Statement of Work for Analytical Services Provided By Pacific Northwest National Laboratory Analytical Chemistry Laboratory

Prepared for the U.S. Department of Energy

Project Hanford Management Contractor for the U.S. Department of Energy under Contract DE-AC06-96RL13200

Approved for Public Release
LEGAL DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy. Available in paper copy and microfiche.

Available to the U.S. Department of Energy and its contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(615) 576-8401

Available to the public from the U.S. Department of Commerce National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

Printed in the United States of America

DISCLM-1.CHP (1-91)
Statement of Work for Analytical Services Provided by Pacific Northwest National Laboratory Analytical Chemistry Laboratory

Date Published
June 1997

Prepared for the U.S. Department of Energy

Project Hanford Management Contractor for the U.S. Department of Energy under Contract DE-AC06-96RL13200

Approved for Public Release
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Statement of Work for Analytical Services Provided by PNNL's Analytical Chemistry Laboratory</td>
</tr>
</tbody>
</table>

This document, reviewed in accordance with DOE Order 1430.1D, "Scientific and Technical Information Management," and DOE G 1430.1D-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

LEGAL DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, not any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/575-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

A-6001-400.2 (09/94)
Approved by: K. J. Kuhl-Klinger, Acting Manager
Pacific Northwest National Laboratory
Analytical Chemistry Laboratory

6/26/97

Approved by: O. D. Bredt
Quality Engineer/Quality Operations
Pacific Northwest National Laboratory
Analytical Chemistry Laboratory

6/26/97

Approved by: R. B. Barmettlor, Manager
Rust Federal Services of Hanford Inc.
300 Area LEF

6/30/97

Approved by: T. A. Dillhoff, Team Leader
B&W Hanford Company
FFTF Regulatory Compliance and ECO, FFTF/MASF

6/26/97

Approved by: D. E. Rasmussen, Manager
B&W Hanford Company
327 Facility

6/30/97

Approved by: M. S. Wright, Manager
B&W Hanford Company
324 Facility Stabilization Project

6/27/97

Approved by: E. J. Bitten, Manager
B&W Hanford Company
Advanced Fuel Facilities Transition

6/26/97

Approved by: W. R. Thackaberry, Scientist
Rust Federal Services of Hanford Inc.
Waste Operations Quality Assurance

6-26-97

HNF-EP-0857-2
CONTENTS

1.0 PURPOSE .. 1

2.0 REQUIREMENTS ... 1
 2.1 REGULATORY REQUIREMENTS 1
 2.2 CONTRACTED ANALYTICAL LABORATORY 1
 2.3 VARIANCES TO THE STATEMENT OF WORK 1

3.0 REGULATORY REPORTING REQUIREMENTS 1
 3.1 RADIONUCLIDE AIR EMISSIONS REPORT 2
 3.2 ANNUAL ENVIRONMENTAL RELEASES REPORT 2
 3.3 HANFORD SITE ENVIRONMENTAL REPORT 2
 3.4 EFFLUENT INFORMATION SYSTEM/ONSITE DISCHARGE INFORMATION SYSTEM ... 2

4.0 ANALYTICAL LABORATORY SERVICES AND DATA QUALITY OBJECTIVES .. 2

5.0 GLOSSARY ... 4

6.0 REFERENCES .. 5

TABLES

1. Sample and Analysis Criteria for the 309 Facility T-1
2. Sample and Analysis Criteria for the 324 Facility T-2
3. Sample and Analysis Criteria for the 327 Facility T-3
4. Sample and Analysis Criteria for the 340 Facility T-4
5. Sample and Analysis Criteria for the Fast Flux Test Facility T-5
6. Sample and Analysis Criteria for the 437 Maintenance and Storage Facility T-6
7. Environmental Release Summary Reporting Parameters T-7
This page intentionally left blank.
1.0 PURPOSE

The purpose of this statement of work (SOW) is to establish laboratory analytical criteria and requirements for radioactive airborne emissions measurement sample and/or analysis activities.

