
A Parallel Genetic Algorithm for the Set
Partitioning Problem*

David Levine
Argonne National Laboratory

Mathematics and Computer Science Division
9700 South Cass Avenue

Argonne, Illinois 60439, U.S.A.
levineQmcs.anl.gov

Abstract. This paper describes a parallel genetic algorithm developed for the solution of the
set partitioning problem-a difficult combinatorial optimization problem used by many airlines
as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island
model where multiple independent subpopulations each nr6 a steady-state genetic algorithm on
their own subpopulation and occasionally fit strings migrate between the snbpopulations. Tests
on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1
parallel computer. We found that performance, as meaSured by the quality of the solution found
and the iteration on which it was found, improved as additional subpopulations were added to
the computation. With larger numbers of subpopulations the genetic algorithm was regularly
able to find the optimal solution to problems having up to a few thousand integer variables. In
two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749
integer variables, respectively. A notable limitation we found was the difficulty solving problems
with many constraints.

Keywords. Island model, combinatorial optimization, parde l computing, airline crew
scheduling

‘This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract
W-31-109-Eng-38. It was submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Computer Science in the Graduate School of the Illinois Institute of Technology.

The submitted manuscript has b e n authored
by a contractor of the U.S. Gavcrnmant

I contribution. or allow others io do D, for .I v. S . ! r M l q - I--

I , :- <.. . 7.;- ‘ 7 - e - , - .-.7--T- ~ , .’
, .,. . ___ . ~----

http://levineQmcs.anl.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United Stat& Government or
any agency thereof. The views and opinions of authors expressed herein do not necsar-
ily state or reflect those of the United States Government or any agency thereof.

*

i

k

1 Introduction

The past several years have seen an increasing number of reports of the successful application
of genetic algorithms for solving optimization problems. During the same time period, parallel
computers have matured to the point where, at the high end, they are challenging the role of
traditional vector supercomputers as the fastest computers in the world. On a different front,
motivated primarily by significant economic considerations, but also by advances in computing
and operations research technology, many major airlines have been exploring alternative methods
for deciding how flight crews (pilots and flight attendants) should be assigned in order t o satisfy
flight schedules and minimize the associated crew costs. Our objective in this work was to unify
these factors by developing a parallel genetic algorithm and applying it to the solution of the
set partitioning problem-a difficult combinatorial optimization problem used by many airlines
as a mathematical model for assigning flight crews to flights.

There were a number of motivations for developing a parallel genetic algorithm for the set par-
titioning problem (SPP). First is the particularly challenging nature of the SPP. The challenges
include the 'NP-completeness of finding feasible solutions, and the enormous size of problems of
current industrial interest. Second, because of its use as a model for crew scheduling by most
major airlines, there is great practical value in developing a successful algorithm. Third, genetic
algorithms can provide flexibility in handling variations of the SPP model that may be useful.
The evaluation function can be easily modified to handle constraints such as cumulative flight
time, mandatory rest periods, or limits on the amount of work allocated to a particular base not
explicitly part of the SPP model. Fourth, genetic algorithms contain a population of possible
solutions. As noted by Arabeyre et al. [3], "The knowledge of a family of good solutions is far
more important than obtaining an isolated optimum." Finally, we believe genetic algorithms
have great potential for scaling to take advantage of the larger and larger numbers of processors
increasingly available on parallel computers.

The rest of this paper is laid out as follows. Tn Section 2 we describe the set partitioning
problem. We give a mathematical statement of the problem, discuss its application to airline
crew scheduling, and review previous solution approaches. Section 3 describes the sequential
genetic algorithm on top of which the parallel genetic algorithm was built. Section 4 describes
the parallel genetic algorithm. Section 5 presents the parallel experiments we performed and
discusses the results. Finally, Section 6 contains concluding remarks and suggests areas for
further research.

2 The Set Partitioning Problem

The set partitioning problem (SPP) may be stated mathematically as
n

Minimize z = cjxj
j=1

subject to
n

C a j j x j = 1 for i = I,. . .,m
j=1

2

x j = 0 or 1 for j = 1,. . .,n, (3)
where a;j is binary for all i and j, and cj > 0. The goal is to determine values for the binary
variables zj that minimize the objective function 3.

The following notation is common in the literature [12, 211 and motivates the name “set
partitioning problem.” Let 1 = (1,. . .,m} be a set of row indices, J = (1,. . .,n} a set of
column indices, and P = {PI,. . . , Pn}, where Pj = {i E Ilaij = l}, j E J . Pj is the set of row
indices that have a one in the j t h column. lPjl is the cardinality of Pj- A set J’ C J is called a
partition if

U P j = I
j € J *

(4)

j,k E ~ * , j # k + P j n P k = 8. (5)
Associated with any partition J’ is a cost given by &J. C j . The objective of the SPP is to
find the partition with minimal cost.

The following additional notation will be used in Sections 3.2 and 3.3. l& = {j E Jlaij = 1)
is the (fixed) set of columns that intersect row i, while ri = { j E &[zj = 1) is the (changing)
set of columns that intersect row i included in the current solution. Ajl is the change in the
evaluation function (see Section 3.2) as a result of setting zj to one. Aj is the change in the
evaluation function when complementing x j . Aj, and Aj measure both the cost coefficient, c j ,
and the impact on constraint feasibility (see Section 3.2.)

The best-known application of the SPP is airline crew scheduling. In this formulation each
row (i = 1,. . . , m) represents a flight leg (a takeoff and landing) that must be flown. The
columns (j = 1,. . . , n) represent legal round-trip rotations (pairings) that an airline crew might
fly. Associated with each assignment of a crew to a particular flight leg is a cost, c j . The matrix
elements a;j are defined by

1
0 otherwise.

if flight leg i is on rotation j
a;j =

Airline crew scheduling is a very visible and economically significant problem. Estimates of
over a billion dollars a year for pilot and flight attendant expenses have been reported [l, 51.
Even a small improvement over existing solutions can have a large economic benefit.

At one time, solutions to the SPP were generated manually. However, airline crew scheduling
problems have grown significantly in size and complexity. In 1981 problems with 400 rows and
30,000 columns were described as “very large” [22]. Today, problems with hundreds of thousands
of columns are “very large,” and one benchmark problem has been generated with 837 rows and
12,753,313 columns [6].

Because of the widespread use of the SPP (and often the difficulty of its solution), a number of
algorithms have been developed. These can be classified into two types: approximate algorithms
which try to find “good” solutions quickly, and exact algorithms which attempt to solve the SPP
to optimality. Here we mention some of the more recent methods. See Balas and Padberg [4]
for a survey of older methods.

3

An important approximate approach (as well as the starting point for most exact approaches)
is to solve the linear programming (LP) relaxation of the SPP. In the LP relaxation, the inte-
grality restriction on xj is relaxed, but the lower and upper bounds of zero and one are kept. A
,number of authors [5, 13, 221 have noted that for “small” SPP problems the solution to the Lp
relaxation either is d integer, in which case it is also the optimal integer solution, or has only
a few fractional values that are easily resolved. However, in recent years it has been noted that
as SPP problems grow in size, fractional solutions occur more frequently, and simply rounding
or performing a “ smd” branch-and-bound tree search may not be effective [2,5, 131.

Branch-and-bound may be viewed as an exact approach if the algorithm runs until an integer
solution (if one exists) is proven optimal, or as an approximate approach if the algorithm is
terminated “early” with a “good” integer solution. Various bounding strategies have been used,
including linear programming and Lagrangian relaxation. Fischer and Kedia [ll] use continuous
analogs of the greedy and 3 - opt methods to provide improved lower bounds. Of recent interest
is the work of Eckstein [lo], who has developed a general-purpose mixed-integer programming
system for use on the CM-5 parallel computer and applied it to, among other problems, set
partitioning. The most successful approach appears to be the work of Hoffman and Padberg.
They present an exact approach based on the use of branch-and-cut-a branch-and-bound-like
scheme with additional preprocessing and constraint generation at each node in the search tree.
They report optimal solutions for a large set of real-world SPP problems [16].

