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Abstract 

W e  propose extensions to  the Message Passing In- 
terface (MPI) that generalize the M P I  communicator 
concept t o  allow multiple communication endpoints per  
process, dynamic creation of endpoints, and the trans- 
fer of endpoints between processes. The  generalized 
communicator construct can be used t o  express a wide 
range of interesting communication structures, includ- 
ing collective communication operations involving mul- 
tiple threads per process, communications between dy- 
namically created threads, and object-oriented applica- 
tions in which communications are directed t o  specific 
objects. Furthermore, this enriched functionality can be 
provided in a manner that preserves backward compat- 
ibility with MPI. W e  describe the proposed extensions, 
illustrate their use with examples, and discuss imple- 
mentation issues. 

1. Introduction 

One of the most iniportant features of the Message 
Passing Interface (MPI) [4, 71 is the communicator, 
which allows the programmer to define unique com- 
munication spaces within which a set of processes can 
communicate without fear of interference. Communi- 
cators are created by collective calls that create a lo- 
cal instance of a communicator object in each of a set 
of processes. We can think of the local communica- 
tor object in each process as a ‘’communication port” 

that the process can use to send messages to and re- 
ceive messages from other such “ports” connected by 
the same communication space. In an intracommuni- 
cator, the ports are connected so that each can send 
to and receive from any other; in an intercommunica- 
tor, the ports form two disjoint sets, with each member 
of one set being able to send to and receive from any 
member of the other set. 

The two related concepts of communication space 
and communication port are powerful and general. 
However, we believe that their utility is significantly 
reduced by the fact that an MPI communicator must 
define exactly one port per process in a process group, 
and by the fact that only fully connected and bipar- 
tite communication structures are supported. Such 
communication structures are often sufficient for homo- 
geneous, single-threaded, SPMD computations. How- 
ever, task-parallel, multithreaded, and heterogeneous 
computations often can benefit from more flexible com- 
munication structures. Consider the following situa- 
tions: 

0 A multithreaded computation in which a program- 
mer requires unidirectional communication chan- 
nels between two dynamically created threads of 
control located in different processes. 

0 A dynamic computation in which a master pro- 
cess “connects” two dynamically created child pro- 
cesses. 

0 A task-parallel computation in which communi- 
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cation needs to be directed to a specific data- 
structure (or object) rather than to a process. 

In each of these examples, the collective, all-to-all na- 
ture of the MPI communicator is an impediment to a 
direct expression of the required communication struc- 

, ture. 
In this article, we propose a generalized communica- 

tor mechanism that eliminates these limitations while 
maintaining backward compatibility with MPI. This 
generalized mechanism allows a process to create new 
communication ports and connect these ports in an 
arbitrary topology. Furthermore, the port becomes a 
first-class object and can be sent to other processes via 
MPI messages. 

Other extensions to the MPI communicator have 
been proposed. For example, Skjellum et al. [SI pro- 
pose mechanisms that allow for a richer set of collective 
operations over communicators, as well as extensions 
that support multithreaded execution. The extensions 
presented here are orthogonal to these proposals. 

In the remainder of this article, we introduce our 
generalized communicator mechanism, illustrate its use 
with examples, and briefly discuss implementation is- 
sues. 

2. Generalized Com mu nicators 

In MPI, a communicator is first and foremost a global 
structure. An implementation of this structure typi- 
cally maintains a set of local data structures, which we 
might call local communication objects (LCOs); how- 
ever, no mechanism is provided for manipulating these 
LCOs directly. Our extensions generalize the MPI com- 
municator so that the LCO becomes an MPI data type 
in its own right. Thus the generalized LCO imple- 
ments the “communication port” abstraction referred 
to in the introduction. Each LCO contains explicit 
references to other LCOs and hence provides a purely 
local view of a communication topology. 

