
. ,,.‘;.2 = ,.’5.: t,,.:., ,:, ?.,. .>-...: - ,.v ~,.: .> , ,,-,%-.<... .. . . .. ,6.,, ,.

.—,—

. . . . —

LA-13519-T
Thesis

Approvedforpubllc roloaae;
dkwfbutionIs unllmlled.

f? E=lVEo

FEE161999
0s1/

Crenulative Turbulence in a

Converp”ng Nonhomogeneous Material

LosAlamos
NATIONAL LABORATORY

LosAlamosNationalluboratoy is operated&ytheUniversityojCal~ornia
for fhe UnitedStatesDepartmentof EnergyundercontractW7405-ENG36.



—

This thesis was accepted by the Department of Mechanical Enp”neering,
University of New Mem”co,Albuquerque, New Mexico, in partial

fulfillment of the requirements for the degree of Master cfScience.
The text and illustrations are the independent work of the author and
only thefront matter has been edited by the CIC-1 Writingand Editing
Staflto conform with Department of Energy and Los Alamos National
Laboratory publication policies.

An Affirmative Acfion/Equal Opportunity Employer

Thisreport was prepared as an accountojwork sponsored by an agency offheUnited States
Government. Neither The Regents of theUniversi@ o~Cal~omti, fhe United Sfates
Govemmenf nor any ageny fhereo~ nor any of fheir employees, makes any warranty, express
or implied, or assumes any legal liabili~ or responsibilityfor the accuracy, completeness, or
usejidness of any information, apparatus, product, or process dkclosed, or represents fhaf ifs
use would nof infringe p“vafefyownedrighfs.Rej2renceherein fo any specific commercial
producf, process, orservh by trade name, trademark, manufacturer, or ofherwise,does not
necessan”lyconstitute or imply ifs endorsement, recommendation, orfavon”ng by The Regenfs
of fhe University ojCalifornia, fhe Unifed Sfafes Government, or any agency thereo~ The
m“ewsand opinions of authors expressed hem-n do nof necessarily sfafe or rejlecf fhose of
l%e Regenfs of the University of Cal~ornia, fhe Unifed Sfafes Government,orany agency
fhereof. Los Alamos National .l.aboratoy strongly supporfs academicfreedom and a
researcher’s n“ghfto publish; as an instifufion, however, the .laborafory does nof endorse fhe
w“ewpoinfoja publication or guaranfee ifs fechnical wrrecfness.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.



lJ1-13519-T
Thesis

Issued: January 1999

Crenulative Turbulence in a

Conver~”ng Nonhomogeneous Material

CasildoA. Romero

Los Alamos
NATIONAL LABORATORY

LosAlamos,NewMexico87545



-——--

7

8

9

6.5 Individual Components of the ZUTransport Equation . . . . . . 73

6.6 Mean Internal Energy, Mean Kinetic Energy, and the
Turbulent Kinetic Energy . . . . . . . . . . . . . . . . . . ...74

6.7 Summary of the Spherical Formulation . . . . . . . . . . . . . . 75

Properties of the Modeled Governing Equations 76
7.1 Primary Driver for Crenulative Turbulence . . . . . . . . . . . . 76
7.2 The Limit as the Nonhomogeneities Vanish. . . . . . . . . - . . 77
7.3 A First Order Approximation for Behavior of Zti . . . . . . . . . 79
7.4 Cosine Distribution of the Instantaneous Kinematic Viscosity . . 83
7.5 Discontinuous Distribution of the Instantaneous

Kinematic Viscosity . . . . . . . . . . . . . . . . . . . . . . ..~~
7.6 Positive Definite Entropy Changes . . . . . . . . . . . . . . . .
7.7 Summary of the Propefiies . . . . . . . . . . . . . . . . . . ...92

Nondimensional Governing Equations, Nondimensional Initial
and Boundary Conditions 94
8.1 Nondimensional Governing Equations . . . . . . . . . . . . . . 95
8.2 Nondimensional Initial and Boundary Conditions - . . . . . - . 99

Results and Conclusions 102
9.1 Homogeneous Case . . . ----- -...-..--.--.---103
9.2 Base Case . . . . . . . . . . . . . -.-...--.-.--.-.105
9.3 Variations of Reynolds Number . . . . . . . . . . . . . . . . . . 110
9.4 Variation of~ . . . . . . .. -- . . . . . ...-.--.-..-113
9.5 Variation of y . . . . . . . . . . . . . -...--.-..-...115

9.6 Variations of2(jj) . . . . . . . . . . . . . . . ...-...-.-.117

9.7 Enhancement to the Return to Isotropy . . . . . . . . . . . . . . . 119
9.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . ...121

Appendix A Numerics 124
A. 1 Numerical Scheme . . .. ----- -----------------
A.2 Boundary Conditions in Finite Difference Form. . . . . . . - . .
A-3 Convergence Test for Homogeneous Case. . . . . . . - . . . . - 128

References 129

vi



List of Figures

1.1

1.2

1.3

1.4

1.5

3.1

3.2

5.1

6.1

7.1

7.2

7.3

7.4

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

Rayleigh-TaylorInstability

Nova Experiment at Lawrence Livermore Laborato~

Macroscopic DNS Calculation

Meso-Scale DNS Calculation

Large Scale DNS Calculation

Instantaneous Velocity in Terms of Mean and Fluctuating Components

Ensemble Average of the Instantaneous Velocity

Stretching of a Nonhomogeneity

Spherical Coordinate System

First Order Approximation for Zti

Elongation of the Nonhomogeneities During Spherical Convergence

Discontinuous Distribution of Kinematic Viscosity in Radial Direction

Unit Cell of the Nonuniform Distribution

Comparison of Homogeneous Case to Nonhomogeneous Case A

Comparison of Homogeneous Case to Nonhomogeneous Base Case

Different Energies for the Nonhomogeneous Base Case

flu Components for the Base Case

2V Components for the Base Case

Comparison of Homogeneous Case B to Nonhomogeneous Case B

Comparison of Homogeneous Case C to Nonhomogeneous Case C

Turbulence Energy for the Base Case, Case B, and Case C

Comparison of Internal Energy for Nonhomogeneous Base Case and

Nonhomogeneous Case D

Comparison of Turbulence Energy for Nonhomogeneous Base Case and

Nonhomogeneous Case D

1

3

4

5

6

17

18

59

66

81

82

88

89

104

106

107

108

109

111

112

113

114

115

vii



. .—.

9.11

9-12

9.13

9.14

9.15

A. 1

A.2

A.3

Comparison of internal bnergy lor Nonhomogeneous Base Case anct

Nonhomogeneous Case E

Comparison of Turbulence Energy for Nonhomogeneous Base Case and

Nonhomogeneous Case E

Comparison of Internal Energy for Nonhomogeneous Base Case,

Nonhomogeneous Case F, and Nonhomogeneous Case G

Comparison of Turbulence Energy for Nonhomogeneous Base Case,

Nonhomogeneous Case F, and Nonhomogeneous Case G

Comparison of ~U Component Distribution for the Nonhomogeneous

Base Case and Nonhomogeneous Case H

Finite Difference Grid

Finite Difference Domain with Imaginary Control Volumes

Convergence Test for Homogeneous Case

116

117

118

119

120

126

]27

128

. . .
VIII



_._L-2._ =- , -—. . —— —

List of Symbols

&j

&j

Mu

M.

Zd

ij
i(jj)

ztrace

Ni

e

i?
&
e

K

KE

CD

CB

CR

cHR

q

CM

Cz

Reynolds Stress Tensor

Nondimensional Reynolds Stress Tensor

First Order Response Tensor

Nondimensional First Order Response Tensor

Driving Tensor

Nondimensional Driving Tensor

Diagonal Components of the Nondimensional Driving Tensor

Trace of the Driving Tensor Zti for Vector Notation

Turbulence Advection of the Kinematic Viscosity Coefilcient

Instantaneous Internal Energy

Mean Internal Energy

Nondimensional Mean Internal Energy

Turbulent Kinetic Energy

Mean Kinetic Energy

Constant Modeling Parameter for the Turbulence Self Diffusion in ~j

Equation

Constant Modeling Parameter for the Rapid Pressure in Rti Equation

Constant Modeling Parameter for the Return to Isotropy in 1$ Equation

Constant Modeling Parameter for the Collision of Nonhomogeneities

~j Equation

Constant Modeling Parameter for the Turbulence Difi%sion in Mu

Equation

in

Constant Modeling Parameter for the Return to Isotropy in Mu Equation

Constant Modeling Parameter for the Return to Isotropy in Mu Equation

ix

. ..—----___. —.— .—n.,. , .,, 7:.7,?- ——



Cx

P

Ui

g.

u;

Ur

ii,

‘reference

CTu

Tg

E

qj

P

P

F

P’

6U

a.

P

k

T

S(p,T,...)

s

Constant Modeling Parameter forthe Turbulence Diffusionin 20

Equation

Instantaneous Mass Density

Instantaneous Velocity Vector

Mean Velocity Vector

Fluctuating Velocity Vector

Instantaneous Radial Velocity in Spherical Coordinates

Mean Radial Velocity in Spherical Coordinates

Reference Mean Velocity at the Outer Radius in Spherical Coordinates

Total Stress Tensor

Shear Stress

Instantaneous Total Energy

Conductive Heat Flux

Thermodynamic Pressure

Ratio of the Thermodynamic Pressure to the Instantaneous Mass Density

Mean Component of p

Fluctuating Component of p

Kronecker Delta

Bulk Viscosity Coefficient

Dynamic Viscosity Coefficient

Kinematic Viscosity Coefficient

Mean Kinematic Viscosity Coefficient

Fluctuating Kinematic Viscosity Coefficient

Thermal Conductivity

Temperature

Source to Evolution Equation of Dynamic Viscosity Coefficient

Separation Scale Between Nonhomogeneities

x



.- ,, ...- - —.-=- ——

Sx

‘Y

Sz

Sr

S*

S4

so

&g

A

Q

WI

0

W*

Du

B(t)

B

&j

%?

4

R.

R

a

6V

f.

Separation Scale Between Nonhomogeneities in the x Direction

Separation Scale Between Nonhomogeneities in the y Direction

Separation Scale Between Nonhomogeneities in the z Direction

Separation Scale Between Nonhomogeneities in the r Direction

Separation Scale Between Nonhomogeneities in the 0 Direction

Separation Scale Between Nonhomogeneities in the @Direction

Initial Isotropic Separation Scale Between Nonhomogeneities

Dissipation in a K – &Turbulence Model

Function of Turbulent Reynolds Number (Modeling Parameter)

Enhancement to the Decay in ~j (Modeling Parameter)

Nondimensional Enhancement to the Decay in ~j (Modeling Parameter)

Enhancement to the Decay in Mu (Modeling Parameter)

Nondimensional Enhancement to the Decay in MU(Modeling Parameter)

Modeling Tensor in Zti for Triple Correlations

Incompressibility Parameter for Spherical Symmetric Convergence

Constant Incompressibility Parameter for Spherical Symmetric

Convergence

Perturbation from Initial State of Zti

Outer Radius of the Spherical Shell of Fluid

Inner Radius of the Skin with Variable Viscosity of the Nonhomogeneity

Outer Radius of the Skin with Variable Viscosity of the Nonhomogeneity

Nominal Radius of the Skin with Variable Viscosity of the

Nonhomogeneity

Skin Thickness with Variable Viscosity of the Nonhomogeneity

Difference Between the Maximum and Minimum Values of the

Instantaneous Kinematic Viscosity

Elongation Factor of the Nonhomogeneities in the x Direction

xi

. . . . ——-—— --



f, Elongation Factor of the Nonhomogeneities in the y Direction

f, Elongation Factor of the Nonhomogeneities in the z Direction

Re Reynolds Number (Nondimensional Parameter)

B Measure of the Scale of the Nonhomogeneity relative to the Size of the

Spherical Shell (Nondimensional Parameter)

Y Measure of the Level of Nonhomogeneity in the Spherical Shell

(Nondimensional Parameter)

~ Convergence Parameter in the Spherical Coordinate System

(Nondimensional Piirameter)

xii



Crenulative Turbulence in a Converging

Nonhomogeneous Material

by

Casildo A. Romero

Abstract

Crenulative turbulence is a nonlinear extension of the Bell-Plesset instability,

usually observed in a converging system in which there is a nonhomogeneous response of

stress to strain and/or strain rate. In general, crenelation occurs in any circumstance in

which the mean flow streamlines converge the material more strongly than the

compressibility can accommodate. Elements of the material slip past each other,

resulting in local fluctuations in velocity from that of the mean flow, producing a type of

turbulence that is more kinematic than inertial. For a homogeneous material, crenelation

occurs at the atomic or molecular scale. With nonhomogeneous stress response at larger

scales, the crenulative process can also occur at those larger scales. The results are

manifested by a decrease in the rate of dissipation to heat, and by the configurationally-

irreversible mixing of nonhomogeneities across any mean-flow-transported interface.

We obtain a mathematical description of the crenulative process by means of

Reynolds decomposition of the appropriate variables, and tie derivation of transport

equations for the second-order moments that arise in the mean-flow momentum and

energy equations. The theory is illustrated by application to the spherical convergence of

an incompressible fluid with nonhomogeneous distribution of kinematic viscosity.
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Chapter 1

Introduction

Fluid and material instabilities have been of interest to scientists and engineers for

decades. Predicting the behavior of these instabilities has relied on mathematical modeling

of the physical phenomenon associated with the instability. In recent years the ability to

model these instabilities has improved greatly with the help of high-speed computers and

increased knowledge of modeling the ensemble-averaged Navier Stokes equations. There

are various fluid and material instabilities, but the Rayleigh-Taylor, Kelvin-Helmholtz, and

Richtmyer-Meshkov instabilities are probably the three most studied, but in recent years the

Bell-Plesset instability has gained some attention.

In the growth of these instabilities a perturbation and some physical driving

mechanism are needed to initiate the growth of the instability. In the case of the Rayleigh-

Taylor instability a low amplitude perturbation at the planar interface between a high density

fluid and a low density fluid, and a pressure gradient normal to the planar interface will

sustain the growth of the instability as shown in Fig. 1.1 [1]. In Fig. 1.1 the high density

is on the top of the low density.