2.0 REQUIREMENTS

2.1 REGULATORY REQUIREMENTS

In accordance with Clean Air Act requirements [40 Code of Federal Regulations (CFR) 61.93 and Washington Administrative Code (WAC) 246-247], owners and operators of radioactive airborne emissions units are required to implement a quality assurance program for radioactive airborne emissions measurement activities. In accordance with these requirements, a Quality Assurance Project Plan (WHC-EP-0528-2) has been prepared that governs the quality assurance activities associated with data collection and reporting of radioactive airborne emissions measurements. Included in WHC-EP-0528-2 are requirements for the following:

- Preparation of a SOW for the radioactive airborne emissions measurement program
- Identification of analytical criteria and detection limits for laboratory radioanalytical services.

This document, prepared by Rust Federal Services of Hanford Inc. (RFSH), Air and Water Services (AWS), fulfills these stated requirements for the Project Hanford Management Contract (PHMC)-managed facilities in the 300 and 400 Areas.

2.2 CONTRACTED ANALYTICAL LABORATORY

Analytical services for the radioactive airborne emissions measurement program for the PHMC-managed facilities in the 300 and 400 Areas are to be provided by Pacific Northwest National Laboratory's (PNNL) Analytical Chemistry Laboratory.

2.3 VARIANCES TO THE STATEMENT OF WORK

Variances to this SOW must be documented by PNNL and approved or acknowledged by the PHMC AWS organization.

3.0 REGULATORY REPORTING REQUIREMENTS

The sample data, resulting from the radioactive airborne emissions measurement program for the PHMC-managed facilities in the 300 and 400 Areas,
support a number of regulatory reporting requirements. A description of the required reports that this program supports is provided in the following sections.

3.1 RADIONUCLIDE AIR EMISSIONS REPORT

This report documents Hanford Site radioactive airborne emissions measurements results. Within this report, emissions measurements are used to estimate the annual effective dose equivalent (EDE) received by the hypothetical offsite highest receptor. This report complies with the reporting requirements of WAC 246-247, "Radiation Protection-Air Emissions", and the 40 CFR 61, "Protection of the Environment", "National Emissions Standards for Hazardous Air Pollutants", Subpart H, "National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities".

3.2 ANNUAL ENVIRONMENTAL RELEASES REPORT

This annual report fulfills effluent discharge reporting requirements of U.S. Department of Energy (DOE) Order 5400.1 and DOE Order 5484.1. This report summarizes the degree to which emissions of regulated substances (i.e., radioactive airborne emissions) from Hanford Site facilities comply with applicable regulatory limits.

3.3 HANFORD SITE ENVIRONMENTAL REPORT

This report is compiled and published annually by PNNL for U.S. Department of Energy, Richland Operations Office to comply with the requirements of DOE Order 5400.1.

3.4 EFFLUENT INFORMATION SYSTEM/ONSITE DISCHARGE INFORMATION SYSTEM

This report is transmitted electronically to Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho for inclusion in the DOE effluent information system/onsite discharge information System (EIS/ODIS) database. This report complies with the requirements of DOE Order 5484.1 and DOE Order 5400.1.

4.0 ANALYTICAL LABORATORY SERVICES AND DATA QUALITY OBJECTIVES

PNNL's Analytical Chemistry Laboratory shall provide the following analytical and data handling services.

- Analytical services shall meet the analytical requirements listed in Tables 1 through 6.
PNNL shall implement a quality assurance (QA) program that meets the applicable requirements of 40 CFR 61, Appendix B, Method 114, Section 4.0.

Quality control test results and laboratory intercomparison scores shall be provided to AWS upon request; the tests shall include accuracy, precision, and background.

PNNL shall participate in the DOE Inter-Laboratory Quality Assurance Program coordinated by the DOE Environmental Measurements Laboratory, New York, New York, as applicable for requested analyses.

Upon request, AWS shall be permitted to review and approve the QA program.