7

3 The Sequential Genetic Algorithm

In this section we describe the sequential GA we used as the basis for the parallel genetic
algorithm. The choice of algorithm, the selection of parameter settings, and the development
of a local search heuristic to use with the sequential GA were the result of significant research
and experimentation. Here, we summarize the sequential algorithm. The interested reader is
referred to [18, 191 for additional details.

3.1 Problem Representation

A solution to the SPP problem is given by specifying values for the binary decision variables xj.
The value of one (zero) indicates that column j is included (not included) in the solution. This
solution may be represented by a binary vector X* with the interpretation that xj is one (zero)
if bit j is one (zero) in the binary vector.

Representing an SPP solution in a GA is straightforward and natural. A bit in a GA string
is associated with each column j. The bit is one if column j is included in the solution, and
zero otherwise. To make efficient use of memory, we had each bit in a computer word represent
a column. Because most computers today are byte addressable, this approach improves storage
efficiency by at least a factor of eight compared with integer or character implementations. It
does, however, require the development of specialized functions to set, unset, and toggle a bit
and to test whether a bit is set.

*We use x interchangeably as the solution to the SPP problem or as a bitstring in the GA population as in,
for example, Figure 2.

4

3.2 Evaluation Function

The evaluation function measures “how good” a solution to the SPP problem a string is. This
function needs to take into account not just the cost of the columns included in the solution (the
SPP objective function value) but also the degree of (in)feasibility of a string. However, the GA
operators often produce infeasible solutions. In fact, since just finding a feasible solution to the
SPP is NP-complete [23], it may be that many or most strings in the population are infeasible.

We used for our evaluation function

where

9 n m

1
0 otherwise.

if constraint i is infeasible,

The first term is the SPP objective function, and the second term is the penalty function. The
penalty function indicates whether a constraint is infeasible, but does not measure the magnitude
of the infeasibility. The term A; is a scalar weight that penalizes constraint i’s infeasibility.

Choosing a suitable value for A i is a difficult problem. A good choice for X i should reflect
not just the “costs” associated with making constraint i feasible, but also the impact on other
constraints (in)feasibility. In [25] Richardson et al. studied the choice of X i for the set covering
problem (SCP). In the SCP, the equality in Equation (2) is replaced by a 2 constraint. Unlike
the SPP, however, the SCP is not a highly constrained problem. In the SCP, constraint i is
infeasible only if I T ~] = 0; however, it is easily made feasible by (even randomly) selecting an
zj,j E & to set to one. On the other hand, such an approach will not work with IT;^ = 0
for the SPP, since any z j , j E Rj set to one, while it will satisfy constraint i, may introduce
infeasibilities into other currently feasible constraints. Similarly, if we try to make a constraint
with Iril > 1 feasible by setting all but one of the z j , j E T; to zero, we may undercover other
currently feasible constraints.

We know of no method to calculate an optimal value for A;. Therefore, we made the empirical
choice of X i = m+x{cjlj E Rj}. This choice is similar to the “P2” penalty in [25], where it
provided an upper bound on the cost to satisfy the violated constraints of the SCP. In the case
of the SPP, however, the choice of A; provides no such bound, and it is possible the GA may
find infeasible solutions more attractive than feasible ones (for several problems discussed in the
next section this situation did happen.)

3

3.3 The ROW Heuristic

Our early experience with a generational replacement genetic algorithm [lS], as well as subse-
quent experience with a steady-state genetic algorithm [19], was that both had trouble finding
optimal (often even feasible) solutions. This result led us to develop a local search heuristic
to hybridize with the GA to assist in finding feasible, or near-feasible, strings to apply the GA
operators to.

foreach niters
i = choselow(mndom-or-max)
improve (i, Iril, best-or-first)

endfor

Figure 1: ROW Heuristic

The he&istic we developed is called ROW (since it takes a row-oriented view of the problem).
The basic outline is given in Figure 1. ROW works as follows. For some number of iterations
(the parameter niters), one of the m rows of the problem is selected by chooserow (either
randomly or according to the largest infeasibility). For any row there are three possibilities:
lrjl = 0, lril = 1, and ITiI > 1. The action of improve in these cases varies and also varies
according to whether we are using a best-improving or first-improving strategy. In the case of a
best-improving strategy we apply one of the following rules.

1. = 0: For each j E R, calculate Ajl. Set to one the column that minimizes Ajl.

2. lril = 1: Let k be the unique column in T;. Calculate A:, the change in the evaluation
function when xk f- 0 and X j c 1, j E a. If AS < 0 for at least one j, set xk t 0 and
xi t 1, for Ai < Ai, Vj.

3. IT;! > 1: For each j E rj calculate A;, the change in the evaluation function when Xk t-
0,Vk E T ; , k # j. Set xk t 0,Vk E T j , k # j, where A! < Ai,Vk.

The first-improving version of ROW differs from the best-improving version in the following
ways. If Iril = 0, we select a random co1umn.j E Rj and set Z j c 1. If 1r;I = 1, we set xk t. 0
and xj c 1 as soon as we find m y AS < 0, j E R;. Finally, if [Ti[> 1, we randomly select a
column k E T i , leave xk = 1, and set all other zj = 0 , j E rj. In the cases where lril = 0 and
Iril > 1, since we have no guarantee we will find a “first-improving” solution, but know that we
must modify the current solution to get feasible, we make a random move that makes constraint
i feasible, without measuring all the implications (cost component and (in)feasibility of other
constraints).

For the results presented in this paper we used the following settings for ROW. The number of
iterations of ROW that were applied to try to improve a string was one. Choosing the constraint
to apply ROW to was done randomly. A first-improving selection strategy was used.

3.4 Hybrid Steady-State Genetic Algorithm

After much experimentation [18,19] we settled on an algorithm that hybridized the ROW heuris-
tic with a steady-state genetic algorithm (SSGA). We call the hybrid algorithm SSGAROW.
Figure 2 presents the specific implementation we used.

P(t) is the population of strings at generation+ t. Each generation one new string is inserted

t We use generation and iteration interchangeably.

6

> . ” _ . . - ,,;. - ’ . ’ ’ -, ‘ 3 . , I .. ____-I -7,;7- ;- . . , f I I. . . . , , > _ , . ~ c _ _ _ . . . r - I -
I ,

t t o
i n i t i a l i z e P(t)
evaluate P(t)
foreach generation

ROW (Xrandom E P(t))
select(xl,x2) from P(t)
if(T < p ,) then

else

endif

while (G, E P(t))

x,, = crossover(x1, x2)

xn,, = mutate(x1,xa)

delete (Xworst E P(t))

mutate(G,)
f'(t + 1) + P(t) U XnMu

evaluate P(t + 1)
t t t + l

endfor

Figure 2: Hybrid Steady-State Genetic Algorithm

into the population. The first step is to pick a random string, and apply the ROW
heuristic to it. Next, two parent strings, x1 and x2, are selected by holding two binary tourna-
ments, and a random number, T E [0,1], is generated. If T is less than the crossover probability
of 0.6, we create two new offspring via uniform crossover with parameter 0.7 [27], and randomly
select one of them, Xn,, to insert in the population. Otherwise, we randomly select one of
the two parent strings, make a copy of it, and apply mutation to complement bits in the copy
with probability l/n. In either case, the new string is tested to see whether it duplicates a
string already in the population. If it does, it undergoes (possibly additional) mutation until
it is unique. The least-fit string in the population, &orst, is deleted, Xn, is inserted, and the
population is reevaluated..

