Electrolytic decontamination of the 3013 inner can

PDF Version Also Available for Download.

Description

Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can ... continued below

Physical Description

10 p.

Creation Information

Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E. & Limback, S. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate.

Physical Description

10 p.

Notes

INIS; OSTI as DE99002606

Source

  • 3. American Nuclear Society (ANS) topical meeting on DOE spent nuclear fuel and fissile materials management, Charleston, SC (United States), 8-11 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002606
  • Report No.: LA-UR--98-3681
  • Report No.: CONF-980906--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 350845
  • Archival Resource Key: ark:/67531/metadc685457

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 25, 2016, 4:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E. & Limback, S. Electrolytic decontamination of the 3013 inner can, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc685457/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.