TPV efficiency measurements and predictions for a closed cavity geometry

PDF Version Also Available for Download.

Description

A thermophotovoltaic (TPV) efficiency measurement, within a closed cavity, is an integrated test which incorporates four fundamental parameters of TPV direct energy conversion. These are: (1) the TPV devices, (2) spectral control, (3) a radiation/photon source, and (4) closed cavity geometry effects. The overall efficiency of the TPV device is controlled by the TP cell performance, the spectral control characteristics, the radiator temperature and the geometric arrangement. Controlled efficiency measurements and predictions provide valuable feedback on all four. This paper describes and compares two computer codes developed to model 16, 1 cm{sup 2} TPV cells (in a 4 x 4 ... continued below

Physical Description

19 p.

Creation Information

Gethers, C.K.; Ballinger, C.T.; Postlethwait, M.A.; DePoy, D.M. & Baldasaro, P.F. May 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A thermophotovoltaic (TPV) efficiency measurement, within a closed cavity, is an integrated test which incorporates four fundamental parameters of TPV direct energy conversion. These are: (1) the TPV devices, (2) spectral control, (3) a radiation/photon source, and (4) closed cavity geometry effects. The overall efficiency of the TPV device is controlled by the TP cell performance, the spectral control characteristics, the radiator temperature and the geometric arrangement. Controlled efficiency measurements and predictions provide valuable feedback on all four. This paper describes and compares two computer codes developed to model 16, 1 cm{sup 2} TPV cells (in a 4 x 4 configuration) in a cavity geometry. The first code, subdivides the infrared spectrum into several bands and then numerically integrates over the spectrum to provide absorbed heat flux and cell electrical output performance predictions (assuming infinite parallel plates). The second code, utilizes a Monte Carlo Photon Transport code that tracks photons, from birth at the radiation source, until they either escape or are absorbed. Absorption depends upon energy dependent reflection probabilities assigned to every geometrical surface within the cavity. The model also has the capability of tallying above and below bandgap absorptions (as a function of location) and can support various radiator temperature profiles. The arrays were fabricated using 0.55 eV InGaAs cells with Si/SiO interference filters for spectral control and at steady state conditions, array efficiency was calculated as the ratio of the load matched power to its absorbed heat flux. Preliminary experimental results are also compared with predictions.

Physical Description

19 p.

Notes

OSTI as DE99001969

Source

  • 3. NREL conference on thermophotovoltaic (TPV) generation of electricity, Colorado Springs, CO (United States), 18-21 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001969
  • Report No.: KAPL-P--000186
  • Report No.: K--97094;CONF-9705119--
  • Grant Number: AC12-76SN00052
  • DOI: 10.2172/325754 | External Link
  • Office of Scientific & Technical Information Report Number: 319660
  • Archival Resource Key: ark:/67531/metadc684377

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gethers, C.K.; Ballinger, C.T.; Postlethwait, M.A.; DePoy, D.M. & Baldasaro, P.F. TPV efficiency measurements and predictions for a closed cavity geometry, article, May 1, 1997; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc684377/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.