Fabrication of MEMS Devices by Powder-Filling into DXRL-Formed Molds

PDF Version Also Available for Download.

Description

We have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd{sub 2}Fe{sub 14}B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two ... continued below

Creation Information

Christenson, T.; Garino, T.J. & Venturini, E. January 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd{sub 2}Fe{sub 14}B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two processes involve pressing at high temperature either powder or a dense bulk material into a ceramic mold that was previously made using a DXRL mold. These techniques allow arbitrary 2-dimensional shapes to be made 10 to 1000 micrometers thick with in-plane dimensions as small as 50 micrometers and dimensional tolerances in the micron range. Bonded isotropic Nd{sub 2}Fe{sub 14}B micromagnets made by these processes had an energy product of 7 MGOe.

Source

  • 1998 Fall Materials Research Society Meeting; Boston, MA; 11/29-12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003272
  • Report No.: SAND99-0107C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 3272
  • Archival Resource Key: ark:/67531/metadc685866

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 7, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 28, 2016, 2:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Christenson, T.; Garino, T.J. & Venturini, E. Fabrication of MEMS Devices by Powder-Filling into DXRL-Formed Molds, article, January 7, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc685866/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.