Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847

PDF Version Also Available for Download.

Description

The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, ... continued below

Physical Description

83 p.; Other: FDE: PDF; PL:

Creation Information

Peterson, P.F.; Jin, H. & Scott, J.M. July 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 {Angstrom}) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO{sub 2} Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation [1-6]. This report provides a summary of the work completed this year, as well as copies fo presentation materials that have not been published elsewhere. In particular, the Appendix contains copies of presentations made on CO{sub 2} cleaning that are not available elsewhere.

Physical Description

83 p.; Other: FDE: PDF; PL:

Notes

INIS; OSTI as DE98052021

Source

  • Other Information: PBD: 1 Jul 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98052021
  • Report No.: UCRL-CR--127738
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/305342 | External Link
  • Office of Scientific & Technical Information Report Number: 305342
  • Archival Resource Key: ark:/67531/metadc685029

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 18, 2016, 5:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Peterson, P.F.; Jin, H. & Scott, J.M. Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847, report, July 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc685029/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.