I ,

Figure 1.1 Rayleigh-TayIor Instability
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Once the instability begins to grow it will first enlarge without mode coupling then

transform to a configuration of spikes and bubbles, next it will couple to more complicated

structures (mushrooms), and finally go to a completely turbulent state with strong coupling

to both small and large scales. In the case of the Kelvin-Helmholtz instability a low

amplitude perturbation at a slip interface within a fluid or between two different fluids, and

a mean velocity shearing across the interface will sustain the growth of instability. Once

the instability begins to grow it will develop both large scale roles and fine scale turbulence

[2]. In the case of Bell-Plesset instability a nonhomogeneity couples to contortions in mean

velocity variations, for example during convergence, to sustain the growth of the instability

[3,4]. The growth of the instability occurs in the bulk of the material; in convergence it is

attributed to the development of hoop stresses in the material. There are situations where

both a Rayleigh-Taylor component and a Bell-Plesset component are present, and they can

sometimes be difficult to differentiate [5,6].

The goal for this thesis is to describe the theoretical foundations of the nonlinear

extension of the Bell-Plesset instability, which is called “crenelation turbulence”. The

particular set of circumstances we have chosen to display crenelation turbulence is in a

spherical converging geometry. The nonhomogeneity we have chosen by which to

illustrate the process is a variation in material stress response arising from the fluctuations

in kinematic viscosity of a Newtonian fluid. Ultimately our goal is to characterize

crenelation in an elastic material (e.g. a metal) with variations in strength of yield to plastic

deformation, which occurs on the scale of grains and exhibits much influence from the

texture of the material. P.V. Makarov has investigated plastic flow, prefailures, and

subsequent failure of all materials and has concluded it is related to structural

inhomogeneities of different scales [7]. At this stage, we have chosen a Newtonian fluid

with continuous variations in kinematic viscosity as the simplest material for which there is

an exact set of microscopic equations that are everywhere continuous to serve as a basis for

developing the theory, thus providing a foundation for metals with fine scale discontinuous

2



variations in yield strength. At this stage of development we can see the consequences for

growth of the instability in several important manifestations, for example in its effects on

heat dissipation.

It has been observed that crenelation preserves some memory of its initial

conditions at the highly nonlinear stages, particularly in the near absence of coupling to

longer wavelength modes. In the Nova experiments conducted at the Lawrence Liverrnore

National Laboratory the perturbation was initially placed on the outer surface of a cylinder

and eventually fed through to the bulk of the material and to the inner surface [6]. Due to

the initial pressure gradient of the laser-beam driver a Rayleigh-Taylor component existed,

but once the pressure gradient vanished the system was in a state of “coasting convergence”

and the Rayleigh-Taylor component subsided. During this state of coasting convergence

the crenulative component was dramatically manifested, as shown in Fig. 1.2.
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Figure 1.2 Nova Experiment at Lawrence Livermore Laboratory

Crenelation is an instability that can occur at a macroscopic or microscopic level.

Figure 1.2 shows long wavelength modes as the dominant structural scales. At the

macroscopic level the hoop stresses force bulk regions of material, associated with some

macroscopic perturbation or nonhomogeneity, to move relative to other regions of material.

3
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At the other extreme, the perturbations are at the molecular or atomic scale. Combinations

of these extremes can be seen in a direct numerical simulation (DNS) by Brad Holian and

Peter Lomdahl at the Los Alamos National Laboratory, as shown in Fig. 1.3 [8]. In this

calculation a three-dimensional cylinder was composed of 400,000 atoms and the

characteristic energy of interactions between the atoms followed a Lennard-Jones (6-12)

potential. The initial configuration of the particles was as though the cylinder was cut from

a single crystal, so as to have a preferential direction. The preferential direction introduced

a nonisotropy at large scale into the system, which dominated in the growth of

convergence-crenelation amplitude

~e1.3 Macroscopic DNS Calculation

A second calculation by Lomdahl and I-Iolian had an initial nonhomogeneous atomic

arrangement in meso-scale crystals, and showed crenelation occurring at an intermediate

size scale, as shown in Fig. 1.4

4



Figure 1.4 Meso-Scale DNS Calculation

If the particles are completely random in.spacing the behavior is that of crenelation at an

atomic level, which can be described by homogeneous viscous or plastic behavior.

The phenomenon seen in the meso-scale DNS can also be seen in the large scale

direct numerical simulation done by Bruce Trent [9], as shown in Fig. 1.5.

. . ——-



—

, Boundary\

Forces

Figure 1.5 Large Scale DNS Calculation

In the microscopic case the hoop stresses force molecules of the material, associated with

microscopic perturbations of their placement, to move relative to other molecules. The

crenelation occurring at the microscopic level is described by the limit as the collective

nonhomogeneities vanish.

The description of crenulative turbulence is assumed to be completely contained in

the Navier-Stokes equations for fluid dynamics. Just as for ordinary turbulence, however,

the essence of the behavior is difficult to extract from these equations. More tractable is to

investigate several types of averages, and to derive transport equations for quantities that

6



emerge from the averaging process as a result of nonlinear fluid behavior. The technique

seems at first to magnify the complexity enormously, but much progress has been made

with this approach, which is the one that we take in this thesis. A basic feature of this way

of proceeding is the recognition of mean quantities and the fluctuations of those quantities

from the mean values. Thus to characterize the crenulative behavior we have taken a

Reynolds decomposition approach, much like that of current turbulence transport theories

[10]. The continuity of the instantaneous fluid variables in the Navier-Stokes equations has

facilitated our taking this approach. Assuming the density is constant we make a Reynolds

decomposition of the fluid variables; velocity, pressure, and kinematic viscosity. Various

turbulence variables emerge from the derivation of the transport equations. The most

important variables are the Reynolds stress tensor I?u, the response tensor M,,, the Ni

vector, and the driving tensor Zti. The Reynolds stress tensor for crenelation is the same

as the Reynolds stress tensor for classical turbulence and is a measure of the turbulence

intensity. The response tensor M,,, when coupled to the mean flow rate-of-strain, is a

source to the Reynolds stress tensor.

~=Mjl(2$+zJ+Mi,[5t+?!l)....

The driving tensor 20 describes the configuration of the nonhomogeneities in the system.

Also, when the driving tensor is coupled to the rate of strain it is a source to the response

tensor M,, and sets the scale for the evolving crenelation.

It can be seen the driving tensor coupled to the mean flow gradient ultimately contributes to

the Reynolds stress tensor. Physically this means the crenulative turbulence is driven by

7
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the combination of a nonhomogeneity and the convergence of the material. These terms are

very important because they fall directly out of the derivation; there is no modeling involved

and foundation of the physics lies in these terms. Our goal in this thesis is to see in detail

how these and all the other relevant transport contributions emerge from the derivations.
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Chapter 2

GeneralEquations

In this chapter the basic equations for conservation, fortheevolution of the

kinematic viscosity, and for the constitutive responses are introduced and discussed in

some detail. These equations are expressed in an Eulerian frame of reference and in tensor

notation. Also in this chapter the dependent variables, the instantaneous fluid variables,

are introduced. These fluid variables include the mass density, velocity, pressure, dynamic

viscosity, kinematic viscosity, internal energy, and temperature. The equations in this

chapter are for the exact microscopic variables, not the mean variables described in Chapter

3.

In the absence of body sources, any quantity per unit volume, A, changes with

time in response to a flux of that quantity, Fj, according to the equation

In this conservation equation, A can be a tensor of any order ( scalar, vector, etc.) and Fj

is accordingly a next-order tensor.

2.1 Conservation of Mass

Consider a control volume with mass that changes with time as a result of flux

across the boundary. For the principle of conservation of mass, the total flux is purely

advective, and is given by Fj =puj. Thus the mass conservation is represented

mathematically by

9
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(2.1)

where p is the instantaneous mass density and Uj is the instantaneous fluid velocity. If the

mass density is assumed to be constant through space and time we get the incompressibility

condition which is represented mathematically by the vanishing divergence of the velocity

field (i.e. the velocity field is solenoidal)

(2.2)

Whether in the form of equation (2.1) or equation (2.2) the conservation of mass is the first

condition that must be satisfied by the velocity and the mass density.

2.2 Conservation of Momentum

The principle of conservation of momentum is an application of Newton’s second

law of motion to a fluid element. The flux of momentum density, p ui, has two

components, the advective tensor, Puiuj> and the stress, au. Neglecting body forces the

conservation of momentum can be represented mathematically by

(2.3)

Under some converging circumstances gravity can play a role such as with fluid flowing

unforced through a funnel, but in our case the converging forces are large compared to the

gravitational effects. The fluid variables must satisfy this partial differential equation to

satisfy the basic law of dynamics. The stress will be described in the section on

constitutive relationships.

10



2.3 Conservation of Energy

The principle of conservation of total energy incorporates the first law of

thermodynamics for a fluid element. The conservation of total enerfl principle states the

rate of change of the total energy is equal to the rate at which work is done plus the rate at

which heat is added by conduction to the fluid element. The flux of total enerjgg includes

advection, work done, and heat conduction. The conservation of total energy can be

represented mathematically by

~(PE) + a(PEuj - ‘ia~ + !/j) = ~

a dXj

where E is the total energy per unit volume and qj is the heat flux due to conduction. The

total energy of the fluid has two parts, the internal energy, e, and the total kinetic energy,

~ukuk;E =e+~ukuk. Using the conservation equations for mass and momentum, we can

get an equation for the internal ener=~

(2.4)

(2.5)
dt dxj

This equation, which is equivalent to the first law

“ dxj dxj

of thermodynamics, describes the rate of

change of the internal energy due to conversion of mechanical energy into internal energy.

This is because of the action of the surface stresses, and also due to the addition of heat by

conduction. For an incompressible fluid, the second law of thermodynamics states that

11
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2.4 Constitutive Equations

In this section an expression for the stress Oti, which occurs in the conservation of

momentum and internal energy equations, and an expression for the heat flux qj are

introduced. For the analysis of crenulative turbulence we used a Newtonian jhid

constitutive relationship

(2.6)

where P is the thermodynamic pressure, 6Uis the Kronecker delta, and TOis the shear

stress, which is a function of the strain rate. An essential feature of a Newtonian fluid is

that the stress is linearly related to the strain rate. The stress relationship is mathematically

represented by

(2.7)

The coefficients A and # are known as the bulk viscosity coefficient and the dynamic

viscosity coefficient, respectively. If a flow is incompressible 2 has no effect on the stress

au’ – O The full constitutive relationship that we use is thussince — –
dx[ -

(2.8)

The constitutive relationship for the heat flux is an expression of Fourier’s law,

which states that the heat flux by conduction is proportional to the negative temperature

gradient:
(3T

qk =–kz
k

in which k is’the thermal conductivity of the fluid and T is the temperature.

12
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2.5 Evolution of the Dynamic Viscosity

An evolution equation for the dynamic viscosity coefficient is an important facet in

the analysis of crenelation. The evolution equation for the dynamic viscosity describes the

change in dynamic viscosity for a given fluid element due to a source that could depend on

mass density, temperature, and other fluid variables. The evolution of the dynamic

viscosity is mathematically represented by

DjJ = ~p
‘p =S(p,T,...)—— —

Dt dt +‘[ dx[

where S(p, T,...) is the source. In the crenulative flow in this thesis, the dynamic viscosity

is constant in any element of fluid, but varies from one element to another, thereby giving

the necessary nonhomogeneity for driving the crenelation.

2.6 Preliminary Equations for Crenulative Turbulence

In this section we make a few assumptions to simplify the equations for our

crenulative turbulence analysis. To illustrate the mathematics of crenelation it is simpler

and sufficient to consider an incompressible fluid. We assume the mass density is constant

through space and time so that the conservation of mass equation becomes the

incompressibility condition

dUj—=0
~Xj

as stated in equation (2.2). Because the fluid is incompressible the constitutive relationship

for stress simplifies to

[)Jui ~ dUj
CYu=–P6g+p — —

dXj dXi

13
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and the bulk viscosity coefficient has no effect on the stress. We also neglect the effects of

body forces acting on the fluid. The momentum equation is then divided by the constant

mass density, and the simplified constitutive relationship for stress is substituted into give

WeseLp=~ P-and V=— m which v is the kinematic viscosity coefficient. Inserting p
P P

and v the conservation of momentum for our crenulative turbulence analysis is

(2.11)

Equation (2. 11), which is the combination of the conservation of momentum with the

constitutiverelationshipfora Newtonianfluid,is aprincipalconditiontobe satisfiedbythe

crenelating fluid. Regarding the behavior of internal energy, we simply neglect heat

conduction in the fluid. With constant mass density the internal energy equation (2.5) is

divided by the mass density. Substituting the simplified constitutive relationship for stress

the internal energy equation becomes

(2.12)

dui
The work term vanishes because 6,, —

J.j
is the incompressibility condition. The terms on

the right side are called the dissipation function, which measures the rate at which

mechanical energy is being converted into thermal energy. The evolution of the dynamic

viscosity is simplified by assuming the source is negligible. The absence of a source

14
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represents the idea that the dynamic viscosity of a given fluid element does not change

during crenelation. With this assumption and dividing the evolution equation for the

dynamic viscosity by the constant mass density gives us an evolution equation for the

kinematic viscosity

(2.13)

These are the microscopic equations that govern the motion of a crenulative fluid. They are

the incompressibility condition, the momentum equation, the internal energy equation, and

the evolution of the kinematic viscosity, i.e. equations (2.2), (2.11), (2.12), and (2.13).

They could, in principle, be solved exactly, but in practice this solution is generally not

tractably obtainable. Instead we look for a technique by which to extract the essence of

crenulative behavior in terms of ensemble averages of the detailed behavior, as described in

the following chapters.

15
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Chapter 3

Fundamental Concepts of Turbulence

In this chapter the ideas of a Reynolds decomposition and an ensemble average of

the instantaneous fluid variables are discussed. These concepts are crucial to interpret the

meaning behind the turbulence quantities that are introduced in this chapter and subsequent

chapters. After the ideas of a Reynolds decomposition and an ensemble average are

established, the mathematical properties associated with the combination of the two are

shown. Then it is shown where the Reynolds stress tensor and the other turbulence

quantities associated with crenelation arise.

3.1 Reynolds Decomposition

When working with a Newtonian fluid it is assumed that the Navier-Stokes

equations govern the behavior of the fluid, including the turbulence behavior. When the

issue of turbulence arises two question may be asked “what exactly is turbulence?” and

“how do we characterize it?”. Turbulence can be defined as the behavior that lies in the

rapidly varying behavior of the fluid variables: velocity, density, pressure, and dynamic

viscosity. The first step in characterizing turbulence was developed by Sir Osborne

Reynolds, who rewrote the Navier-Stokes equations to describe the rapidly varying

behavior of the fluid by making a decomposition of the fluid variables. A Reynolds

decomposition is a decomposition of the instantaneous fluid variables into mean and

fluctuating components; in our case Ui =Zi+u~7 p=~+p’, and v= T+v’ where ~, ~,

and T are the mean components of the variables and U:, p’, and V’ are the fluctuating

components of the variables. Consider a fixed location in a fluid where turbulence is

present, and track the instantaneous velocity ui. As time progresses we would see the

velocity fluctuate about the mean velocity ~. as in Fig. 3.1.

