Iron Aluminide Hot Gas Filters

PDF Version Also Available for Download.

Description

Currently, high temperature filter systems are in the demonstration phase with the first commercial scale hot filter systems being installed on integrated gasification combined cycle (IGCC) and pressurized fluid bed combustion cycle (PBFC) systems (70 MW). They are dependent on the development of durable and economic high temperature filter systems. These filters are mostly ceramic tubes or candles. Ceramic filter durability has not been high. Failure is usually attributed to mechanical or thermal shock: they can also undergo significant changes due to service conditions. The overall objective of this project is to commercialize weldable, crack resistant filters which will provide ... continued below

Physical Description

17 p.

Creation Information

Hurley, J.; Brosious, S. & Johnson, M. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Currently, high temperature filter systems are in the demonstration phase with the first commercial scale hot filter systems being installed on integrated gasification combined cycle (IGCC) and pressurized fluid bed combustion cycle (PBFC) systems (70 MW). They are dependent on the development of durable and economic high temperature filter systems. These filters are mostly ceramic tubes or candles. Ceramic filter durability has not been high. Failure is usually attributed to mechanical or thermal shock: they can also undergo significant changes due to service conditions. The overall objective of this project is to commercialize weldable, crack resistant filters which will provide several years service in advanced power processes. The specific objectives of this project are to develop corrosion resistant alloys and manufacturing processes to make Iron Aluminide filter media, and to use a ``short term`` exposure apparatus supported by other tests to identify the most promising candidate (alloy plus sintering cycle). The objectives of the next phases are to demonstrate long term corrosion stability for the best candidate followed by the production of fifty filters (optional).

Physical Description

17 p.

Notes

OSTI as DE97051034

Medium: P; Size: 17 p.

Source

  • Advanced coal-fired power systems review meeting, Morgantown, WV (United States), 16-18 Jul 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97051034
  • Report No.: DOE/MC/31215--97/C0737
  • Report No.: CONF-960757--29
  • Grant Number: AC21-95MC31215
  • Office of Scientific & Technical Information Report Number: 419966
  • Archival Resource Key: ark:/67531/metadc684136

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 7, 2017, 3:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hurley, J.; Brosious, S. & Johnson, M. Iron Aluminide Hot Gas Filters, article, December 31, 1996; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc684136/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.