
Generalized Communicators
in the Message Passing Interface

Ian Foster
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, U.S.A.

fos t er@mcs. anl.gov

Carl Kesselman
Beckman Institute

California Institute of Technology
Pasadena, CA 91125, U.S.A.

carl@compbio.caltech.edu
Marc Snir

T. J. Watson Research Center
IBM

P.O. Box 218, Yorktown Heights, NY 1059t3, U.S.A.
snir@watson.ibm.com A

Abstract

W e propose extensions to the Message Passing In-
terface (MPI) that generalize the M P I communicator
concept t o allow multiple communication endpoints per
process, dynamic creation of endpoints, and the trans-
fer of endpoints between processes. The generalized
communicator construct can be used t o express a wide
range of interesting communication structures, includ-
ing collective communication operations involving mul-
tiple threads per process, communications between dy-
namically created threads, and object-oriented applica-
tions in which communications are directed t o specific
objects. Furthermore, this enriched functionality can be
provided in a manner that preserves backward compat-
ibility with MPI. W e describe the proposed extensions,
illustrate their use with examples, and discuss imple-
mentation issues.

1. Introduction

One of the most iniportant features of the Message
Passing Interface (MPI) [4, 71 is the communicator,
which allows the programmer to define unique com-
munication spaces within which a set of processes can
communicate without fear of interference. Communi-
cators are created by collective calls that create a lo-
cal instance of a communicator object in each of a set
of processes. We can think of the local communica-
tor object in each process as a ‘’communication port”

that the process can use to send messages to and re-
ceive messages from other such “ports” connected by
the same communication space. In an intracommuni-
cator, the ports are connected so that each can send
to and receive from any other; in an intercommunica-
tor, the ports form two disjoint sets, with each member
of one set being able to send to and receive from any
member of the other set.

The two related concepts of communication space
and communication port are powerful and general.
However, we believe that their utility is significantly
reduced by the fact that an MPI communicator must
define exactly one port per process in a process group,
and by the fact that only fully connected and bipar-
tite communication structures are supported. Such
communication structures are often sufficient for homo-
geneous, single-threaded, SPMD computations. How-
ever, task-parallel, multithreaded, and heterogeneous
computations often can benefit from more flexible com-
munication structures. Consider the following situa-
tions:

0 A multithreaded computation in which a program-
mer requires unidirectional communication chan-
nels between two dynamically created threads of
control located in different processes.

0 A dynamic computation in which a master pro-
cess “connects” two dynamically created child pro-
cesses.

0 A task-parallel computation in which communi-

~ ~ ~ ~ 1 ~ ~ 1 0 p j by a contractor of the U.S. Government
under contract No. W-31-10SENG-38.
Accordingly, the U. S Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for

mailto:carl@compbio.caltech.edu
mailto:snir@watson.ibm.com

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

. a

cation needs to be directed to a specific data-
structure (or object) rather than to a process.

In each of these examples, the collective, all-to-all na-
ture of the MPI communicator is an impediment to a
direct expression of the required communication struc-

, ture.
In this article, we propose a generalized communica-

tor mechanism that eliminates these limitations while
maintaining backward compatibility with MPI. This
generalized mechanism allows a process to create new
communication ports and connect these ports in an
arbitrary topology. Furthermore, the port becomes a
first-class object and can be sent to other processes via
MPI messages.

Other extensions to the MPI communicator have
been proposed. For example, Skjellum et al. [SI pro-
pose mechanisms that allow for a richer set of collective
operations over communicators, as well as extensions
that support multithreaded execution. The extensions
presented here are orthogonal to these proposals.

In the remainder of this article, we introduce our
generalized communicator mechanism, illustrate its use
with examples, and briefly discuss implementation is-
sues.

2. Generalized Com mu nicators

In MPI, a communicator is first and foremost a global
structure. An implementation of this structure typi-
cally maintains a set of local data structures, which we
might call local communication objects (LCOs); how-
ever, no mechanism is provided for manipulating these
LCOs directly. Our extensions generalize the MPI com-
municator so that the LCO becomes an MPI data type
in its own right. Thus the generalized LCO imple-
ments the “communication port” abstraction referred
to in the introduction. Each LCO contains explicit
references to other LCOs and hence provides a purely
local view of a communication topology.