This new interpretation of the MPI communicator 
separates the two concepts of communication and pro- 
cess. An arbitrary number of LCOs can be created 
within a process, and communications can be directed 
to different LCOs within the same process. In addi- 
tion, the new interpretation makes it possible to create 
arbitrary communication topologies. These new capa- 
bilities enable the use of more general protocols for 
communication port creation and destruction. For ex- 
ample: 

A multithreaded computation can dynamically de- 
fine a point-to-point communication namespace 

between two or more threads of control, whether 
these threads are located in the same or different 
processes. 

We can pass references to communication ports 
(“port capabilities”) between processes, thus al- 
lowing, for example, a thread to delegate responsi- 
bility for performing a particular communication. 

0 We can define communicator-like structures con- 
taining more communication ports than processes. 
This feature makes it possible to perform collective 
operations involving multiple threads [5], where 
the number of threads may be greater than the 
number of processes, a situation that can arise 
on shared-memory multiprocessors or in programs 
that create one thread per application “task.” 

Figure 1 illustrates some of the communication 
structures that can be specified using the port con- 
struct. We emphasize that the extended interpreta- 
tion of the local communicator object does not affect 
MPI’s intracommunicator and intercommunicator con- 
cepts. For example, an intracommunicator connecting 
N processes is just a collection of N LCOs, each refer- 
encing the N other LCOs. 

3. Send and Receive Slots 

We now consider the structure of an LCO in some de- 
tail. Associated with an LCO is an ordered set of send 
slots and an ordered set of receive slots. A receive slot 
is a communication endpoint, a location to which com- 
munication can be directed. A send slot is a reference 
to a receive slot in an LCO; this reference comprises 
the LCO’s name, which is a new MPI datatype, and 
the index of the receive slot in the named LCO’s re- 
ceive set. LCOs can be connected to form arbitrary 
graphs. The only consistency requirement on an LCO 
is that, for each send slot, there exists an LCO with a 
matching receive slot. 

By interpreting the rank in MPI communication op- 
erations as a slot index, rather than the rank of the 
source or destination process in the process group, we 
can apply operations such as send and receive to a port 
without modification. In a send call, the rank specifies 
the send slot referencing the LCO into which data is to 
be deposited. In a receive call, the rank specifies the 
index of the receive slot in which to look for incoming 
data. If the LCOs are connected in an all-to-all config- 
uration, the behavior is exactly that of a conventional 
MPI intracommunicator. 

A local communicator object can be used anywhere 
that an MPI communicator is used. Hence: 
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Figure 1. Above, the two types of communication structure that can be specified in MPI: (a) the fully 
connected communicator, and (b) the intercommunicator’s bipartite graph. Below, three different 
structures that can be specified by using MPI extended to support ports: (c) a fully connected 
communicator with more than one LCO per process; (d) a regular communicator coexisting with a 
dynamically created communicator connecting two LCOs; and (e) a communication structure that 
allows two senders to communicate with a single receiver 

0 All MPI point-to-point communication functions 
can be applied to LCOs. 

0 All MPI collective communication functions can 
be applied collectively to a set of LCOs defining 
an intracommunicator. 

0 MPI intercommunicator functions can be applied 
collectively to a set of LCOs defining an intercom- 
municator. 

arrives. The first thread to have performed a match- 
ing receive operation then succeeds and receives the 
message; the others stay blocked. 

For notational purposes, we can think of an LCO as 
a pair with the following form: 

port = (set-of-send-slots, set-of-recv-slots} 

where a set is denoted by a comma-separated list, en- 
closed in angle brackets, and a send slot has the form 

0 MPI functions involving process groups and com- send-slot = lco-name[recv-slot-number] 
municators can be applied to LCOs; this issue is 
discussed below. A receive slot is denoted simply by a “+”. We use this 

notation to preesnt some examples. 
In each of these situations, multiple threads may be 
required to avoid deadlock if two or more of the LCOs 
involved in a communication are located in the same 
pro cess. 

