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Abstract. This paper describes a parallel genetic algorithm developed for the solution of the 
set partitioning problem-a difficult combinatorial optimization problem used by many airlines 
as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island 
model where multiple independent subpopulations each nr6 a steady-state genetic algorithm on 
their own subpopulation and occasionally fit strings migrate between the snbpopulations. Tests 
on forty real-world set partitioning problems were carried out on up to  128 nodes of an IBM SP1 
parallel computer. We found that performance, as meaSured by the quality of the solution found 
and the iteration on which it was found, improved as additional subpopulations were added to 
the computation. With larger numbers of subpopulations the genetic algorithm was regularly 
able to find the optimal solution to  problems having up to a few thousand integer variables. In 
two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 
integer variables, respectively. A notable limitation we found was the difficulty solving problems 
with many constraints. 
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DISCLAIMER 

This report was prepared as an account of work sponsored by a n  agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or  assumes any legal liabili- 
ty or responsibility for the accuracy, completeness, or  usefulness of any information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or  favoring by the United Stat& Government or 
any agency thereof. The views and opinions of authors expressed herein do not necsar- 
ily state or reflect those of the United States Government or any agency thereof. 
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1 Introduction 

The past several years have seen an increasing number of reports of the successful application 
of genetic algorithms for solving optimization problems. During the same time period, parallel 
computers have matured to the point where, at the high end, they are challenging the role of 
traditional vector supercomputers as the fastest computers in the world. On a different front, 
motivated primarily by significant economic considerations, but also by advances in computing 
and operations research technology, many major airlines have been exploring alternative methods 
for deciding how flight crews (pilots and flight attendants) should be assigned in order t o  satisfy 
flight schedules and minimize the associated crew costs. Our objective in this work was to unify 
these factors by developing a parallel genetic algorithm and applying it to the solution of the 
set partitioning problem-a difficult combinatorial optimization problem used by many airlines 
as a mathematical model for assigning flight crews to flights. 

There were a number of motivations for developing a parallel genetic algorithm for the set par- 
titioning problem (SPP). First is the particularly challenging nature of the SPP. The challenges 
include the 'NP-completeness of finding feasible solutions, and the enormous size of problems of 
current industrial interest. Second, because of its use as a model for crew scheduling by most 
major airlines, there is great practical value in developing a successful algorithm. Third, genetic 
algorithms can provide flexibility in handling variations of the SPP model that may be useful. 
The evaluation function can be easily modified to  handle constraints such as cumulative flight 
time, mandatory rest periods, or limits on the amount of work allocated to a particular base not 
explicitly part of the SPP model. Fourth, genetic algorithms contain a population of possible 
solutions. As noted by Arabeyre et al. [3], "The knowledge of a family of good solutions is far 
more important than obtaining an isolated optimum." Finally, we believe genetic algorithms 
have great potential for scaling to take advantage of the larger and larger numbers of processors 
increasingly available on parallel computers. 

The rest of this paper is laid out as follows. Tn Section 2 we describe the set partitioning 
problem. We give a mathematical statement of the problem, discuss its application to airline 
crew scheduling, and review previous solution approaches. Section 3 describes the sequential 
genetic algorithm on top of which the parallel genetic algorithm was built. Section 4 describes 
the parallel genetic algorithm. Section 5 presents the parallel experiments we performed and 
discusses the results. Finally, Section 6 contains concluding remarks and suggests areas for 
further research. 

2 The Set Partitioning Problem 

The set partitioning problem (SPP) may be stated mathematically as 
n 

Minimize z = cjxj 
j=1 

subject to 
n 

C a j j x j  = 1 for i = I,.  . .,m 
j=1 
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x j  = 0 or 1 for j = 1,. . .,n, (3) 
where a;j is binary for all i and j, and cj > 0. The goal is to determine values for the binary 
variables zj  that minimize the objective function 3. 

The following notation is common in the literature [12, 211 and motivates the name “set 
partitioning problem.” Let 1 = (1,. . .,m} be a set of row indices, J = (1,. . .,n} a set of 
column indices, and P = {PI,. . . , Pn}, where Pj = {i E Ilaij = l}, j E J .  Pj is the set of row 
indices that have a one in the j t h  column. lPjl is the cardinality of Pj- A set J’ C J is called a 
partition if 

U P j = I  
j € J *  

(4) 

j,k E ~ * , j  # k + P j n P k  = 8. (5) 
Associated with any partition J’ is a cost given by &J. C j .  The objective of the SPP is to 
find the partition with minimal cost. 

The following additional notation will be used in Sections 3.2 and 3.3. l& = {j E Jlaij = 1) 
is the (fixed) set of columns that intersect row i, while ri = { j  E &[zj = 1) is the (changing) 
set of columns that intersect row i included in the current solution. Ajl is the change in the 
evaluation function (see Section 3.2) as a result of setting zj to one. Aj is the change in the 
evaluation function when complementing x j .  Aj, and Aj measure both the cost coefficient, c j ,  
and the impact on constraint feasibility (see Section 3.2.) 

The best-known application of the SPP is airline crew scheduling. In this formulation each 
row (i = 1,. . . , m) represents a flight leg (a takeoff and landing) that must be flown. The 
columns (j = 1,. . . , n) represent legal round-trip rotations (pairings) that an airline crew might 
fly. Associated with each assignment of a crew to a particular flight leg is a cost, c j .  The matrix 
elements a;j are defined by 

1 
0 otherwise. 

if flight leg i is on rotation j 
a;j = 

Airline crew scheduling is a very visible and economically significant problem. Estimates of 
over a billion dollars a year for pilot and flight attendant expenses have been reported [l, 51. 
Even a small improvement over existing solutions can have a large economic benefit. 

At one time, solutions to the SPP were generated manually. However, airline crew scheduling 
problems have grown significantly in size and complexity. In 1981 problems with 400 rows and 
30,000 columns were described as “very large” [22]. Today, problems with hundreds of thousands 
of columns are “very large,” and one benchmark problem has been generated with 837 rows and 
12,753,313 columns [6]. 

Because of the widespread use of the SPP (and often the difficulty of its solution), a number of 
algorithms have been developed. These can be classified into two types: approximate algorithms 
which try to find “good” solutions quickly, and exact algorithms which attempt to solve the SPP 
to optimality. Here we mention some of the more recent methods. See Balas and Padberg [4] 
for a survey of older methods. 
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An important approximate approach (as well as the starting point for most exact approaches) 
is to solve the linear programming (LP) relaxation of the SPP. In the LP relaxation, the inte- 
grality restriction on xj is relaxed, but the lower and upper bounds of zero and one are kept. A 
,number of authors [5, 13, 221 have noted that for “small” SPP problems the solution to the Lp 
relaxation either is d integer, in which case it is also the optimal integer solution, or has only 
a few fractional values that are easily resolved. However, in recent years it has been noted that 
as SPP problems grow in size, fractional solutions occur more frequently, and simply rounding 
or performing a “ smd”  branch-and-bound tree search may not be effective [2,5, 131. 

Branch-and-bound may be viewed as an exact approach if the algorithm runs until an integer 
solution (if one exists) is proven optimal, or as an approximate approach if the algorithm is 
terminated “early” with a “good” integer solution. Various bounding strategies have been used, 
including linear programming and Lagrangian relaxation. Fischer and Kedia [ll] use continuous 
analogs of the greedy and 3 - opt methods to provide improved lower bounds. Of recent interest 
is the work of Eckstein [lo], who has developed a general-purpose mixed-integer programming 
system for use on the CM-5 parallel computer and applied it to, among other problems, set 
partitioning. The most successful approach appears to be the work of Hoffman and Padberg. 
They present an exact approach based on the use of branch-and-cut-a branch-and-bound-like 
scheme with additional preprocessing and constraint generation at each node in the search tree. 
They report optimal solutions for a large set of real-world SPP problems [16]. 