Particulate samples for the 340 Tank Vent Stack (340-NT-EX), 324 Facility stack (ESP-324-01-S), 327 Facility stacks (ESP-327-01-S and ESP-327-02-D) shall be saved and composited for quarterly specific radionuclide analyses. The composited samples shall be analyzed for plutonium-239/240, plutonium-238, americium-241, and cesium-137 in accordance with 40 CFR 61, Appendix B, Method 114 (refer to tables). In some cases, sample radioactivity levels might be insufficient to allow for the detection of specific radionuclides. Therefore, as a cost savings measure, gross alpha/beta measurements shall be performed on composite samples before performing specific analyses (not applicable for gamma spectroscopy analyses). If insufficient radioactivity levels are present to allow for possible detection of the specified radionuclides, specific radionuclide analyses shall not be performed, unless otherwise directed by AWS. Conversely, specific radionuclide analyses shall be performed when gross alpha/beta radioactivity levels are sufficient to allow for possible detection of specific radionuclides.

PNNL analytical data shall meet a minimum completeness criteria of 90 percent (90% of samples analyses for each stack shall meet the minimum requirements established in this document).

Analytical results shall be expressed in the units shown for the respective minimum detectable concentrations (MDC) in Tables 1 through 6.

PNNL shall transmit sample analysis results to AWS in an electronic format that can be downloaded into the environmental release summary (ERS) database. Table 7 lists parameters for reporting data via the ERS database.

All raw data and analytical results shall be retained as QA documents for a minimum of 5 years, as specified by 40 CFR 61, Subpart H and WAC 246-247 requirements. Upon request, AWS shall be provided with access to the raw data and analytical results.
In the event that alpha/beta activity is detected at MDC levels or greater (refer to Tables 1 through 6), PNNL shall contact AWS for guidance on performing follow-up analyses.

5.0 GLOSSARY

AWS Air and Water Services
CFR Code of Federal Regulations
DOE U.S. Department of Energy
DOE-RL U.S. Department of Energy, Richland Operations Office
EDE effective dose equivalent
EDP electronic data processing
EIS/ODIS effluent information system/onsite discharge information system
EPA U.S. Environmental Protection Agency
ERS environmental release summary
FFTF Fast Flux Test Facility
HNF Hanford Nuclear Facility (document identifier)
INEL Idaho National Engineering Laboratory
MASF 437 Maintenance and Storage Facility
MDC minimum detectable concentrations
PHMC Project Hanford Management Contract
PNNL Pacific Northwest National Laboratory
QA quality assurance
RFSH Rust Federal Services of Hanford Inc.
SOW statement of work
TT turnaround time (elapsed time, in days, from when a sample is received by the laboratory until the analysis is reported to AWS).

cfm cubic feet per minute
% percent
μCi/cc microcuries per cubic centimeter
6.0 REFERENCES

DOE Order 5400.1, General Environmental Protection Program.

DOE Order 5484.1, Environmental Protection, Safety and Health Protection Information Reporting Requirements.

This page intentionally left blank.
Table 1. Sample and Analysis Criteria for the 309 Facility.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision<sup>a</sup></th>
<th>Accuracy<sup>b</sup></th>
<th>Samples/year (frequency)</th>
<th>MDC<sup>c</sup>, (\muCi/cc)</th>
<th>TT<sup>d</sup>, days</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross (\alpha) and gross (\beta)</td>
<td><20%</td>
<td>Footnote b</td>
<td>6 (6 per year)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

^a DOE/RL-96-68, Vol. 4, Table 7-1, states that duplicate analyses should have <20% relative percent difference when the result is >5 times the minimum detectable activity.

^b Performance evaluation sample/analysis results should meet the minimum acceptability scores specified by the required evaluation studies. Evaluation study requirements are specified in Section 4.0.

^c MDCs shall be as low as reasonably attainable, but shall not exceed the values specified in the table.

^d Turnaround times are expressed as calendar days.

