Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

PDF Version Also Available for Download.

Description

This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{mu}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit ... continued below

Physical Description

181 p.

Creation Information

Stepan, D.J.; Moe, T.A. & Collings, M.E. May 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{mu}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

Physical Description

181 p.

Notes

INIS; OSTI as DE97002179

Source

  • Other Information: PBD: [1997]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97002179
  • Report No.: DOE/MC/31388--5500
  • Grant Number: FC21-94MC31388
  • DOI: 10.2172/485944 | External Link
  • Office of Scientific & Technical Information Report Number: 485944
  • Archival Resource Key: ark:/67531/metadc684437

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • June 13, 2016, 9:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stepan, D.J.; Moe, T.A. & Collings, M.E. Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996, report, May 1, 1997; Grand Forks, North Dakota. (digital.library.unt.edu/ark:/67531/metadc684437/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.