7 

3 The Sequential Genetic Algorithm 

In this section we describe the sequential GA we used as the basis for the parallel genetic 
algorithm. The choice of algorithm, the selection of parameter settings, and the development 
of a local search heuristic to use with the sequential GA were the result of significant research 
and experimentation. Here, we summarize the sequential algorithm. The interested reader is 
referred to [18, 191 for additional details. 

3.1 Problem Representation 

A solution to the SPP problem is given by specifying values for the binary decision variables xj. 
The value of one (zero) indicates that column j is included (not included) in the solution. This 
solution may be represented by a binary vector X* with the interpretation that xj is one (zero) 
if bit j is one (zero) in the binary vector. 

Representing an SPP solution in a GA is straightforward and natural. A bit in a GA string 
is associated with each column j. The bit is one if column j is included in the solution, and 
zero otherwise. To make efficient use of memory, we had each bit in a computer word represent 
a column. Because most computers today are byte addressable, this approach improves storage 
efficiency by at least a factor of eight compared with integer or character implementations. It 
does, however, require the development of specialized functions to set, unset, and toggle a bit 
and to test whether a bit is set. 

*We use x interchangeably as the solution to the SPP problem or as a bitstring in the GA population as in, 
for example, Figure 2. 
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3.2 Evaluation Function 

The evaluation function measures “how good” a solution to the SPP problem a string is. This 
function needs to take into account not just the cost of the columns included in the solution (the 
SPP objective function value) but also the degree of (in)feasibility of a string. However, the GA 
operators often produce infeasible solutions. In fact, since just finding a feasible solution to the 
SPP is NP-complete [23], it may be that many or most strings in the population are infeasible. 

We used for our evaluation function 

where 

9 n m 

1 
0 otherwise. 

if constraint i is infeasible, 

The first term is the SPP objective function, and the second term is the penalty function. The 
penalty function indicates whether a constraint is infeasible, but does not measure the magnitude 
of the infeasibility. The term A; is a scalar weight that penalizes constraint i’s infeasibility. 

Choosing a suitable value for A i  is a difficult problem. A good choice for X i  should reflect 
not just the “costs” associated with making constraint i feasible, but also the impact on other 
constraints (in)feasibility. In [25] Richardson et al. studied the choice of X i  for the set covering 
problem (SCP). In the SCP, the equality in Equation (2) is replaced by a 2 constraint. Unlike 
the SPP, however, the SCP is not a highly constrained problem. In the SCP, constraint i is 
infeasible only if I T ~ ]  = 0; however, it is easily made feasible by (even randomly) selecting an 
zj,j E & to set to one. On the other hand, such an approach will not work with  IT;^ = 0 
for the SPP, since any z j , j  E Rj set to one, while it will satisfy constraint i, may introduce 
infeasibilities into other currently feasible constraints. Similarly, if we try to make a constraint 
with Iril > 1 feasible by setting all but one of the z j , j  E T; to zero, we may undercover other 
currently feasible constraints. 

We know of no method to calculate an optimal value for A;. Therefore, we made the empirical 
choice of X i  = m+x{cjlj E Rj}.  This choice is similar to the “P2” penalty in [25], where it 
provided an upper bound on the cost to satisfy the violated constraints of the SCP. In the case 
of the SPP, however, the choice of A; provides no such bound, and it is possible the GA may 
find infeasible solutions more attractive than feasible ones (for several problems discussed in the 
next section this situation did happen.) 
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3.3 The ROW Heuristic 

Our early experience with a generational replacement genetic algorithm [lS], as well as subse- 
quent experience with a steady-state genetic algorithm [19], was that both had trouble finding 
optimal (often even feasible) solutions. This result led us to develop a local search heuristic 
to hybridize with the GA to assist in finding feasible, or near-feasible, strings to apply the GA 
operators to. 



foreach niters 
i = choselow( mndom-or-max ) 
improve (i, Iril, best-or-first) 

endfor 

Figure 1: ROW Heuristic 

The he&istic we developed is called ROW (since it takes a row-oriented view of the problem). 
The basic outline is given in Figure 1. ROW works as follows. For some number of iterations 
(the parameter niters), one of the m rows of the problem is selected by chooserow (either 
randomly or according to the largest infeasibility). For any row there are three possibilities: 
lrjl = 0, lril = 1, and ITiI > 1. The action of improve in these cases varies and also varies 
according to whether we are using a best-improving or first-improving strategy. In the case of a 
best-improving strategy we apply one of the following rules. 

1. = 0: For each j E R, calculate Ajl. Set to one the column that minimizes Ajl. 

2. lril = 1: Let k be the unique column in T;.  Calculate A:, the change in the evaluation 
function when xk f- 0 and X j  c 1, j E a. If AS < 0 for at least one j, set xk t 0 and 
xi t 1, for Ai < Ai, Vj. 

3. IT;! > 1: For each j E rj calculate A;, the change in the evaluation function when Xk t- 
0,Vk E T ; ,  k # j. Set xk t 0,Vk E T j ,  k # j, where A! < Ai,Vk. 

The first-improving version of ROW differs from the best-improving version in the following 
ways. If Iril = 0, we select a random co1umn.j E Rj and set Z j  c 1. If 1r;I = 1, we set xk t. 0 
and xj c 1 as soon as we find m y  AS < 0, j E R;. Finally, if [Ti[  > 1, we randomly select a 
column k E T i ,  leave xk = 1, and set all other zj = 0 , j  E rj. In the cases where lril = 0 and 
Iril > 1, since we have no guarantee we will find a “first-improving” solution, but know that we 
must modify the current solution to get feasible, we make a random move that makes constraint 
i feasible, without measuring all the implications (cost component and (in)feasibility of other 
constraints). 

For the results presented in this paper we used the following settings for ROW. The number of 
iterations of ROW that were applied to try to improve a string was one. Choosing the constraint 
to apply ROW to was done randomly. A first-improving selection strategy was used. 

3.4 Hybrid Steady-State Genetic Algorithm 

After much experimentation [18,19] we settled on an algorithm that hybridized the ROW heuris- 
tic with a steady-state genetic algorithm (SSGA). We call the hybrid algorithm SSGAROW. 
Figure 2 presents the specific implementation we used. 

P( t )  is the population of strings at  generation+ t. Each generation one new string is inserted 

t We use generation and iteration interchangeably. 
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t t o  
i n i t i a l i z e  P(t )  
evaluate P(t)  
foreach generation 

ROW (Xrandom E P(t ) )  
select(xl,x2) from P(t)  
if( T < p ,  ) then 

else 

endif 

while (G, E P(t))  

x,, = crossover(x1, x2) 

xn,, = mutate(x1,xa) 

delete  (Xworst E P(t))  

mutate( G,) 
f'(t + 1) + P(t)  U XnMu 

evaluate P(t + 1) 
t t t + l  

endfor 

Figure 2: Hybrid Steady-State Genetic Algorithm 

into the population. The first step is to pick a random string, and apply the ROW 
heuristic to it. Next, two parent strings, x1 and x2, are selected by holding two binary tourna- 
ments, and a random number, T E [0,1], is generated. If T is less than the crossover probability 
of 0.6, we create two new offspring via uniform crossover with parameter 0.7 [27], and randomly 
select one of them, Xn,, to  insert in the population. Otherwise, we randomly select one of 
the two parent strings, make a copy of it, and apply mutation to complement bits in the copy 
with probability l/n. In either case, the new string is tested to see whether it duplicates a 
string already in the population. If it does, it undergoes (possibly additional) mutation until 
it is unique. The least-fit string in the population, &orst, is deleted, Xn, is inserted, and the 
population is reevaluated.. 