The semantics of communication on generalized 
LCOs are identical to those for MPI communicators. 
In particular, messages sent on a communication edge 
linking two LCOs are received in order, and commu- 
nication failure results in an exception at  the sending 
or receiving LCO. in a multithreaded system, if two 
or more threads perform receive operations that would 
match an incoming message, all block until the message 

Example: Channel. A unidirectional channel is defined 
by a pair of LCOs connected so that one can be used 
to send to the other. For example, the two LCOs 

PO = €<Pi EO]>, 0 3  PI = (<>, <+>) 

define a channel from LCO PO to LCO P1. P1 has 
a single receive slot; PO has a single send slot, which 
contains a reference to Pl’s receive slot. Hence, the 
calls 

MPI-Send(in, 1, type, 0 ,  tag, PO) 
MPI-Recv(out, I ,  type, 0 ,  tag, P1, status) 
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will transfer data from i n  to out. That is, a send on an “LCO name” that can be communicated between 
PO’s 0th send slot is matched by a receive from PI’S processors, so we define the related opaque datatype 
0th receive slot. MPI-Commmame, and the new communication datatype 

MPI -CB AME . 
Example: Intracornrnunicator. An MPI intracommuni- 
cator is defined by a set of LCOs configured as a fully- 
connected network. For example, the LCOs 

M P I -CO M M -C R EAT E L 0  C A L( I corn m ) 
OUT lcornrn New local communicator (handle) 

PO = (<POCO1 ,PIC01 ,P2COI>, <+,+,+>I 
PI = (<POCII ,PIC11 ,P2CIl>, <+,+,+>I 
P2 = (<POC21 ,PIC21 ,P2C21>, <+,+,+>I 

define a fully connected network, that is, an MPI in- 
tracommunicator. The calls 

MPI-Send(in, I, type, 2,  tag, PO) 
MPI,Recv(out, I, type, 0, tag, P2, status) 

will transfer data from i n  to out. That is, a send to 
PO’s 2nd send slot is matched by a receive on P2’s 0th 
receive slot. 

Exa rn pl e: Intercom rn u nicator . An MPI intercommuni- 
cator is defined by two sets of LCOs configured so that 
each LCO in the first set can send to and receive from 
each LCO in the second set. For example, the LCOs 

PO = C<P2 COl , P3 Cll > , <+,+>I 
PI = €<P2COI ,P3CIl>, <+,+>I 
P2 = €<POCO1 , p i c a > ,  <+,+>3 
P3 = C<POCOl ,PICII>, <+,+>I 

define a structure equivalent to an MPI intercommuni- 
cator. In this case, LCOs PO and P1 are connected to 
LCOs P2 and P3, so that, for example, the calls 

MPI,Send(in, I, type, I, tag, PO) 
MPI,Recv(out, I, type, 0, tag, P3, status) 

Create a new local communicator object, lcomm. Ini- 
tially, no send or receive slots are associated with the 
new LCO; these must be added explicitly. 

MPLCOMM-NAME(lcornrn, name) 
IN . lcomrn Local communicator object (handle) 
OUT name Communicator name (handle) 

Create and return a name that can be used to refer- 
ence the lcomm. This name is used in the next function. 

MPIADDSENDSLOTS(lcornrn, count, Icos, slots) 
INOUT lcornm Local communicator object (handle) 
IN count Number of slots to add (integer 2 0) 
IN lcos LCOs to be sent to (array of 

IN slots Slots to be sent to (array of integers) 

This function and the next are used to cre- 
ate new connections between LCOs. This function 
adds count send slots to lcomm, and defines each 
new slot i to be the reference to the receive slot 
Icos(i) Cslots(i)l. (Note that the receive slots refer- 
enced by the newly created send slots must be created 
using MPIADD-RECEIVESLOTS and may not yet ex- 
ist when MPIADDSENDSLOTS is called.) 

M PI A D  D-REC E IV E S  LOTS( I corn rn, count) 
INOUT lcornrn 
IN count Number of receive slots (integer 2 0) 

communicator names) 

Local communicator object (handle) 

will transfer data from i n  to out. That is, a send to 
PO’s 1st send slot is matched by a receive on P3’s 0th 
receive slot. 

