Form and structural response calculations for NIF neutron exposure sample case assembly design

PDF Version Also Available for Download.

Description

We describe the calculations used to design an aluminum foam protection layer for a stainless steel neutron exposure sample case. The layer protects the case from impulsive loads generated by a 20 MJ NIF capsule 10 cm from the sample case assembly. Impulse only from ablating x-rays and hohlraum plasma debris is considered. One dimensional CALE foam response calculations and analytic estimates are used to show that 1 cm of aluminum 6101-T6 foam 10 % of solid density is sufficient to attenuate the incoming peak pressure without complete melting on crush-up. Two dimensional DYNA calculations show that a 304 stainless ... continued below

Physical Description

12 p.

Creation Information

DiPeso, G.; Serduke, F. & Pillenger, L. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We describe the calculations used to design an aluminum foam protection layer for a stainless steel neutron exposure sample case. The layer protects the case from impulsive loads generated by a 20 MJ NIF capsule 10 cm from the sample case assembly. Impulse only from ablating x-rays and hohlraum plasma debris is considered. One dimensional CALE foam response calculations and analytic estimates are used to show that 1 cm of aluminum 6101-T6 foam 10 % of solid density is sufficient to attenuate the incoming peak pressure without complete melting on crush-up. Two dimensional DYNA calculations show that a 304 stainless steel spherical shell sample case with an inner radius of 1 cm and a wall thickness of 2 mm encased in 1 cm of foam does not yield to the pressure that is transmitted through the foam by a 220 Pa-sec (2.2 ktap), 2 GPa (20 kbar) load due to recoil of x- ray ablation. An unprotected spherical shell case subjected to a gentler load with peak pressure reduced to 0.2 GPa (2 kbar) not only yields but its effective plastic strain exceeds the failure point of 0.4 in 304 stainless steel after 160 microseconds. Doubling the impulse for the protected case to approximately account for debris loading results in very localized yield and an effective plastic strain that does not exceed 0.014. (U)

Physical Description

12 p.

Notes

OSTI as DE97050865

Source

  • 9. nuclear explosives code developers` conference, San Diego, CA (United States), 22-25 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97050865
  • Report No.: UCRL-JC--125391
  • Report No.: CONF-9610209--4
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 432480
  • Archival Resource Key: ark:/67531/metadc685660

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 16, 2016, 7:15 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

DiPeso, G.; Serduke, F. & Pillenger, L. Form and structural response calculations for NIF neutron exposure sample case assembly design, article, December 31, 1996; California. (digital.library.unt.edu/ark:/67531/metadc685660/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.