4 The Parallel Genetic Algorithm

The parallel genetic algorithm we used is based on an island model. In population genetics an
island model is one where separate and isolated subpopulations evolve independently and in par-
allel. The island model genetic algorithm (IMGA) is analogous to the island model of population
genetics. A GX population is divided into several subpopulations, each of which is randomly
initialized and runs an independent sequential GA on its own subpopulation. Occasionally, fit
strings migrate between subpopulations.

The migration of strings between subpopulations is a key feature of the IMGA. First, it
allows the distribution and sharing of above average schemata via the strings that migrate.

7

This increases the overall selective pressure since additional reproductive trials are allocated to
those strings that are fit enough to migrate [29]. At the same time, the introduction of migrant
strings into the local population helps to maintain genetic diversity, since the migrant string
arrives from a different subpopulation which has evolved independently.

An IMGA is characterized by several choices: the type of sequential GA run on each sub-
population, how many strings to migrate and how often to migrate them, how to choose the
string(s) to migrate and the string(s) to replace, and the logical topology the subpopulations
are arranged in. The choice of “communication” parameters in the IMGA echoes the competing
themes of $elective pressure and population diversity in sequential GAS. Frequently migrating
many fit strings and deleting the least fit strings increase the selective pressure, but decrease
the population diversity. The choice of logical topology and neighbors to communicate with will
affect how “fast” fit strings may migrate among subpopulations.

We fixed the number of strings to migrate to one. There were two reasons for this choice.
First, it seemed intuitively appealing in conjunction with a SSGA; integrating a single arriving
migrant string is similar to how the SSGA integrates its own newly created offspring. The
primary differences are that the migrant string arrives from a different subpopulation and is
presumably of above-average fitness. The second reason was simply to cut down on the size of the
parameter space being explored and to focus on choices for the other parameters. For a similar
reason, we also chose to fix the logical topology of the subpopulations to a two-dimensional
toroidal mesh. Each processor exchanged strings with its four neighbors, alternating between
them each migration generation (Le., north, east, west, south, north, . . .). The sequential GA
run on each subpopulation was SSGAROW.

To determine suitable values for the other communication parameters, we performed a limited
set of experiments, described in [19]. To summarize, the best string in a subpopulation was
selected to migrate to a neighboring subpopulation every 1,000 iterations. The string to delete
was selected by holding a probabilistic binary tournament (with parameter 0.4).

The IMGA we used is shown in Figure 3. The difference between Figure 3 and Figure 2 is
the addition of the if block to determine whether a string is to be migrated this iteration. If so,
the neighboring subpopulation to migrate the string to is determined, and the string to migrate,
x m i g r a t c , is selected and sent to the neighbor. A migrant string, xreCy, is then received from a
neighboring population, and the string to delete, Xdelete is determined and replaced by x r e , .

5 Parallel Experiments

Our hypothesis was that a parallel genetic algorithm could be developed that would solve real-
world set partitioning problems and, further, that the effectiveness of the parallel GA would
improve as the number of subpopulations increased. To test this, we implemented the algorithm
described in Sections 3 and 4 and tested it on a parallel computer on a set of real-world SPP
problems.

8

t 4 - 0
i n i t i a l i z e P(t)

foreach generation

s

, evaluate P (t)

ROW (%andom E P(t))
select(x1, x p) from P(t)
if(r < p ,) then

else

endif
de lete (X,orst E P(t>)
while (x,, E P(t))

P(t + 1) + P(t) u Xn,

x,,, = crossover(x1, x2)

x,,, = mutate(x1,xz)

mutate(&,)

if (migration generation) then
to = neighbor(myid,gen)
Xmigrate = string-tormigrat e(P(t+l))
send-string(to, Xmigrate)
xrem = recvstr ing ()
xdelete = st r ing-t o-del et e(P(t + 1))
replace-string(xdclet,, xrem, P(t + 1))

endif
evaluate(Pt+l)
t c t + l

endfor

Figure 3: Island Model Genetic Algorithm

5.1 Computational Environment

The parallel computer we used for our experiments was an IBM SP1 with 128 nodes, each
of which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB of memory,
and a 1 GB disk. Each node ran its own copy of the AM operating system. The SP1 uses a
high-performance switch for connecting the nodes. The SP1 supports the distributed-memory
programming model.

Our code was written in C and used the Chameleon [15] message-passing library. Chameleon
is designed &o provide a portable, high-performance message-passing system. Chameleon runs
on top of many other message-passing systems, both vendor-specific and third party, dowing
widespread portability. In our case Chameleon ran on top of IBM’s EUI-H message-passing
software.

Random number generation was done using an implementation of the universal random num-
ber generator proposed by Marsaglia, Zaman, and Tseng [20], and translated to C from James’
version [17]. Each time a parallel run was made, all subpopulations were randomly seeded. This
was done by having one processor get and broadcast to all the other processors the microsecond
portion of the value returned by the Unix gettimeof day system call. Each processor then added
its processor id to this value and used the resulting ‘unique value as its random number seed.
For the random number generator in [20] each unique seed gives rise to an independent sequence
of random numbers of size x 1030 [17].

Each test problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations. Each
subpopulation was of size 100. As additional subpopulations were added to the computation,
the total number of strings in the global population increased. Our assumption was that even
though we were doubling the computational effort required whenever we added subpopulations,
by mapping each subpopulation to an SP1 processor, the total elapsed time would remain
relatively constant (except for the parallel computing overheads associated with string migration,
which we felt would be relatively small). A run was terminated either when the optimal solution
was. found$ or when all subpopulations had performed 100,000 iterations.

5.2 Test Problems

To test the parallel genetic algorithm, we selected a subset of forty problems from the test set
used by Hoffman and Padberg [16]. The test problems are given in Table 1, where they have
been sorted according to increasing numbers of columns. The columns in this table are the test
problem name, the number of rows and columns in the problem, the number of nonzeros in the
A matrix, the optimal objective function .value for the LP relaxation, and the objective function
value of the optimal integer solution.

Table 2 gives attributes of the solution to the LP relaxation and results from solving the
integer programming problem with the l p s o l v e s program. The columns in this table are the
name of the test problem, the number of simplex iterations required by lp-solve to solve the

rFor these tests, the value of the (known) optimal solution was stored in the program which tested the best
feasible solution found each iteration against the optimal solution and stopped if they were the same.

*We note that as a public-domain program lp-solve should not be used as the standard by which to judge
the effectiveness of linear and integer programming solution methodology. Our interest here was in being able to

10

'I

Table 1: Parallel Test Problems
Problem No. No. No. LP IP
Name Rows Cols Nonzeros Optimal Optimal

740 10972.5 11307 nu41
nu32
nu40
nu08
nu15
nu2 1
nu22
nu12
nu39
nu20
nu23
nu37
nu26
nul0
nu34
nu43
nu42
nu28
nu25
nu38
nu27
nu24
nu35
nu36
nu29
nu30
nu3 1
nu19
nu33
nu09
nu07
nw06
aa04
k10 1
aa05
null
aaO 1
nu18
k102
nu03

17 197
19 294
19 404
24 434
31 467
25 577
23 619
27 626
25 677
22 685
19 711
19 770
23 771
24 853
20 899
18 1072
23 1079
18 1210
20 1217
23 1220
22 1355
19 1366
23 1709
20 1783
18 2540
26 2653
26 2662
40 2879
23 3068
40 3103
36 5172
50 6774

426 7195
55 7479

801 8308
39 8820

823 8904
124 10757
71 36699
59 43749

1357
2069
2332
2830
3591
3399
3380
4494
3722
3350
3778
4215
4336
5045
4859
6533
8553
7341
9071
9395
8617

10494
13160
14193
20436
19977
25193
21704
20111
41187
61555
52121
56242
65953
57250
72965
91028

