Structural defect control and photosensitivity in reactively sputtered germanosilicate glass films

PDF Version Also Available for Download.

Description

The optical performance of refractive index structures induced in photosensitive (PS) glasses ultimately depends on the index modulation depth attainable. In germanosilicate materials, the photosensitive response is linked to the presence of oxygen-deficient germanium point defect centers. Prior efforts to increase PS in these materials, e.g., hydrogen loading, rely on a chemical reduction of the glass structure to enhance the population of oxygen deficient centers and thus increase the saturated refractive index change. We have previously reported the development of highly photosensitive, as-deposited germanosilicate glass films through reactive atmosphere (O{sub 2}/Ar) sputtering from a Ge/Si alloy target. The present work ... continued below

Physical Description

9 p.

Creation Information

Potter, B.G. Jr.; Simmons-Potter, K.; Warren, W.L. & Ruffner, J.A. February 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The optical performance of refractive index structures induced in photosensitive (PS) glasses ultimately depends on the index modulation depth attainable. In germanosilicate materials, the photosensitive response is linked to the presence of oxygen-deficient germanium point defect centers. Prior efforts to increase PS in these materials, e.g., hydrogen loading, rely on a chemical reduction of the glass structure to enhance the population of oxygen deficient centers and thus increase the saturated refractive index change. We have previously reported the development of highly photosensitive, as-deposited germanosilicate glass films through reactive atmosphere (O{sub 2}/Ar) sputtering from a Ge/Si alloy target. The present work details our investigation of the effect of substrate temperature during deposition on the material structure and propensity for photosensitivity. Using optical absorption/bleaching, Raman, electron paramagnetic resonance (EPR) and selective charge injection techniques we show that the predominate defect states responsible for the PS response can be varied through substrate temperature control. We find that two regimes of photosensitive behavior can be accessed which exhibit dramatically different uv-bleaching characteristics. Thus, the corresponding dispersion of the refractive index change as well as its magnitude can be controlled using our synthesis technique. Tentative defect models for the photosensitive process in materials deposited at both ambient temperature and at elevated substrate temperatures will be presented.

Physical Description

9 p.

Notes

OSTI as DE97001872

Source

  • SPIE international symposium, San Jose, CA (United States), 8-14 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97001872
  • Report No.: SAND--96-2997C
  • Report No.: CONF-970231--3
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 431159
  • Archival Resource Key: ark:/67531/metadc685004

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 14, 2016, 12:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Potter, B.G. Jr.; Simmons-Potter, K.; Warren, W.L. & Ruffner, J.A. Structural defect control and photosensitivity in reactively sputtered germanosilicate glass films, article, February 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc685004/: accessed November 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.