4 The Parallel Genetic Algorithm 

The parallel genetic algorithm we used is based on an island model. In population genetics an 
island model is one where separate and isolated subpopulations evolve independently and in par- 
allel. The island model genetic algorithm (IMGA) is analogous to the island model of population 
genetics. A GX population is divided into several subpopulations, each of which is randomly 
initialized and runs an independent sequential GA on its own subpopulation. Occasionally, fit 
strings migrate between subpopulations. 

The migration of strings between subpopulations is a key feature of the IMGA. First, it 
allows the distribution and sharing of above average schemata via the strings that migrate. 
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This increases the overall selective pressure since additional reproductive trials are allocated to 
those strings that are fit enough to migrate [29]. At the same time, the introduction of migrant 
strings into the local population helps to maintain genetic diversity, since the migrant string 
arrives from a different subpopulation which has evolved independently. 

An IMGA is characterized by several choices: the type of sequential GA run on each sub- 
population, how many strings to migrate and how often to migrate them, how to choose the 
string(s) to migrate and the string(s) to replace, and the logical topology the subpopulations 
are arranged in. The choice of “communication” parameters in the IMGA echoes the competing 
themes of $elective pressure and population diversity in sequential GAS. Frequently migrating 
many fit strings and deleting the least fit strings increase the selective pressure, but decrease 
the population diversity. The choice of logical topology and neighbors to communicate with will 
affect how “fast” fit strings may migrate among subpopulations. 

We fixed the number of strings to migrate to  one. There were two reasons for this choice. 
First, it seemed intuitively appealing in conjunction with a SSGA; integrating a single arriving 
migrant string is similar to how the SSGA integrates its own newly created offspring. The 
primary differences are that the migrant string arrives from a different subpopulation and is 
presumably of above-average fitness. The second reason was simply to cut down on the size of the 
parameter space being explored and to  focus on choices for the other parameters. For a similar 
reason, we also chose to fix the logical topology of the subpopulations to a two-dimensional 
toroidal mesh. Each processor exchanged strings with its four neighbors, alternating between 
them each migration generation (Le., north, east, west, south, north, . . .). The sequential GA 
run on each subpopulation was SSGAROW. 

To determine suitable values for the other communication parameters, we performed a limited 
set of experiments, described in [19]. To summarize, the best string in a subpopulation was 
selected to migrate to a neighboring subpopulation every 1,000 iterations. The string to  delete 
was selected by holding a probabilistic binary tournament (with parameter 0.4). 

The IMGA we used is shown in Figure 3. The difference between Figure 3 and Figure 2 is 
the addition of the if block to determine whether a string is to be migrated this iteration. If so, 
the neighboring subpopulation to migrate the string to is determined, and the string to migrate, 
x m i g r a t c ,  is selected and sent to the neighbor. A migrant string, xreCy, is then received from a 
neighboring population, and the string to delete, Xdelete  is determined and replaced by x r e , .  

5 Parallel Experiments 

Our hypothesis was that a parallel genetic algorithm could be developed that would solve real- 
world set partitioning problems and, further, that the effectiveness of the parallel GA would 
improve as the number of subpopulations increased. To test this, we implemented the algorithm 
described in Sections 3 and 4 and tested it on a parallel computer on a set of real-world SPP 
problems. 
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t 4 - 0  
i n i t i a l i z e  P(t )  

foreach generation 

s 

, evaluate P ( t )  

ROW (%andom E P(t))  
select(x1, x p )  from P(t)  
if( r < p ,  ) then 

else 

endif 
de lete  (X,orst E P(t>) 
while (x,, E P(t ) )  

P(t  + 1) + P(t)  u Xn, 

x,,, = crossover(x1, x2) 

x,,, = mutate(x1,xz) 

mutate(&,) 

if ( migration generation) then 
to = neighbor(myid,gen) 
Xmigrate = string-tormigrat e( P( t+l))  
send-string(to, Xmigrate) 
xrem = recvstr ing  ( ) 
xdelete = st r ing-t o-del et e( P( t + 1)) 
replace-string(xdclet,, xrem, P(t + 1)) 

endif 
evaluate( Pt+l) 
t c t + l  

endfor 

Figure 3: Island Model Genetic Algorithm 



5.1 Computational Environment 

The parallel computer we used for our experiments was an IBM SP1 with 128 nodes, each 
of which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB of memory, 
and a 1 GB disk. Each node ran its own copy of the AM operating system. The SP1 uses a 
high-performance switch for connecting the nodes. The SP1 supports the distributed-memory 
programming model. 

Our code was written in C and used the Chameleon [15] message-passing library. Chameleon 
is designed &o provide a portable, high-performance message-passing system. Chameleon runs 
on top of many other message-passing systems, both vendor-specific and third party, dowing 
widespread portability. In our case Chameleon ran on top of IBM’s EUI-H message-passing 
software. 

Random number generation was done using an implementation of the universal random num- 
ber generator proposed by Marsaglia, Zaman, and Tseng [20], and translated to C from James’ 
version [17]. Each time a parallel run was made, all subpopulations were randomly seeded. This 
was done by having one processor get and broadcast to  all the other processors the microsecond 
portion of the value returned by the Unix gettimeof day system call. Each processor then added 
its processor id to this value and used the resulting ‘unique value as its random number seed. 
For the random number generator in [20] each unique seed gives rise to an independent sequence 
of random numbers of size x 1030 [17]. 

Each test problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations. Each 
subpopulation was of size 100. As additional subpopulations were added to  the computation, 
the total number of strings in the global population increased. Our assumption was that even 
though we were doubling the computational effort required whenever we added subpopulations, 
by mapping each subpopulation to an SP1 processor, the total elapsed time would remain 
relatively constant (except for the parallel computing overheads associated with string migration, 
which we felt would be relatively small). A run was terminated either when the optimal solution 
was. found$ or when all subpopulations had performed 100,000 iterations. 

5.2 Test Problems 

To test the parallel genetic algorithm, we selected a subset of forty problems from the test set 
used by Hoffman and Padberg [16]. The test problems are given in Table 1, where they have 
been sorted according to increasing numbers of columns. The columns in this table are the test 
problem name, the number of rows and columns in the problem, the number of nonzeros in the 
A matrix, the optimal objective function .value for the LP relaxation, and the objective function 
value of the optimal integer solution. 

Table 2 gives attributes of the solution to the LP relaxation and results from solving the 
integer programming problem with the l p s o l v e s  program. The columns in this table are the 
name of the test problem, the number of simplex iterations required by lp-solve to solve the 

rFor these tests, the value of the (known) optimal solution was stored in the program which tested the best 
feasible solution found each iteration against the optimal solution and stopped if they were the same. 

*We note that as a public-domain program lp-solve should not be used as the standard by which to judge 
the effectiveness of linear and integer programming solution methodology. Our interest here was in being able to 
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Table 1: Parallel Test Problems 
Problem No. No. No. LP IP 
Name Rows Cols Nonzeros Optimal Optimal 

740 10972.5 11307 nu41 
nu32 
nu40 
nu08 
nu15 
nu2 1 
nu22 
nu12 
nu39 
nu20 
nu23 
nu37 
nu26 
nul0 
nu34 
nu43 
nu42 
nu28 
nu25 
nu38 
nu27 
nu24 
nu35 
nu36 
nu29 
nu30 
nu3 1 
nu19 
nu33 
nu09 
nu07 
nw06 
aa04 
k10 1 
aa05 
null 
aaO 1 
nu18 
k102 
nu03 

17 197 
19 294 
19 404 
24 434 
31 467 
25 577 
23 619 
27 626 
25 677 
22 685 
19 711 
19 770 
23 771 
24 853 
20 899 
18 1072 
23 1079 
18 1210 
20 1217 
23 1220 
22 1355 
19 1366 
23 1709 
20 1783 
18 2540 
26 2653 
26 2662 
40 2879 
23 3068 
40 3103 
36 5172 
50 6774 

