Users guide to the PGAPack parallel genetic algorithm library

PDF Version Also Available for Download.

Description

PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are as follows: Ability to be called from Fortran or C. Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks. Binary-, integer-, real-, and character-valued native data types. Object-oriented data structure neutral design. Parameterized population replacement. Multiple choices for selection, crossover, and mutation operators. Easy integration of hill-climbing heuristics. Easy-to-use interface for novice and application users. Multiple levels of access for expert users. Full extensibility to support custom operators and ... continued below

Physical Description

80 p.

Creation Information

Levine, D. January 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are as follows: Ability to be called from Fortran or C. Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks. Binary-, integer-, real-, and character-valued native data types. Object-oriented data structure neutral design. Parameterized population replacement. Multiple choices for selection, crossover, and mutation operators. Easy integration of hill-climbing heuristics. Easy-to-use interface for novice and application users. Multiple levels of access for expert users. Full extensibility to support custom operators and new data types. Extensive debugging facilities. Large set of example problems.

Physical Description

80 p.

Notes

OSTI as DE96014521

Source

  • Other Information: PBD: Jan 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96014521
  • Report No.: ANL--95/18
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/366458 | External Link
  • Office of Scientific & Technical Information Report Number: 366458
  • Archival Resource Key: ark:/67531/metadc685042

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 16, 2015, 6:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 19

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Levine, D. Users guide to the PGAPack parallel genetic algorithm library, report, January 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc685042/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.