This new interpretation of the MPI communicator
separates the two concepts of communication and pro-
cess. An arbitrary number of LCOs can be created
within a process, and communications can be directed
to different LCOs within the same process. In addi-
tion, the new interpretation makes it possible to create
arbitrary communication topologies. These new capa-
bilities enable the use of more general protocols for
communication port creation and destruction. For ex-
ample:

A multithreaded computation can dynamically de-
fine a point-to-point communication namespace

between two or more threads of control, whether
these threads are located in the same or different
processes.

We can pass references to communication ports
(“port capabilities”) between processes, thus al-
lowing, for example, a thread to delegate responsi-
bility for performing a particular communication.

0 We can define communicator-like structures con-
taining more communication ports than processes.
This feature makes it possible to perform collective
operations involving multiple threads [5], where
the number of threads may be greater than the
number of processes, a situation that can arise
on shared-memory multiprocessors or in programs
that create one thread per application “task.”

Figure 1 illustrates some of the communication
structures that can be specified using the port con-
struct. We emphasize that the extended interpreta-
tion of the local communicator object does not affect
MPI’s intracommunicator and intercommunicator con-
cepts. For example, an intracommunicator connecting
N processes is just a collection of N LCOs, each refer-
encing the N other LCOs.

3. Send and Receive Slots

We now consider the structure of an LCO in some de-
tail. Associated with an LCO is an ordered set of send
slots and an ordered set of receive slots. A receive slot
is a communication endpoint, a location to which com-
munication can be directed. A send slot is a reference
to a receive slot in an LCO; this reference comprises
the LCO’s name, which is a new MPI datatype, and
the index of the receive slot in the named LCO’s re-
ceive set. LCOs can be connected to form arbitrary
graphs. The only consistency requirement on an LCO
is that, for each send slot, there exists an LCO with a
matching receive slot.

By interpreting the rank in MPI communication op-
erations as a slot index, rather than the rank of the
source or destination process in the process group, we
can apply operations such as send and receive to a port
without modification. In a send call, the rank specifies
the send slot referencing the LCO into which data is to
be deposited. In a receive call, the rank specifies the
index of the receive slot in which to look for incoming
data. If the LCOs are connected in an all-to-all config-
uration, the behavior is exactly that of a conventional
MPI intracommunicator.

A local communicator object can be used anywhere
that an MPI communicator is used. Hence:

2

Figure 1. Above, the two types of communication structure that can be specified in MPI: (a) the fully
connected communicator, and (b) the intercommunicator’s bipartite graph. Below, three different
structures that can be specified by using MPI extended to support ports: (c) a fully connected
communicator with more than one LCO per process; (d) a regular communicator coexisting with a
dynamically created communicator connecting two LCOs; and (e) a communication structure that
allows two senders to communicate with a single receiver

0 All MPI point-to-point communication functions
can be applied to LCOs.

0 All MPI collective communication functions can
be applied collectively to a set of LCOs defining
an intracommunicator.

0 MPI intercommunicator functions can be applied
collectively to a set of LCOs defining an intercom-
municator.

arrives. The first thread to have performed a match-
ing receive operation then succeeds and receives the
message; the others stay blocked.

For notational purposes, we can think of an LCO as
a pair with the following form:

port = (set-of-send-slots, set-of-recv-slots}

where a set is denoted by a comma-separated list, en-
closed in angle brackets, and a send slot has the form

0 MPI functions involving process groups and com- send-slot = lco-name[recv-slot-number]
municators can be applied to LCOs; this issue is
discussed below. A receive slot is denoted simply by a “+”. We use this

notation to preesnt some examples.
In each of these situations, multiple threads may be
required to avoid deadlock if two or more of the LCOs
involved in a communication are located in the same
pro cess.