4. Manipulating Local COmmuniCatorS OUT count Number ofsend slots (integer 2 0) 

We now consider how the MPI interface can be ex- 
tended to support LCO~.  we define new functions 
that are used to create a local communicator, to ob- 

This function adds count slots to the receive set of 
I C O ~ U .  

M P LN U M S EN D-S LOTS( lcorn rn , count) 
IN lcornm Local communicator object (handle) 

Return the number of send slots in the LCO lcomm. 
Notice that if this LCO is part of a communicatorstruc- 
ture, this function is equivalent to MPI-COMMSIZE. 

MPI-NUM-RECEIVESLOTS(Icornm, count) 
IN lcornrn Local communicator object (handle) 
OUT count Number of receive slots (integer 2 0) 

tain an LCO name that can be communicated between 
processes, to add slots to LCOs, and to determine the 
number of slots associated with an LCO. Other func- 
tions can be defined to delete slots, obtain information 
about slots, etc., but for brevity we do not consider Return the number of receive slots in the LCO 
these here. lcomm. Again, if this LCO is part of a com- 

An LCO is represented by the opaque datatype municator structure, this function is equivalent to 
MPI-Comm. We will often need to be able to create MPI-COMMSIZE. 
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Example: Creating a Channel. Figure 2 creates a uni- 
directional channel: a pair of LCOs connected so that 
one can be used to send to the other. The connection 
is established by using an existing communicator to 
send a reference to one LCO (the “receive end”) to the 
process containing the second LCO (the “send end”). 
A number of messages are then communicated on the 
channel. Notice how at the send end, messages are 
sent on the single send slot, while at the receive end, 
messages are received on the single receive slot. W 

. 

Example: MPI-COMM-DUP. Just as MPI’s point-te 
point communication functions can be used to imple- 
ment MPI’s various global operations, so the LCO op- 
erations can be used to implement MPI’s communi- 
cator functions. For example, Figure 3 implements 
MPI-COMM-DUP. This function is applied collectively 
to a set of LCOs assumed to define an intracommuni- 
cator; comm is one such LCO. It constructs a new set 
of LCOs defining an intracommunicator with the same 
topology. 

4.1. An alternative interface design 
The LCO construct defined above serves as a capabil- 
ity for a port, providing the ability to  send or receive 
to or from another LCO. Once the name has been dis- 
tributed, the holder of that capability is responsible for 
synthesizing a slot name from the port name. In situa- 
tions where security or safety are issues, the ability to 
create a slot reference unilaterally can be problematic. 

An alternative interface would associate names with 
specific receive slots rather than LCOs. The “add re- 
ceive slots” operation then returns a slot name, a capa- 
bility that allows another LCO to send to that receive 
slot. This reference can be added to another LCO with 
a variant of the “add send slot” call with the form 

MPlADDSENDSLOT(lcomm, slot-reference) 

This scheme has the advantage that we can de- 
fine a capability for a single receive slot, rather than 
for the entire LCO as in the scheme described previ- 
ously. A disadvantage is that in applications that re- 
quire many connections, a large number of these slot 
tokens must be communicated. For example, in the 
MPI-COMM-DUP example considered above, O ( N 2 )  
slot tokens must be created and communicated, where 
N is the number of LCOs; in contrast, the scheme de- 
scribed in the preceding sections requires that only N 
communicator names be communicated. 

€ 
MPI-Corn receiver; 
MPI-Corn-name rname; 
int msg; 

/* Create an LCO */ 
MPI-Comm-creat e,local(receiver) ; 
MPI-Add-receive,slots(receiver , 1) ; 

/* Send LCO name to other process */ 
MPI,Commpame(receiver, h a m e )  ; 
MPI-Send(rname, I, MPI-CNAME, nbr, 

99, corn); 

/* Receive messages from other process 
on channel. A distinguished value 
might be used to detect termination */ 
MPI,Recv(msg, I, MPI-INT, 0, 99, 

while ( !done) 

receiver, status); 
MPI-Corn-free(receiver1; 

