

The governing pressure equation in UTCOMP is a nonlinear equation. 
It may be more efficient to apply the multigrid method directly to the original 
nonlinear problem instead of to the linearized systems. 

For time dependent problems where the low-frequency modes in the 
solution on the finest grid do not change very much with time, the coarse grid 
corrections do not have to be sent back to the finest level at each time step. 
Instead, one can run a simulation by solving the coarse grid system for several 
time steps and then solving the fine grid system once. Procedures based on 
this idea should be developed. 



Appendix A 

Moore-Penrose Solution of a 
Symmetric Linear System 

Let A be a real symmetric N x N singular matrix. The linear system 

Au = b (A.O.l) 

may either have an infinite number of solutions or no solution depending on 
whether the vector b lies in the range of A. However,' there always exists a 
unique solution to the problem of finding w such that llb - Awl1 is minimized 
and such that llwll is minimized. The solution u* of the modified problem is 
referred to as the Moore-Penrose solution (see Moore [54] and Penrose [SS]) 
and is denoted by 

u* = Atb. (A.0.2) 

The Moore-Penrose solution can be determined as follows. Since A is 
symmetric there exists a orthogonal matrix V such that 

V-'AV = A = diag(A1, A2,.  . . , A,,, 0,. . . , 0) (A.0.3) 

where A1,Az, ..., Ap are the nonzero eigenvalues of A. The Moore-Penrose 
inverse At of A is defined by 

At = Vdiag(A,', A;', . . . , A;*, 0,. . . ,O)V-' 

Note that 

(A.0.4) 

(A.0.5) 
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The Moore-Penrose solution is given by 

u* = Atb (A.0.6) 

We note that if A is nonsingular, then u* = A-'b. Moreover if A is singular 
and b is in the range of A then 

lib- Au'II = O (A.0.7) 

Let d1), ~ ( ~ 1 ,  . . . , w(P)  denote the eigenvectors of A associated with 
nonzero eigenvalues and let v(P+l), . . . , dN) denote the eigenvectors associated 
with the zero eigenvalue. Evidently b can be represented in the form 

The Moore-Penrose solution u* = Atb can be written in the form 

u* = d1A;l&) + . . . + d (A.0.9) P P  

We note that u* is a solution of the system 

Au = b' (A .O. 10) 

where 

We say that b' is a "purified" vector corresponding to b. Moreover, the general 
solution of the modified system Au = b' is given by 

Therefore the Moore-Penrose solution u* can be obtained from ii by "purifica- 
tion". 
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