\(\alpha\) = alpha.
\(\beta\) = beta.
\(\text{cfm}\) = cubic feet per meter.
\(\text{MDC}\) = minimum detectable concentrations.
\(\%\) = percent.
\(\muCi/cc\) = microcuries per cubic centimeter.
\(\text{TT}\) = turnaround time.
\(<\) = less than.
\(>\) = greater than.
Table 2. Sample and Analysis Criteria for the 324 Facility:

(1 of 2)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples per year (frequency)</th>
<th>MDC^c, (μCi/cc)</th>
<th>TT', (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2.0 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>26 (1/2 weeks)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>^238Pu^d</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.1 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>^241Am^d</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>^3H</td>
<td></td>
<td></td>
<td>24 (2/month)</td>
<td>1.5 E-9</td>
<td>45</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>^90Sr^d</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9 E-14</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>gamma spec</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9 E-14</td>
<td>Footnote e</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>^137Cs (Cs)</td>
<td></td>
<td></td>
<td></td>
<td>2.7 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^137Cs</td>
<td></td>
<td></td>
<td></td>
<td>2.7 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^154Eu</td>
<td></td>
<td></td>
<td></td>
<td>2.3 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^155Eu</td>
<td></td>
<td></td>
<td></td>
<td>5.9 E-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^60Co</td>
<td></td>
<td></td>
<td></td>
<td>1.7 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^239,240Pu^d</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.0 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
</tbody>
</table>

^a DOE/RL-96-68, Vol. 4, Table 7-1, states that duplicate analyses should have <20% relative percent difference when the result is >5 times the minimum detectable activity.

^b Performance evaluation sample/analysis results should meet the minimum acceptability scores specified by the required evaluation studies. Evaluation study requirements are specified in Section 4.0.

^c MDCs shall be as low as reasonably attainable, but shall not exceed the values specified in the table.
Table 2. Sample and Analysis Criteria for the 324 Facility.
(sheet 2 of 2)

d Sample analyses for the specified radionuclide shall be performed quarterly on a composite of the particulate samples collected during each quarter of the calendar year.

Note: Historical data indicate that sample activity levels typically are insufficient to allow for the detection of specific radionuclides. Therefore, as a cost savings measure, gross alpha/beta measurements shall be performed on composite samples before performing specific analyses (not applicable for gamma spectroscopy analyses). If insufficient activity levels are present to allow for possible detection of the specified radionuclides, specific radionuclide analyses shall not be performed unless otherwise directed by AWS. Conversely, specific radionuclide analyses shall be performed when gross alpha/beta activity levels are sufficient to allow for possible detection of specific radionuclides.

e The turnaround time for the 1st, 2nd, and 3rd quarter samples is 60 days. The turnaround time for the 4th quarter sample (10-1-97 through 12-31-97) is 45 days.

f Turnaround times are expressed as calendar days.