212536

14570.0
10658.3
35894.0
67743.0
7380.0
6942.0

14118.0
9868.5

16626.0
123 17.0
9961.5
6743.0

68271.0
10453.5
8897.0
7485.0
8169.0
5852.0
5552.0
9877.0
5843.0
7206.0
7260.0
4185.3
3726.8
7980.0

10898.0
6484.0

67760.0
5476.0
7640.0

25877.6
1084.0

53735.9
116254.5
55535.4

338864.3
215.3

14877
10809
35894
67743
7408
6984

14118
10080
16812
12534
10068
6796

68271
10488
8904
7656
8298
5960
5558
9933
6314
7216
7314
4274
3942
8038

10898
6678

67760
5476
7810

26402
1086

53839
116256
56138

340 160
219

~ . 363939 24447.0 24492

11

LP relaxation plus the additional simplex iterations required to solve LP subproblems in the
branch-and-bound tree, the number of variables in the solution to the LP relaxation that were
not zero, the number of the nonzero variables in the solution to the LP relaxation that were one
(rather than having a fractional value), and the number of nodes searched by Ip-solve in its
branch-and-bound tree search before an optimal solution was found.

The optimal integer solution was found by lpsolve for all but the following problems: aa04,
k101, aa05, aaO1, nv18, and k102, as indicated in Table 2 by the “>” sign in front of the number
of simplex iterations and number of IP nodes for these problems. For aa04 and aaO1, lpsolve
terminate4 before finding the solution to the LP relaxation. For aa05, klO1, and k102, lpsolve
found the solution to the LP relaxation but terminated before finding any integer solution. A
nonoptimal integer solution was found by lpsolve for nu18 before it terminated. Termination
occurred either because the program aborted or because a user-specified resource limit was
reached.

Many of these problems are “long and skinny”; that is, they have few rows relative to the
number of columns (it is common in the airline industry to generate subproblems of the complete
problem that contain only a subset of the flight legs the airlines are interested in, solve the
subproblems, and try to create a solution to the complete problem by piecing together the
subproblems). Of these test problems, all but two of the first thirty have fewer than 3,000
columns (nu33 and nu09 have 3,068 and 3,103 columns, respectively). The last ten problems are
significantly larger, not just because there are more columns, but also because there are more
constraints.

For lpsolve many of the smaller problems are fairly easy, with the integer optimal solution
being found after only a small branch-and-bound tree search. There are, however, some ex-
ceptions where a large tree search is required (nw23, nu28, nu36, nu29, nu30). These problems
loosely correlate with a higher number of fractional values in the LP relaxation than many of
the smaller problems, although this correlation does not always hold true (e.g., nu28 with few
fractional values requires a “large” tree search, while nu33 with “many” fractional values does
not). For the larger problems lp-solve results are mixed. On the nu problems (nu07, nu06,
nul l , nw18, and nu03) the results are quite good, with integer optimal solutions found for all but
nu18. Again, the size of the branch-and-bound tree searched seems to correlate loosely with the
degree of fractionality of the solution to the LP relaxation. On the kl and aa models, lpsolve
has considerably more difficulty and does not find any integer solutions.

5.3 Experimental Results

The results of our experiments are summarized in Tables 3-6. Table 3 shows the percent from
optimality of the best solution found in any of the subpopulations as a function of the number of
subpopulations. An entry of “0” in the table indicates the optimal solution was found. An entry
of “X” in the table means no integer feasible solution was found by any of the subpopulations.
A numerical entry is the percent from the optimal solution of the best feasible solution found
by any subpopulation after the 100,000-iteration limit was reached. A blank entry means that
the test was not made (usually because of a resource limit or an abort). The solution values

characterize the solution difficulty of the test problems and to make a “ballpark” comparison against traditional
operations research methodology. For this purpose we believe lp-solve was adequate.

13

t

Table 2: Solution Characteristics of the Parallel Test Problems
Problem LP LP LP IP
Name Iters Nonzeros Ones Nodes
nu41 1 74 7 3 9
nu32
nu40
nu08
nul5
nu21
nu22
nu12
nu39
nu20
nu23
nu37
nu26
nul0

‘ nu34
nu43
nu42
nu28
nu25
nu38
nu27
nu24
nu35
nu36
nu29
nu30
nu3 I
vnul9
nu33
nu09
nu07
nu06
aa04
k101
aa05
null
aaO 1
nu18
k102
nu03

1 74
279
31
43

109
65
35

131
1240
3050

132
341
44

115
142
274

1008
237
277
118
302
102

74589
5137
2036
573
120
202
146
60

58176
>7428

>26104
>6330

200
>23326

> 162947
> 1881 16

4123

10
9

12
7

10
11
15
6

18
13
6
9

13
7
9
8
5

10
8
6

10
8
7

13
10
7
7
9

16
6

18
234
68

202
21

321
68
91
17

4
0

12
7
3
2

15
3
0
3
2
2

13
2
2
1
2
1
2
3
4
4
1
0
0
2
7
1

16
6
2
5
0

53
17
17
27
1
6

9
7
1
1
3
3
1
5

15
57
3

11
1
3
3
9

39
5
7
3
9
3

789
87
45

7
1
3
1
1

151
>1

>37
>4

3
>1

>62
>3

3

12

themselves are given in Table 4. Table 5 contains the first iteration on which some subpopulation
found a feasible solution. Table 6 is similar except that it contains the f i s t iteration on which
some subpopulation found an optimal solution. In Table 6 an entry of “F” means a nonoptimal
integer feasible solution was found.

Entries in the tables marked with a superscript did not complete. If an entry is given, it is
from a partially completed run. We give the specific results here. Since output statistics were
reported only every 1,000 iterations, that is the resolution with which results are reported in
Table 5. nwlO aborted a t 37,000 iterations when run using 128 subpopulations. nul2 aborted at
11,000 itevtions when run using 128 subpopulations. nwO9 aborted at 63,000 iterations when run
using 64 subpopulations. klOl aborted at 76,000 iterations when run using 128 subpopulations.
k102 aborted at 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations when
run using 16 subpopulations. nu03 aborted at 24,000 iterations when run using 1 subpopulation,
a t 50,000 iterations when run using 2 subpopulations, and at 24,000 iterations when run using
4 subpopulations.

One way of looking at Table 3 is to consider it as consisting of four parts (recall that the rows of
the table are sorted by increasing numbers of columns in the test problems). The first two parts
are defined by the rows between and including nw41 and nw06 (the first thirty two problems).
We can think of dividing this rectangle into two triangular parts by drawing a diagonal line
from the upper left part of the table (nu41 with one subpopulation) to the bottom right (nu06
with 128 subpopulations). Most of the results in the “upper triangle” are “0,” indicating that
an optimal solution was found. For these problems the hybrid SSGAROW algorithm was able
to find the optimal solution to a l l but one problem. For approximately two-thirds of these
problems only four subpopulations were necessary before the optimal solution was found. For
the other one-third of the problems, additional subpopulations are necessary in order to find
the optimal solution. For numerical entries in the “lower triangle,” we observe that in general
the best solution found improved as additional subpopulations participate, even if the optimal
solution was not reached. Using 64 subpopulations, the optimal solution was found for 30 of the
first 32 test problems. nw06, with 6,774 columns, was the largest problem for which we found
an optimal solution.

The next two parts of Table 3 are defined by rows aa04 to nu18 (klO1 is similar to k102 and
nw03 in that increasingly better integer feasible solutions were found as additional subpopulations
were added, and so we “logically” group k101 with k102 and nu03) and by the last two problems
k102 and nw03. The first of these, aa04 through nw18, define the group of problems we were not
able to solve. For these problems we were unable to find any integer feasible solutions. (One
obvious point to note from Table 1 is the large number of constraints in aaOl, aa04, aa05, and
nu18 (we will return to nu18 in a moment). We note from Table 2 that these problems have
relatively high numbers of fractional values in the solution to the LP relaxation and that they
were difficult for Ip-solve also.)

