Appendix to Theory of Seismic Coupling (HAB-59-4)

H. A. Bethe

February 25, 1959

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

MASTER
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Each person who receives this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX TO THEORY OF SEISMIC COUPLING (FAB-52-1)

The Letter Method of Concealment

A. Letter has proposed to reduce the seismic coupling by placing the bomb in the center of a cavity in hard rock. He has pointed out that it is possible to have the energy propagate in the cavity by radiation rather than by shock so that the ultimate situation is a certain statical pressure in the cavity which is given by

\[ p_1 = (\gamma - 1) \frac{W_1}{\frac{4}{3} \pi R^3} \]  

(A-1)

where \( R \) is the cavity radius and \( \gamma - 1 \) can be as small as .1 to .15 for a hot gas.

The pressure \( p_1 \) is applied suddenly to the wall of the cavity. Care must be taken to make \( p_1 \) small enough so that the surrounding rock behaves elastically. How small \( p_1 \) has to be is hard to tell; in particular, fissures in the rock may open under the influence of the hoop stress induced by \( p_1 \). Letter has suggested that 50 atmospheres may be tolerable. If the rock behaves elastically then (33) may be used with \(-\sigma_2 = p_1\).

Asymptotically at large \( t \) this gives

\[ \gamma = \gamma_1 = \frac{R^3 p_1}{4 \mu} = (\gamma - 1) R_0^3 \]  

(4-2)

where we have set \( n = 1 \) and used (70). It is interesting to note that \( \gamma_1 \) is independent of the cavity radius.
UNCLASSIFIED

Classification (Delegation/Review Date) Changed to:

K2D2-HAB-59-5 4/21/96

by authority of  

(Authority for change in classification, e.g., the memorandum number.)

by  

(Signature of person making the change)

verified by  

(Signature of person verifying this is the correct document or model)
We now have to solve (45) with the initial condition \( \gamma = \gamma = 0 \). The solution is of the form (45) and may be written explicitly

\[
\frac{\gamma}{\gamma_1} = 1 + \frac{\alpha_2}{\alpha_1 - \alpha_2} e^{-2\alpha_1 x} - \frac{\alpha_1}{\alpha_1 - \alpha_2} e^{-2\alpha_2 x}
\]

(A-3)

where we have defined

\[
x = c \tau /2R
\]

(A-4)

If we set \( n = 1 \) then (46) gives

\[
2 \alpha_{1,2} = -1 \pm i
\]

(A-5)

so that explicitly

\[
\frac{\gamma}{\gamma_1} = 1 + e^{-x} (\sin x - \cos x)
\]

(A-6)

The Fourier transform (3), using (33), is given by

\[
\hat{\phi} (\omega) = -\pi \int \sigma_\star (\tau, t) e^{i\omega \tau} d\tau = \hat{\sigma} \int \gamma (\tau) e^{i\omega \tau} d\tau = -i\omega \hat{\rho} \int \gamma (\tau) e^{i\omega \tau} d\tau
\]

(A-7)

This can easily be calculated for (A-6). For low frequencies such that

\[
2 \omega R/c \ll 1
\]

(A-8)
which are the only ones of interest to us, we obtain (except for the factor $-i$)

$$\phi(\omega) = \phi \gamma, \quad \omega = (\gamma_g - 1) \frac{\rho_0}{c^2} \omega$$

(A-9)

This may now be compared with the expression for hard rock without a cavity, (20). Denoting quantities referring to hard rock by a subscript $h$, to the cavity by a subscript $c$ and to the gas in the cavity by $g$, we find

$$\frac{\phi_c(\omega)}{\phi_h(\omega)} = (\gamma_g - 1) (\gamma_h + 1) \frac{R_0}{c} \omega$$

(A-10)

Taking $\gamma_g = 1.15$, $\gamma_h = 2.5$, $\omega = 10 \text{ sec}^{-1}$, $R_0 = 2.15$ meters and $c = 5 \text{ km/sec}$, we find

$$\frac{\phi_c(\omega)}{\phi_h(\omega)} = 2.2 \cdot 10^{-3}$$

(A-11)

This is a substantial reduction. If the result (20) for tuff is correct, the reduction relative to tuff is still a factor $0.04$. However, the reduction is less great at higher yield.
Distribution: 1A - Dr. Victor Hugo Benioff
2A - Dr. Lloyd V. Berkner
3A - Dr. John Gerrard
4A - Dr. David Tressel Griggs
5A - Dr. Jack H. Hamilton
6A - Dr. Julius Paul Kalmar
7A - Dr. Walter H. Monk
8A - Dr. Jack Biddle Oliver
9A - Dr. Frank Press
10A - Dr. Carl Frederick Romney
11A - 
12A - Dr. Hanneth Street, Jr.
13A - Mr. John W. Tukey
14A - Mr. Surgeon Keeny
15A - 
16A - Dr. Albert Letter
17A - Dr. Montgomery Johnson
18A - Dr. Edward Teller
19A - Dr. Warren Hocktrtte
20A - Dr. Howard Brown
21A - Dr. Gerry Johnson
22A - Dr. E. Martenelli
23A - Dr. Richard Letter (c/o Philip Farley, State Dept.)
24A - Dr. Stirling Colgate
25A - Dr. Doyle Northrup
26A - H & B File
27A - 
28A - 
29A - 
30A - 