426 7195 
55 7479 

801 8308 
39 8820 

823 8904 
124 10757 
71 36699 
59 43749 

1357 
2069 
2332 
2830 
3591 
3399 
3380 
4494 
3722 
3350 
3778 
4215 
4336 
5045 
4859 
6533 
8553 
7341 
9071 
9395 
8617 

10494 
13160 
14193 
20436 
19977 
25193 
21704 
20111 
41187 
61555 
52121 
56242 
65953 
57250 
72965 
91028 

212536 

14570.0 
10658.3 
35894.0 
67743.0 
7380.0 
6942.0 

14118.0 
9868.5 

16626.0 
123 17.0 
9961.5 
6743.0 

68271.0 
10453.5 
8897.0 
7485.0 
8169.0 
5852.0 
5552.0 
9877.0 
5843.0 
7206.0 
7260.0 
4185.3 
3726.8 
7980.0 

10898.0 
6484.0 

67760.0 
5476.0 
7640.0 

25877.6 
1084.0 

53735.9 
116254.5 
55535.4 

338864.3 
215.3 

14877 
10809 
35894 
67743 
7408 
6984 

14118 
10080 
16812 
12534 
10068 
6796 

68271 
10488 
8904 
7656 
8298 
5960 
5558 
9933 
6314 
7216 
7314 
4274 
3942 
8038 

10898 
6678 

67760 
5476 
7810 

26402 
1086 

53839 
116256 
56138 

340 160 
219 

~ . 363939 24447.0 24492 
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LP relaxation plus the additional simplex iterations required to solve LP subproblems in the 
branch-and-bound tree, the number of variables in the solution to the LP relaxation that were 
not zero, the number of the nonzero variables in the solution to the LP relaxation that were one 
(rather than having a fractional value), and the number of nodes searched by Ip-solve in its 
branch-and-bound tree search before an optimal solution was found. 

The optimal integer solution was found by lpsolve for all but the following problems: aa04, 
k101, aa05, aaO1, nv18, and k102, as indicated in Table 2 by the “>” sign in front of the number 
of simplex iterations and number of IP nodes for these problems. For aa04 and aaO1, lpsolve 
terminate4 before finding the solution to the LP relaxation. For aa05, klO1, and k102, lpsolve 
found the solution to the LP relaxation but terminated before finding any integer solution. A 
nonoptimal integer solution was found by lpsolve for nu18 before it terminated. Termination 
occurred either because the program aborted or because a user-specified resource limit was 
reached. 

Many of these problems are “long and skinny”; that is, they have few rows relative to the 
number of columns (it is common in the airline industry to generate subproblems of the complete 
problem that contain only a subset of the flight legs the airlines are interested in, solve the 
subproblems, and try to create a solution to the complete problem by piecing together the 
subproblems). Of these test problems, all but two of the first thirty have fewer than 3,000 
columns (nu33 and nu09 have 3,068 and 3,103 columns, respectively). The last ten problems are 
significantly larger, not just because there are more columns, but also because there are more 
constraints. 

For lpsolve many of the smaller problems are fairly easy, with the integer optimal solution 
being found after only a small branch-and-bound tree search. There are, however, some ex- 
ceptions where a large tree search is required (nw23, nu28, nu36, nu29, nu30). These problems 
loosely correlate with a higher number of fractional values in the LP relaxation than many of 
the smaller problems, although this correlation does not always hold true (e.g., nu28 with few 
fractional values requires a “large” tree search, while nu33 with “many” fractional values does 
not). For the larger problems lp-solve results are mixed. On the nu problems (nu07, nu06, 
nul l ,  nw18, and nu03) the results are quite good, with integer optimal solutions found for all but 
nu18. Again, the size of the branch-and-bound tree searched seems to correlate loosely with the 
degree of fractionality of the solution to the LP relaxation. On the kl and aa models, lpsolve 
has considerably more difficulty and does not find any integer solutions. 

5.3 Experimental Results 

The results of our experiments are summarized in Tables 3-6. Table 3 shows the percent from 
optimality of the best solution found in any of the subpopulations as a function of the number of 
subpopulations. An entry of “0” in the table indicates the optimal solution was found. An entry 
of “X” in the table means no integer feasible solution was found by any of the subpopulations. 
A numerical entry is the percent from the optimal solution of the best feasible solution found 
by any subpopulation after the 100,000-iteration limit was reached. A blank entry means that 
the test was not made (usually because of a resource limit or an abort). The solution values 

characterize the solution difficulty of the test problems and to make a “ballpark” comparison against traditional 
operations research methodology. For this purpose we believe lp-solve was adequate. 
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Table 2: Solution Characteristics of the Parallel Test Problems 
Problem LP LP LP IP 
Name Iters Nonzeros Ones Nodes 
nu41 1 74 7 3 9 
nu32 
nu40 
nu08 
nul5 
nu21 
nu22 
nu12 
nu39 
nu20 
nu23 
nu37 
nu26 
nul0 

‘ nu34 
nu43 
nu42 
nu28 
nu25 
nu38 
nu27 
nu24 
nu35 
nu36 
nu29 
nu30 
nu3 I 
vnul9 
nu33 
nu09 
nu07 
nu06 
aa04 
k101 
aa05 
null 
aaO 1 
nu18 
k102 
nu03 

1 74 
279 
31 
43 

109 
65 
35 

131 
1240 
3050 

132 
341 
44 

115 
142 
274 

1008 
237 
277 
118 
302 
102 

74589 
5137 
2036 
573 
120 
202 
146 
60 

58176 
>7428 

>26104 
>6330 

200 
>23326 

> 162947 
> 1881 16 

4123 

10 
9 

12 
7 

10 
11 
15 
6 

18 
13 
6 
9 

13 
7 
9 
8 
5 

10 
8 
6 

10 
8 
7 

13 
10 
7 
7 
9 

16 
6 

18 
234 
68 

202 
21 

321 
68 
91 
17 

4 
0 

12 
7 
3 
2 

15 
3 
0 
3 
2 
2 

13 
2 
2 
1 
2 
1 
2 
3 
4 
4 
1 
0 
0 
2 
7 
1 

16 
6 
2 
5 
0 

53 
17 
17 
27 
1 
6 

9 
7 
1 
1 
3 
3 
1 
5 

15 
57 
3 

11 
1 
3 
3 
9 

39 
5 
7 
3 
9 
3 

789 
87 
45 

7 
1 
3 
1 
1 

151 
>1 

>37 
>4 

3 
>1 

>62 
>3 

3 
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themselves are given in Table 4. Table 5 contains the first iteration on which some subpopulation 
found a feasible solution. Table 6 is similar except that it contains the f i s t  iteration on which 
some subpopulation found an optimal solution. In Table 6 an entry of “F” means a nonoptimal 
integer feasible solution was found. 

Entries in the tables marked with a superscript did not complete. If an entry is given, it is 
from a partially completed run. We give the specific results here. Since output statistics were 
reported only every 1,000 iterations, that is the resolution with which results are reported in 
Table 5. nwlO aborted a t  37,000 iterations when run using 128 subpopulations. nul2 aborted at 
11,000 itevtions when run using 128 subpopulations. nwO9 aborted at 63,000 iterations when run 
using 64 subpopulations. klOl aborted at 76,000 iterations when run using 128 subpopulations. 
k102 aborted at  76,000 iterations when run using 1 subpopulation, and at 76,000 iterations when 
run using 16 subpopulations. nu03 aborted at  24,000 iterations when run using 1 subpopulation, 
a t  50,000 iterations when run using 2 subpopulations, and at 24,000 iterations when run using 
4 subpopulations. 