For these problems, Table 7 summarizes the average number of infeasible constraints across
all strings in all subpopulations as a function of the number of subpopulations. One trend is the
general decrease in the average number of infeasible constraints as additional subpopulations are
added. For the aa problems the incremental improvement, however, appears to be decreasing.

For nwil and nw18 (and also nul0 for which no feasible solution was found), the GA was able
to find infeasible strings with higher fitness than feasible ones and had concentrated its search

14

Table 3: Percent from Optimality vs. No. Subpopulations
Problem Number of Subpopulations
Name 1 2 4 8 16 32 64 128
nu41 0 0 0 0 0 0 0 0
nw32
nw40
nw08
nwl51
nw21
nw22
nw12
nw39
nw20
nu23
nw37
nw26
nwlO
nw34
nu43
nw42
nw28
nw25
nw38
nw27
nw24
nw35
nw36
nw29
nw30
nw3 I
nwl9
nw33
nw09
nw07
nw06
aa04
k10 1
aa05
nwll
aaO 1
nw18
k102

0.0006
0
X
0

0.0037
0.0735
0.1375
0.0425
0.0091

0
0

0.0011
X

0.0203
0.0831
0.2727
0.0469
0.1040
0.0323
0.0818
0.0826
0.0770
0.0038
0.0580
0.1116
0.0069
0.1559
0.0128

0
0

0.0219
0

0.0037
0.0455
0.0912

0
0
0

0.0163
0
X

0.0214
0.0626
0.0229

0
0.1137

0
0.0567
0.0215

0
0.0010

0
0

0.0069
0.1332

0

0.0006
0.0036

0
0
0

0.0252
0.0332

0
0
0
0
0
X
0

0.0350
0
0
0

. o
0
0

0.0171
0.0194

0
0
0

0.0715
0

0
0
0

0.0001
0
0

0.0218
0
0
0
0
0
X
0
0
0
0
0
0

0.0039
0.0015

0
0.0010
0.0116

0
0

0.0880
0

0
0
0

4.4285
0
0

0.0094
0
0

0.0006
0
0
X
0
0
0
0
0
0
0

0.0038
0

0.0019
0
0
0

0.0148
0

0
0
0
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.0398 X 0.0363 0.0231 0.0155 0.0151
0.3089 0 0 0 0 0
2.0755 0.2532 0 0.1779 0.0448 0.0291

X X X X X

0 0
0 0
0 0
0 0
0 0
0 0
0 0.0246"
0 0
0 0
0 0
0 0
0 0
X X"
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.154" 0
0 0
0 0

0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0.0092"
X X X X
X X X X X X X X
X X X X X X
X X X X X X X X

0.1004" 0.1004 0.0502 0.0593 0.0593" 0.0410 0.0045
nw03 0.2732 0.1125" 0.1371" 0.0481
" See text for discussion.

Table 4: Best Solution Found vs. No. Subpopulations
Problem Number of Subpopulations
Name 1 2 4, 8 16 32 64 128
nu41 11307 11307 11307 11307 11307 11307 11307 11307
nu32
nu40
nu08
ndfl5
nu21
nu22
nu12
nu39
nu20
nu23
nu37
nu26
nul0
nu34
nu43
nu42
nu28
nu25
nu38
nu27
nu24
nu35
nu36
nu29
nu30
nu3 1
nul9
nu33
nu09
nw07
nu06

, aa04
k10 1
aa05
null
aaO 1
nwia
k102
nw03

14886
10809

X
67743
7436
7498
16060
10509
16965
12534
10068
6804
X

10701
9644
9744
8688
6580
5738
10746
6836
7772
7342
4522
4382
8094
12598
6764
70462
7168
24020

X
1143
X
X
X
X

241"
31185

14877
10809
36682
67743
7436
7302
15406
10080
16812
12534
10233
6796
X

10713
9462
7832
8298
6638
5558
10497
6450
7216
7322
4274
3942
8094
12350
6678
X

5476
9788
X

1125
X
X
X
X

24 1
27249"

14886
10848
35894
67743
7408
7160
14588
10080
16812
12534
10068
6796
X

10488
9216
7656
8298
5960
5558 -
9933
6314
7340
7456
4274
3942
8038
11678
6678
70222
5476
7810
X

1126
X
X
X
X

230
27852"

14877
10809
35894
67755
7408
6984
14426
10080
16812
12534
10068
6796
X

10488
8904
7656
8298
5960
5558
9972
6324
7216
7322
4324
3942
8038
11858
6678
69332
5476
9200
X

1119

X
X
X

232

14877
10809
35894
67746
7408
6984
14252
10080
16812
12542
10068
6796
X

10488
8904
7656
8298
5960
5558
9933
6338
7216
7328
4274
3942
8038
11060
6678
68816
5476
8160
X

1112
X
X
X
X

232"

14877
10809
35894
67743
7408
6984
14118
10080
16812
12534
10068
6796
X

10488
8904
7656
8298
5960
5558
9933
6314
7216
7314
4274
3942
8038
10898
6678
68784
5476
8038

1106

X
X
X

14877
10809
35894
67743
7408
6984
14118
10080
16812
12534
10068
6796
X

10488
8904
7656
8298
5960
5558
9933
6314
7216
7314
4274
3942
8038
10898
6678

68804"
5476
7810

1095

14877
10809
35894
67743
7408
6984

14466"
10080
16812
12534
10068
6796

X"
10488
8904
7656
8298
5960
5558
9933
6314
7216
7314
4274
3942
8038
10898
6678
67760
5476
7810

1096"

X X

X X
228 220

25671
" See text for discussion.

16

x

nu41
nw32
nu40
nw08
Awl5
nw21
nw22
nw12
nw39
nw20
nu23
nu37
nu26
nul0
nw34
nu43
nu42
nu28
nw25
nu38
nu27
nu24
nw35
nu3 6
nu29
nu30
nu3 1
nwl9
nu33
nw09
nu07
nw06
aa04
k10 1
aa05
nul 1
aaO 1
nw18
k102
nw03

Table 5: First Feasible Iteration vs. No. Subpopulations
Problem Number of Subpopulations
Name 1 2 4 8 16 32 64 128

676 299 393 353 233 127 310 89
185
376
X

2031
786
860
3308
1017
1128
2291
734
1055
X

1336
1036
1178
784
474
875
874
1020
1505
696
1070
500
1447
1656
986

20787
1132
7472
X

3095
X
X
X
X

6000"
10563

590
710
5893
1233
813
597
2007
755
895
2089
384
978
X

672
989
936
372
73 1
1040
726
772
1263
625
604
622
1118
807
550
- x
1278
10036

X
5146
X
X
X
X

4436
9000"

520
434

33876
1019
618
540
2379
923
912
1686
620
971
X

865
1025
774
494
788
873
516
898
1084
493
441
584
1029
933
815

18414
589
5658
X

3641
X
X
X
X

6626
7000"

562
384
8067
1228
584
504
2586
516
893
1498
544
881
X

505
736
540
71
22 1
662
658
763
926
400
556
649
675
1020
645

11324
1307
3920
X

4836

X
X
X

472 1

415
204
6669
766
654
466
1615
530
380
525
196
760
X

354
636
460
289
328
693

' 313
749
721
390
424
48 1
358
857
533

11593
928
2846
X

3324

X
X
X

4000"

* x

373
223
8393
767
627
426
1963
347
619
1178
502
33 1
X

436
675
500
199
315
418
540
670
893
361
558
493
369
812
493

11737
777
3440

3299

X
X
X

257
211
6167
501
471
143
1847
447
316
1249
361
423
X

462
320
323
228
356
311
437
456
812
286
342
377
580
602
296

8000"
636
1738

3573

145
275
4819
624
392
235 .