16
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Figure 3.1: Instantaneous Velocity in Terms of Mean and Fluctuating Components

A Reynolds decomposition of the fluid variables is one of the key tools for

extracting information about the turbulence behavior. The case in which the mass density

and dynamic viscosity are constant throughout space and time is known as “constant

density turbulence” or “classical turbulence”. This type of turbulence research has been

studied for decades and most of the engineering turbulence transport models being used

today have stemmed from this research. The case in which the mass density is also

variable through space and time is known as “variable density turbulence”. This type of

turbulence is fairly well known, but not as well as the constant density turbulence, having

only been studied in recent years. The case in which the mass density is constant

throughout space and time, but the stress response is variable is what we call “crenulative

turbulence”. This type of turbulence is hardly known and is the focus of this thesis.

17
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3.2 Ensemble Averaging

Ensemble averaging is a key tool in the development of turbulence transport theory.

It is the idea that the governing equations can be averaged even though the rapid variations

due to turbulence play a significant role. An ensemble average can be equivalent to a time

average, or spatial average, but in general it is an average over many experiments with the

same macroscopic initial and boundary conditions. Consider the ensemble average over

many experiments of the flow over a cylinder. If we were to run this experiment one time

and look at the instantaneous velociw at position (xO,YO,z. ) at time ~. the velocity might be

as Figure 3.2 indicates for experiment #l.

G&neexperiment #1

‘i(x~,Y~,zo,t~) experiment #2

b

+

Figure 3.2: Ensemble Average of the Instantaneous Velocity

If we were to run the experiment a second time and look at the instantaneous velocity at the

same position (XO,YO,Zo) and at the same time t. as in experiment #l, the velocity tight be

as the experiment #2 label indicates. If we were to continue to run the experiment over and

over we would find the velocity at position (XO,yO,Z. ) and at time towould deviate about

some average velocity Zi. We relate these ideas to the governing equations by taking an

ensemble average of the governing equations. If the initial and boundary conditions were

18
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exactly the same, then each member of the ensemble of solutions would be the same as

every other member. Thus the ensemble of solutions becomes interesting for turbulence

studies only if there are “microscale” differences among the initial and boundary

conditions. We signify an ensemble average of the governing equations (2.2), (2.11),

(2.12), and (2. 13) by a bar over each term

——
*+*=0
iv axl

(3.1)

(3.2)

(3.3)

(3.4)

The ensemble average is inherently distributive, i.e. the average of the sum is equal to the

sum of the averages a + ~ = ~ + ~. In addition the derivative of an average equals the

average of the derivative.

3.3 Properties of Reynolds Decomposition

Averaging

aIong with Ensemble

The idea of mean and fluctuating components along with an ensemble average of

the governing equations is the starting point for development of turbulence transport

theory. In the governing equations (3.1), (3.2), (3.3), and (3.4) two cases occur: an

instantaneous fluid variable stands alone or two instantaneous fluid variables are coupled

together. A Reynolds decomposition along with an ensemble average of an instantaneous

19
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fluid variable or of the product of two correlated fluid variables, leads to two important

properties: (1) The ensemble average of the fluctuation of an instantaneous fluid variable is

zero. (2) The ensemble average of the product of two correlated variables leads to a second

order correlation

(1)

(2)

The ensemble average of a Reynolds decomposition of two correlated instantaneous fluid

variables can be in combination with spatial gradients or temporal gradients of any order.

The second order correlation is some measure of the intensity of the fluctuations of the

correlated variables. Also, the correlation can be thought of as a single variable; A = “~’.

Properties (1) and (2) can be extended to a Reynolds decomposition and ensemble average

of three correlated variables

(z+a’)(p+p’)(~+y’)= ap~+ztpy’+zi~y+ a’p~
—— ——

—— ——
+Zip’y’ + a’y’p + C/p’ y+ a’yy’

A variety of terms appear, but the average of a single fluctuation is always zero. Therefore

only the product of the three mean quantities, the second order correlations, and the third

order correlation do not vanish

(E+ a’)(p+~’)(?+y’)= ZZF7+EW+ a’y’p -1-a’p~+ a’p’y’
—. ——

20



3.4 Reynolds Decomposition and Ensemble Average of the Mass,

Momentum, Internal Energy, and Kinematic Viscosity

Equations

The mass equation (incompressibility condition), momentum, internal energy, and

kinematic viscosity equations along with a Reynolds decomposition of the instantaneous

fluid variables and an ensemble average results in an exact. set of governing equations for

the crenulative turbulence. If the individual fluctuations of the instantaneous fluid variables

could be calculated, the ensemble averaged Navier-Stokes equations would yield an “exact”

solution to the flow. At this point in time there is no practical technique to calculate the

individual fluctuations, so obtaining the “exact” governing equations is only an intermediate

step in developing a model for crenelation turbulence.

Consider the incompressibility condition, equation (3. 1), with a Reynolds

decomposition and ensemble average of the instantaneous velocity

or

w +4 =*
(3Xl

xq+a~=o——
dx, C2x,

Because the ensemble average of a single fluctuating component is zero, the mean and

fluctuational velocities are both solenodial, i.e. divergence free

a~_o ~ au; _.

~– ~–

Consider the conservation of momentum, equation (3.2), with a Reynolds

decomposition and ensemble average of the instantaneous velocity, pressure, and kinematic

viscosity

21
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which reduces to the following

Second order correlations due to the fluctuations of the instantaneous fluid variables are

introduced. The quantity UJU;is a second order correlation known as the Reynolds stress

, t%;
tensor and is represented by Ril= ujuf. The quantity v —

dxl
is also a second order

correlation and can be rewritten as
(?-%

The two double correlations are

dv’
represented by the vector Ni = v’uj and the second order tensor Mil = uj— With these

ax, “

definitions the mean momentum equation becomes

dX~dXi dx[

Consider the conservation of

decomposition and ensemble average

kinematic viscosity

(3.6)

internal energy, equation (3.3), with a Reynolds

of the instantaneous internal energy, velocity, and

22



which reduces to the following

New quantities

quantities ~,

-.

due to the fluctuations of the instantaneous variables are introduced. The

f%;au; ~d du: du; au;——
dx~Jx[

—— aresecond order correlations. The quantities v’—
~Xi dX~ ax,

du;
and V’—

dXi
are the same second order tensor quantities as in equation (3.6). Notice that the

Al; du; ~d ‘, t%;Ju; whichmean internal energy equation introduces the quantities v’—— ——
f3x,ax, dXi ~X[

are triple correlations. In terms of the newly defined variables, the mean internal energy

equation becomes

(3.7)

Consider the evolution of the kinematic viscosity, equation (3.4), with a Reynolds

decomposition and ensemble average of the instantaneous velocity and kinematic viscosity

a(v + v’) + d(v+ V’)(Z+U;)= ~
13t dx,

or
a+ aiq Wu; _.—— — _
at dx, + dx,



Because both the mean and fluctuational velocities are solenodial, the evolution of the mean

kinematic viscosity can be written as

or

67 +E,iw ,Af’=o——
z dx, +‘1dxl

(37 _ (37 ~ av’u;

%
—=0

+ “ Jxl ax,

(w
The quantity uj~ is the contraction of the second order tensor Mil, hence the evolution

1

of the mean kinematic viscosity becomes

or

Equations (3.5), (3.6), (3.7), and (3.8) are the exact equations for conservation of

mass, mean momentum, mean internal energy, and evolution of the mean kinematic

viscosity that govern the crenulative flow. A Reynolds decomposition and ensemble

average of the basic governing equations may make the governing equations appear more

complicated, but they reveal the effects due to mean behavior and turbulent behavior. It is

evident that the turbulence quantities ~.l and Mil play vital roles in the evolution of the

mean momentum and the mean internal energy. So what do we do with these higher-order

moments and how do we calculate them? We can do several things: we might use a

Boussinesq approximation technique; we might model these quantities with other known

quantities (such as ~, F, and V); we might simply neglect them; or we might develop

transport (or evolution) equations for them. We choose the last of these possibilities,
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because the information obtained from a transport equation gives us much more insight to

the crenulative behavior than any other method.
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Chapter 4

Exact Transport Equations in Cartesian Tensor

Form

In this chapter the exact transport equations for the Reynolds stress, RU, the MO

tensor, the Ni vector, and the Zti tensor (which comes from the transport equation for Mti)

are derived. The Reynolds stress tensor is derived by taking a “moment” of the basic

(unaveraged) equation for conservation of momentum. The Mu tensor is derived by

taking moments of the equations for conservation of momentum and the evolution of the

kinematic viscosity. The 20 tensor transport is derived by taking a moment of the

evolution equation for the kinematic viscosity. Also, in this chapter the different modes of

energy are discussed, and the evolution equations for mean kinetic energy and turbulent

kinetic energy are derived.

4.1 Reynolds Stress Transport Equation Derivation

The basic (unaveraged) momentum equation is the foundation for deriving a

transport equation for the Reynolds stress tensor 1$. The first step is to multiply the

momentum equation by u;

{-+”12=-$++’(%+$),J“i

‘j C3t
(4.1)

The second step is to make a Reynolds decomposition and take an ensemble average of this

equation

26



The third step is to reverse the free indices i and j in equation (4.2) to obtain a companion

equation

The fourth step is to add equations (4.2) and (4.3), and combine terms using the product

rule

We can see there are Reynolds stress terms, triple correlations, pressure correlations, Mu

terms, Ni terms, and various other moments. Replacing some of the quantities with their

newly defined terms we get the following transport equation, which describes the

variations of Reynolds stress

27
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(4.4)

This is an exact transport equation of the Reynolds stress tensor, in which some new

turbulence quantities arise because of the fluctuationa.1velocity moment used to derive this

transport equation. All the second and third order correlations need to be modeled or a

transport equation needs to be developed for them. In equation (4.4) there are

contributions to the Reynolds stress tensor from the Mu tensor and the IVivector coupled

to the mean flow gradient. It is therefore appropriate to develop transport equations for

both Mti ~d Ni.

4.2 kfti Transport Derivation

The basic (unaveraged) momentum equation and the evolution equation for

kinematic viscosity are the foundations for deriving a transport equation for Mu. The first

av’
step is multiplying the momentum equation by —

ax:
J

Ai aui _ ap a

[ )1}

&i ● auk—_—— —— —
at +‘1 axl axi + axk v axk axi

(4.5)

The second step is to make Reynolds decomposition and take an ensemble average of this

equation
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– --[”(2+31

= W ap’ ● W d———
JXj dXi JXj Jxk

--[VIZ+=JI+HV’[H)l ‘4-’)

p’ d – i%; Ju;

JXj dX~

The third step is to take the gradient of the evolution of the kinematic viscosity and multiply

by U;

“${$+U’$=”} (4.7)

The fourth step is to make a Reynolds decomposition and take an ensemble average of this

equation

()(3 dv’
The first term u:— —

[)
canbe rewritten as u!? 2V’

dXj dt
— , hence we get the following

‘ dt dXj

‘+FJq+@g+qFJ=o ,4,,

The fifth step is to add equations (4.6) and (4.9), and combine terms

29
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-a
[ -),(w al: w (-),A’ au; , d , av’

‘U1~ ‘i 8Xj
—iil— — ‘—

dXl dXj + “ dXj dx~ + ‘i ~ “ ax,

= dv’ dp’ ~

()

av’ av’ diii ~ azk ● v, ad az~——— —— —— ——
axj axi axj axk axk axi axj ax;

( )

~ av’ au; ~ av’ au; d7 ~ ~av’ a%;.— —— — ——
axj axk axj axi axk axj ax:

second order correlation, which describes the

We can see there are MUterms, Reynolds stress 1$ terms, and various new double and

av’ av’
triple correlations. The term —— is a

axj axk

av’ avf
configurational state of the nonhomogeneities and is represented by Zjk = ——

i3xj axk”

Replacing some of the moments with the newly defined terms we get the following

transport equation for Mu

This is the exact transport equation for Mu, which contains yet more moments. All the

second and third order correlations not previously defined need to be modeled or transport

equations need to be developed for them. In equation (4.4) there is a contribution to the
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Reynolds stress tensor 1$ from Mu coupled to the mean flow gradients, and because of its

importance we developed a transport equation for Mu. In equation (4.10) there is a

contribution to MOfrom the 20 coupled to the mean flow gradients, and because of its

importance we develop a transport equation for Zti, but frost we developed a transport

equation for iVi.

4.3 Ni Transport Derivation

The basic (unaveraged) momentum equation and the evolution equation for

kinematic viscosity are the foundations for deriving a transport equation for Ni. The first

step is multiplying the momentum equation by v’

{

- J=-$+$[v(%+%)]}, JU,
+U, au”

v at dx,
(4.11)

The second step is to make Reynolds decomposition and take an ensemble average of this

equation

The third step is to take the evolution of the kinematic viscosity and multiply by U;
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The fourth step is to make Reynolds decomposition and take an ensemble average of this

equation

, w +U:ug _ ,w , ,(3V’=0

‘ix 1 + ‘lui~+ ‘iu[ax,
(4.14)

The fifth step is to add equations (4.12) and (4.14), and combine terms

We can see there are ZViterms, Reynolds stress RJ terms, and various new double and

triple correlations. Replacing some of the moments with the newly defined terms we get

the following transport equation for Ni

This is the exact transport equation for Ni, which contains yet more moments. All the

second and third order correlations not previously defined need to be modeled or transport

equations need to be developed for them.
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4.4 Zti Transport Derivation

The basic (unaveraged) equation for evolution of the kinematic viscosity is the

foundation for deriving a transport equation for ZU. The first step is to take the gradient of

W
the evolution equation for the kinematic viscosity and then multiply by —

dXi

{

w a av tw=o—.
dXi dXj Z+ “ ~X[-J (4. 16)

The second step is to make a Reynolds decomposition and take an ensemble average of this

equation

Zd”%)+%[u;%)””+Af’ d
(4.17)

()av’ (3 a’
The first term —— —

()

W d dv’
JXi dXj dt

can be rewritten as —— — hence we get the
dXi dt dXj ‘

following equation

The third step is to reverse the free indices i and j in equation (4.18) to obtain a

companion equation
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%[3+%(’$3
‘%4”’%)+%s(”’%)=0

The fourth step is to add equations (4.18) and (4.19) and combine terms

[)d w w [)● cm’ w %,~ (3V’ dv’ dg ~ ~ (3 av’ a’——— ——— ——— .——
C3t ax, dxj (3Xiax, axj (3XjI-3X,ax, ‘ ax, ax, axj

p’ a“; 67 ~ 67’ A; iw ~u: Af’ J217 —6’V’ 132V——. ——— — + u;——
JXi dXj dX[ dXj dXi dX[ dXi JXjdX[ dXj dXidX,

(4. 19)

(4.20)

We can see there are ZU terms and various new double and triple correlations. Using the

definition of 20 we get the following transport equation, which describes the evolution of

configuration of the nonhomogeneities

~ Af’ d“; 67 ~ A/’ au; dv ~u~av’ a2ii —~ ~~av’ a%——— ——. — ——
axi axj ax[ axj axi dx[ dXi dXjdX, axj axiax,

~av’ au; av’ ● ai au; av’

()

a JVI dv’ =”
—.— —.—
axi axj ax[ axj axi ax,

+u;_ ——
ax[ axi dXj

(4.21)

This is an exact transport equation of the 20 tensor and again some moments arise because

of the moment used to derive this transport equation. All the second and third order

correlations not previously defined need to be modeled or a transport equation needs to be

developed for them.