One way of looking at Table 3 is to consider it as consisting of four parts (recall that the rows of 
the table are sorted by increasing numbers of columns in the test problems). The first two parts 
are defined by the rows between and including nw41 and nw06 (the first thirty two problems). 
We can think of dividing this rectangle into two triangular parts by drawing a diagonal line 
from the upper left part of the table (nu41 with one subpopulation) to the bottom right (nu06 
with 128 subpopulations). Most of the results in the “upper triangle” are “0,” indicating that 
an optimal solution was found. For these problems the hybrid SSGAROW algorithm was able 
to find the optimal solution to a l l  but one problem. For approximately two-thirds of these 
problems only four subpopulations were necessary before the optimal solution was found. For 
the other one-third of the problems, additional subpopulations are necessary in order to find 
the optimal solution. For numerical entries in the “lower triangle,” we observe that in general 
the best solution found improved as additional subpopulations participate, even if the optimal 
solution was not reached. Using 64 subpopulations, the optimal solution was found for 30 of the 
first 32 test problems. nw06, with 6,774 columns, was the largest problem for which we found 
an optimal solution. 

The next two parts of Table 3 are defined by rows aa04 to nu18 (klO1 is similar to k102 and 
nw03 in that increasingly better integer feasible solutions were found as additional subpopulations 
were added, and so we “logically” group k101 with k102 and nu03) and by the last two problems 
k102 and nw03. The first of these, aa04 through nw18, define the group of problems we were not 
able to solve. For these problems we were unable to find any integer feasible solutions. (One 
obvious point to note from Table 1 is the large number of constraints in aaOl, aa04, aa05, and 
nu18 (we will return to  nu18 in a moment). We note from Table 2 that these problems have 
relatively high numbers of fractional values in the solution to the LP relaxation and that they 
were difficult for Ip-solve also.) 

For these problems, Table 7 summarizes the average number of infeasible constraints across 
all strings in all subpopulations as a function of the number of subpopulations. One trend is the 
general decrease in the average number of infeasible constraints as additional subpopulations are 
added. For the aa problems the incremental improvement, however, appears to be decreasing. 

For nwil and nw18 (and also nul0 for which no feasible solution was found), the GA was able 
to find infeasible strings with higher fitness than feasible ones and had concentrated its search 
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Table 3: Percent from Optimality vs. No. Subpopulations 
Problem Number of Subpopulations 
Name 1 2 4 8 16 32 64 128 
nu41 0 0 0 0 0 0 0 0 
nw32 
nw40 
nw08 
nwl51 
nw21 
nw22 
nw12 
nw39 
nw20 
nu23 
nw37 
nw26 
nwlO 
nw34 
nu43 
nw42 
nw28 
nw25 
nw38 
nw27 
nw24 
nw35 
nw36 
nw29 
nw30 
nw3 I 
nwl9 
nw33 
nw09 
nw07 
nw06 
aa04 
k10 1 
aa05 
nwll 
aaO 1 
nw18 
k102 

0.0006 
0 
X 
0 

0.0037 
0.0735 
0.1375 
0.0425 
0.0091 

0 
0 

0.0011 
X 

0.0203 
0.0831 
0.2727 
0.0469 
0.1040 
0.0323 
0.0818 
0.0826 
0.0770 
0.0038 
0.0580 
0.1116 
0.0069 
0.1559 
0.0128 

0 
0 

0.0219 
0 

0.0037 
0.0455 
0.0912 

0 
0 
0 

0.0163 
0 
X 

0.0214 
0.0626 
0.0229 

0 
0.1137 

0 
0.0567 
0.0215 

0 
0.0010 

0 
0 

0.0069 
0.1332 

0 

0.0006 
0.0036 

0 
0 
0 

0.0252 
0.0332 

0 
0 
0 
0 
0 
X 
0 

0.0350 
0 
0 
0 

. o  
0 
0 

0.0171 
0.0194 

0 
0 
0 

0.0715 
0 

0 
0 
0 

0.0001 
0 
0 

0.0218 
0 
0 
0 
0 
0 
X 
0 
0 
0 
0 
0 
0 

0.0039 
0.0015 

0 
0.0010 
0.0116 

0 
0 

0.0880 
0 

0 
0 
0 

4.4285 
0 
0 

0.0094 
0 
0 

0.0006 
0 
0 
X 
0 
0 
0 
0 
0 
0 
0 

0.0038 
0 

0.0019 
0 
0 
0 

0.0148 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
X 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.0398 X 0.0363 0.0231 0.0155 0.0151 
0.3089 0 0 0 0 0 
2.0755 0.2532 0 0.1779 0.0448 0.0291 

X X X X X 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0.0246" 
0 0 
0 0 
0 0 
0 0 
0 0 
X X" 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0.154" 0 
0 0 
0 0 

0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0.0092" 
X X X X 
X X X X X X X X 
X X X X X X 
X X X X X X X X 

0.1004" 0.1004 0.0502 0.0593 0.0593" 0.0410 0.0045 
nw03 0.2732 0.1125" 0.1371" 0.0481 
" See text for discussion. 



Table 4: Best Solution Found vs. No. Subpopulations 
Problem Number of Subpopulations 
Name 1 2 4, 8 16 32 64 128 
nu41 11307 11307 11307 11307 11307 11307 11307 11307 
nu32 
nu40 
nu08 
ndfl5 
nu21 
nu22 
nu12 
nu39 
nu20 
nu23 
nu37 
nu26 
nul0 
nu34 
nu43 
nu42 
nu28 
nu25 
nu38 
nu27 
nu24 
nu35 
nu36 
nu29 
nu30 
nu3 1 
nul9 
nu33 
nu09 
nw07 
nu06 

, aa04 
k10 1 
aa05 
null 
aaO 1 
nwia 
k102 
nw03 

14886 
10809 

X 
67743 
7436 
7498 
16060 
10509 
16965 
12534 
10068 
6804 
X 

10701 
9644 
9744 
8688 
6580 
5738 
10746 
6836 
7772 
7342 
4522 
4382 
8094 
12598 
6764 
70462 
7168 
24020 

X 
1143 
X 
X 
X 
X 

241" 
31185 

14877 
10809 
36682 
67743 
7436 
7302 
15406 
10080 
16812 
12534 
10233 
6796 
X 

10713 
9462 
7832 
8298 
6638 
5558 
10497 
6450 
7216 
7322 
4274 
3942 
8094 
12350 
6678 
X 

5476 
9788 
X 

1125 
X 
X 
X 
X 

24 1 
27249" 

14886 
10848 
35894 
67743 
7408 
7160 
14588 
10080 
16812 
12534 
10068 
6796 
X 

10488 
9216 
7656 
8298 
5960 
5558 - 
9933 
6314 
7340 
7456 
4274 
3942 
8038 
11678 
6678 
70222 
5476 
7810 
X 

1126 
X 
X 
X 
X 

230 
27852" 

14877 
10809 
35894 
67755 
7408 
6984 
14426 
10080 
16812 
12534 
10068 
6796 
X 

10488 
8904 
7656 
8298 
5960 
5558 
9972 
6324 
7216 
7322 
4324 
3942 
8038 
11858 
6678 
69332 
5476 
9200 
X 

1119 

X 
X 
X 

232 

14877 
10809 
35894 
67746 
7408 
6984 
14252 
10080 
16812 
12542 
10068 
6796 
X 

10488 
8904 
7656 
8298 
5960 
5558 
9933 
6338 
7216 
7328 
4274 
3942 
8038 
11060 
6678 
68816 
5476 
8160 
X 

1112 
X 
X 
X 
X 

232" 

14877 
10809 
35894 
67743 
7408 
6984 
14118 
10080 
16812 
12534 
10068 
6796 
X 

10488 
8904 
7656 
8298 
5960 
5558 
9933 
6314 
7216 
7314 
4274 
3942 
8038 
10898 
6678 
68784 
5476 
8038 

1106 

X 
X 
X 

14877 
10809 
35894 
67743 
7408 
6984 
14118 
10080 
16812 
12534 
10068 
6796 
X 

10488 
8904 
7656 
8298 
5960 
5558 
9933 
6314 
7216 
7314 
4274 
3942 
8038 
10898 
6678 

68804" 
5476 
7810 

1095 

14877 
10809 
35894 
67743 
7408 
6984 

14466" 
10080 
16812 
12534 
10068 
6796 

X" 
10488 
8904 
7656 
8298 
5960 
5558 
9933 
6314 
7216 
7314 
4274 
3942 
8038 
10898 
6678 
67760 
5476 
7810 

1096" 

X X 

X X 
228 220 

25671 
" See text for discussion. 