2000"
325
324
956
165
474
X"
295
437
361
13
369
398
403
507
634
104
294
356
236
616
281
9025
677
2385

4000"

X X

X X
4840 4521

3944 ._ ~~

" See text for discussion.

17

Table 6: First Optimal Iteration vs. No. Subpopulations
Problem Number of Subpopulations
Name 1 2 4 8 16 32 64 128
nw41 3845 1451 551 623 758 402 398 362
nw32
nu40
nw08
&15
nw21
nw22
nw12
nw39
nw20
nw23
nw37
nu26
nnlO
nw34
nw43
nw42
nw28
nw25
nu38
nw27
nw24
nu35
nw36
nw29
nw30
nu3 1
nwl9
nw33
nw09
nw07
nw06
aa04
k101
aa05
nul 1
aaO 1
nw18
k102
nw03

F
540

X
4593

F
F
F
F
F

2591
75737

F
X
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
F
X
X
X
X

F"
F

1450
1597
F

17157
F
F
F

2345
2420
6566

' F
84765

X
F
F
F

903
F

68564
F
F

3659
F

17212
3058

F
F

1670
X

29033
F
X
F
X
X
X
X
F

F"

F
F

34564
5560
7875

F
F

3738
3018
3437
1410
52415

X
2443

F
2702
1897
2634
27383.
610
908
F
F

5085
1777
1646

F
1659
F

7459
51502

X
F
X
X
X
X
F

F"

3910
1658
8955

F
3929
29230

F
1079
5279
3452
1386
24497

X
1142
11004
3348
1232
70642
1431

F
F

3182
F
F

1154
3085

F
7946
F

4020
F
X
F

X
X
X
F

2740
2268
14760

F
425 1
3370

F
1396
27568

F
1443
13491
X

1422
3237
1070
776
435 1
1177
2569

F
1876

F
17146
1650
1287

F
1994
F

483 1
F
X
F
X
X
X
X
F"

2697
958

10676
929
1818
3037
62976
900
2295
1723
1370
1660
X

1110
21069
1223
718
5331
1093
1669
11912
1224
3367
1368
846
1890
79 125
2210
F

1874
F

F

X
X
X

2054
979
8992
692
1868
2229
34464
1232
2282
2125
835
1512
X

1417
4696
1187
371
1024
603
3233
2873
1158
2739
2243
866
1682
27882
829
F"

2543
482 15

F

X

X
F

1006
696

10631
1321
2514
1820

Fa
913
1654
1477
779
2820
Xa
843
3296
724
191
1896
5 14
2135
4798
634
4200
795
949
732

37768
873

71198
1935
19165

F"

X

X
F
F

" See text for discussion.

on those strings. For these problems the best (infeasible) string had an evaluation function value
approximately half that of the optimal integer solution. In this case the GA has little chance
of ever finding a feasible solution. This is, of course, simply the GA exploiting the fact that for
these problems the penalty term used in the evaluation function is not strong enough. For the
three aa problems this is not the case. On average, near the end of a run an (infeasible) solution
has an evaluation function value approximately twice that of the optimal integer solution.

The last two problems, k102 and nw03, have many columns and an increasing number of
constraints. However, the GA was able to find integer feasible solutions on all runs we tried
and a very,good one for k102 with 128 subpopulations. The trend here is similar to all but the
infeasible problems. We conjecture that with “enough” subpopulations the GA would compute
optimal solutions to these problems also. We caution, however, that this is speculation.

Table 7: No. of Infeasible Constraints vs. No. Subpopulations
Problem Number of Subpopulations
Name 1 2 4 8 16 32 64
null 1.6 1.7 2.7 2.1 2.1 2.4 2.4
nw18 17.7 12.4 14.5 15.2 14.5 14.1 14.2
aa04 26.3 22.9 25.5 17.9 16.3
aa05 95.0t 84.5 62.2 56.2
aaO 1 70.1 66.0 75.2 70.0 53.0 54.6

Table 5 shows the first iteration when a feasible solution was found by one of the subpopula-
tions. If we recall that the migration frequency is set to 1,000, we see that even on one processor,
over one-fourth of the problems find feasible solutions before any migration takes place. The
number of problems for which this occurs grows as subpopulations are added. With 128 subpop-
ulations, 27 problems have feasible solutions before the first migration occurs. The ones that do
not are the problems where the penalty term was not strong enough, no feasible solution was
ever found, or they are the largest problems we tried. The implication is that the ROW heuris-
tic does a good job of decreasing the infeasibilities; and by simply running enough copies of a
sequential GA, the likelihood of one of them “getting lucky” increases. The excessive iterations
nu08 takes to get feasible is, again, due to the fact that the penalty term is not strong enough.
In this case, however, the penalty is “almost strong enough”; hence, less fit feasible solutions
eventually are found “in the neighborhood” of the best (infeasible) strings in the population. A
similar problem occurred with nw09.

Table 6 is similar to Table 5 ; here it is. the iteration when an optimal solution was found by
one of the subpopulations that is shown. Again, we see a general trend of the first optimal iter-
ation’s occurring earlier as we increase the number of subpopulations. With one subpopulation
an optimal solution was found for only one problem (nw40) before migration occurred. With
128 subpopulations the optimal solution was found for 13 problems before migration occurred.
Several problems show significant decrease in the iteration count as the number of subpopula-
tions increases. As an example, by the time 128 subpopulations are being used to solve nw37,
nu38, and nw29, which initially take tens of thousands of iterations to find the optimal solution,
the optimal solution has been found before any string migration has occurred.

19

nu41
nu32
nu40
nu08
phu15
nu2 1
nu22
nu12
nu39
nu20
nw23
nu37
nu26
nul0
nu34
nu43
nu42
nw28
nu25
nu38
nu27
nu24
nu35
nu36
nu29
nu30
nu3 1
nu19
nu33
nu09
nu07
nw06
aa04
k10 1
aa05
nwll
aaO 1
nu 18
k102

Table 8: Comparison of Solution Time
Problem lp-solve HP S S GAR0 W
Name Result Secs.b Result Secs.b Result Secs.b NprOcS

0 1 0 0.1 0 4 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
X
0
X

.0110
X

2
3
2
3
1

, 1
1
1
1
6
1
2
1
2
2
3
6
3
4
3
4
4

237
29
20
10
9
26
8
16
589

>3600
>loo0
> 1200

27
>600
>3600
>3600

0 0.2
0 0.2
0 0.1
0 0.1
0 0.3
0 0.3
0 0.1
0 0.2
0 0.6
0 0.3
0 0.2
0 0.3
0 0.1
0 0.3
0 0.4
0 1.0
0 0.4
0 0.6
0 1.4
0 0.3
0 0.6
0 0.5
0 3.7
0 1 .o
0 0.8
0 1.4
0 0.5
0 1.5
0 0.5
0 0.7
0 10.4
0 139337
0 35.4
0 215.3
0 2.1
0 14441
0 62.5
0 134.4

0
0
0
0
0
0

. o
0
0
0
0
0
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X

.0092
X
X
X
X

.0045

8
1

135
14
43
65

1188
16
17
9
16
41

>431
18
73
23
8
36
23
7
12
33
128
49
33
34

1727
25

5442
129
2544

> 1848
>11532
>3014
>2548
>2126
>2916
>43907

2
1
8
1
32
64
64
8
2
1
4
32
1
8
16
16
2
64
128
4
4

128
64
128
8
4
64
2

128
32
128

1
128
2
1
1
1

128
nu03 .O 375 0 24.0 .0481 >64994 128 ’ See text for discussion.