34



If we were to develop a transport equation for each triple correlation in equations

(4.4), (4.10), (4. 15), and (4.21) we would find fourth order correlations in each transport

equation. In general, developing a transport equation for an nfh order correlation would

introduce (n+ l)r~ correlations. We do not want to develop an infinite series of transport

equations so we “model” or approximate these double and triple correlations.

4.5 Distribution of Energy (Exact)

The total energy in the system is contained in three modes, mean internal energy,

mean kinetic energy, and turbulent kinetic energy. In section 2.3 the total energy per unit

mass was defined as the sum of the internal energy and the total kinetic energy; in

unaveraged form we have

E
1

Iolai =e+—uiui
2

The total energy can be expressed in terms of the mean internal enerjgg F, the mean kinetic

energy, KE, and the turbulent kinetic energy, K, by making a Reynolds decomposition

and taking the ensemble average of the total energy

Etoral (4.22)

Thus the mean kinetic energy is identified as KE = 1~ il.~-and the turbulent kinetic energy is

K = ~~. Because the Reynolds stress tensor is 1$ = ~, then one-half the contraction

of ROis equal to the turbulent kinetic energy, i.e. K = ~Rll. A transport equation for the

mean internal energy equation has already been derived, equation (3.7)
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The mean kinetic energy equation can be derived by taking a ~ moment of the mean

momentum equation (3.6)

( )1

_#iQzi/——
3X[ dXi

Rewriting equation (4.23) results in the following

or

(4.23)

(4.24)

The turbulent kinetic energy transport equation can be obtained by contracting the Reynolds

stress equation (4.4)
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_ J2Rti --+2U;W2+H—_~vau:au:
‘v 13x: dx[ ax,

Replacing R~ with 2K we get the following

or

(4.25)
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4.6 Summary of Exact Transport Equations

Incompressibilityconditionequation(3.5)

Mean momentum equation (3.6)

Mean internal energy equation (3.7)

Evolution of the mean kinematic viscosity (3.8)
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Reynolds stress transport equation (4.4)

ik?titransport equation (4.10)

J d,’,’ t32q‘( ~a,’ au; )● a,’ au: & #2Mo _2#u; f32v’—— —. .— ——
2 dXj dX~ dXj dX~ dXj dXi dX~ dX~

——

dX, dX[dXj

– , t33v’

[ )—avf ad au; ● h; ~,, a,’ a%;—— —— ——
–‘UidXfdXj + EJxj dX~ ~X~ axi axj ax:

Ni transport equation (4.15)
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20 transport equation (4.21)

~z. (3F[~ Z,[(3Z _ dz..
2+ Zi[— J+u, -__#
at dXj J JXi 1

~ av’ au: a dv’ au; av ● u; av’ a2ii —~U;av’ a%——— —.. — ——
axi axi ax[ + axj dxi ax, axi axjax, axj axidxl

●av’ au; af ~ av’ au; af

()

a av’ avf = ~
——— —.— +U:— ——
axi axj ~xl axj axi Jxl ax[ dXi axj

Mean kinetic energy equation (4.24)

Turbulent kinetic energy equation (4.25)

Up to this point we have derived a set of exact transport equations that govern a

crenulative circumstance. Even though these equations are exact they do not display

closure because of the double and triple correlations; i.e. there are more unknowns than

equations. For these equations to become a closed set we must model the double and triple

correlations, thus giving us a set of approximate but closed equations.
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Chapter 5

Modeled Transport Equations in Cartesian Tensor

Form

In this chapter the guidelines for turbulence modeling and a postulated set of

circumstances for crenelation are discussed. Also the modeled (closed) transport equations

for the Reynolds stress tensor ~j, the MU tensor, and the ZUtensor are developed. The

contraction of Mu and its effects on IViare discussed in some detail. The modeling of the

mean internal energy equation and the turbulent kinetic energy equation must be consistent

with modeling the transport equation of the Reynolds stress tensor. When developing a

closed set of equations the terms in each of the equations must be functions of quantities

that can be explicitly determined. This means the number of equations is equal to the

number of unknowns. The explicit variables used for modeling are any of the mean

quantities, and also the moments RJ, Mu, Ni, and ZU,and gradients of these quantities.

5.1 Turbulence Modeling Guidelines

The main goal of turbulence transport theory is to solve turbulent flow problems

without completely solving the Navier-Stokes equations for each fluctuation of the fluid

variables. This goal is directly analogous to that of solving the gas dynamics equations

instead of the equations for the motion of every molecule. With a turbulence transport

model each fluctuation does not have to be resolved, instead an average value of the

correlations associated with the turbulence can be calculated. In the development of the

turbulence transport models all of the representations must appear in a closed form. Closed

form means all the terms in the transport equations are functions of explicitly determined

values. This means there will not be more unknowns than equations, as is the case in

chapter 4. Also, in the development of a turbulence transport equation it is our goal to try
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to represent as wide a range of turbulent flow circumstances as possible with a single

representation [10]. The modeling should therefore be independent of the initial and

boundary conditions. In addition, the model must have the capability to display various

physical processes such as convection, diffusion, creation and destruction, and exchange

of components among the nonisotropic directions of the turbulence quantities. Generally,

in the development of turbulence models there is a set of guidelines that must be followed

to ensure proper formulation of the transport equations.

1.

2.

3.

4.

5.

Proper dimensionality must be maintained. The modeled term must have the

same dimensionality as the unmodeled term. The transport equations for R., Mu,

and 20 all have dimensions of length squared divided by time cubed. This means

all modeled terms in those equations must have the dimensions of length squared

divided by time cubed.

Proper contraction of a tensor must be preserved. The modeled term must

contract in the same manner as the unmodeled term. If an unmodeled term

contracts to zero so must the modeled term.

The conservation properties of the unmodeled term must be preserved. If the

unmodeled term is conservative then the modeled term must be conservative as

well.

Tensor invariance and symmetry must be preserved. The modeled term must

exhibit the same tensor properties and index symmetries as the unmodeled term.

A model term must exhibit Galilean invariance. This means the modeled term

retains the same properties in any inertial frame.

In addition to the modeling guidelines are the constraints of realizability. Any diagonal

component of the Reynolds stress tenor must be positive definite, i.e. l?]120, R2220,

2 >0,Rq~ 20. The Schwartz inequality applied to the Reynolds stress is ~ii)~j) – ~u) –
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where the parentheses indicate the summation is suspended on the indices. In addition

there is a constraint among the tensors, RO, My, and 20, which is Z(ii)~j) – M~jl20,

where the brackets indicate the summation is suspended. These constraints must apply

everywhere in the domain at all times. It has been proposed, but not yet validated, that the

realizability constraints are comected to proper informational entropy behavior.

The modeling of various moments to close the equations often looks more like art

than science. We follow the modeling techniques from classical turbulence where possible

and postulate some new types of closures where required. Only after considerable testing

and modification of the closures will the theory of turbulent crenelation gain the

respectability that is only gradually being given to the transport theories for simpler

circumstances.

5.2 An Illustrative Set of Circumstances for Crenelation

In the past, the study of turbulence transport theory has taking some creativity on

the part of the researchers to develop workable models. In the early days various models

for classical turbulence were postulated, which at the time were advanced works in the

field; but now with the help of high speed computers better models are being introduced.

Crenelation is an area of turbulence that has not been investigated extensively, so there are

many concepts that are relatively new. Rather than trying to develop a complete model for

all possible circumstances, we have worked with a restricted set, which alleviates some of

the mathematical complexities and lays the foundation for understanding some of the new

concepts of crenelation turbulence.

The first restriction is that the mean kinematic viscosity is constant through space

and time. This has a profound effect on the evolution of Ni, on the contraction of &ftiand

on the modeling of the transport equation of MU. The second restriction is that the

divergence of ~ in the transport equation of the mean internal energy is negligible. The
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third restriction is the scalar V’V’in the transport equation for Mu is constant through

space and time.

To see the motivation and interpretation of the first restriction, consider the

evolution of the mean kinematic viscosity equation (3.8)

If the mean kinematic viscosity is constant through space and time then the contraction of

MUis zero and Ni is solenoidal, i.e. divergence free

M,, -:–J=o
1

The vanishing contraction of MU means the transport equation for this variable must

contract to zero. In the modeling of the transport equation for Mu; Mll = O will be taken

into consideration. For the restricted set of circumstances one possible choice for Ni is to

let it be a constant; this choice still satisfies the condition of being solenoidal. The transport

equation for the Reynolds stress tensor is thereby simplified and we do not have to

consider closures for the evolution equation for Ni.

The divergence of ~ is a term that behaves like the diffision of the mean internal

energy due to the crenulative turbulence. The processes of advection, dissipation to heat,

and the other processes occurring in the mean internal energy equation might very likely be

the dominant processes, so it could be argued the diffusion of the mean internal energy is

negligible For no other reason we have neglected the divergence of e’u~, therefore we do

not have to develop a closure for the vector e’u[. ,

The third restriction is that the scalar, v’v’, in the transport equation for MU is

constant through space and time. We can show the reasonableness of this restriction by
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developing a transport equation for v’v’. First multiply equation (2. 13) by v’, then make

a Reynolds decomposition, and finally take the ensemble average

1 a V’v’ 1 _ 6’V’V’ —& 1 ,av’v’=o
–—+–u/ —+ V’u[—+–~1—
2 dt 2 dx, dx, 2 dx[

The first two terms on the left side combine into the Lagrangian derivative, and because the

mean kinematic viscosity is constant through space and time we obtain

(WV’
If we assume the triple correlation U:= vanishes, then V’V’is a constant

1

Dv’v’—=0 +
Dt

v’v’ = constant

The correlation V’V’being a constant further simplifies the Reynolds stress equation and

the transport equation for this correlation does not have to be included with the rest of the

governing equations.
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5.3 Reynolds Stress Transport Modeling

The Reynolds stress transport equation (4.4), within the restricted set of

circumstances, reduces to

The terms that need no modeling are:

Inertial term

Mean flow coupling terms

Advection term

h4Ucoupling to

the mean flow gradient

Diffusion of the Reynolds stress
dz~j

due to the mean viscosity v—
ax:
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The remaining terms, the triple velocity correlation, the pressure-velocity correlations, and

the various other correlations are all terms that need to be modeled. The modeling of these

terms follows the above guidelines; some of the terms have been discussed by other

researchers. The new terms that arise due to kinematic viscosity fluctuations are modeled

using some of the modeling techniques used by other researchers.

Ju;uju;
The gradient of the triple velocity correlation

Jx[
acts as a diffuser of the

turbulence, having a tendency to spread the turbulent energy spatially. Daly and Harlow

proposed a gradient flux approximation for a triple correlation involving a velocity

fluctuation [11]

in which A can be a tensor of any order and can involve the product of two coupled

fluctuations; C is some dimensionless parameter, s is a physical length scale associated

with the turbulence, K is the turbulent kinetic energy, and ~ is the ensemble average of

A. The physical length scale can be associated with the size of the nonhomogeneities, or

the separation distance between nonhomogeneities, or the dominant scale of the turbulence.

In classical turbulence or variable density turbulence s relates to the dominant turbulent

scale. Here we tentatively assume s relates to the scale of nonhomogeneities. Using this

model for the triple velocity correlation results in the following model

(5.1)

in the ~tidelines, but for thisThis term violates the constraint of tensor symmetry explained

model we have relaxed this constraint without destroying the effect of the triple correlation.
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We relaxed the tensor symmetry guideline purely as a first-cut simplification, in which the

flux of a Reynolds stress component depends only on the gradient of that component.

We can rewrite the pressure-velocity correlations in conservative and vanishing

contraction parts

-E-T=-[F+T)+P’[%+:)

‘etem-[F+T)is conservative because it is the gradient of a flux. Daly and

Harlow [11] proposed the simple diffusion approximation for the conservative part of the

pressure-velocity correlation

The model for the gradient of the triple velocity correlation, equation (5.1),

for the conservative part of the pressure-velocity correlation, equation

combined into one term

ih;u;u;— —
dx,

(5.2)

and the model

(5.2), can be

(5.3)

where CD= Cl+ C2 is a dimensionless parameter. This model represents the turbulent self

diffusion.

[)au; ~ Ju;
The term p’ — — has vanishing contraction and is nonconservative.

8Xi dXj
This

term does not contribute to the turbulent kinetic energy in any location because of the

vanishing contraction, but may exchange energy among the diagonal components of the
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Reynolds stress tensor. Launder, Reece, and Rodi [12] proposed a “rapid pressure term”

and Rotta [13] proposed the addition of a “return to isotropy term”

where c~ and c. are dimensionless parameters. We assume that the return to isotropy is

enhanced by collisions of the nonhomogeneities, which are driven by the mean flow

contortions in the system. The nonhomogeneities can interact with one another because the

mean flow contortions bring them together. This gives the opportunity for stretching,

coalescence, and fragmentation of the nonhomogeneities in the system, although in this

thesis we have ignored the possibility of coalescence or fragmentation. Through this

additional collision term we can enhance the rate at which the diagonal components of the

Reynolds stress tensor become isotropic. The modified model is represented by the

addition of the C~Rterm

(5.4)

where .~~ is a dimensionless parameter. This model describes both the redistribution of

Reynolds stress components and the return to isotropy of the turbulence.