16 

x 



nu41 
nw32 
nu40 
nw08 
Awl5 
nw21 
nw22 
nw12 
nw39 
nw20 
nu23 
nu37 
nu26 
nul0 
nw34 
nu43 
nu42 
nu28 
nw25 
nu38 
nu27 
nu24 
nw35 
nu3 6 
nu29 
nu30 
nu3 1 
nwl9 
nu33 
nw09 
nu07 
nw06 
aa04 
k10 1 
aa05 
nul 1 
aaO 1 
nw18 
k102 
nw03 

Table 5: First Feasible Iteration vs. No. Subpopulations 
Problem Number of Subpopulations 
Name 1 2 4 8 16 32 64 128 

676 299 393 353 233 127 310 89 
185 
376 
X 

2031 
786 
860 
3308 
1017 
1128 
2291 
734 
1055 
X 

1336 
1036 
1178 
784 
474 
875 
874 
1020 
1505 
696 
1070 
500 
1447 
1656 
986 

20787 
1132 
7472 
X 

3095 
X 
X 
X 
X 

6000" 
10563 

590 
710 
5893 
1233 
813 
597 
2007 
755 
895 
2089 
384 
978 
X 

672 
989 
936 
372 
73 1 
1040 
726 
772 
1263 
625 
604 
622 
1118 
807 
550 
- x  
1278 
10036 

X 
5146 
X 
X 
X 
X 

4436 
9000" 

520 
434 

33876 
1019 
618 
540 
2379 
923 
912 
1686 
620 
971 
X 

865 
1025 
774 
494 
788 
873 
516 
898 
1084 
493 
441 
584 
1029 
933 
815 

18414 
589 
5658 
X 

3641 
X 
X 
X 
X 

6626 
7000" 

562 
384 
8067 
1228 
584 
504 
2586 
516 
893 
1498 
544 
881 
X 

505 
736 
540 
71 
22 1 
662 
658 
763 
926 
400 
556 
649 
675 
1020 
645 

11324 
1307 
3920 
X 

4836 

X 
X 
X 

472 1 

415 
204 
6669 
766 
654 
466 
1615 
530 
380 
525 
196 
760 
X 

354 
636 
460 
289 
328 
693 

' 313 
749 
721 
390 
424 
48 1 
358 
857 
533 

11593 
928 
2846 
X 

3324 

X 
X 
X 

4000" 

* x  

373 
223 
8393 
767 
627 
426 
1963 
347 
619 
1178 
502 
33 1 
X 

436 
675 
500 
199 
315 
418 
540 
670 
893 
361 
558 
493 
369 
812 
493 

11737 
777 
3440 

3299 

X 
X 
X 

257 
211 
6167 
501 
471 
143 
1847 
447 
316 
1249 
361 
423 
X 

462 
320 
323 
228 
356 
311 
437 
456 
812 
286 
342 
377 
580 
602 
296 

8000" 
636 
1738 

3573 

145 
275 
4819 
624 
392 
235 . 

2000" 
325 
324 
956 
165 
474 
X" 
295 
437 
361 
13 
369 
398 
403 
507 
634 
104 
294 
356 
236 
616 
281 
9025 
677 
2385 

4000" 

X X 

X X 
4840 4521 

3944 ._ ~~ 

" See text for discussion. 
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Table 6: First Optimal Iteration vs. No. Subpopulations 
Problem Number of Subpopulations 
Name 1 2 4 8 16 32 64 128 
nw41 3845 1451 551 623 758 402 398 362 
nw32 
nu40 
nw08 
&15 
nw21 
nw22 
nw12 
nw39 
nw20 
nw23 
nw37 
nu26 
nnlO 
nw34 
nw43 
nw42 
nw28 
nw25 
nu38 
nw27 
nw24 
nu35 
nw36 
nw29 
nw30 
nu3 1 
nwl9 
nw33 
nw09 
nw07 
nw06 
aa04 
k101 
aa05 
nul 1 
aaO 1 
nw18 
k102 
nw03 

F 
540 

X 
4593 

F 
F 
F 
F 
F 

2591 
75737 

F 
X 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
X 
F 
X 
X 
X 
X 

F" 
F 

1450 
1597 
F 

17157 
F 
F 
F 

2345 
2420 
6566 

' F  
84765 

X 
F 
F 
F 

903 
F 

68564 
F 
F 

3659 
F 

17212 
3058 

F 
F 

1670 
X 

29033 
F 
X 
F 
X 
X 
X 
X 
F 

F" 

F 
F 

34564 
5560 
7875 

F 
F 

3738 
3018 
3437 
1410 
52415 

X 
2443 

F 
2702 
1897 
2634 
27383. 
610 
908 
F 
F 

5085 
1777 
1646 

F 
1659 
F 

7459 
51502 

X 
F 
X 
X 
X 
X 
F 

F" 

3910 
1658 
8955 

F 
3929 
29230 

F 
1079 
5279 
3452 
1386 
24497 

X 
1142 
11004 
3348 
1232 
70642 
1431 

F 
F 

3182 
F 
F 

1154 
3085 

F 
7946 
F 

4020 
F 
X 
F 

X 
X 
X 
F 

2740 
2268 
14760 

F 
425 1 
3370 

F 
1396 
27568 

F 
1443 
13491 
X 

1422 
3237 
1070 
776 
435 1 
1177 
2569 

F 
1876 

F 
17146 
1650 
1287 

F 
1994 
F 

483 1 
F 
X 
F 
X 
X 
X 
X 
F" 

2697 
958 

10676 
929 
1818 
3037 
62976 
900 
2295 
1723 
1370 
1660 
X 

1110 
21069 
1223 
718 
5331 
1093 
1669 
11912 
1224 
3367 
1368 
846 
1890 
79 125 
2210 
F 

1874 
F 

F 

X 
X 
X 

2054 
979 
8992 
692 
1868 
2229 
34464 
1232 
2282 
2125 
835 
1512 
X 

1417 
4696 
1187 
371 
1024 
603 
3233 
2873 
1158 
2739 
2243 
866 
1682 
27882 
829 
F" 

2543 
482 15 

F 

X 

X 
F 

1006 
696 

10631 
1321 
2514 
1820 

Fa 
913 
1654 
1477 
779 
2820 
Xa 
843 
3296 
724 
191 
1896 
5 14 
2135 
4798 
634 
4200 
795 
949 
732 

37768 
873 

71198 
1935 
19165 

F" 

X 

X 
F 
F 

" See text for discussion. 



on those strings. For these problems the best (infeasible) string had an evaluation function value 
approximately half that of the optimal integer solution. In this case the GA has little chance 
of ever finding a feasible solution. This is, of course, simply the GA exploiting the fact that for 
these problems the penalty term used in the evaluation function is not strong enough. For the 
three aa problems this is not the case. On average, near the end of a run an (infeasible) solution 
has an evaluation function value approximately twice that of the optimal integer solution. 

The last two problems, k102 and nw03, have many columns and an increasing number of 
constraints. However, the GA was able to find integer feasible solutions on all runs we tried 
and a very,good one for k102 with 128 subpopulations. The trend here is similar to all but the 
infeasible problems. We conjecture that with “enough” subpopulations the GA would compute 
optimal solutions to  these problems also. We caution, however, that this is speculation. 