Table 8 compares the solution value found (the subcolumn Result) and time in CPU seconds
(the subcolumn Secs,) of I p s o l v e , the work of Hoffman and Padberg [16] (the column HP), and
our work (the column SSGAROW). The subcolumn Result contains a “0” if the optimal solution
was found, a numerical entry which is the percentage from optimality of the best suboptimd
integer feasible solution found, or an “X” if no feasible solution was found.

The timings for l p s o l v e were made on an IBM RS/6000 Model 590 workstation using the
Unix time command, which had a resolution of one second. These times include the time to
convert from the standard MPS format used in linear programming to lpsolve’s input format.
The timings for Hoffman and Padberg’s work are from Tables 3 and 8 in [16]. These runs were
made on an IBM RS/6000 Model 550 workstation. The results for SSGAROW are the CPU
time charged to processor zero in a run that used the number of processors given in the Nprocs
column. This is the best solution time achieved where an optimal solution was found. If the
entry is numerical, it is the percentage from optimality of the best solution found and the number
of processors used for that run. If no feasible solution was found, it is the time and number of
processors used. When either lp-solve or SSGAROW did not find the optimal solution, the
time is prefaced with a >.

We offer the comparative results in Table 8 with the following caveats. Al l the timings were
done using a heavily instrumented, unoptimized version of our program that performed many
global operations to collect statistics for reporting. A number of possible areas for performance
improvement exist. Additionally, as noted above, the timings in Table 8 are all from Merent
model IBM RS/6000 workstation processors. As such, the reader should adjust them accordingly
(depending on the benchmark used, the Model 590 is between a factor of 1.67 and 5.02 times
faster than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model
550). Nevertheless, we include Table 8 in the interest of providing some “ballpark” timings to
complement the algorithmic behavior.

For many of the first thirty-two problems, where all three algorithms found optimal solutions
for all problems (except SSGAROW on nwiO), we observe that the branch-and-cut solution
times are approximately an order of magnitude faster than the branch-and-bound times, and
the branch-and-bound times are themselves an order of magnitude faster than SSGAROW. For
problems where the penalty term was “not strong enough” but the optimal solution was still
found (nw08, nu12, nw09), SSGAROW performs poorly. In two other cases (nwi9, nw06) the
search simply takes a long time, the problems have larger numbers of columns (2,879 and 6,774,
respectively), and the complexity of the steps in the algorithm that involve n become quite
noticeable. There are also some smaller problems for which, if we adjust the times according to
the performance differences due to the hardware, SSGAROW seems competitive with branch-
and-bound as implemented by l p s o l v k

On the larger problems we observe that branch-and-cut solved all problems to optimality,
in most cases quite quickly. Both l p s o l v e and SSGAROW had trouble with the aa prob-
lems; neither found a feasible solution to any of the three problems. For the two k l problems,
SSGAROW was able to find good integer feasible solutions while lp-solve did not find any fea-
sible solutions. Although SSGAROW’s k l computations take much more time than is allotted
to Ip-solve, we note from Table 5 that it was able to find other feasible solutions much earlier
in its search. For the larger nw problems, Ip-solve did much better than SSGAROW, proving
two optimal (nwil, nw03) and finding a good integer feasible solution to the other. SSGAROW
has “penalty troubles” with two of these and takes a long time on nu03 to compute an integer

21

feasible, but suboptimal solution.

We stress that the times given in Table 8 are not just when the optimal solution was found
using either the branch-and-bound or branch-and-cut algorithms, but when it was proven to be
optimal. In the case of SSGAROW we have “cheated” in the sense that for the test problems
the optimal solution values are known and we took advantage of that knowledge to specify our
stopping criteria. This was advantageous in two ways. First, we knew when to stop (or when to
keep going). Second, we knew when a solution was optimal, even though SSGAROW inherently
provides no such mathematical tools to determine this. For use in a “production” environment
the optim$ solutions are typically not known, and an alternative stopping rule would need to
be implemented. Conversely, however, we believe that if we had implemented a stopping rule,
then in the case of many of the problems we would have given up the search earlier when it
“became clear” that progress was not being made.

From Table 8 we note that the branch-and-cut work of Hoffman and Padberg clearly provides
the best results in all cases. Comparing SSGAROW with lpsolve, we see that neither can
solve the aa problems: lp+olve does better than SSGAROW on most (but not all) of the nu
problems, and SSGAROW does better than lpsolve on the two kl problems. John Gregory
has suggested [14] that the nu models, while “real world,” are not indicative of the SPP problems
most airlines would like to be able to solve, in that they are relatively easy to solve with little
branching and that more difficult models may be in production use now, being “solved” by
heuristics rather than by exact methods.

In conclusion, it is clear that the branch-and-cut approach of Hoffman and Padberg is superior
to both lpsolve and SSGAROW in all cases. With respect to genetic algorithms this is
not surprising; several leading GA researchers have pointed out that GAS are general-purpose
tools that will usually be outperformed when specialized algorithms for a problem exist [8, 91.
Comparing SSGAROW with the branch-and-bound approach as implemented by lpsolve, we
find that lp-solve fares better for many but not all of the test problems. However, the expected
scalability we believe SSGAROW will exhibit on larger numbers of. processors and the more
difficult models that may be in production usage suggest that the parallel genetic algorithm
approach may still be worthy of additional research.

In dosing this section, we offer the following caution about the results we have presented.
Each result is stochastic; that is, it depends on the particular random number seed used to
initialize the starting populations. Ideally, we would like to be able to present the results as
averages for each entry obtained over a large number of samples. However, at the time we did
this work, computer time on the IBM SP1 was at a premium, and we were faced with the choice
of either running a large number of repeated trials on a restricted set of test problems (which
itself would raise the issue of which particular test problems to use) or running only a single test
at each data point (test problem and number of subpopulations), but sampling over a larger set
of test problems. We believe the latter approach is more useful.

6 Conclusions and Future Work

The SPP is a difficult problem for a genetic algorithm. The primary reason is that the SPP
is highly constrained and a GA has difficulties finding feasible solutions. This is true for both

22

the generational replacement GA and the steady-state GA. A hybrid algorithm combining the
steady-state GA with the SPP-specific ROW heuristic was more effective than either algorithm
by itself and was able to find feasible (and sometimes optimal) solutions to the smaller SPP test
problems.

The ROW heuristic is parameterized according to how much effort it should spend trying to
improve a solution. In general, the most successful approach was to “work quicker, not harder”
and to make random choices whenever possible. The ROW heuristic is effective at making
local improvements, particularly with respect to infeasibilities, and the SSGA propagates these
improvempts to other strings thus having a global effect.

5

6

,

Using the hybrid SSGAROW algorithm in an island model was an effective approach for
solving real-world SPP problems of up to a few thousand integer variables. For all but one
of the thirty-two s m d and medium-sized test problems the optimal solution was found. For
several larger problems, good integer feasible solutions were found. We found two limitations,
however. First, for several problems the penalty term was not strong enough. The GA exploited
this by concentrating its search on infeasible strings that had (in some cases significantly) better
evaluations than a feasible string would have had. For these problems, either no feasible solution
was ever found or the number of iterations and additional subpopulations required to find the
optimal solution was much larger than for similar problems for which the penalty term worked
well. A second limitation was the fact that three problems had many constraints. For these
problems, even though the penalty term seemed adequate, SSGAROW was never able to find a
feasible solution.

.

Adding additional subpopulations (which increase the global population size) was beneficial.
When an optimal solution was found, it was usually found on an earlier iteration. In cases where
the optimal solution was not found, but a feasible one was (Le., on the largest test problems),
the quality of the feasible solution improved as additional subpopulations were added to the
computation. Also notable was the fact that, as additional subpopulations were added, the
number of problems for which the optimal solution was found before the first migration occurred
continued to increase.