\(\alpha = \) alpha.
\(\beta = \) beta.
\(\text{cfm} = \) cubic feet per meter.
\(\text{MDC} = \) minimum detectable concentrations.
\(\% = \) percent.
\(\mu\text{Ci/cc} = \) microcuries per cubic centimeter.
\(\text{TT} = \) turnaround time.
\(< = \) less than.
\(> = \) greater than.
<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples per year (frequency)</th>
<th>MDC, (μCi/cc)</th>
<th>TT, (days)</th>
<th>Unit Price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2.0 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross B</td>
<td><20%</td>
<td>Footnote b</td>
<td>26 (1/2 weeks)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>239(^{\text{Pu}})</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.1 E-15</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>241(^{\text{Am}})</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3(^{\text{H}})</td>
<td></td>
<td></td>
<td>24 (2/month)</td>
<td>1.5E-9</td>
<td>45</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>90(^{\text{Sr}})</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9E-14</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>gamma spec. (137(^{\text{Cs}}), 134(^{\text{Cs}}), 154(^{\text{Eu}}), 155(^{\text{Eu}}), 60(^{\text{Co}}))</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>Footnote e 100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>239,240(^{\text{Pu}})</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.0 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
</tbody>
</table>
Table 3. Sample and Analysis Criteria for the 327 Facility. (sheet 2 of 3)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples/year (frequency)</th>
<th>MDC, (μCi/cc)</th>
<th>TT, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2.0 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>26 (1/2 weeks)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>239Pu<sup>d</sup></td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.1 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>241Am<sup>d</sup></td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>90Sr<sup>d</sup></td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9E-14</td>
<td>Footnote e</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>gamma spectrometry</td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>1.9 E-14</td>
<td>Footnote e</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>137Cs</td>
<td></td>
<td></td>
<td></td>
<td>2.7 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>134Cs</td>
<td></td>
<td></td>
<td></td>
<td>2.3 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>154Eu</td>
<td></td>
<td></td>
<td></td>
<td>5.9 E-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>155Eu</td>
<td></td>
<td></td>
<td></td>
<td>1.7 E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239,240Pu<sup>d</sup></td>
<td></td>
<td></td>
<td>4 (1/quarter)</td>
<td>2.0 E-15</td>
<td>Footnote e</td>
<td>250</td>
</tr>
</tbody>
</table>
Table 3. Sample and Analysis Criteria for the 327 Facility. (sheet 3 of 3)

a) DOE/RL-96-68, Vol. 4, Table 7-1, states that duplicate analyses should have <20% relative percent difference when the result is >5 times the minimum detectable activity.

b) Performance evaluation sample/analysis results should meet the minimum acceptability scores specified by the required evaluation studies. Evaluation study requirements are specified in Section 4.0.

c) MDCs shall be as low as reasonably attainable, but shall not exceed the values specified in the table.

d) Sample analyses for the specified radionuclide shall be performed quarterly on a composite of the particulate samples collected during each quarter of the calendar year.

Note: Historical data indicate that sample activity levels typically are insufficient to allow for the detection of specific radionuclides. Therefore, as a cost savings measure, gross alpha/beta measurements shall be performed on composite samples before performing specific analyses (not applicable for gamma spectroscopy analyses). If insufficient activity levels are present to allow for possible detection of the specified radionuclides, specific radionuclide analyses shall not be performed unless otherwise directed by AWS. Conversely, specific radionuclide analyses shall be performed when gross alpha/beta activity levels are sufficient to allow for possible detection of specific radionuclides.

e) The turnaround time for the 1st, 2nd, and 3rd quarter samples is 60 days. The turnaround time for the 4th quarter sample (10-1-97 through 12-31-97) is 45 days.

f) Turnaround times are expressed as calendar days.

\[\begin{align*}
\alpha &= \text{alpha.} \\
\beta &= \text{beta.} \\
cfm &= \text{cubic feet per meter.} \\
\text{MDC} &= \text{minimum detectable concentrations.} \\
\% &= \text{percent.} \\
\mu\text{Ci/cc} &= \text{microcuries per cubic centimeter.} \\
TT &= \text{turnaround time.} \\
< &= \text{less than.} \\
> &= \text{greater than.}
\end{align*} \]
Table 4. Sample and Analysis Criteria for the 340 Facility. (sheet 1 of 2)

340 FACILITY, 340-NT-EX Stack

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision<sup>a</sup></th>
<th>Accuracy<sup>b</sup></th>
<th>Samples/year (frequency)</th>
<th>MDC<sup>c</sup>, (μCi/cc)</th>
<th>TT<sup>f</sup>, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 3.1 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>26 (1/2 weeks)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>238Pu<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>241Am<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>131I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gamma spec<sup>d</sup> (137Cs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239,240Pu<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

340 FACILITY, 340-DECON Stack

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision<sup>a</sup></th>
<th>Accuracy<sup>b</sup></th>
<th>Samples/year (frequency)</th>
<th>MDC<sup>c</sup>, (μCi/cc)</th>
<th>TT<sup>f</sup>, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>4 (1/quarter)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4. Sample and Analysis Criteria for the 340 Facility. (sheet 2 of 2)

