Comparison of experimental and analytical methods to evaluate thermal bridges in wall systems

PDF Version Also Available for Download.

Description

Twelve ASTM C0236 guarded hot box experiments have been performed on wall systems containing a variety of thermal bridges. All of the wall systems included steel framing. Six walls also had a concrete block wall system and a concrete slab to simulate a wall/floor intersection. Thermal bridges included in the wall systems included steel studs, steel tracks, steel stud/track joints, fasteners (steel framing system), concrete slab, metal bolts and angle iron, and brick ties (concrete block wall). Two-dimensional finite difference modeling was also employed to characterize the wall systems. The experimental test data was used to tune and ultimately validate ... continued below

Physical Description

14 p.

Creation Information

Desjarlais, A. O. & McGowan, A. G. March 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Twelve ASTM C0236 guarded hot box experiments have been performed on wall systems containing a variety of thermal bridges. All of the wall systems included steel framing. Six walls also had a concrete block wall system and a concrete slab to simulate a wall/floor intersection. Thermal bridges included in the wall systems included steel studs, steel tracks, steel stud/track joints, fasteners (steel framing system), concrete slab, metal bolts and angle iron, and brick ties (concrete block wall). Two-dimensional finite difference modeling was also employed to characterize the wall systems. The experimental test data was used to tune and ultimately validate the computer simulation model. The average variation between the tested and simulated wall system R-Values was 3.3% and ranged from {minus}3.4 to +7.4%. The model was then used to determine the thermal impact of each individual thermal bridge. Beside the standard complement of temperature sensors that are traditionally used for these laboratory experiments, additional sensors were installed near each thermal bridge to define the area and magnitude of the thermal distortion caused by the thermal bridge. These thermal bridges were analytically simulated and the additional heat flux due to each thermal bridge was computed. This paper summarizes the experimental and analytical analyses used to characterize the wall systems and concentrate on the thermal impact each type of thermal bridge has on the overall performance of the wall systems.

Physical Description

14 p.

Notes

OSTI as DE97003660

Source

  • 3. Insulation materials: testing and applications, Quebec City (Canada), 15-17 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003660
  • Report No.: CONF-970582--2
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 463617
  • Archival Resource Key: ark:/67531/metadc684341

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Nov. 17, 2015, 3:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Desjarlais, A. O. & McGowan, A. G. Comparison of experimental and analytical methods to evaluate thermal bridges in wall systems, article, March 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc684341/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.