The semantics of communication on generalized
LCOs are identical to those for MPI communicators.
In particular, messages sent on a communication edge
linking two LCOs are received in order, and commu-
nication failure results in an exception at the sending
or receiving LCO. in a multithreaded system, if two
or more threads perform receive operations that would
match an incoming message, all block until the message

Example: Channel. A unidirectional channel is defined
by a pair of LCOs connected so that one can be used
to send to the other. For example, the two LCOs

PO = €<Pi EO]>, 0 3 PI = (<>, <+>)

define a channel from LCO PO to LCO P1. P1 has
a single receive slot; PO has a single send slot, which
contains a reference to Pl’s receive slot. Hence, the
calls

MPI-Send(in, 1, type, 0 , tag, PO)
MPI-Recv(out, I , type, 0 , tag, P1, status)

3

will transfer data from i n to out. That is, a send on an “LCO name” that can be communicated between
PO’s 0th send slot is matched by a receive from PI’S processors, so we define the related opaque datatype
0th receive slot. MPI-Commmame, and the new communication datatype

MPI -CB AME .
Example: Intracornrnunicator. An MPI intracommuni-
cator is defined by a set of LCOs configured as a fully-
connected network. For example, the LCOs

M P I -CO M M -C R EAT E L 0 C A L(I corn m)
OUT lcornrn New local communicator (handle)

PO = (<POCO1 ,PIC01 ,P2COI>, <+,+,+>I
PI = (<POCII ,PIC11 ,P2CIl>, <+,+,+>I
P2 = (<POC21 ,PIC21 ,P2C21>, <+,+,+>I

define a fully connected network, that is, an MPI in-
tracommunicator. The calls

MPI-Send(in, I, type, 2, tag, PO)
MPI,Recv(out, I, type, 0, tag, P2, status)

will transfer data from i n to out. That is, a send to
PO’s 2nd send slot is matched by a receive on P2’s 0th
receive slot.

Exa rn pl e: Intercom rn u nicator . An MPI intercommuni-
cator is defined by two sets of LCOs configured so that
each LCO in the first set can send to and receive from
each LCO in the second set. For example, the LCOs

PO = C<P2 COl , P3 Cll > , <+,+>I
PI = €<P2COI ,P3CIl>, <+,+>I
P2 = €<POCO1 , p i c a > , <+,+>3
P3 = C<POCOl ,PICII>, <+,+>I

define a structure equivalent to an MPI intercommuni-
cator. In this case, LCOs PO and P1 are connected to
LCOs P2 and P3, so that, for example, the calls

MPI,Send(in, I, type, I, tag, PO)
MPI,Recv(out, I, type, 0, tag, P3, status)

Create a new local communicator object, lcomm. Ini-
tially, no send or receive slots are associated with the
new LCO; these must be added explicitly.

MPLCOMM-NAME(lcornrn, name)
IN . lcomrn Local communicator object (handle)
OUT name Communicator name (handle)

Create and return a name that can be used to refer-
ence the lcomm. This name is used in the next function.

MPIADDSENDSLOTS(lcornrn, count, Icos, slots)
INOUT lcornm Local communicator object (handle)
IN count Number of slots to add (integer 2 0)
IN lcos LCOs to be sent to (array of

IN slots Slots to be sent to (array of integers)

This function and the next are used to cre-
ate new connections between LCOs. This function
adds count send slots to lcomm, and defines each
new slot i to be the reference to the receive slot
Icos(i) Cslots(i)l. (Note that the receive slots refer-
enced by the newly created send slots must be created
using MPIADD-RECEIVESLOTS and may not yet ex-
ist when MPIADDSENDSLOTS is called.)

M PI A D D-REC E IV E S LOTS(I corn rn, count)
INOUT lcornrn
IN count Number of receive slots (integer 2 0)

communicator names)

Local communicator object (handle)

will transfer data from i n to out. That is, a send to
PO’s 1st send slot is matched by a receive on P3’s 0th
receive slot.

4. Manipulating Local COmmuniCatorS OUT count Number ofsend slots (integer 2 0)

We now consider how the MPI interface can be ex-
tended to support LCO~. we define new functions
that are used to create a local communicator, to ob-

This function adds count slots to the receive set of
I C O ~ U .

M P LN U M S EN D-S LOTS(lcorn rn , count)
IN lcornm Local communicator object (handle)

Return the number of send slots in the LCO lcomm.
Notice that if this LCO is part of a communicatorstruc-
ture, this function is equivalent to MPI-COMMSIZE.