340 FACILITY, 340-B-BLDG Stack

SAMPLE AND ANALYSIS CRITERIA

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Type of Analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples/year (frequency)</th>
<th>MDC, μCi/cc</th>
<th>TT, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>4 (1/quarter)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Historical data indicate that sample activity levels typically are insufficient to allow for the detection of specific radionuclides. Therefore, as a cost savings measure, gross alpha/beta measurements shall be performed on composite samples collected during each quarter of the calendar year. Sample analyses for the specified radionuclide shall be performed quarterly on a composite of the particulate samples collected before performing specific analyses (not applicable for gamma spectroscopy analyses). If insufficient activity levels are present to allow for possible detection of the specified radionuclides, specific radionuclide analyses shall not be performed unless otherwise directed by AWS. Conversely, specific radionuclide analyses shall be performed when gross alpha/beta activity levels are sufficient to allow for possible detection of specific radionuclides.

The turnaround time for the 1st, 2nd, and 3rd quarter samples is 60 days. The turnaround time for the 4th quarter sample (10-1-97 through 12-31-97) is 45 days.

Glossary
- α = alpha.
- β = beta.
- cfm = cubic feet per meter.
- MDC = minimum detectable concentrations.
- % = percent.
- μCi/cc = microcuries per cubic centimeter.
- TT = turnaround time.
- $<$ = less than.
- $>$ = greater than.
Table 5. Sample and Analysis Criteria for the Fast Flux Test Facility. (sheet 1 of 2)

FFTF, FFTF-CB-EX Stack

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples/year (frequency)</th>
<th>MDC, µCi/cc</th>
<th>TT, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>52 (1/week)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>3H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>131I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FFTF, FFTF-RE-SB Stack

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Type of Analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples/year (frequency)</th>
<th>MDC, µCi/cc</th>
<th>TT, (days)</th>
<th>Unit Price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>52 (1/week)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>131I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Sample and Analysis Criteria for the Fast Flux Test Facility. (sheet 2 of 2)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision</th>
<th>Accuracy</th>
<th>Samples/year (frequency)</th>
<th>MDC, µCi/cc</th>
<th>TT, (days)</th>
<th>Unit Price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>52 (1/week)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

DOE/RL-96-68, Vol. 4, Table 7-1, states that duplicate analyses should have <20% relative percent difference when the result is >5 times the minimum detectable activity.

Performance evaluation sample/analysis results should meet the minimum acceptability scores specified by the required evaluation studies. Evaluation study requirements are specified in Section 4.0.

MDCs shall be as low as reasonably attainable, but shall not exceed the values specified in the table.

Sample frequency may be reduced during the calendar year. A reduction in the sample frequency may result in less samples delivered to PNNL for analysis.

Turnaround times are expressed as calendar days.

Four samples will be collected during a 4 week period (1 sample per week). The samples shall be analyzed as a batch to reduce analytical costs per sample.

α = alpha. β = beta. cfm = cubic feet per meter. MDC = minimum detectable concentrations. % = percent. µCi/cc = microcuries per cubic centimeter. TT = turnaround time.
Table 6. Sample and Analysis Criteria for the 437 Maintenance and Storage Facility. (sheet 1 of 2)

MASF, 437-MN&ST Stack

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision<sup>a</sup></th>
<th>Accuracy<sup>b</sup></th>
<th>Samples/year (frequency)<sup>d</sup></th>
<th>MDC<sup>c</sup>, μCi/cc</th>
<th>TT<sup>e</sup>, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2.0 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>52 (1/week)</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

MASF, 437-1-61 Stack

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Type of analysis</th>
<th>Precision<sup>a</sup></th>
<th>Accuracy<sup>b</sup></th>
<th>Samples/year (frequency)<sup>d</sup></th>
<th>MDC<sup>c</sup>, μCi/cc</th>
<th>TT<sup>e</sup>, (days)</th>
<th>Unit price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal 2 cfm for period of collection, unless otherwise indicated</td>
<td>gross α and gross β</td>
<td><20%</td>
<td>Footnote b</td>
<td>4</td>
<td>2.0 E-15 and 1.9 E-14</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6. Sample and Analysis Criteria for the 437 Maintenance and Storage Facility. (sheet 2 of 2)

- DOE/RL-96-68, Vol. 4, Table 7-1, states that duplicate analyses should have <20% relative percent difference when the result is >5 times the minimum detectable activity.