Table 7: No. of Infeasible Constraints vs. No. Subpopulations 
Problem Number of Subpopulations 
Name 1 2 4 8 16 32 64 
null 1.6 1.7 2.7 2.1 2.1 2.4 2.4 
nw18 17.7 12.4 14.5 15.2 14.5 14.1 14.2 
aa04 26.3 22.9 25.5 17.9 16.3 
aa05 95.0t 84.5 62.2 56.2 
aaO 1 70.1 66.0 75.2 70.0 53.0 54.6 

Table 5 shows the first iteration when a feasible solution was found by one of the subpopula- 
tions. If we recall that the migration frequency is set to 1,000, we see that even on one processor, 
over one-fourth of the problems find feasible solutions before any migration takes place. The 
number of problems for which this occurs grows as subpopulations are added. With 128 subpop- 
ulations, 27 problems have feasible solutions before the first migration occurs. The ones that do 
not are the problems where the penalty term was not strong enough, no feasible solution was 
ever found, or they are the largest problems we tried. The implication is that the ROW heuris- 
tic does a good job of decreasing the infeasibilities; and by simply running enough copies of a 
sequential GA, the likelihood of one of them “getting lucky” increases. The excessive iterations 
nu08 takes to get feasible is, again, due to the fact that the penalty term is not strong enough. 
In this case, however, the penalty is “almost strong enough”; hence, less fit feasible solutions 
eventually are found “in the neighborhood” of the best (infeasible) strings in the population. A 
similar problem occurred with nw09. 

Table 6 is similar to Table 5 ;  here it is. the iteration when an optimal solution was found by 
one of the subpopulations that is shown. Again, we see a general trend of the first optimal iter- 
ation’s occurring earlier as we increase the number of subpopulations. With one subpopulation 
an optimal solution was found for only one problem (nw40) before migration occurred. With 
128 subpopulations the optimal solution was found for 13 problems before migration occurred. 
Several problems show significant decrease in the iteration count as the number of subpopula- 
tions increases. As an example, by the time 128 subpopulations are being used to solve nw37, 
nu38, and nw29, which initially take tens of thousands of iterations to find the optimal solution, 
the optimal solution has been found before any string migration has occurred. 
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nu41 
nu32 
nu40 
nu08 
phu15 
nu2 1 
nu22 
nu12 
nu39 
nu20 
nw23 
nu37 
nu26 
nul0 
nu34 
nu43 
nu42 
nw28 
nu25 
nu38 
nu27 
nu24 
nu35 
nu36 
nu29 
nu30 
nu3 1 
nu19 
nu33 
nu09 
nu07 
nw06 
aa04 
k10 1 
aa05 
nwll 
aaO 1 
nu 18 
k102 

Table 8: Comparison of Solution Time 
Problem lp-solve HP S S GAR0 W 
Name Result Secs.b Result Secs.b Result Secs.b NprOcS 

0 1 0 0.1 0 4 4 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
X 
X 
X 
0 
X 

.0110 
X 

2 
3 
2 
3 
1 

, 1  
1 
1 
1 
6 
1 
2 
1 
2 
2 
3 
6 
3 
4 
3 
4 
4 

237 
29 
20 
10 
9 
26 
8 
16 
589 

>3600 
>loo0 
> 1200 

27 
>600 
>3600 
>3600 

0 0.2 
0 0.2 
0 0.1 
0 0.1 
0 0.3 
0 0.3 
0 0.1 
0 0.2 
0 0.6 
0 0.3 
0 0.2 
0 0.3 
0 0.1 
0 0.3 
0 0.4 
0 1.0 
0 0.4 
0 0.6 
0 1.4 
0 0.3 
0 0.6 
0 0.5 
0 3.7 
0 1 .o 
0 0.8 
0 1.4 
0 0.5 
0 1.5 
0 0.5 
0 0.7 
0 10.4 
0 139337 
0 35.4 
0 215.3 
0 2.1 
0 14441 
0 62.5 
0 134.4 

0 
0 
0 
0 
0 
0 

. o  
0 
0 
0 
0 
0 
X 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
X 

.0092 
X 
X 
X 
X 

.0045 

8 
1 

135 
14 
43 
65 

1188 
16 
17 
9 
16 
41 

>431 
18 
73 
23 
8 
36 
23 
7 
12 
33 
128 
49 
33 
34 

1727 
25 

5442 
129 
2544 

> 1848 
>11532 
>3014 
>2548 
>2126 
>2916 
>43907 

2 
1 
8 
1 
32 
64 
64 
8 
2 
1 
4 
32 
1 
8 
16 
16 
2 
64 
128 
4 
4 

128 
64 
128 
8 
4 
64 
2 

128 
32 
128 

1 
128 
2 
1 
1 
1 

128 
nu03 .O 375 0 24.0 .0481 >64994 128 ’ See text for discussion. 



Table 8 compares the solution value found (the subcolumn Result) and time in CPU seconds 
(the subcolumn Secs,) of I p s o l v e ,  the work of Hoffman and Padberg [16] (the column HP), and 
our work (the column SSGAROW). The subcolumn Result contains a “0” if the optimal solution 
was found, a numerical entry which is the percentage from optimality of the best suboptimd 
integer feasible solution found, or an “X” if no feasible solution was found. 

The timings for l p s o l v e  were made on an IBM RS/6000 Model 590 workstation using the 
Unix time command, which had a resolution of one second. These times include the time to 
convert from the standard MPS format used in linear programming to lpsolve’s  input format. 
The timings for Hoffman and Padberg’s work are from Tables 3 and 8 in [16]. These runs were 
made on an IBM RS/6000 Model 550 workstation. The results for SSGAROW are the CPU 
time charged to processor zero in a run that used the number of processors given in the Nprocs 
column. This is the best solution time achieved where an optimal solution was found. If the 
entry is numerical, it is the percentage from optimality of the best solution found and the number 
of processors used for that run. If no feasible solution was found, it is the time and number of 
processors used. When either lp-solve or SSGAROW did not find the optimal solution, the 
time is prefaced with a >. 

We offer the comparative results in Table 8 with the following caveats. Al l  the timings were 
done using a heavily instrumented, unoptimized version of our program that performed many 
global operations to collect statistics for reporting. A number of possible areas for performance 
improvement exist. Additionally, as noted above, the timings in Table 8 are all from Merent 
model IBM RS/6000 workstation processors. As such, the reader should adjust them accordingly 
(depending on the benchmark used, the Model 590 is between a factor of 1.67 and 5.02 times 
faster than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model 
550). Nevertheless, we include Table 8 in the interest of providing some “ballpark” timings to 
complement the algorithmic behavior. 

For many of the first thirty-two problems, where all three algorithms found optimal solutions 
for all problems (except SSGAROW on nwiO), we observe that the branch-and-cut solution 
times are approximately an order of magnitude faster than the branch-and-bound times, and 
the branch-and-bound times are themselves an order of magnitude faster than SSGAROW. For 
problems where the penalty term was “not strong enough” but the optimal solution was still 
found (nw08, nu12, nw09), SSGAROW performs poorly. In two other cases (nwi9, nw06) the 
search simply takes a long time, the problems have larger numbers of columns (2,879 and 6,774, 
respectively), and the complexity of the steps in the algorithm that involve n become quite 
noticeable. There are also some smaller problems for which, if we adjust the times according to 
the performance differences due to the hardware, SSGAROW seems competitive with branch- 
and-bound as implemented by l p s o l v k  

On the larger problems we observe that branch-and-cut solved all problems to optimality, 
in most cases quite quickly. Both l p s o l v e  and SSGAROW had trouble with the aa prob- 
lems; neither found a feasible solution to any of the three problems. For the two k l  problems, 
SSGAROW was able to find good integer feasible solutions while lp-solve did not find any fea- 
sible solutions. Although SSGAROW’s k l  computations take much more time than is allotted 
to Ip-solve, we note from Table 5 that it was able to find other feasible solutions much earlier 
in its search. For the larger nw problems, Ip-solve did much better than SSGAROW, proving 
two optimal (nwil, nw03) and finding a good integer feasible solution to the other. SSGAROW 
has “penalty troubles” with two of these and takes a long time on nu03 to compute an integer 
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feasible, but suboptimal solution. 