MPI-NUM-RECEIVESLOTS(Icornm, count)
IN lcornrn Local communicator object (handle)
OUT count Number of receive slots (integer 2 0)

tain an LCO name that can be communicated between
processes, to add slots to LCOs, and to determine the
number of slots associated with an LCO. Other func-
tions can be defined to delete slots, obtain information
about slots, etc., but for brevity we do not consider Return the number of receive slots in the LCO
these here. lcomm. Again, if this LCO is part of a com-

An LCO is represented by the opaque datatype municator structure, this function is equivalent to
MPI-Comm. We will often need to be able to create MPI-COMMSIZE.

4

Example: Creating a Channel. Figure 2 creates a uni-
directional channel: a pair of LCOs connected so that
one can be used to send to the other. The connection
is established by using an existing communicator to
send a reference to one LCO (the “receive end”) to the
process containing the second LCO (the “send end”).
A number of messages are then communicated on the
channel. Notice how at the send end, messages are
sent on the single send slot, while at the receive end,
messages are received on the single receive slot. W

.

Example: MPI-COMM-DUP. Just as MPI’s point-te
point communication functions can be used to imple-
ment MPI’s various global operations, so the LCO op-
erations can be used to implement MPI’s communi-
cator functions. For example, Figure 3 implements
MPI-COMM-DUP. This function is applied collectively
to a set of LCOs assumed to define an intracommuni-
cator; comm is one such LCO. It constructs a new set
of LCOs defining an intracommunicator with the same
topology.

4.1. An alternative interface design
The LCO construct defined above serves as a capabil-
ity for a port, providing the ability to send or receive
to or from another LCO. Once the name has been dis-
tributed, the holder of that capability is responsible for
synthesizing a slot name from the port name. In situa-
tions where security or safety are issues, the ability to
create a slot reference unilaterally can be problematic.

An alternative interface would associate names with
specific receive slots rather than LCOs. The “add re-
ceive slots” operation then returns a slot name, a capa-
bility that allows another LCO to send to that receive
slot. This reference can be added to another LCO with
a variant of the “add send slot” call with the form

MPlADDSENDSLOT(lcomm, slot-reference)

This scheme has the advantage that we can de-
fine a capability for a single receive slot, rather than
for the entire LCO as in the scheme described previ-
ously. A disadvantage is that in applications that re-
quire many connections, a large number of these slot
tokens must be communicated. For example, in the
MPI-COMM-DUP example considered above, O (N 2)
slot tokens must be created and communicated, where
N is the number of LCOs; in contrast, the scheme de-
scribed in the preceding sections requires that only N
communicator names be communicated.

€
MPI-Corn receiver;
MPI-Corn-name rname;
int msg;

/* Create an LCO */
MPI-Comm-creat e,local(receiver) ;
MPI-Add-receive,slots(receiver , 1) ;

/* Send LCO name to other process */
MPI,Commpame(receiver, h a m e) ;
MPI-Send(rname, I, MPI-CNAME, nbr,

99, corn);

/* Receive messages from other process
on channel. A distinguished value
might be used to detect termination */
MPI,Recv(msg, I, MPI-INT, 0, 99,

while (!done)

receiver, status);
MPI-Corn-free(receiver1;

3

sender-side(MP1,Comm comm, int nbr)
€

MPI-Comm sender;
MPI-Corn-name rnames Cil ;
int msg, rslotsCi1;

/* Create a new communicator object */
MPI-Com-create-local(sender);

/* Receive LCO name from other process,
MPI-Recv(rnames, I, MPI-CNAME, nbr, 99,

rslotsC01 = 0;
MPI-Add-send,slots(sender, I, rnames,

add to send list */
comm, status) ;

rslots) ;

/* Send messages to other process,
on newly created channel */

for(msg=o; msg<iO; msg++)
MPI-Send(msg, I, MPI-INT, 0,

99, sender);
MPI-Comm-f ree (sender) ;

3

Figure 2. Implementation of a unidirectional
channel using the generalized communicator
constructs

5

comm,dup(MPI,Comm comm, MPI-Comm *newcorn)
c

int numslots, *rslots, i;
MPI-Comm-name *pnames , pid;