- Performance evaluation sample/analysis results should meet the minimum acceptability scores specified by the required evaluation studies. Evaluation study requirements are specified in Section 4.0.

- MDCs shall be as low as reasonably attainable, but shall not exceed the values specified in the table.

- Sample frequency may be reduced during the calendar year. A reduction in the sample frequency may result in fewer samples delivered to PNNL for analysis.

- Turnaround times are expressed as calendar days.

\[\alpha = \text{alpha.} \]
\[\beta = \text{beta.} \]
\[\text{cfm} = \text{cubic feet per meter.} \]
\[\text{MDC} = \text{minimum detectable concentrations.} \]
\[\% = \text{percent.} \]
\[\mu \text{Ci/cc} = \text{microcuries per cubic centimeter.} \]
\[\text{TT} = \text{turnaround time.} \]
\[< = \text{less than.} \]
\[> = \text{greater than.} \]
<table>
<thead>
<tr>
<th>EDP code</th>
<th>File title</th>
<th>Stack code or Stream code</th>
<th>Companion files</th>
<th>Reportable radionuclides</th>
</tr>
</thead>
<tbody>
<tr>
<td>F002</td>
<td>340 Vault Tank Exhaust</td>
<td>340-NT-EX</td>
<td>F026, F017</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F008</td>
<td>340 B Building</td>
<td>340-B-BLD</td>
<td>none</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F009</td>
<td>340 Decontamination Facility</td>
<td>340-DECON</td>
<td>none</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F011</td>
<td>FFTF Combined Exhaust</td>
<td>FFTF-CB-E</td>
<td>F018, F024</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F012</td>
<td>FFTF Lower Reactor Service Building</td>
<td>FFTF-RESB</td>
<td>F016</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F013</td>
<td>FFTF Reactor Heat Transport System</td>
<td>FFTF-HT-T</td>
<td>none</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F014</td>
<td>MASF 437-MN&ST</td>
<td>437-MN&ST</td>
<td>none</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F016</td>
<td>FFTF Lower Reactor Service Building</td>
<td>FFTF-RESB</td>
<td>F012</td>
<td>I-131</td>
</tr>
<tr>
<td>F017</td>
<td>340 Vault Tank Exhaust</td>
<td>340-NT-EX</td>
<td>F026, F017</td>
<td>I-131</td>
</tr>
<tr>
<td>F018</td>
<td>FFTF Combined Exhaust</td>
<td>FFTF-CB-E</td>
<td>F011, F024</td>
<td>I-131</td>
</tr>
<tr>
<td>F019</td>
<td>MASF 437-1-61</td>
<td>437-1-61</td>
<td>none</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F602</td>
<td>340 Vault Tank Exhaust</td>
<td>340-NT-EX</td>
<td>F026, F017</td>
<td>Cs-137, Pu-239, Pu-238, Am-241</td>
</tr>
<tr>
<td>F024</td>
<td>FFTF Combined Exhaust H-3</td>
<td>FFTF-CB-E</td>
<td>F011, F018</td>
<td>H-3</td>
</tr>
<tr>
<td>F025</td>
<td>EP-324-01-S</td>
<td>324-01-S</td>
<td>F028, F603</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F026</td>
<td>EP-327-01-S</td>
<td>327-01-S</td>
<td>F029, F604</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>F027</td>
<td>EP-327-02-V</td>
<td>327-02-V</td>
<td>F030, F605</td>
<td>alpha, beta</td>
</tr>
</tbody>
</table>