The correlation -275 ~—~, dissipates the Reynolds stress components (and thus
1

the turbulence energy) due to the mean kinematic viscosity. In classical turbulence this

term is usually modeled by a dissipation term &uyielding a K –s turbulence model, but
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the introduction of an epsilon term implies the turbulence energy is being dissipated to heat

at the finest scales; whereas, in reality, the dissipation refers to cascade of Reynolds stress

components to fine scales. In our viscous crenelation the turbulence is dissipating to heat

at scales on the order s, the size of the nonhomogeneities. Daly and Harlow [11] proposed

the general approximation

aA’ aB’ —= ~ A’B’
ax, ax, S2

where A’ and B’ can be any fluctuational quantities. Applying this closure recipe to the

viscosity term we get the following equation

where A is a function of the turbulent Reynolds number and s is the same physical length

scale used in the model for the triple velocity correlation.

The models for the triple correlations in equation (4.4) involving a viscosity

‘~[ti(~+$$]mdu:~[ti(~+*)]7havesifi1mfomsmthe
fluctuation, u<

~z~j _&; h;
mean viscous diffusion V—

dx:
and the unmodeled decay term –2 v——

dx, ax,
in an indirect

way. The decay term is large compared to the mean viscous diffusion, and since the form

of the triple correlations is similar to these terms we added an enhancement to the decay

term through the parameter Q to model these triple correlations

50



?., ,,~ — U. ~. -— . . .

The result of combining the two models

Substituting the modeled terms for the exact terms results in a modeled, but closed

Reynolds stress tensor equation

This modeled equation displays the potential for describing various physical processes

including creation, advection, turbulence diffusion, redistribution of Reynolds stress

components, return to isotropy, creation due to Mti, mean viscous diffision, and decay.
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5.4 MY Transport Modeling

The MOtensor equation (4.10), within the restricted set of circumstances, reduces

to

The terms that need no modeling are:

dMu
Inertial term

(%

Mean flow coupling terms ~, g-J- & j$fi[~
[ J

WG
Advection term Z1—

Jx,

Zti coupling to

the mean flow gradient

Diffusion of Mu

due to the mean viscosity
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The remaining terms, the triple correlations and the pressure-viscosity correlation, need to

be modeled. The modeling of these terms follows the guidelines discussed for the

Reynolds stress equation.

(W’ Ju:
Thetriple comelation uj—— can be rewritten

dXj dxl

[),av’au; _ d , ,av’ , ,d2d—— _—
‘1 dXj JX, dXl ‘iui ~ – ‘lui ~

The fust term on the right side can be modeled using the gradient flux approximation

a [),,iv~ – =$w=$[-’.j+lm~]‘lui~Xj m

(5.7)

in which c. is a dimensionless parameter. one possible model for the second term on the

right side is the turbulence diffusion of the mean kinematic viscosity

, ,a2v’—+i~
‘U[uii3x; – J

This term would vanish because the mean kinematic viscosity is constant. Another

argument for neglecting this term is that the second order derivative

kinematic viscosity is negligible, so we have chosen to neglect this term.

d
The triple correlation uj—

()

, W
dXj ‘1 ~

can be modeled using

approximation

,(3

[ l–,w ,dl’kf; d2M,l—= “_&’imdxmdxj
‘i= ‘f% ‘Ui t3xj –

of the fluctuating

the gradient flux
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This term vanishes because the contraction of the Mti tensor is zero, i.e. Mff= O, for the

currently restricted set of circumstances.

Jv’ dp’
For the pressure-kinematic viscosity correlation –XX we proposed a return to

J;

isotropy model just as we did for the pressure-velocity correlation in the Reynolds stress

tensor equation

where CM is a dimensionless parameter. Even though M,l vanishes, this model still

behaves as a return to isotropy, but returning to the isotropic state of zero MU. Just as in

the return to isotropy for the Reynolds stress tensor we propose that the return to isotropy

is enhanced due to collisions of the nonhomogeneities, which are driven by the mean flow

contortions in the system, so that

(5.8)

– au; a2f
The correlation – 2 v— , looks similar to the decay term in the Reynolds

dX[3X~aXj

stress tensor equation, so we propose the following decay model
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Even though there are no triple correlations to use to justify the addition of an enhancement

to the decay term we added the enhancement to remain consistent with the decay term in the

Reynolds stress equation

_2#; J2V’
– =-(27+0)$%
ax[ ilxlaxj

The double correlation Vu;
a3f .

ax~axj’ Is

derivative of the fluctuating kinematic viscosity.

(5.9)

neglected because it is a third order

ad a%;
The triple correlation v’——

t3xj ax:
can be rewritten

These terms are in a form to use the gradient flux approximation

Because V’V’is constant throughout time and space these terms vanish.

[)A’ w’ Ju; ~ du;
The triple correlation —— — —

axj dx~ axkdXiis modeled by requiring the condition

that the contraction of the MU tensor is zero, i.e. M,l = O. Contracting the Mti tensor

equation, with the newly modeled terms and the triple correlation in question, results in the

following
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- -’2Mn,2’znk[2+2)+EE(avf,, ~ ~k a!.f,[
ii (3Xk

In order for Mll to remain equal to zero, we propose to wfite

zz(z’z)=:FMn’2-znk[5+2)l
w w Ju: au;

(5.10)

A possible addition to this model maybe argued by using a gradient flux approximation

The two additional terms represent the coupling of Zti to the turbulent kinetic energy.

These two terms may be negligible because they are higher order terms, so we have not

included them in our model for the MUequation.

Substituting the modeled terms for the exact terms results in a modeled, but closed

MOtensor equation
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This modeled equation displays the potential for describing various physical processes

including creation, advection, turbulence diffusion, decay, redistribution of Mti

components, return to isotropy, creation due to the Zti tensor, and mean viscous difl%sion.

5.5 Zu Transport Modeling

The ZJ tensor equation (4.21),

to

within the restricted set of circumstances, reduces

(32U (A7 _ Zij ● w al: av’“ +Zjl ~ ‘+u[—
● W au: 13v’

()

d wad =0
‘+ Zi~— ——— —.— +U:— ——
at axj ax[ axi axj ax[ axj axi ax,1 ax, axi axj

The terms that need no modeling are:

Inertial term

Mean flow coupling terms

Advection term

z aiz aii[
.-J & z.[—
11axj J t3xi

azuii[—
axl

The remaining triple correlations need to be modeled. The modeling of these terms follows

the guidelines for terms in the Reynolds stress equation and in the Mti tensor equation.

[)a av’af
The triple correlation Ufz ~x is in a form to use the gradient flux

[i]

approximation
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[),d dv’h’ ~ s (32ZU——— =.—‘1&, Jxi Jxj – xe ““(3XJX1m

where Cx is a dimensionless parameter. This term is a turbulence diffusion of Zti, but to

be consistent with the turbulence diffusion of ~J and Mu we model this term as

(5.12)

20 describes the configuration of the nonhomogeneities and from physical intuition

we believe the nonhomogeneities have a limit to how much they can be contorted. We

believe the nonhomogeneities have a tendency to return to an isotropic state while being

stretched out, so we have proposed a return to isotropy for the two triple correlations

dv’ du; W ● h’ au; 6’V’——— ——— In addition to a return to isotropy model we propose that the
dXi dXj JX[ JXj dXi ‘X[ .

contraction of the ZJ tensor is constant, which requires that the transport equation of Z~~is

zero. This implies that if a nonhomogeniety is stretched in one direction it contracts in the

other two directions, so that the fluid elements are only rearranged configurationally within

the constraint that the kinematic viscosity of a given fluid element does not change during

crenelation, as seen in Figure 5.1
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Figure 5.1: Stretching of a Nonhomogeneity

The proposed model for the two triple correlations has a return to isotropy term and a

tensor DUto be detenn.ined from the postulate Zn~= constant.

---’[cz~+cHRJ5=h’ du: W ~ W du; dv’———
dXi ~Xj ax[6’Xj dXi JX[

+ Du (5.13)

where Cz is a dimensionless parameter. The return to isotropy model has the same

enhancement as in the Reynolds stress equation and in the Mu equation. Contracting the

Zuequation, with the newly modeled terms, results in the following

-(dznn+2z,&i,+E,aznn=D ~ d s ~ Jznn—— ——
13t naxn ax, ‘“(3X, c’ n 1“ axm )

which shows that we require
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Substituting the modeled terms for the exact terms results in a modeled, but closed

20 tensor equation

(5.14)

This modeled equation displays the potential for describing various physical processes

including creation, advection, return to isotropy, and turbulence diffusion.

5.6 Distribution of Energy (Modeled)

The modeling of the mean internal energy equation and of the turbulent kinetic

energy equation are direct consequence of the modeling in the transport equation of the

Reynolds stress tensor. The mean internal energy equation (3.7), within the restricted set

of circumstances, reduces to

The terms that need no modeling are:

Inertial term

Advection term c%
iil—

3X,
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Dissipation of the mean

flow due to the mean

kinematic viscosity

Diffusion of the Reynolds stress

due to the mean viscosity

MVcoupling to

the mean flow gradient
[ -)_2M aq~%,

‘1 ~ ~Xi

The remaining terms, the double velocity correlations and the triple correlations involving a

kinematic viscosity fluctuation are terms that need to be modeled. The modeling of these

terms must follow exactly the same procedures as in the modeling of the Reynolds stress

equation. This is the case because sinks to the turbulence energy are

internal energy.

sources to the mean

_du; 13u;
The double velocity correlation v——

dx[ dx[
in the mean internal energy equation has

_ au;Ju;
a counterpart in the Reynolds stress tensor equation –2 v—— The model for the term

C3x,dx[ “

in the Reynolds stress equation is

Contracting this model gives us the model for the double correlation in the mean internal

energy equation
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or

__=_(27+Q)*. -(2v+Q)*_27 du; Ju;
ax, ax, – s

(5.15)

du; h; and ~, au; du;
The triple correlations v’—— ——

ax[ Jx[ dXi ~X[
in the mean internal energy

equation have their counterparts (in an indirect way) in the Reynolds stress transport terms

“$[v’[:+:)lmdu’:[v’[z+z)l
In the Reynolds stress equation we

simply neglected these triple correlation terms, so we have done the same with the triple

correlation terms in the mean internal energy equation.

Substituting the modeled term for the exact term results in a modeled, but closed

mean internal energy equation

(5.16)

This modeled equation displays the potential for describing various physical processes

including advection, dissipation of the mean flow energy, dissipation of the turbulence

energy, mean viscous diffision, and alterations due to the MUtensor.

The mean kinetic energy equation (4.24) does not have to be modeled

(5.17)
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The turbulent kinetic energy equation does not have to be modeled because it is the

contraction of the Reynolds stress tensor equation, and the Reynolds stress tensor equation

has already been modeled. Contracting the Reynolds stress equation results in the

following turbulence energy equation

(5.18)

5.7 Summary of Modeled Transport Equations

Incompressibilityconditionequation(3.5)

Mean momentum equation (3.6)

Reynolds stress transport equation (5.6)
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Mti transport equation (5.11)

Zti transport equation (5.14)

Mean internal energy equation (5.16)

-[-)c% _az=v dq+ag J@
%+ “ ax[

— —+(2V+Q)$
3X[ ~Xi dX,

— ~2Rli

[)

2M q ~ m,—— ——
+ v ax,axi ‘1 ax, axi

Mean kinetic energy equation (5.17)
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Turbulent kinetic energy equation (5.18)

These equations are the modeled but closed set of transport equations that govern

the currently restricted set of circumstances for crenelation in this thesis. In more general

circumstances, V will not necessarily be constant, and a more extensive set of equations

will be required. At this stage in the development, we test the more restrictive set of

governing equations in order to see if this approach has merit.
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Chapter 6

Modeled Transport Equations in a Spherical

Coordinate System

Crenelation most typically occurs in a converging circumstance, and to illustrate the

crenulative process we have chosen the stochastically steady convergence of fluid through a

stationary spherical shell. All of the mean quantities in the crenulative material are

independent of angle, and there is no mean angular motion of the fluid. This means the

governing equations are independent of 6 and @ in a spherical coordinate system, Fig.

6.1. It must be emphasized that the fluctuations from the mean are fully three dimensional,

whereas the moments of correlated fluctuations vary only with radius and time. The

modeled governing equations are transformed from Cartesian tensor form to vector form,

then to a spherical form for individual components. The vector notation is only a

convenient intermediate step in obtaining the individual components of the governing

equations in spherical coordinates.

Figure 6.1: Spherical Coordinate System
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In addition to the vector notation an approximation for the Reynolds stress in the turbulence

diffusion coefficient is substituted in all of the transport equations

This approximation alleviates some of the complexities associated with a spherical

coordinate system.

6.1 Governing Equations in Vector Notation

Forthe vector notationequationswe write both vectors and tensors in bold type, so

that ii, R, M, and Z are the mean velocity vector field, the Reynolds stress tensor &j,

the MO tensor, and the ZU tensor, respectively, while 6 denotes the Kronecker Delta

tensor, i$ti.

The modeled governing equations in vector notation areas follows:

The incompressibility condition, equation (3.5)

V.ii=o

The mean momentum equation (3.6)

‘E+E vE+V. R=—.
a

-Vp+v.{v[vz+(viz)’] }-p+(v.kq’]
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Reynolds stress transport equation (5.6)

~+ R-vz+(R-vti)~ +iN71Z=v.(2cDsJxvzz)

[ 1(

@
+CB R-vz+(R. vz)~–&Lvz) + cR—

))
Y(

26
-t CHR vu:vii ~K– R

s

+M. vz+M. (vz)~+(M. vz)=+[M-(vii)qT +vv. vR–(217+Q)$

A4titransport equation (5.11)

*+ MT -vii+ [M -(vZ)=]T – :[M(VZ)=] +il . Vikf– v . (2cHs@vM)

[

@

1
= - (27+Q)++ C.—+ C~,A./m- M

s s

+Z. VZ+Z. (VZ)~–: [ZVZ+Z:(VZ)=]+V V.VM

Zti transport equation (5.14)

~+[z. (vti)=]= +2. (VE)T +z:(vqq+mvz

(=CZfi )(3trace-z)—+cHRm fiz
s

+V -(2CXSWVZ) – $. (2cxsmvz,race)

where Z,,ac=is the trace of the tensor Z.

Mean internal energy equation (5.16)

%+Z .VF = @WZ+ (Vil)T.WZ] + (27+ Q)?