MPI,Hum,send,slots(com, humslots);
pnames = (MPI-Comm-name *)

rslots = (int *)malloc(numslots);
malloc(numslots*sizeof (MPI-Comm-name)) ;

/* Create our new LCO */
MPI-Corn-create-local(newcomm);
MPI-Comm-name (*newcomm, &id) ;
MPI-Add-receive-slots(*nencomm, size);

/* Gather operation collects pointers

MPI,Allgather(pid, I, MPI-CHAME, pnames,
to allnen LCOs */

1 , MPI-CBAME; comm);

/* Associate these pointers with our LCO */
for(i=O; i<numslots; i++)

MPI-Add-send,slots(*newcomm, numslots,
rslotsCi1 = i;

pnames, rslots);

/* Ensure all complete before using

MPI,Barrier(comm) ;
new communicator */

3

Figure 3. Implementation of MPI-commdup us-
ing the generalized communicator constructs

4.2. Interaction with process groups
As noted above, MPI functions that expect a commu-
nicator as an argument behave as expected when ap-
plied to a set of LCOs that are structured so as to im-
plement an MPI communicator. What happens when
these functions are applied to LCOs that do not im-
plement a communicator, either because they form less
than fully connected structures, or because they con-
nect more than one communicator object per process?
We propose to address these situations by (a) general-
izing the definition of existing MPI functions so that
they work when applied to any LCO, and (b) introduc-
ing a small number of new functions. In this article, we
do not provide a detailed specification for these exten-
sions, but instead just discuss some of the issues that
arise.

One issue that must be addressed relates to the fact
that many MPI functions that expect a communica-
tor as an argument are defined in terms of the process
group associated with that communicator. For exam-
ple, M P I - C O M M S I Z E is defined to refer to the “num-
ber of processes in the group of comm,” rather than the
“number of local communicator objects.” In standard
MPI, these two definitions are equivalent; however, in
MPI with our extensions, they are not, and in fact we
may be interested in either one or the other definition
in different situations.

We address this problem by retaining the existing
interpretation of any MPI function that refers explic-
itly to processes and by introducing new functions that
operate explicitly on LCOs. To retain the existing in-
terpretation of MPI functions that refer to processes,
we provide the following definition:

The process group associated with a local
communicator object is the list of processes
referenced by its send slots, with duplicates
removed.

An advantage of this interpretation is that functions
such as M P I - C Q M M S I Z E and MPI-COMM-RANK can
be applied unchanged to an LCO that forms part of a
communicator structure. These functions can also be
applied to other LCOs, although the results may not
always be useful.

Some programs will require information about LCOs
rather than processes. For example, a program that
creates a communicator-like structure with more LCOs
than processes may want to send a message to each
LCO. In this case, M P I - C O M M S I Z E cannot be used
to determine the number of LCOs. However, the func-
tion M P I - N U M S E N D S L O T S provides the required in-
formation.

6

L

5. Implementation Issues

The modifications to an MPI implementation re-
quired to support our proposed MPI extensions are
inevitably focused within the MPI communicator con-
struct. Hence, we introduce this discussion of imple-
mentation issues by describing how communicators are
represented within one widely used MPI implementa-
tion, MPICH [3].

The two principal components of an MPI commu-
nicator as represented in MPICH are a process group
and a context. The process group is represented as an
ordered set of process identifiers, stored as an integer
array. A process’s rank in a group refers to its index in
this array. The array contains for each index an address
in a format that the underlying device can use and un-
derstand: for example, the rank in HPI-COMM-WORLD.
The context associated with a communicator is repre-
sented by an integer. Note that the communicator data
structure maintained in each process has the same pro-
cess group and context values; these were determined
by the collective operation that created the communi-
cator. When a message is sent, the rank provided in
the send call is used to extract a process identifier from
the process group array associated with the communi-
cator on which the send is performed. The message is
then sent to that process, together with a message en-
veIope containing the rank of the sending process, the
tag, and the integer context identifier associated with
the communicator.