3 

sender-side(MP1,Comm comm, int nbr) 
€ 

MPI-Comm sender; 
MPI-Corn-name rnames Cil ; 
int msg, rslotsCi1; 

/* Create a new communicator object */ 
MPI-Com-create-local(sender); 

/* Receive LCO name from other process, 
MPI-Recv(rnames, I, MPI-CNAME, nbr, 99, 

rslotsC01 = 0; 
MPI-Add-send,slots(sender, I, rnames, 

add to send list */ 
comm, status) ; 

rslots) ; 

/* Send messages to other process, 
on newly created channel */ 

for(msg=o; msg<iO; msg++) 
MPI-Send(msg, I, MPI-INT, 0, 

99, sender); 
MPI-Comm-f ree (sender) ; 

3 

Figure 2. Implementation of a unidirectional 
channel using the generalized communicator 
constructs 

5 



comm,dup(MPI,Comm comm, MPI-Comm *newcorn) 
c 

int numslots, *rslots, i; 
MPI-Comm-name *pnames , pid; 

MPI,Hum,send,slots(com, humslots); 
pnames = (MPI-Comm-name *) 

rslots = (int *)malloc(numslots); 
malloc(numslots*sizeof (MPI-Comm-name) ) ; 

/* Create our new LCO */ 
MPI-Corn-create-local(newcomm); 
MPI-Comm-name (*newcomm, &id) ; 
MPI-Add-receive-slots(*nencomm, size); 

/* Gather operation collects pointers 

MPI,Allgather(pid, I, MPI-CHAME, pnames, 
to allnen LCOs */ 

1 ,  MPI-CBAME; comm); 

/* Associate these pointers with our LCO */ 
for(i=O; i<numslots; i++) 

MPI-Add-send,slots(*newcomm, numslots, 
rslotsCi1 = i; 

pnames, rslots); 

/* Ensure all complete before using 

MPI,Barrier(comm) ; 
new communicator */ 

3 

Figure 3. Implementation of MPI-commdup us- 
ing the generalized communicator constructs 

4.2. Interaction with process groups 
As noted above, MPI functions that expect a commu- 
nicator as an argument behave as expected when ap- 
plied to a set of LCOs that are structured so as to im- 
plement an MPI communicator. What happens when 
these functions are applied to LCOs that do not im- 
plement a communicator, either because they form less 
than fully connected structures, or because they con- 
nect more than one communicator object per process? 
We propose to address these situations by (a) general- 
izing the definition of existing MPI functions so that 
they work when applied to any LCO, and (b) introduc- 
ing a small number of new functions. In this article, we 
do not provide a detailed specification for these exten- 
sions, but instead just discuss some of the issues that 
arise. 

One issue that must be addressed relates to the fact 
that many MPI functions that expect a communica- 
tor as an argument are defined in terms of the process 
group associated with that communicator. For exam- 
ple, M P I - C O M M S I Z E  is defined to refer to the “num- 
ber of processes in the group of comm,” rather than the 
“number of local communicator objects.” In standard 
MPI, these two definitions are equivalent; however, in 
MPI with our extensions, they are not, and in fact we 
may be interested in either one or the other definition 
in different situations. 

We address this problem by retaining the existing 
interpretation of any MPI function that refers explic- 
itly to processes and by introducing new functions that 
operate explicitly on LCOs. To retain the existing in- 
terpretation of MPI functions that refer to processes, 
we provide the following definition: 

The process group associated with a local 
communicator object is the list of processes 
referenced by its send slots, with duplicates 
removed. 

An advantage of this interpretation is that functions 
such as M P I - C Q M M S I Z E  and MPI-COMM-RANK can 
be applied unchanged to an LCO that forms part of a 
communicator structure. These functions can also be 
applied to other LCOs, although the results may not 
always be useful. 