+VV . (V .R)- 2[M57iZ+iK(ViqT]
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Mean kinetic energy equation (5.17)

JKE –
—+u WKE+Z”(V@=-i7W~
a

+VV-VKE-VViZVZ-Z@iM) -i7@@)

Turbulent kinetic energy equation (5.18)

6.2

$+ R:Vii+Z . VK = V .(2C~s@VK)

+&fw+M(vz)~+v v.v K–(2v+Q)5

Individual Components of the Incompressibility Condition

and the Mean Momentum Equation

The incompressible condition for the motion of fluid in a spherical shell is

Id*_()-y-rur =0
r &

With this simplified incompressibility condition we can solve for the mean radial velocity

directly

(6.1)

where B(t) is a function of time, only, and has the dimensions of length3/ time. For the

stochastically steady motion through a stationary shell, B(t)= B is constant.
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The mean momentum equation simplifies to the mean equation for the radial

velocity component only because there is no mean angular motion or angular dependence of

the variables

The mean viscous diffusion vanishes because B(t) is only a function of time. Note the

presence of angular components for the tensors Ru and Mu, again emphasizing that the

fluctuating velocities and variations are fully three-dimensional.

6.3 Individual Components of the Reynolds Stress Transport

Equation

The Reynolds stress transport equation yields an equation for each of the diagonal

components in spherical coordinates

aR,, +2R ihir+z aR,, _ 1 d ~

(

dR,r— _——
at “ Jr r Jr

r 2C~s@ —
r’ dr )

(’Rrr - Roe- R@@)
-4 Cp.lx

r’ +cf’rr2-+(’’’2+::$@?)l)l
/ \

+olrr~ [() (‘+~ 1 d r’% _2 2Rrr
- Re@- R@@)

r’ & Jr r’
- (27+ Q)+ (6.3.a)

s
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+4MOe~+7[+;(r2~)+2(Rrr;R,@’]-(2v+Q,* (6.3.,)

6.4 Individual Components of the A4ti Transport Equation

The Mu transport equation yields an equation for each of the diagonal components

in spherical coordinates

(dMrr~2M Jiir 2 M azr Zr Zr aMrr—— —
)

—+ MOe—+ M@@~ ‘%7
dt ‘r ar 3 ‘r & r

(

aM

)
(2Mrr- Moe- MOO)

1 a r22CHsJZ* +4CHW?———
r2 Jr

[

=- (2V+Q)4+CM
$+cHRdti]Mrr

~2z C%ir 2

(

~ JF——— - + zoo
‘r ar 3 ‘r &

~+z$$~
r )

+’[$i2’M9
(2M,, -rM@@- M@@)

— –2
r drr r2 1
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6.5 Individual Components of the ZU Transport

The Zti tensor equation yields an equation

spherical coordinates

for each of the diagonal

lla————
3 r2 Jr

q. 2

(

Z q. iirJZ80 ; 2zOey – ~ ‘rr &

)

dzeo
-+ze*—+z@o — +iir —

i% r r Jr

[

1 1 2 #2cxs@ ~(zrr + zee + %$)————
3 r2 Jr Jr )

components in
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6.6 Mean Internal Energy, Mean Kinetic Energy, and the

Turbulent Kinetic Energy

The mean internal energy, mean kinetic energy, and the turbulent kinetic energy

equations are all scalar equations, so that for each variable there is only one equation. The

mean internal energy equation in spherical coordinates becomes

The mean kinetic energy equation in spherical coordinates becomes

– r~+.r[$$(r2Rrr)-R’o:R’”]3KE ~ ~ r3KE

&

‘ dr

-,[[37+3]-2,, +$(r2Mrr)-Me’~Moo
1

(6.7)

The turbulent kinetic energy equation in spherical coordinates becomes
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6.7 Summary of the Spherical Formulation

Inthesphericalformulationthetensorequations~j, Jlu, and 2UCZUIno longer be

expressed in the compact tensor notation, but instead as individual component equations.

This must be done because the velocity gradients and the diffusion terms are different for

the different tensor components. For each of the tensors there are three individual

component equations, the m-component, the 0(3-component, and the @@-component.

The off diagonal components vanish since all of the mean quantities in the crenulative

material are independent of angle, and there is no mean angular motion of the fluid. The

trace of RU,MO,and ZUis still expressed as the sum of the diagonals in spherical form

21[= 2,, + Z*O+ 240

The mean internal energy, mean kinetic energy, and turbulence energy equations remain

single equations in their spherical form since they were scalar equations to begin with.

Now that the governing equations are in spherical form [14] we can analyze the

properties of the equations in both Cartesian tensor form and in spherical form. Also, since

the governing equations are in spherical form we can nondimensionalize the equations and

the boundary conditions.

75

.c_. . ..-m”-_ ,., .- T--.T.-T . . . . . . . . . . . . . .. . . . ... --- ,-~—.
-— -—



Chapter 7

Properties of the Modeled Governing Equations

The modeled governing equations, for the restricted set of circumstances described

in Chapters 5 and 6 display various properties that tend to validate the idea of a Reynolds

decomposition approach for understanding crenelation.

7.1 Primary Driver for Crenulative Turbulence

The Zti tensor describes the configuration of the nonhomogenities, and when

coupled to the rate-of-strain tensor it produces a dominant contribution to the evolution of

MU,i.e. a “first order response to crenelation”.

afti ()C3g+ a“——
a

= ‘jk ~xk

dXi ‘.”””

We sometimes call MOthe “first order response tensor”. This tensor, when coupled to the

rate-of-strain tensor, produces the dominant contribution to the evolution of Reynolds

stress, i.e. a “second order response to crenelation”.

It can be seen that 20 contributes to the evolution of Reynolds stress in a two-step process.

The effects of 20 also contribute to the mean internal energy and the mean kinetic energy

through Mg.

Consider the case of a spherical shell of fluid initially at rest, with no Mti and no

Reynolds stress. If the fluid is set into convergent motion, and there is a nonhomogeneity
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in the viscosity coefficient, the crenulative instability is initiated. The rate-of-strain tensor

coupled to ZU “drives” the crenelation. Because of this driving process we Cd the

coupling of the rate-of-strain tensor to Zti the “primary driver” of the crenelation

The primary driver for crenelation is directly analogous to the primary driver for variable

density turbulence [15]

In variable-density turbulence a mean pressure gradient coupled to the variations in density

drives the turbulence. The pressure gradient accelerates the local regions of different

density relative to each other, thus creating velocity fluctuations or turbulence. The “first

order response” is a creation of net mass flux; in the “second order response” the mass flux

couples to the mean pressure gradient to drive the evolution of Reynolds stress.

7.2 The Limit as the Nonhomogeneities Vanish

In the limit as thenonhomogeneitiesvanishwe obtaina modeledset of governing

equationsforclassicalturbulence.As the nonhomogeneities become small the effect of the

primary driver weakens (assuming the rate-of-strain does not approach infinity), therefore

giving very weak first and second order responses to crenelation. This limit can be shown

by letting s + co and/or ~ + O. Letting s + co means the separation distance between

nonhomogeneities is very large. Letting V’V’+ O means the viscous fluctuations vanish

even though the separation distance between nonhomogeneities remains at the scale of s.

77



In either case the fluid becomes homogeneous (no Zti) and the crenelation occurs at the

atomic level, which is described by the homogeneousviscous behavior.

The incompressibility condition remains unchanged

The mean momentum looses the contribution from the frostorder response tensor

The Reynolds stress tensor equation also loses the contribution from the first order

response tensor, the term due to the collision of nonhomogeneities, and the enhancement to

a return to isotropy.

The scale s is still the dominant scale of the turbulence, which is no longer related to the

separation distance between nonhomogeneities, and must be determined by a careful

investigation of the full turbulence spectrum [15]. This classical turbulence limit does not

have a primary driver, so a small “seed” of turbulence in the domain is needed to initiate the

growth of turbulence. Thus the limit of classical turbulence transport theory is contained in

our formulation for crenulative turbulence.
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7.3 A First Order Approximation for Behavior of Zti

To derive a first order approximation for the evolution of Zj we retain only the

advection and mean flow coupling terms in the 20 equation (5.14)

dzu_azu ai/z aiil 2 c%,

at
‘=–Zi, —–

+‘[ dx[ dXj
—+”zn,—
‘1dXi3 dX~

(7.1)

Let

in which Zl~describes the initial

Zv=z; +gu

state of the nonhomogeneities and go is a perturbation

fi-omthat initial state. Then the ZJ equation becomes

(7.2)

Assuming a steady state circumstance and spherical form the diagonal components of

equation (7.2) become

~ zjrr (r+_ Zo %,‘m 2
— = –22: —

iir—+2;6:+2; $;r Jr dr 3 ‘r r3r )
(7.3.a)

(7.3.b)

(7.3.C)
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B(t)Because of the incompressibility condition, Z, = ~, for spherical convergence,
r

equations (7.3) reduce to

zi)e 4 z: 2 z;@4 Go :— =———— ——
f3r3r3r3r

(7.4.a)

(7.4.b)

(7.4.C)

If ZUis initially stochastically isotropic, Z:, = Z~O= Z& = Z“, then equations (7.4) reduce

to

(7.5.a)

(7.5.b)

(7.5.C)

Applying the boundary condition Zti(r = ~) = Z06ti, where Rz is the outer radius of the

spherical shell of fluid, the diagonal components of ZUcan be solved directly
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(7.6.a)

●

The behavior of the frostorder approximation for Zti can be seen graphical in Fig. 7.1 as a

function of radius in a steady-state circumstance.

R, 4
radius

Figure 7.1: First Order Approximation for 20
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The interpretation of these results is discussed in Section 7.4, where it is shown that

z,, < zoo = ZOOmeans the nonhomogeneities are elongating in the radial direction and

contracting in the two angular directions as shown in Fig. 7.2.

\

Figure 7.2: Elongation of the Nonhomogeneities During Spherical Convergence

Equations (7.6) are very good approximations for the diagonal components of Zti near the

initial isotropic state, which is near the outer radius of the spherical shell. Linearization of

equation (7. 1) about the

approximations for ZOnea

linearization is expected.

initial isotropic state at the outer radius results in bad

the inner radius. In general bad results away from the point of
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7.4 Cosine Distribution of the Instantaneous Kinematic Viscosity

A cosine distribution of kinematic viscosity in the three orthogonal directions in a

Cartesian coordinate system,

‘=’+:cos[:)cos(?)co
can be used as a basis for interpreting the significance of nonisotropy of ZO. In this

qualitative model, 6V is the difference between the maximum and minimum values of the

instantaneous kinematic viscosity, sX is the scale of the nonhomogeneities in the x

direction, SYand s, are the scales

directions. Ifs =s, = SY= SZ,then

instantaneous kinematic viscosity,

i$v

of the nonhomogeneities in the other two orthogonal

ZJ is isotropic. From the fluctuating component of the

“=~cos(acos[?)cos
w w

we can derive the magnitudes of Zm, ZM, and Z=, as defined by 20 = —— With the
dXi dXj-

cosine representation, the ensemble average is obtained by integrating over a unit

quadrilateral.

z==
-2h’’:~f’’~~~~~:~~sin2[7)c0s2[?)c0s2[?)&ydzdz()

d“

Sx Xyz

ZH=
[)-2hJ’:~~J’~$J’’$c0s2[3sin2[?lc0s2[?kydz

Zfh

‘Y Xyz
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or ()z_n-’*2
Xz 8 5X

[)
2

z’8VZn=— —
8 Sy

[)
2

z’ (5VZz=— —
8 Sz

(7.7.a)

(7.7.b)

(7.7.C)

If the scale of the nonhomogeneities in the x direction, s,, is greater than the two scales in

the other two orthogonal directions, e.g. SX2 Sy= SZ, then the elongation of the

nonhomogeneities is occurring in the x direction. This, then, confirms the interpretation in

Section 7.3, regarding the radial elongation of the converging entities.

In the modeling of ZU transport, discussed in Chapter 5, we proposed the

contraction of ZO to be a constant, i.e. Z~~=constant. The contraction of Zu with the

cosine distribution is

To remain a constant while SXincreases, the two other scales, Sy and SZ,must decrease.

This “meanselongation of a nonhomogeneity in one direction implies the contraction of the

nonhomogeneity in the other two directions. Assuming SY= SZ,and that SXelongates by a

factor ~X,then the other two scales contract by a factor ~y = fz given by
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rfy=fz= *$
3fx – 1

Wecannow usetheresults from the first order approximation for Zti and the

results from the cosine distribution to see how the scales of the nonhomogeneities change

with the radius of the spherical shell of fluid in a steady state circumstance. Equating

equations (7.6) to equations (7.7) in spherical form

2,,
‘z’+4z’rln(i)=%)’

[%)=$[:)’
89= Z~O– 2Z~ein ~z

At the initial state the diagonal components of 20

isotropic) and are characterized by the initial scale SO

are equal (the

()n’ (5V 22:,=2:.=2;+=— —
8 SO

(7.8.a)

(7.8.b)

(7.8.c)

nonhomogeneities are

(7.9)

Using this in combination with equations (7.8) the individual scales as functions of the

radius are given by

(H)
2

l+41n ~ = %
2 s,

(7.10.a)
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[)[)
2

l–21n ~ = ~
2 s*

[)[)

2
l–21n ~ = ~

2 S4

(7.10.b)

(7.1O.C)

Equations (7. 10) are good approximations for how the scales change as a function of

radius near the outer radius of the spherical shell of fluid. There is some question as to

whether the volume of the nonhomogeneities is conserved while being elongated. With the

cosine analysis, we can investigate this condition as long as the departures from the cosine

form are small. As each nonhomogeneity converges, its form becomes more egg shaped,

and the measure of its volume departs from the value S,SOSOthat is appropriate near the

outer edge. To show the volume of the nonhomogeneities is conserved to first order, we

write

r= R2(l–@)

where o <c 1. Then equations (7.10) can be rewritten as

[)
2

l+41n(l–@)= ~
Sr

[)
2

l–21n(l–@)= ~
s*

[)
2

l–21n(l–0)= ~
S4
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Using a series expansion for the natural logarithm and keeping terms of order o, equations

(7.1 1) become

[)
2

l+2co= ~
S$

Solving for the ratio of the

nonhomogeneh.ies to order o.)

elongated volume to the initial isotropic volume of the

Because the ratio is unity, the volume of the elongating nonhomogeneities is conserved

until its distortion from the cosine form is so great as to make this measure of volume

inappropriate.
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7.5 Nonuniform

Viscosity

A nonuniform

Distribution of the Instantaneous Kinematic

distribution of kinematic viscosity in a three dimensional spherical

coordinate system can be used as a basis for further understanding of ZU. Consider the

distribution along the radial direction as seen in Fig. 7.3.

‘v

Figure 7.3: Nonuniform Distribution of Kinematic Viscosity in Radial Direction

In this distribution the spherical nonhomogeneities have high constant viscosity centers

with a variable-viscosity skin of thickness a, surrounded by a low constant viscosity fluid.

