CALIBRATION OF DATA ACQUISITION SYSTEM MEASUREMENT OF WELD PARAMETERS

by

T. Roberts

E. I. du Pont de Nemours and Company
Savannah River Plant
Aiken, South Carolina 29808

A paper requested by the Chairman
subsequent to the
68th Meeting of the IMOG Gaging Subgroup at
Savannah River Plant
Aiken, South Carolina on
October 12, 1988
for inclusion in the Meeting Notes

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This paper was prepared in connection with work done under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
"Calibration of Data Acquisition System Measurement of Weld Parameters"

Tim Roberts
SAVANNAH RIVER PLANT

The purpose of this talk was to outline the calibration and use of the MacSym Data Acquisition System to measure welding parameters in the Tritium Facility's pinch welders. The point was stressed at the outset of the presentation that these parameters measured are not in any way the final criteria for accepting or rejecting a weld. Rather, the physical dimensions of the weld are the basis for accepting a weld, namely the thickness and closure length. So these welding parameters serve as ranges and boundaries to stay within in order to give the highest level of repeatable success.

The seven weld parameters measured are: piston pressure, line pressure, motion, current, energy, line voltage, and force. Each of these measurements are made with installed equipment that is calibrated with standards that are traceable to NBS (National Bureau of Standards). In turn, the DAS is calibrated by adjusting the software to match the installed equipment in it's measurements. Also, the DAS provides continual monitoring and display of the weld parameters before and after the weld has been made. A printout is also given of parameters during the weld to give further record of weld data to back up installed measurement instruments not connected to the DAS.

Piston pressure is measured by a strain gage transducer. Signal conditioning and excitation are given by the DAS. The measurement and display of the DAS are calibrated to +/- 3psi by an adjustment in the DAS. Line pressure is also measured by a pressure sensor and is conditioned and calibrated in the same way to +/- 3psi. A current to voltage transformation is made by the DAS.
Motion is measured by a Kaman Sciences Displacement System. Displacement between the welding electrodes is measured in mils, and an accuracy of +/- 2 mils is achieved. The calibration is done by using precision spacers and adjusting both the measuring system and the software of the DAS.

Current is measured by the DAS using a precision current shunt resistor. The DAS samples the current output and calculates the maximum RMS current. The measurement is actually the voltage across the shunt. The DAS also measures the half cycles of the weld. Calibration is done by adjusting the software to match a standard input.

Line Voltage supplied to the welders is measured by a voltage transducer. The accuracy is calibrated to +/- 2 Volts by adjusting the software in the DAS. The line voltage is kept in a certain range for each type of material to give the needed current.

The energy of the weld is also measured and displayed by the DAS. Instantaneous current and voltage are multiplied in real time to give the power of the weld. The energy is then found by integrating the power over the weld time. No changes in the DAS software are needed since the current and voltage are calibrated separately.

The final parameter mentioned was the force between the electrodes. Force is measured by a strain gage force cell. The excitation and signal conditioning are found in the DAS itself. The accuracy over the given range of the forces used is calibrated to +/- 20 lb. The calibration adjustment of the software for the force is the same as the other measurements except that a subprogram is called to make the number changes in the software automatically. This saves time and the risk of miscalibration is lowered.

In the future the Tritium Facility will strive to improve its calibration of weld parameters by keeping close watch on the development work being done by other plant support groups and by keeping design changes flexible to change with new requirements. The other weld measuring calibrations will be altered to provide automated adjustment similar to the force parameter's subprogram. As design specifications remain in constant flux, adaptability will remain a crucial concern.

The information contained in this article was developed during the course of work under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy.
OVERVIEW
PARAMETERS MEASURED

- PISTON PRESSURE
- LINE PRESSURE
- MOTION
- CURRENT
- ENERGY
- LINE VOLTAGE
- FORCE

DAS CALIBRATION
CALIBRATION
OF
DATA ACQUISITION SYSTEM
MEASUREMENT OF
WELD PARAMETERS

TIM ROBERTS, TRITIUM FACILITY
PISTON PRESSURE

- A PRESSURE TRANSDUCER
- EXCITATION AND SIGNAL CONDITIONING IN THE DAS
- CALIBRATION BY A STANDARD, AND SOFTWARE ADJUSTMENT
- CALIBRATED TO +/- 3 PSI.
LINE PRESSURE

- PRESSURE SENSOR
- EXCITATION AND SIGNAL CONDITIONING IN THE DAS
- CALIBRATION ADJUSTMENT IN THE SOFTWARE BY COMPARING TO A STANDARD
- CALIBRATED TO +/- 3 PSI.
MOTION

- Measured by a Kaman Sciences Displacement Measuring System
- Displacement in mils of separation
- An accuracy achieved of +/- 2 mils
- Calibration by precision spacers
- The displacement system is adjusted for calibration.

DAS CALIBRATION
CURRENT

- The current is measured by the DAS using a 30,000 amp current shunt.
- The DAS samples the current output and calculates the maximum RMS current.
- The measurement is taken from the voltage across the precision shunt resistor.
- Calibration is done by using known standards and achieved by adjusting the software.

DAS CALIBRATION
INSTANTANEOUS WELD CURRENT AND VOLTAGE ARE MULTIPLIED IN REAL TIME TO GIVE WELD POWER.

ENERGY IS GAINED BY INTEGRATION OF POWER OVER THE WELD TIME.

CALIBRATION OF THIS MEASUREMENT RESULTS FROM CURRENT AND VOLTAGE CALIBRATIONS.

DAS CALIBRATION
LINE VOLTAGE

- The line voltage is measured by a voltage transducer.

- Accuracy is calibrated to +/- 2 volts of the reading.

- Calibration is done by adjusting the software.
FORCE

- FORCE IS MEASURED BY A STRAIN GAGE FORCE CELL
- EXCITATION AND SIGNAL CONDITIONING IN THE DAS
- ACCURACY IS CALIBRATED TO +/- 20 LBS. OVER THE GIVEN RANGE OF THE FORCE CELL.
- CALIBRATION ADJUSTMENT IN THE SOFTWARE IS DONE BY A SUBPROGRAM WHICH AUTOMATICALLY ADJUSTS THE VALUE OF THE MEASUREMENT IN RELATION TO A STANDARD FORCE CELL'S READING.
FUTURE CALIBRATION
OF ALL WELD PARAMETER
MEASUREMENTS
BY THE DAS

- AUTOMATED ADJUSTMENT SUBPROGRAMS LIKE
 THAT OF THE FORCE MEASUREMENT.

- FOLLOW UP CLOSELY WITH DEVELOPMENT WORK
 DONE BY EED ON IMPROVING THE MEASUREMENTS
 AND CALIBRATIONS OF WELD PARAMETERS.

DAS CALIBRATION