T-7.1
Table 7. Environmental Release Summary Reporting Parameters.
(sheet 2 of 2)

<table>
<thead>
<tr>
<th>EDP code</th>
<th>File title</th>
<th>Stack code or Stream code</th>
<th>Companion files</th>
<th>Reportable radionuclides</th>
</tr>
</thead>
<tbody>
<tr>
<td>F029</td>
<td>EP-327-01-S H-3</td>
<td>327-01-S</td>
<td>F064, F026</td>
<td>H-3</td>
</tr>
<tr>
<td>F030</td>
<td>309-PRTR</td>
<td>309-PRTR</td>
<td>NA</td>
<td>alpha, beta</td>
</tr>
</tbody>
</table>

EDP = electronic data processing.
FFTF = Fast Flux Test Facility.
MASF = Maintenance and Storage Facility.
MN&ST = Maintenance and Storage.
NA = Not applicable.
PRTR = Plutonium Recycle Test Reactor.
DISTRIBUTION

Mr. A. W. Conklin, Head
Air Emissions and Defense Waste Section
Division of Radiation Protection
State of Washington Department of Health
P. O. Box 47827
Olympia, Washington 98504-7827

Fluor Daniel Hanford, Inc.
S. M. Price

Rust Federal Services of Hanford Inc.
R. B. Barmettlor L6-04
L. D. Berneski L6-04
W. R. Thackaberry H6-32
W. E. Davis H6-20
R. W. Szelmezcza L6-05
L. P. Diediker S3-95
B. P. Gleckler S3-95
E. M. Greager H6-20
D. L. Halgren L6-04
J. J. Luke H6-25
J. K. Perry H6-20

B&W Hanford Company
E. J. Bitten N1-41
B. C. Cornwell L5-70
N. R. Dahl N2-57
T. A. Dillhoff N2-57
D. R. Ekstrom L6-52
W. A. Hoober L1-03
D. L. Johnson L1-05
G. J. Lebaron S6-15
M. S. Wright L1-02
D. E. Rasmussen N1-47
J. M. Steffen N1-47

Lockheed Martin Services, Inc.
J. N. Diven H6-20
Central Files A3-88
DPC A3-88

Pacific Northwest National Laboratory
T. L. Almeida P7-25
O. P. Bredt P7-27
L. R. Greenwood P7-22
K. J. Kuhl-Klinger P7-27
J. M. Latkovich P7-27
R. G. Swoboda P7-22
K. K. Thomas P7-22

Dist-1
DISTRIBUTION

Mr. A. W. Conklin, Head
Air Emissions and Defense Waste Section
Division of Radiation Protection
State of Washington Department of Health
P. O. Box 47827
Olympia, Washington 98504-7827

Fluor Daniel Hanford, Inc.
S. M. Price

Rust Federal Services of Hanford Inc.
R. B. Barmettlor L6-04
L. D. Berneski L6-04
W. R. Thackaberry H6-32
W. E. Davis H6-20
R. W. Szelmeczka L6-05
L. P. Diediker S3-95
B. P. Gleckler S3-95
E. M. Greager H6-20
D. L. Halgren L6-04
J. J. Luke H6-25
J. K. Perry H6-20

B&W Hanford Company
E. J. Bitten N1-41
B. C. Cornwell L5-70
N. R. Dahl N2-57
T. A. Dillhoff N2-57
D. R. Ekstrom L6-52
W. A. Hoober L1-03
D. L. Johnson L1-05
G. J. Lebaron S6-15
M. S. Wright L1-02
D. E. Rasmussen N1-47
J. M. Steffen N1-47

Lockheed Martin Services, Inc.
J. N. Diven H8-20
Central Files A3-88
DPC A3-88

Pacific Northwest National Laboratory
T. L. Almeida P7-25
O. P. Bredt P7-27
L. R. Greenwood P7-22
K. J. Kuhl-Klinger P7-27
J. M. Latkovich P7-27
R. G. Swoboda P7-22
K. K. Thomas P7-22