The high-viscosity centers are represented by the black regions, the skin of variable

viscosity is represented with the gray gradient, and the low viscosity fluid is represented by

the white areas, as seen in Fig. 7.3 and in the unit cell in Fig. 7.4.
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Figure 7.4: Unit Cell of the Nonuniform Distribution

To calculate Z,, we must integrate about a unit cell of size S3

w 2dv
JJJ[ )z,r=~ —‘3VO[Jr

Because the slope of the region of variable viscosity is constant in the radial direction and

there is no contribution

fluid, Z,, is

from the high-constant-viscosity centers or low-constant-viscosity

where Ri is the radius to the inner part of the skin and ROis the radius to the outer part of

the skin. The inner and outer radii can be expressed in terms of the nominal radius of the

skin, ~, and the skin thickness, a,
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so that

If the skin thickness is much smaller than the nominal radius, a C< ~, then Z,r can be

approximated by the following

()16V2
2,, = — — 4ZE2a

s’ a

or

Since 20 is initially isotropic then

()4nR2 6V 2
2,,=— —

sa s

()4XR2 (5V 2
2,, =200= 24$=— —

sa s
(7.12)

This result has very significant implications, especially in comparison to equation (7.9).

As the nominal radius of the nonhomogeneities increases the degree of nonhomogeneity in

the system also increases; as the skin thickness decreases the degree of nonhomogeneity

also increases; and as the separation scale of the nonhomogeneities decreases the degree of

nonhomogeneity increases. It is of particular significance that decreasing skin thickness

enhances the measure, Zu, of crenulative potential, with implications that are likely to be

especially important for understanding the behavior of metal grains with narrow regions of

plastic flow subject to intense distortive stresses. Equation (7. 12) is important for
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choosing the nondimensional value of Zti at the outer boundary (outer radius of the

spherical shell) for the examples described in Chapter 8.

7.6 Positive Definite Entropy Changes

The instantaneous internal energy equation (2. 12) governs how the mechanical

energy dissipates to heat for an incompressible fluid. The dissipation function must always

work to increase the internal energy for an incompressible fluid in an irreversible fashion.

With the instantaneous internal energy always increasing so is the entropy,

with the second law of thermodynamics. The equation can also be written

in agreement

(7.13)

which shows more clearly the irreversible behavior with the square of the rate-of-strain

tensor [16]. This property for the instantaneous internal energy also holds for the mean

internal energy equation

internal energy equation.

because the equation is derived directly from the instantaneous

Thus we also require

a?._

The only modeled term is the source due to the decay of the turbulent kinetic energy, and

this term is positive definite because V 20 and K 20. Each term might not be positive
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definite, but the combination of all the terms must be positive definite. In spherical form it

is not immediate the entropy change is positive definite, but using inductive reasoning we

know the sum of all tern-s must be positive definite since the spherical form was derived

from the Cartesian tensor form. The property of positive definite entropy change also

holds for our spherically converging case, in which

The continuous monitoring of internal energy in our calculations thus gives an important

test as to the validity of the results.

7.7 Summary of the Properties

The primary driver is a very important part of crenelation. The primary driver is the

“seed” to creating crenelation, and without it there is no potential for this type of instability.

The primary driver to crenelation is manifested through the coupling of the rate-of-strain

[ -)

& diik
tensor

ax, + dxi
to the nonhomogeneity Zu. For the special case of spherical

convergence of a spherical shell of fluid

[Viz+(vii)qrr=2=

[Viz+(viq’]oe=[viz+(viz)’],, =:

We have modeled the governing equations for crenelation such that when the

nonhomogeneities vanish the modeled equations can still represent classical turbulence. In
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the limit as the nonhomogeneities vanish the scale, s, changes from the separation scale

between nonhomogeneities to represent the dominant turbulence scale of the homogeneous

fluid. The limit of classical turbulence transport theory is thus contained in our formulation

for crenulative turbulence.

The first order approximation in combination with the cosine distribution gives a

useful representation for the diagonal components of Zti, giving the interpretation that

when Zr, S 209 = Z@@then the nonhomogeneities are elongating in the radial direction and

contracting in the two angular directions. The results for 20 from the nonuniform

distribution of the instantaneous kinematic viscosity, equation (7.12), shows the physical

meaning for choices of the initial magnitude of ZU.

In Cartesian tensor form the dissipation function, equation (7.13) can be expressed

as a sum of square terms resulting in an easily-identifiable positive-definite expression,

which means the dissipation function is irreversible. In spherical form we do not have a

sum of square terms, thus not being able to easily identi@ a positive definite dissipation

function. This does not mean the dissipation function is not positive definite. In spherical

form each term is not positive definite, but the sum of all terms must be positive definite

since it was derived from the Cartesian tensor form, which is positive definite.
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Chapter 8

NondimensionalGoverningEquations,
Nondimensional Initial and Boundary Conditions

The examples that we show to describe the crenulative process are all associated

with the steady-state convergence of a nonhomogeneous incompressible fluid in a spherical

annulus with inner radius R], and outer radius, Rz. The appropriate equations are given in

Chapter 6. To illustrate the behavior of our equations, we write them in nondimensional

form, using the outer radius R2 of the spherical shell, the constant parameter B from the

incompressibility condition discussed in Chapter 6, the difference between the maximum

and minimum values of the instantaneous kinematic viscosity, 6v, and the scale of the

nonhomogeneities, s. Nondimensionalization results in a set of equations that allow us to

obtain more information from the variations of four nondimensional parameters than from

five dimensional parameters. The realizability constraint on R., Mu, and Zti is a guidance

for the development of the nondimensional boundary conditions. Our calculations develop

the steady-state solution through time evolution from prescribed initial conditions, but it is

only the final steady state that we illustrate in this thesis. Thus we start each calculation

with the convenient configuration of uniform distribution of ~U and with inflow of ~ti

through Rz, and follow the dynamics until there are no residual stochastic variations in

time.
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8.1 Nondimensional Governing Equations

Nondimensionalizingthegoveming equationsresults in three nondimensional

parameters.Toobtainthesenondimensionalparameterstheradius,time, 1$, klu, and Zti

areallnondimensionalizedin thefollowingmanner

~~3
r = ?R2 t=t~

IBI

is ;, ; is the nondimensional time, fiu is the nondimensionalThe nondimensional radius

~j, flu is the nondimensional MO, ~U is the nondimensional 20, and ~ is the

nondimensional F. The radius is nondimensionalized with R2. The time is

nondimensionalized with a distance/velocity, where Rz is the distance and lBi/R~ is the

magnitude of mean velocity at the outer radius of the shell. Nondimensionalizing with IH

ensures the time evolution is positive for both convergence and divergence of the spherical

shell of fluid. The Reynolds stress and the internal energy are both nondimensionalized by

the mean velocity at the outer radius of the shell (lByR~)2. The quantities MU and Zti are

both nondimensionalized by (~v/s)2, which is suggested by the result of equations (7.7)

with the cosine distribution analysis done in section 7.4. The three nondimensional

parameters that arise in the governing equations from the nondimensionalization are

IBI
The nondimensionalparameter — is a Reynolds number, because a reference velocity

VRZ
IBI

canbe defined as iZr~J~r~~Ce= ~, so that
R2
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The nondimensional parameter ~ is a measure of the scale of the nonhomogeneity relative

to the size of the spherical shell. The nondimensional parameter y is a measure of the level

of nonhomogeneity in the spherical shell. We also define q =;, which is positive if the

flow is diverging and negative if the flow is converging. The nondimensional form of the

individual components of the Reynolds stress equation are

(8.1.a)

(8.1.b)
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The nondimensional form of the individual components of the MUequation are
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(8.2.c)

The nondimensionalformof the individualcomponentsof the Zy equationare
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The nondimensional form of the internal energy equation is

The numerical scheme used to solve the set of governing equations (8.1), (8.2), (8.3), and

(8.4) is an explicit time marching finite difference technique described in Appendix A,

section 1.

8.2 Nondimensional Initial and Boundary Conditions

The initial conditions appear not to effect the steady-state solution (unless the

evolution diverges), but we have chosen these conditions such that the nondimensional

realizability constraint

()Rep 2 A
?ii)2(jj) ~ -‘ij)20

(8.5)

is not violated, where the parenthesis indicate no summation. The initial condition for

fi(U1is zero; this condition satisfies the nondimensional realizability constraint for all
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positive choices of ~ii) and ~(jjl. The initial condition for the intem~ energy ~ is zero;

this condition means the fluid is in a “cold” state.

The boundary conditions at the outer radius of the spherical system must be

specified, since it is these values that will be fluxed in through the boundary. The outer

boundary condition for ~(ti) is the same as its initial condition, zero. The outer boundary

condition for ~iil is chosen such that the turbulence energy is ten percent of the mean

kinetic energy at the outer radius., i.e. at the outer boundary. Also, i?vdoes not have to be

isotropic. The outer boundary condition for ~(j) is a choice of the level of

nonhomogeneity wanted in the system. From the cosine distribution in Chapter 7, equation

(7.9), we would choose

2A
‘(j..)=~

but this relationship introduces only a low level crenulative consequences. Instead we

choose to use equation (7.12), from the nonuniform distribution in Chapter 7, to obtain

~(jj) at the outer boundary

,.. 47CR2——
‘(j!) – ~a

(8.6)

This relationship for ~(jj) allows us to choose any level of nonhomogeneity for the

boundary condition. In all cases we specify ~v to be isotropic at the inlet boundary. The

outer boundary condition for the internal energy ~ is the same as its initial condition, zero.

The advective boundary condition at the inner radks of the spherical system does not have

to be specified; the diffusive boundary conditions are. The boundary conditions are

extrapolative, with implementation that is described more fully in Appendix A, section 2.
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These boundary conditions introduce several additional dimensionless parameters to

complete the specification of each calculation. Besides the values of Re, ~, and y the

important boundmy-condition parameter that we vary is ~(jl.
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Chapter 9

Results and Conclusions

In the nondimensional parameter space of Re, P, y, and ~(fi) many variations

could be analyzed to illustrate crenelation; here we have chosen a small set to display some

of the trends. All of these results were analyzed at steady state and with a coarse resolution

in the finite-difference calculations. First, we show the analytic solution for the

homogeneous case, then we show a coarse resolution calculation of the homogeneous case

and compare it to a coarse resolution calculation of a case (case A) in which there is a high

level of nonhomogeneity. Second, we choose a base case, which has a moderate level of

nonhomogeneity, and compare the internal energy to the internal energy of the

homogeneous case. We also look at the different energy modes, fig component

distributions, and ~ti component distributions for the base case. Third, we make two

Reynolds number variations from the base case and look at the internal energy and

turbulence energy. Fourth, we make one ~ variation from the base case and look at the

internal energy and turbulence energy. Fifth, we make one y variation from the base case
.

and look at the internal energy and turbulence energy. Sixth, we make two Z(j) variations

from the base case and look at the internal energy and turbulence energy. Finally, we

return to the base case and enhance a modeling constant in the return to isotropy in the ~0

equation and only look at the ~(j) distribution.

The coarse resolution used is sufficient because the differences seen in the fine-

resolution calculations were also seen in the coarse-resolution calculations. It is not the

focus of this thesis to do an in-depth analysis of the numerical algorithm, but to analyze the

trends associated with crenulative turbulence.
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9.1 Homogeneous Case

An analytic solution for the internal energy can be obtained when the crenulative

fluctuations vanish, i.e. the homogeneous case. Consider the behavior of internal energy

given by equation (2.12), with its instantaneous quantities and in spherical form

(9.1)

In steady state the time derivative vanishes.

results in the following

The solution to equation (9.2) is

Nondimensionalizing the rest of equation (9.1)

12 1
(9.2)

(9.3)

The boundary condition at the outer radius is zero for the internal energy and the

nondimensional outer radius & is &qualto one, so that the solution becomes

(9.4)

This homogeneous

nonhomogeneity is present.

parameters as

case can be compared to a case in which a level of

In this case, case A, we have chosen the nondimensional
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Case A: Re = 100 ~ = 0.05 7=0.9 ~(jjl =200

where the parenthesis indicate no summation. Case A represents a high level of

nonhomogeneity in the spherical shell of fluid. In this comparison we can see in Fig. 9.1

that there is a significant drop in internal energy, in comparison with the homogeneous

case.

60

— Homogeneous Case
50 --------- Nonhomogeneous Case A
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Figure 9.1: Comparison of Homogeneous Case to Nonhomogeneous Case A

In order to illustrate this contrast, the homogeneous results in Fig. 9.1 are numerical results

with the same resolution as for the nonhomogeneous case. The comparison between

numerical and analytical solutions for the homogeneous case are shown and discussed in

Appendix A, section 3. In particular, we have shown that calculations for both cases with

coarse and fine resolution give essentially the same difference as shown in Fig. 9.1. The

drop in internal energy is a direct result of the nonhomogeneous variations of kinematic
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viscosity. The high regions of kinematic viscosity slip with little internal strain through the

low regions of kinematic viscosity, with the net effect of less dissipation to heat. In the

homogeneous case the strain is distributed throughout the viscous fluid, giving more

resistance to converging, thus more dissipation to heat. Note that a large value of incoming

~(jjl is required to exhibit this contrast in dissipation. As shown in equation (8.6), a large

magnhude of ~(j) indicates that the regions of high viscosity fill most of the volume, with

narrow transitional regions to the surrounding low viscosity. The overall mean viscosity,

V, is not much different from the maximum value of v. If the fluid contorts with a

homogeneous distribution of that T, the dissipation to heat is large; but the presence of

very narrow slip channels of low viscosity allows the crenulative strain to take place mainly

in those channel regions, so that the net dissipation is significantly decreased. This result

demonstrates one of the principal conclusions of this study.

9.2 Base Case

The nondimensional parameters, Re, ~, y, and the level of nonhomogeneity in

the system, ~(jjl, are all parameters that can be varied. As abase case we have chosen the

nondimensional parameters and the level of nonhomogeneity to have the following

magnitudes

Base Case: Re = 100 ~ = 0.05 y=O.5 j(jj) = 100

Because ~(jj) and /3 are less for the base case than for case A, there is a lower degree of

nonhomogeneity. This means the base case is closer than case A to the homogeneous case.

This can be seen in Fig. 9.2 where the internal energy for the nonhomogeneous base case

is only slightly lower than that of the homogeneous case.

