Performance of cement-based seal-system components in a waste-disposal environment

PDF Version Also Available for Download.

Description

A grout based on portland cement, Class F fly ash, and bentonite clay was developed as part of the closure system of shallow subsurface structures for disposal of low-activity radioactive wastes. Heat output, volume change, and compressive strength of the sealing grout were monitored with time, at elevated temperature, and in physical models, to determine if this closure grout could maintain adequate volume stability and other required physical properties in the internal environment of the disposal structure. To determine if contact with an alkaline liquid waste would cause chemical deterioration of the sealing grout, cured specimens were immersed in a ... continued below

Physical Description

6 p.

Creation Information

Malone, P.G.; Wakeley, L.D.; Burkes, J.P. & McDaniel, E.W. December 31, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A grout based on portland cement, Class F fly ash, and bentonite clay was developed as part of the closure system of shallow subsurface structures for disposal of low-activity radioactive wastes. Heat output, volume change, and compressive strength of the sealing grout were monitored with time, at elevated temperature, and in physical models, to determine if this closure grout could maintain adequate volume stability and other required physical properties in the internal environment of the disposal structure. To determine if contact with an alkaline liquid waste would cause chemical deterioration of the sealing grout, cured specimens were immersed in a liquid waste simulant containing high concentrations of sodium and aluminum salts. After 21 days at 60 C, specimens increased in mass without significant changes in volume. XRD revealed crystallization of sodium aluminum silicate hydrate. The new phase has an XRD pattern similar to the commercial synthetic zeolite Losod. Scanning electron microscopy used with x-ray fluorescence showed that clusters of this phase had formed in grout pores, to increase rout density and decrease its effective porosity. Testing was repeated at 100 C for 5 days using a simulant containing sodium hydroxide and aluminum nitrate and results were similar. Physical and chemical tests indicate acceptable performance of this grout as a seal-system component.

Physical Description

6 p.

Notes

INIS; OSTI as DE95008840

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 28 Nov - 9 Dec 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95008840
  • Report No.: CONF-941144--107
  • Grant Number: AI05-90OR21921
  • Office of Scientific & Technical Information Report Number: 39021
  • Archival Resource Key: ark:/67531/metadc684797

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1994

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Jan. 22, 2016, 7:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Malone, P.G.; Wakeley, L.D.; Burkes, J.P. & McDaniel, E.W. Performance of cement-based seal-system components in a waste-disposal environment, article, December 31, 1994; Tennessee. (digital.library.unt.edu/ark:/67531/metadc684797/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.