Some programs will require information about LCOs 
rather than processes. For example, a program that 
creates a communicator-like structure with more LCOs 
than processes may want to send a message to each 
LCO. In this case, M P I - C O M M S I Z E  cannot be used 
to determine the number of LCOs. However, the func- 
tion M P I - N U M S E N D S L O T S  provides the required in- 
formation. 
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5. Implementation Issues 

The modifications to an MPI implementation re- 
quired to support our proposed MPI extensions are 
inevitably focused within the MPI communicator con- 
struct. Hence, we introduce this discussion of imple- 
mentation issues by describing how communicators are 
represented within one widely used MPI implementa- 
tion, MPICH [3]. 

The two principal components of an MPI commu- 
nicator as represented in MPICH are a process group 
and a context. The process group is represented as an 
ordered set of process identifiers, stored as an integer 
array. A process’s rank in a group refers to its index in 
this array. The array contains for each index an address 
in a format that the underlying device can use and un- 
derstand: for example, the rank in HPI-COMM-WORLD. 
The context associated with a communicator is repre- 
sented by an integer. Note that the communicator data 
structure maintained in each process has the same pro- 
cess group and context values; these were determined 
by the collective operation that created the communi- 
cator. When a message is sent, the rank provided in 
the send call is used to extract a process identifier from 
the process group array associated with the communi- 
cator on which the send is performed. The message is 
then sent to that process, together with a message en- 
veIope containing the rank of the sending process, the 
tag, and the integer context identifier associated with 
the communicator. 

An LCO has a somewhat different structure. Cor- 
responding to the MPICH integer representation of a 
context is an integer LCO identifier, assigned when the 
LCO is created. This identifier is guaranteed to be 
unique only within the creating process. Correspond- 
ing to the MPICH process group is an array of send 
slots. Each entry in an LCO’s send slot array contains 
a process identifier, an LCO identifier, and a receive 
slot index. Receive operations proceed in a manner 
identical to an MPI receive; a send operation differs 
from an MPI send only in that when constructing the 
message envelope, it uses the receive slot index for the 
rank and the LCO identifier as the context. We note 
that one significant advantage of this approach relative 
to the MPICH communicator structure is that identi- 
fiers can be allocated in a purely local fashion. Hence, 
collective operations are not required for communica- 
tor creation and the identifier name space can be more 
densely populated. 

The principal overhead associated with this imple- 
mentation scheme is the additional space required to 
maintain an LCO identifier and receive slot identifier 
in each send slot. However, one can imagine optimiza- 
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tions that recognize sets of LCOs representing MPI 
communicator or intercommunicator structures, and 
revert to the more compact representation in this case. 

An alternative implementation approach would use 
a communication library such as Nexus [2] that pro- 
vides gIoba1 pointer and single-sided communication 
operations. In this environment, a send slot can be 
represented as a global pointer to a remote queue cor- 
responding to a receive slot, and a send operation can 
be implemented as a remote enqueue operation. This 
technique has been used to construct an implementa- 
tion of ordinary MPI [l]. 

6. Conclusions 

We have presented extensions to the MPI communica- 
tor that permit the representation of more general and 
flexible communication structures. These extensions 
are backwards compatible with MPI, meaning that any 
existing MPI program will execute correctly in a sys- 
tem that supports the new constructs. We believe that 
the new constructs can be incorporated into existing 
MPI implementations without difficulty and without 
significant performance degradation. 

A disadvantage of the extensions as presented here is 
that because LCOs (and slots within LCOs) are created 
and destroyed independently, we lose MPI’s message 
safety property. That is, a message may arrive for a 
nonexistent receive slot. This problem can be avoided, 
at the expense of added complexity, by using one of 
the various mechanisms that have been developed for 
managing distributed objects, such as referen’ce count- 
ing. 

The generalized LCO proposed in this article also 
appears to have other uses. For example, LCOs can be 
used to manage “one-sided” communications, in which 
the arrival of a message triggers the execution of a han- 
dler function. By requiring these communications to 
occur over an LCO, we provide an endpoint on the 
receiver side with which control information can be 
associated. LCOs can also be used to define gener- 
alized collective communication operations, in which 
user-defined transformations are applied to data sup- 
plied by an arbitrary number of senders, and the results 
of these transformations are delivered to an arbitrary 
number of receivers. 
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