105

-—



.-

— Homogeneous Case
-.-----.-Nonhomogeneous Base Case

\

0.2 0.4 0.6 0.8 1
radius

Figure 9.2: Comparison of Homogeneous Case to Nonhomogeneous Base Case

In the base case the mean kinetic energy is very large at the inner radius of the spherical

shell of fluid in comparison to the internal energy and the turbulence energy, as shown in

Fig. 9.3.
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Figure 9.3: Energies for the Nonhomogeneous Base Case

The n--component of flu is positive and increases sharply near the inner radius,
A

while the 60-component of MOis negative and decreases near the inner radius, as can be

seen in Fig. 9.4. Both behaviors are linked because of the vanishing contraction of fio

Because the system is spherically symmetric, the (M-component is the same as the @@-

component, so that

ill,, = –2fioo
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The fiti components are a first order response to the crenelation and act as a bridge

between 20 and ii.
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Figure 9.4: flu Components for the Base Case

The results of the calculation for ~ti for the base case show, in Fig. 9.5, the trends

discussed in Chapter 7 sections 3 and 4, in which ~,, S ~00 = ~O@implies elongation of the

nonhomogeneities in the radial direction.
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Figure 9.5: ~0 Components for the Base Case

The component structure of ~ti is mainly a result of kinematic response.

1

There is very little

dependence on how fast the spherical shell is converging. Almost the same distribution as

in Fig. 9.5 occurs for both higher and lower Reynolds numbers. We also see the same

distribution for both higher and lower values of ~. We also see the same distribution for a

lower value of y, but for higher Y we see a slight variation from the base case near the

inner radius.
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9.3 Variations of Reynolds Number

Varying only the Reynolds number from the base case has effects on the internal

energy and the turbulence energy. Because the variations in ~0 are mainly due to

kinematic effects the results for iv in case B and case C are the same as for the base case.

We have chosen Reynolds numbers both smaller and larger than in the base case.

Case B: Re=50 ~=0.05 y=O.5 ~(~1=100

CaseC: Re=200 ~=0.05 7=0.5 2(J) =100

In the homogeneous version of case B the dimensionless internal energy is larger than that

of the homogeneous case with Re = 100, as seen by comparing Fig. 9.6 to Fig. 9.1.

Increasing Reynolds number results in decreased dissipation to nondimensional heat.

There is, of course, an increase in dissipation to actual heat, but less rapidly than in the

homogeneous case in which the dissipation rate increases as the square of the Reynolds

number. Figure 9.6 shows that the dimensionless internal energy for the nonhomogeneous

case B is lower than that of the homogeneous case B.
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Figure 9.6: Comparison of Homogeneous Case B to Nonhomogeneous Case B

In the homogeneous version of case C the dimensionless internal energy is less than that of

the homogeneous case with Re = 100, as seen by comparing Fig. 9.7 to Fig. 9.1. The

dimensionless internal energy for the nonhomogeneous case C is lower than that of the

homogeneous case C, as seen in Fig. 9.7.
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Figure 9.7: Comparison of Homogeneous Case C to Nonhomogeneous Case C

As seen in the base case calculation, Fig. 9.2, the internal energy drops when there is some

degree of nonhomogeneity in the system, no matter what the Reynolds number is.

When compared to the base case, the dimensionless turbulence energy has

increased in case B and has decreased in case C as seen in Fig. 9.8. The actual

(dimensionful) turbulence energy, however, appears from the calculations to be roughly

independent of Reynolds number, in contrast to the behavior of turbulence energy in

classical turbulence. This seeming paradox is related to the destructive (of Reynolds stress)

coupling between Rti and the strain rate in spherical convergence, in contrast to the

constructive coupling in shear flows. Thus the near constancy of Rti may result from a

near balance of the destructive mean-flow coupling with the constructive coupling to Mti.

This is an open question that merits further investigation.
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Figure 9.8: Turbulence Energy for the Base Case, Case B, and Case C

9.4 Variation of ~

Variations of the nondimensional scale of nonhomogeneity

relatively little effect on the internal energy. In case D we decrease the

factor of five from its value in the base case

value of ~ by a

Case D: Re=100 ~=0.01 y=O.5 q=–1 ~(fi) =100

With this we observe that the internal energy is slightly larger than that for the

nonhomogeneous base case, as shown in Fig. 9.9.
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Figure 9.9: Comparison of Internal Energy for Nonhomogeneous Base Case

and Nonhomogeneous Case D

The turbulence energy mostly decreases as ~ decreases, as can be seen in Fig. 9.10. This

result is not surprising, because we expect the turbulence energy to vanish as the system

approaches a homogeneous state.
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Figure 9.10: Comparison of Turbulence Energy for Nonhomogeneous Base Case

and Nonhomogeneous Case D

The slight dip in the turbulence energy, for both the nonhomogeneous base case and the

nonhomogeneous case D, near the outer boundary is a consequence of the boundary

‘ conditionof I?= 0.1, at the inlet boundary.

9.5Variation of ~

()
Decreasing the nondimensional fluctuations of viscosity y = 2 increases the

v

internal energy towards that of the completely homogeneous case. In case E we decreased

the value of y by sixty percent from the base case value

CaseE: Re=100 fl=O.05 y=O.2 ~(ti)=100
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With this change, the dimensionless internal energy is larger than that for the

nonhomogeneous base case, approaching the completely homogeneous case, as seen in
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Figure 9.11: Comparison of Internal Energy for Nonhomogeneous Base Case

and Nonhomogeneous Case E

The nondimensional turbulence energy decreases as y decreases, as can be seen in Fig.

9.12. This result is not surprising, because we would expect the turbulence energy to

vanish as the system approaches a homogeneous state.
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Figure 9.12: Comparison of Turbulence Energy for Nonhomogeneous Base Case

and Nonhomogeneous Case E

The slight dip in the turbulence energy, for both the nonhomogeneous base case and the

nonhomogeneous case D is a consequence of the boundary condition, ~ = 0.1, at the inlet

boundary.

9.6 Variations of ~(jj)

The initial and boundary value of ~(jj) describes the strength of nonhomogeneity.

Variations of 2(..) from the base-case value has an effect on all aspects of the results,

including the internal energy and the turbulence energy. In case F we decrease the level of

incoming nonhomogeneity by decreasing ~(..l. In case G we increase the level of
A

incoming nonhomogeneity by increasing Z(jj).
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Case F: Re = 100 ~ = 0.05 y=O.5 ~~..)= 50

Case G: Re = 100 /?= 0.05 y= 0.5 ~(jjl =200

Note that case G differs from case A only in having a smaller value of y. With these

changes from the base case we see in Fig. 9.13 a drop in the nondimensional internal

energy for case G and arise in that quantity for case F.
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Figure 9.13: Comparison of Internal Energy for Nonhomogeneous Base Case,

Nonhomogeneous Case F, and Nonhomogeneous Case G

This result is not surprising because we expect the internal energy to approach the internal

energy for the homogeneous case as the level of nonhomogeneity vanishes. The turbulence
A

energy increases for increasing ~(jjl and decreases for decreasing Z(fi), as can be seen in

Fig. 9.14.
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Figure 9.14: Comparison of Turbulence Energy for Nonhomogeneous Base Case,

Nonhomogeneous Case F, and Nonhomogeneous Case G

9.7 Enhancement to the Return to Isotropy

As an example of varying one of the constant modeling parameters, we vary the

CH~parameter in the term that describes return to isotropy in the 2U transport equation.

We increase C~~ from a value of 1.0 in the base case to a value of 5.0 in case H .

Case H: Re= 100 ~ = 0.05 y= 0.5 ~(~1= 100 C~~=5.0

By increasing CH~iiom its value in the base case, the nonhomogeneities do not elongate as

much as the nonhomogeneities in the base case. The components of iv are closer together

than in the base case; this implies a lower level of anisotropy among the nonhomogeneities.

The results can be seen in Fig. 9.15.
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Figure 9.15: Comparison of AUComponent Distribution for the Nonhomogeneous

Base Case and Nonhomogeneous Case H

Increasing C~~even more brings the ~ti components even closer together, approaching a

constant value equal to the boundary value. In general the value of C~~ may not be

constant at all, but a function of such quantities as the matenial strength.
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9.8 Summary and Conclusions

Crenelation is an instability usually observed in a converging fluid with

nonhomogeneous stress response to strain ador strain rate. In this thesis we have chosen

the converging system to be a spherical shell of fluid in an Eulerian frame of reference, and

the nonhomogeneity to be introduced through variations in the instantaneous kinematic

viscosity. In general the nonhomogeneity could be introduced through variations in some

other material property, or through surface imperfections.

We start with the Navier-Stokes equations for an incompressible Newtonian fluid.

We make a Reynolds decomposition of the instantaneous velocity field, instantaneous

pressure, and instantaneous kinematic viscosity while leaving the instantaneous mass

density constant. The Reynolds decomposition yields a mean momentum equation, which

receives contributions from the Reynolds stress 1$ and from the first order response Mu.

This leads to the development of a transport equation for 1$ and for ik?ti. The transport

equation for Reynolds stress contains a coupling of Mti to the rate-of-strain tensor. The

transport equation for Mti in turn contains a coupling of Zti to the rate-of-strain tensor. We

also develop a transport equation for the driving tensor Zti, which describes the

configuration of the nonhomogeneities in the system. Double and triple correlations arise

in the transport-equation derivations. Some of the double and triple correlations are

modeled using techniques from classical turbulence-transport modeling theories. Others

also arise in the analysis requiring some new derivations or postulates for closure.

Consistency forces us to model the double and triple correlations in the internal energy

equation using the same methods as for the Rtitransport equation, which is necessary for a

proper balance between turbulence energy and internal energy.

To illustrate the crenulative process, we transform the equations to a spherical ‘

coordinate system. We investigate the primary driver of the system, the limit as the

nonhomogeneities vanished, a fnst order approximation for ZV,the effects of uniform and

nonuniform distributions of instantaneous kinematic viscosity, and the constraints for
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positive-definite entropy changes in the fluid. The primary driver is Zti, which couples to

the rate-of-strain tensor in the A4r equation. In the absence of initial 1$ and Mu, Zti

develops the first-order response to crenelation ( Mti), then a second order response ( Ru).

In the limit as the nonhomogeneities vanish a cIassical turbulence model emerges

from the crenelation turbulence model. The separation scale, s, between

nonhomogeneities becomes instead the dominant scale of the turbulence itself.

Nondimensionalizing the governing equations and boundary conditions results in

four nondimensional parameters Re, ~, y, and the initial value of ~(fi). These parameters

allow us to characterize crenulative turbulence much more efficiently than with the

dimensionful parameters. A significant consequence of crenelation is manifested in the

balance among the energies, in particular the relative values of internal energy and

turbulence energy in comparison to the total mean-flow kinetic energy. The crenulative

process always reduces the rate of dissipation to heat below that of the purely

homogeneous case with the same mean viscosity, V. This effect is especially apparent for

configurations in which the low-viscosity regions are thin channels that allow the regions

of high viscosity to slip easily past each other.

Crenelation occurs in any circumstance in which the mean-flow stream lines

converge the material more strongly than the compressibility can accommodate. For a

homogeneous material, crenelation occurs at the atomic or molecular scale. With

nonhomogeneous stress response to strain and/or strain rate at larger scales, the crenulative

process also occurs at those larger scales. The results are manifested by a decrease in the

rate of dissipation to heat, and by the configurationally -irreversible mixing of

nonhomogeneities across any mean-flow-transported interface. A closely related process

also occurs in mean-flow shear, in which transport of the nonhomogeneities can result in

mixing of materizds across the slip surface.
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The next direction for our investigations is the application of crenelation theory to

granular metals, for which the nonhomogeneities occur through variations in material yield

strength, and in the moduli for elastic and plastic flow.
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Appendix A

Numerics

The numerical algorithm used to solve the set of governing equations is an explicit

time-marching finite-difference technique in a one dimensional spherical configuration

along the radius. The stochastically steady state solution is found by time marching.

Because of the finite difference arrangement an imaginary control volume at both

boundaries is needed to implement the boundary

conducted and compared to the analytic solution,.

A.1 Numerical Scheme

conditions. A convergence test was

The explicit approximation of the m-component of the Reynolds stress equation is

(Al)
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The explicit approximation of the m-component of the My transport equation is

{[

k;, @o +
&l=@, +At 4q~+:q –2~+~

rr r
Lj@)-q[$[+]++)

(A.2)

The explicit approximation of the rr -component of the 20 transport equation is

The explicit approximation of the internal energy transport equation is

Equations for the other components of the tensors are written in similar fashion. The

superscripts n and n +1 indicate values at time nAt and time (n+ l)At, respectively.
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Under the explicit time marching scheme, in which the mean velocity field is held constant

in time, the Reynolds stress, Mu, and 20 components at time n +1 are solved as fhnctions

of the variables at time n. The variables are spatially discretized on a collocated grid, in

which the values of the variables are located at the centers of control volumes, except for

the mean velocity as in Fig. 8.1. The mean velocity can be located at the center or at the

edges of a control volume, since it is a continuous function of position only. The grid

spacing is uniform in the radial direction.

I I 1 J
y +a

nondimensional velocities

Figure A. 1: Finite Difference Grid

A second-order upwind difference scheme is used for the discretization of the

advection terms in each of the governing equations. The upwind scheme is different if the

spherical system is converging or diverging.

For our examples, q <0 so that for some variable L
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A.2 Boundary Conditions in Finite Difference Form

An imaginary control volume is needed at each end of the finite difference domain

as seen in Fig. A.2.

--

imagimxy
controlvolume

; ;

--n—-—
-m

CcRltrolvolume

! ; il
---

Figure A.2: Finite Difference Domain with Irnaginay Control Volumes

These imaginary control volumes are needed to implement the boundary conditions. The

values of the variables in control volume number O is obtained by a Iinem extrapolation

from control volumes 1 and 2

~ _ k -4
“-(P-I) (L2-LI)+L

The values of the variables in control volume number N+l, where N is the last control

volume in the domain, are calculated knowing the prescribed value at the boundary and the

value just inside the boundary

LN.1 = 2LBounda~ - ‘N
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A.3 Convergence Test for Homogeneous Case

A numerical convergence test of the homogeneous case was conducted and

compared to the analytic solution. The first calculation was done with A;= 0.025 and the

solution displayed good qualitative results. The second calculation was done with

A;= 0.005 and the solution is quite close to the exact (analytic) solution, as can be seen in

Fig. A-3.

\
\

\ EEzl\\
.. \

0.1 0.12 0.14 0.16 0.18 0.2

radius

Figure A.3: Convergence Test for Homogeneous Case

The calculation with a resolution of A;= 0-025 took about six times less time than the

calculation with a resolution of A; = 0.005. To display the trends due to crenelation it is

sul%cient to do these calculations with A; = 0.025.
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