We stress that the times given in Table 8 are not just when the optimal solution was found 
using either the branch-and-bound or branch-and-cut algorithms, but when it was proven to be 
optimal. In the case of SSGAROW we have “cheated” in the sense that for the test problems 
the optimal solution values are known and we took advantage of that knowledge to specify our 
stopping criteria. This was advantageous in two ways. First, we knew when to stop (or when to 
keep going). Second, we knew when a solution was optimal, even though SSGAROW inherently 
provides no such mathematical tools to determine this. For use in a “production” environment 
the optim$ solutions are typically not known, and an alternative stopping rule would need to 
be implemented. Conversely, however, we believe that if we had implemented a stopping rule, 
then in the case of many of the problems we would have given up the search earlier when it 
“became clear” that progress was not being made. 

From Table 8 we note that the branch-and-cut work of Hoffman and Padberg clearly provides 
the best results in all cases. Comparing SSGAROW with lpsolve, we see that neither can 
solve the aa problems: lp+olve does better than SSGAROW on most (but not all) of the nu 
problems, and SSGAROW does better than lpsolve on the two kl problems. John Gregory 
has suggested [14] that  the nu models, while “real world,” are not indicative of the SPP problems 
most airlines would like to be able to solve, in that they are relatively easy to solve with little 
branching and that more difficult models may be in production use now, being “solved” by 
heuristics rather than by exact methods. 

In conclusion, it is clear that the branch-and-cut approach of Hoffman and Padberg is superior 
to both lpsolve and SSGAROW in all cases. With respect to genetic algorithms this is 
not surprising; several leading GA researchers have pointed out that GAS are general-purpose 
tools that will usually be outperformed when specialized algorithms for a problem exist [8, 91. 
Comparing SSGAROW with the branch-and-bound approach as implemented by lpsolve, we 
find that lp-solve fares better for many but not all of the test problems. However, the expected 
scalability we believe SSGAROW will exhibit on larger numbers of. processors and the more 
difficult models that may be in production usage suggest that the parallel genetic algorithm 
approach may still be worthy of additional research. 

In dosing this section, we offer the following caution about the results we have presented. 
Each result is stochastic; that is, it depends on the particular random number seed used to 
initialize the starting populations. Ideally, we would like to be able to present the results as 
averages for each entry obtained over a large number of samples. However, at  the time we did 
this work, computer time on the IBM SP1 was at  a premium, and we were faced with the choice 
of either running a large number of repeated trials on a restricted set of test problems (which 
itself would raise the issue of which particular test problems to use) or running only a single test 
at  each data point (test problem and number of subpopulations), but sampling over a larger set 
of test problems. We believe the latter approach is more useful. 

6 Conclusions and Future Work 

The SPP is a difficult problem for a genetic algorithm. The primary reason is that the SPP 
is highly constrained and a GA has difficulties finding feasible solutions. This is true for both 
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the generational replacement GA and the steady-state GA. A hybrid algorithm combining the 
steady-state GA with the SPP-specific ROW heuristic was more effective than either algorithm 
by itself and was able to find feasible (and sometimes optimal) solutions to the smaller SPP test 
problems. 

The ROW heuristic is parameterized according to how much effort it should spend trying to 
improve a solution. In general, the most successful approach was to “work quicker, not harder” 
and to make random choices whenever possible. The ROW heuristic is effective at making 
local improvements, particularly with respect to infeasibilities, and the SSGA propagates these 
improvempts to other strings thus having a global effect. 

5 

6 

, 

Using the hybrid SSGAROW algorithm in an island model was an effective approach for 
solving real-world SPP problems of up to a few thousand integer variables. For all but one 
of the thirty-two s m d  and medium-sized test problems the optimal solution was found. For 
several larger problems, good integer feasible solutions were found. We found two limitations, 
however. First, for several problems the penalty term was not strong enough. The GA exploited 
this by concentrating its search on infeasible strings that had (in some cases significantly) better 
evaluations than a feasible string would have had. For these problems, either no feasible solution 
was ever found or the number of iterations and additional subpopulations required to find the 
optimal solution was much larger than for similar problems for which the penalty term worked 
well. A second limitation was the fact that three problems had many constraints. For these 
problems, even though the penalty term seemed adequate, SSGAROW was never able to  find a 
feasible solution. 

. 

Adding additional subpopulations (which increase the global population size) was beneficial. 
When an optimal solution was found, it was usually found on an earlier iteration. In cases where 
the optimal solution was not found, but a feasible one was (Le., on the largest test problems), 
the quality of the feasible solution improved as additional subpopulations were added to  the 
computation. Also notable was the fact that, as additional subpopulations were added, the 
number of problems for which the optimal solution was found before the first migration occurred 
continued to increase. 

We compared SSGAROW with implementations of branch-and-cut and branch-and-bound 
algorithms, looking a t  the quality of the solutions found and the time taken. Branch-and-cut 
was clearly superior to both SSGAROW and branch-and-bound, finding optimal solutions to 
all test problems in less time. Both SSGAROW and branch-and-bound found optimal solutions 
to the small and medium-sized test problems. On larger problems the results were mixed, with 
both branch-and-bound and SSGAROW doing better than each other on different problems. 
The branch-and-bound results seem to correlate with how close to integer feasible the solution 
to the linear programming relaxation was. In many cases branch-and-bound took less time, but 
we note that the implementation of SSGAROW used was heavily instrumented. 

Most of the progress made by SSGAROW occurs early in the search. Profiles of many runs 
show that the best solution found rarely changes after about 10,000 iterations. This observation 
seems to hold true irrespective of the number of subpopulations. More subpopulations lead to 
a more effective early search, but do not help beyond that. We believe that both an adaptive 
mutation rate and further work on the ROW heuristic can help. 

Currently, the mutation rate is fixed at  the reciprocal of the string length, a well-known choice 
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from the GA literature where it plays the role of restoring lost bit values, but does not itself act 
as a search operator. One possibility is to use an adaptive mutation rate that changes based on 
the value of some GA statistic such as population diversity or the Hamming distance betwen 
two parent strings [30]. Several researchers [7, 281 make the case for a high mutation rate when 
mutation is separated from crossover, as it is in our implementation. 

We found that the random choice of columns to add or delete to  the current solution that 
the ROW heuristic made when constraints were infeasible helped the GA sample new areas of 
the search space. However, when all constraints are feasible, ROW no longer introduces any 
randomney. This is because when all constraints are feasible, all of the alternative moves ROW 
considers degrade the current solution. Therefore, no move is made, and ROW remains trapped 
in a local optimum. We believe some type of simulated annealing-like move in this case would 
help sustain the search. 

One limitation of the SSGAROW algorithm was its inability to find feasible solutions for six 
problems. For three of-those, and several others for which optimal solutions were found but with 
degraded performance, the penalty function was not strong enough. A number of possibilities 
exist for additional research in this area, including stronger penalty terms (e.g., quadratic), the 
ranking approach of Powell and Skolnick [24], or the dynamic penalty of Smith and Tate [26] for 
which we had mixed results [19]. However, for the aa problems, we are less optimistic. Table 7 
appears to indicate diminishing returns with respect to  the reduction in infeasibilities in these 
problems as additional subpopulations are added to the computation. Much further work on 
penalties remains to be done. 
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