We compared SSGAROW with implementations of branch-and-cut and branch-and-bound
algorithms, looking a t the quality of the solutions found and the time taken. Branch-and-cut
was clearly superior to both SSGAROW and branch-and-bound, finding optimal solutions to
all test problems in less time. Both SSGAROW and branch-and-bound found optimal solutions
to the small and medium-sized test problems. On larger problems the results were mixed, with
both branch-and-bound and SSGAROW doing better than each other on different problems.
The branch-and-bound results seem to correlate with how close to integer feasible the solution
to the linear programming relaxation was. In many cases branch-and-bound took less time, but
we note that the implementation of SSGAROW used was heavily instrumented.

Most of the progress made by SSGAROW occurs early in the search. Profiles of many runs
show that the best solution found rarely changes after about 10,000 iterations. This observation
seems to hold true irrespective of the number of subpopulations. More subpopulations lead to
a more effective early search, but do not help beyond that. We believe that both an adaptive
mutation rate and further work on the ROW heuristic can help.

Currently, the mutation rate is fixed at the reciprocal of the string length, a well-known choice

23

from the GA literature where it plays the role of restoring lost bit values, but does not itself act
as a search operator. One possibility is to use an adaptive mutation rate that changes based on
the value of some GA statistic such as population diversity or the Hamming distance betwen
two parent strings [30]. Several researchers [7, 281 make the case for a high mutation rate when
mutation is separated from crossover, as it is in our implementation.

We found that the random choice of columns to add or delete to the current solution that
the ROW heuristic made when constraints were infeasible helped the GA sample new areas of
the search space. However, when all constraints are feasible, ROW no longer introduces any
randomney. This is because when all constraints are feasible, all of the alternative moves ROW
considers degrade the current solution. Therefore, no move is made, and ROW remains trapped
in a local optimum. We believe some type of simulated annealing-like move in this case would
help sustain the search.

One limitation of the SSGAROW algorithm was its inability to find feasible solutions for six
problems. For three of-those, and several others for which optimal solutions were found but with
degraded performance, the penalty function was not strong enough. A number of possibilities
exist for additional research in this area, including stronger penalty terms (e.g., quadratic), the
ranking approach of Powell and Skolnick [24], or the dynamic penalty of Smith and Tate [26] for
which we had mixed results [19]. However, for the aa problems, we are less optimistic. Table 7
appears to indicate diminishing returns with respect to the reduction in infeasibilities in these
problems as additional subpopulations are added to the computation. Much further work on
penalties remains to be done.

Acknowledgments

A number of people helped in various ways during the course of this work. I thank Greg
Astfalk, Bob B a n , Tom Canfield, Tom Christopher, Remy Evard, John Gregory, Bill Gropp,
Karla Hoffman, John Loewy, Rusty Lusk, Jorge Mord, Bob Olson, Gail Pieper, Paul Plassmann,
Nick Radcliffe, Xiaobai Sun, David Tate, and Stephen Wright. This paper is based on my Ph.D.
thesis at Illinois Institute of Technology.

References

[l] R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent Advances in Crew Pairing Optimiza-
tion at American Airlines. INTERFACES, 21:62-74, 1991.

[2] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing Optimization.
IBM Systems Journal, 31(1):71-78,1992.

[3] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline Crew Scheduling Problem:
A Survey. Transportation Science, 3(2):140-163,1969.

[4] E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):710-760, 1976.

[5] J . Barutt and T. Hull. Airline Crew Scheduling: Supercomputers and Algorithms. SIAM
News, 23(6), 1990.

24

[6] R. Bixby, J. Gregory, I. Lustig, R. Marsten, and D. Shanno. Very Large-Scale Linear
Programming: A Case Study in Combining Interior Point and Simplex Methods. Technical
Report CRPC, Rice University, 1991.

[7] L. Davis. Adapting operator probabilities in genetic algorithms. In J. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms, pages 61-69,
San Mateo, 1989. Morgan Kaufmann.

(81 L. Davis. Hundbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

(91 K. Dgong. Genetic algorithms are NOT function optimizers. In D. Whitley, editor, Foun-
dations of Genetic Algorithms -2-, pages 5-17. Morgan Kaufmann, San Mateo, 1993.

[101 J. Eckstein. Panallel Bmnch-and-Bound Algorithms for General Mixed Integer Programming

[ll] M. Fischer and Pr Kedia. Optimal Solution of Set Covering/Partitioning Problems Using

[12] R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley & Sons Inc., New York,

on the CM-5. Technical Report TMC-257, Thinking Machines Corp., 1993.

Dual Heuristics. Management Science, 36(6):674-688,1990.

1972.

[13] I. Gershkoff. Optimizing Flight Crew Schedules. INTERFACES, 19:29-43,1989.

[141 J. Gregory. Private communication, 1994.

[15] W. Gropp and B. Smith. Chameleon Pamllel Programming Tools Users Manual. Technical

(161 K. Hoffman and M. Padberg. Solving Airline Crew-Scheduling Problems by Branch-and-

Report ANL-93/23, Argonne National Laboratory, 1993.

Cut. Manpgement Science, 39(6):657-682,1993.

[17] F. James. A Review of Pseudorandom Number Generators. Computer Physics Communi-
cation, 60:329-344, 1990.

[18] D. Levine. A genetic algorithm for the set partitioning problem. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 481-487,
San Mateo, 1993. Morgan Kaufmann.

[19] D. Levine. A Parallel Genetic Algorithm For The Set Partitioning Problem. PhD thesis,
Illinois Institute of Technology, Chicago, 1994. Department of Computer Science.

[20] G. Marsaglia, A. Zaman, and W. Tseng. Stat. Prob. Letter, 9(35), 1990.

[21] R. Marsten. An Algorithm for Large Set Partitioning Problems. Management Science,
20~774-787, 1974.

[22] R. Marsten and F. Shepardson. Exact Solution of Crew Scheduling Problems Using the Set
Partitioning Model: Recent Successful Applications. Networks, 11:165-177, 1981.

[23] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, New York, 1988.

[24] D. Powell and M. Skolnick. Using genetic algorithms in engineering design optimization
with non-linear constraints. In S. Forrest, editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 424-431, San Mateo, 1993. Morgan Kaufmann.

[25] J. Richardson, M. Palmer, G. Liepins, and M. Hilliard. Some Guidelines for Genetic NgO-
rithms with Penalty Functions. In J. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 191-197, San Mateo, 1989. Morgan Kaufmann.

[26] A. Smith and D. Tate. Genetic optimization using a penalty function. Tn S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 499-505,
San Mateo, 1993. Morgan Kaufmann.

[27] W. Spears and K. DeJong. On the virtues of parameterized uniform crossover. In R. Belew
and L. Booker, editors, Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 230-236. Morgan Kaufmann, 1991.

[28] D. Tate and A. S h h . Expected d e l e coverage and the role of mutation in genetic dgo-
rithms. Ln S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 31-37, San Mateo, 1993. Morgan Kaufmann.

[29] D. Whitley. An executable model of a simple genetic algorithm. In D. Whitley, editor,
Foundations of Genetic Algorithms -b, pages 45-62. Morgan Kaufmann, San Mateo, 1993.

[30] D. Whitley and T. Hanson. Optimizing neural networks using faster, more accurate genetic
search. In J. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 391-396, San Mateo, 1989. Morgan Kaufmann.

	nu41
	nu32
	nu40
	nu08
	phu15
	nu2
	nu22
	nu39
	nu20
	nw23
	nu37
	nu26
	>431
	nu34
	nu43
	nu42
	nw28
	nu25
	nu38
	nu27
	nu24
	nu35
	nu30
	nu3
	nu19
	nu33
	nu09
	nu07
	>3014
	>2548
	>2126
	>2916