An LCO has a somewhat different structure. Cor-
responding to the MPICH integer representation of a
context is an integer LCO identifier, assigned when the
LCO is created. This identifier is guaranteed to be
unique only within the creating process. Correspond-
ing to the MPICH process group is an array of send
slots. Each entry in an LCO’s send slot array contains
a process identifier, an LCO identifier, and a receive
slot index. Receive operations proceed in a manner
identical to an MPI receive; a send operation differs
from an MPI send only in that when constructing the
message envelope, it uses the receive slot index for the
rank and the LCO identifier as the context. We note
that one significant advantage of this approach relative
to the MPICH communicator structure is that identi-
fiers can be allocated in a purely local fashion. Hence,
collective operations are not required for communica-
tor creation and the identifier name space can be more
densely populated.

The principal overhead associated with this imple-
mentation scheme is the additional space required to
maintain an LCO identifier and receive slot identifier
in each send slot. However, one can imagine optimiza-

7

tions that recognize sets of LCOs representing MPI
communicator or intercommunicator structures, and
revert to the more compact representation in this case.

An alternative implementation approach would use
a communication library such as Nexus [2] that pro-
vides gIoba1 pointer and single-sided communication
operations. In this environment, a send slot can be
represented as a global pointer to a remote queue cor-
responding to a receive slot, and a send operation can
be implemented as a remote enqueue operation. This
technique has been used to construct an implementa-
tion of ordinary MPI [l].

6. Conclusions

We have presented extensions to the MPI communica-
tor that permit the representation of more general and
flexible communication structures. These extensions
are backwards compatible with MPI, meaning that any
existing MPI program will execute correctly in a sys-
tem that supports the new constructs. We believe that
the new constructs can be incorporated into existing
MPI implementations without difficulty and without
significant performance degradation.

A disadvantage of the extensions as presented here is
that because LCOs (and slots within LCOs) are created
and destroyed independently, we lose MPI’s message
safety property. That is, a message may arrive for a
nonexistent receive slot. This problem can be avoided,
at the expense of added complexity, by using one of
the various mechanisms that have been developed for
managing distributed objects, such as referen’ce count-
ing.

The generalized LCO proposed in this article also
appears to have other uses. For example, LCOs can be
used to manage “one-sided” communications, in which
the arrival of a message triggers the execution of a han-
dler function. By requiring these communications to
occur over an LCO, we provide an endpoint on the
receiver side with which control information can be
associated. LCOs can also be used to define gener-
alized collective communication operations, in which
user-defined transformations are applied to data sup-
plied by an arbitrary number of senders, and the results
of these transformations are delivered to an arbitrary
number of receivers.

Acknowledgments

This work was supported by the National Science Foun-
dation’s Center for Research in Parallel Computation,

under Contract CCR-8809615, and by the Mathemati-
cal, Information, and Computational Sciences Division
subprogram of the Office of Computational and Tech-
nology Research, US. Department of Energy, under
Contract W-31-109-Eng-38.

References
[l] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-

WAY A wide-area, multimethod implementation of the
Message Passing Interface. In Proceedings of the 1996
MPI Developers Conference. IEEE Computer Society
Press, 1996.

[2] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. Journal of Parallel and Distributed Computing,
1996. To appear.

A
high-performance, portable implementation of the MPI
message passing interface standard. Technical Report
ANL/MCS-TM-213, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Argonne,
Ill., 1996.

Using MPI:
Portable Parallel Programming with the Message Pass-
ing Interface. MIT Press, 1995.

[5] M. Haines, P. Mehrotra, and D. Cronk. Ropes: Support
for collective operations among distributed threads.
Technical Report 95-36, Institute for Computer Appli-
cation in Science and Engineering, 1995.

[SI A. Skjellum, N. DOSS, K. Viwanathan, A. Chowdappa,
and P. Bangalore. Extending the message passing in-
terface. In Proc. 1994 Scalable Parallel Libraries Conf.
IEEE Computer Society Press, 1994.

[7] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker,
and J. Dongarra. MPI: The Complete Reference. The
MIT Press, Cambridge, Mass., 1996.

[3] W. Gropp, E. Lusk, N. DOSS, and A. Skjellum.

[4] W. Gropp, E. Lusk, and A. Skjellum.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recorn-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

~ ~~~ ~. . ~ ~~~~~~

8

