Behavior-based cooperative robotics applied to multi-target observation

PDF Version Also Available for Download.

Description

An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement - determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The author focuses ... continued below

Physical Description

18 p.

Creation Information

Parker, L.E. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement - determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The author focuses primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. The initial efforts on this problem address the aspects of distributed control in homogeneous robot teams with equivalent sensing and movement capabilities working in an uncluttered, bounded area. This paper first formalizes the problem, discusses related work, and then shows that this problem is NP-hard. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level control. The low-level control is described in terms of force fields emanating from the targets and the robots. The higher level control is presented in the ALLIANCE formalism, which provides mechanisms for fault tolerant cooperative control, and allows robot team members to adjust their low-level actions based upon the actions of their teammates. The author then presents the results of the ongoing implementation of this approach, both in simulation and on physical robots. To the authors knowledge, this is the first paper addressing this research problem that has been implemented on physical robot teams.

Physical Description

18 p.

Notes

OSTI as DE97003114

Source

  • Dagstuhl seminar 9636, Dagstuhl (Germany), 1-6 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003114
  • Report No.: CONF-9609318--1
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 442129
  • Archival Resource Key: ark:/67531/metadc684566

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Jan. 15, 2016, 12:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Parker, L.E. Behavior-based cooperative robotics applied to multi-target observation, article, December 31, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc684566/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.