Dimensional stability and tensile strength of irradiated Nicalon-CG and Hi-Nicalon SiC fibers

PDF Version Also Available for Download.

Description

Nicalon-CG and Hi-Nicalon fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC at a nominal irradiation temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. The results indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon-CG possessed a ... continued below

Physical Description

16 p.

Creation Information

Youngblood, G.E.; Henager, C.H. Jr.; Senor, D.J.; Newsome, G.A. & Woods, J.J. May 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Nicalon-CG and Hi-Nicalon fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC at a nominal irradiation temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. The results indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon-CG possessed a higher tensile strength than hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon-CG exhibited unacceptable irradiation-induced shrinkage. Loss o fiber tensile strength after irradiation is shown to reduce the flexural strength of irradiated composites and Nicalon-CG fiber shrinkage observed in irradiated composites.

Physical Description

16 p.

Notes

INIS; OSTI as DE99001890

Source

  • 99. annual meeting of the American Ceramic Society, Cincinnati, OH (United States), 4-7 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001890
  • Report No.: KAPL-P--000165
  • Report No.: K--97046;CONF-970568--
  • Grant Number: AC12-76SN00052
  • DOI: 10.2172/319772 | External Link
  • Office of Scientific & Technical Information Report Number: 319772
  • Archival Resource Key: ark:/67531/metadc684553

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 2:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 20

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Youngblood, G.E.; Henager, C.H. Jr.; Senor, D.J.; Newsome, G.A. & Woods, J.J. Dimensional stability and tensile strength of irradiated Nicalon-CG and Hi-Nicalon SiC fibers, report, May 1, 1997; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc684553/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.