Title:
A NEW NEUTRON MULTIPLICITY COUNTER FOR THE MEASUREMENT OF IMPURE PLUTONIUM METAL AT WESTINGHOUSE SAVANNAH RIVER SITE

Author(s):

Submitted to:
39th Annual INMM Meeting
Naples, FL USA
July 26-30, 1998
(FULL PAPER)

Los Alamos National Laboratory

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A NEW NEUTRON MULTIPLICITY COUNTER FOR THE MEASUREMENT OF IMPURE PLUTONIUM METAL AT WESTINGHOUSE SAVANNAH RIVER SITE

Diana G. Langner, Martin R. Sweet, Steven D. Salazar, and Kenneth E. Kroncke
Los Alamos National Laboratory
Los Alamos, NM 87545

Linda B. Baker and Donald M. Faison
Westinghouse Savannah River Site

presented at the
Institute of Nuclear Materials Management
39th Annual Meeting
Naples, Florida
July 26-30, 1998
Abstract

A new neutron multiplicity counter has been designed, fabricated, characterized, and installed to assay impure plutonium metal buttons from the FB-line at the Westinghouse Savannah River Site (WSRS). This instrument incorporates the performance characteristics of the Pyrochemical or In-plant Multiplicity Counter with the package size of the Plutonium Scrap Multiplicity Counter. In addition, state-of-the-art features such as the derandomizer circuit and separate ring outputs have been added. The counter consists of 113 71-cm active length 3He tubes in a polyethylene moderator. Its efficiency for 252Cf is 57.8%, the highest of any multiplicity counter to date. Its die-away time is 50.4 ms and its deadtime is 50 ns. In this paper, we will present the characterization data for the counter and the results of preliminary metal measurements at WSRS. We will also discuss the new challenges the impure metal buttons from FB-line are presenting to the multiplicity counting technique.

INTRODUCTION

The FB-line Neutron Multiplicity Counter (FBLNMC) evolved from multiplicity neutron detectors [1,2,3] developed at Los Alamos to assay impure plutonium samples. This new unit was designed to provide state-of-the-art features in a single, compact package. We designed the FBLNMC using the Monte Carlo Code for Neutron and Photon Transport (MCNP) to perform the Monte Carlo neutron calculations.[4] The design goals for the FBLNMC were high efficiency (primary importance), uniform efficiency vs sample height, small die-away time, flat energy response, short dead time, and minimum overall size and weight. The first four of these design goals are generally in opposition to the last one. This instrument joins a suite of nondestructive assay equipment that are used for material control and accountability for the FB-line at Westinghouse Savannah River Site.

MULTIPLICITY COUNTER DESIGN

Figure 1 shows a schematic diagram of the FBLNMC design with the 113 3He tubes surrounding the sample cavity with a diameter of 20 cm. The outer dimensions of the polyethylene (CH$_2$) shield are 66 x 66 x 80 cm. The total height is 92 cm. The sample cavity is lined with cadmium (0.8 mm thick) both to prevent thermal neutrons from returning from the CH$_2$ to the sample and to shield the 3He tubes from a possible high-intensity gamma-ray dose. There is no cadmium on the outside of the detector rings to reduce room-background levels. MCNP calculations [5] have shown that cadmium only reduces the totals background rate by ~16%. However, the cadmium introduces its own background of coincident neutrons from cosmic-ray spallations and this is detrimental to assays of low mass samples. The end plugs shown in Fig. 1 are made of graphite to scatter the fast neutrons from the end zones back into the CH$_2$ detector volume. The MCNP calculation of the response of the detector system as a function of neutron energy is shown in Fig. 2 along with the comparison curve from the Pyrochemical Counter.[2] The majority of spontaneous fission and (alpha,n) reaction neutrons have energies in the range of 0.5–2 MeV.
Fig. 1. Schematic diagram of the FBLNMC showing the location of the one hundred thirteen \(^3\)He tubes and the graphite end plugs. The sample cavity height is 41 cm and the diameter is 20 cm.

Fig. 2. MCNP calculations of the efficiency vs the neutron energy for the FBLNMC and the Pyrochemical Counter.[2]
Certain impurities such as magnesium and beryllium produce (alpha,n) reaction neutrons that have higher energies. Assays of samples containing large quantities of these impurities may require additional corrections.

The 24 AMPTEK amplifiers that are used with the FBLNMC are shown in Fig. 3. Figure 3 also shows the cutouts for the four removable desiccant tubes that are used to keep the detector high-voltage junction box dry. To keep the rates in the four rings approximately equal and to minimize deadtime, fewer amplifiers service the outer rings than the inner rings.

![Photograph of the high-voltage junction box including the AMPTEK boards.](image)

The detector design includes two improvements over commercial multiplicity counters: a derandomizer circuit and an output from each individual ring of the detector. The former [7] reduces the dead time of the counter by more than a factor of 2. The latter provides input to two auxiliary scalars that can be used to diagnose sample anomalies.[8] Figure 4 shows the relative rates as a function of energy that calculations predict each ring will detect. Ratios of the neutron rates in the rings provide a sensitive indication of the mean energy of the neutrons emitted by a sample and is strongly influenced by sample moderator or (alpha,n) reaction neutrons from many low atomic number impurities.
CALIBRATION AND CHECKOUT
Before shipment to WSRS, the detector was characterized at Los Alamos using well-known 252Cf sources and plutonium oxide standards. The FBLNMC was calibrated for both multiplicity counting and the conventional coincidence counting “Known-Alpha” analysis method. [9] Table I gives the detector parameters that were derived from these measurements. Figure 5 shows assay results for six standards; four pure oxide samples, and two impure samples. The conventional Known-Alpha assays were based on calibration with pure oxide standards. As expected, the technique fails to give good results the impure samples. Figure 6 shows the predicted performance of this counter for 30-min count times and different material impurity levels as indicated by the ratio of (alpha,n) neutrons to spontaneous fission neutrons. The data in this graph were calculated using Ensslin’s Figure-of-Merit Code [10] for the detector parameters measured as part of the FBLNMC’s characterization.

Table I. FBLNMC Preliminary Calibration Parameters
Parameter
Efficiency for 252Cf
Efficiency for Pu
Die-away time (center)
Predelay
Gate Width
High voltage
Dead-time Coefficient a
Dead-time Coefficient b
Multiplicity Deadline
Doubles Gate Fraction
Triples Gate Fraction
Fig. 5. Assay comparison between conventional and multiplicity assays for FBLNMC.

Fig. 6. The expected precision for the FBLNMC for a 30-min count time.
MEASUREMENTS AT WSRS

The FBLNMC was shipped to WSRS in the fall of 1997 and installed in FB-line. Since that time, several plutonium standards have been measured to track its performance. New plutonium metal buttons and several sand, slag, and crucible samples have also been measured.

Figure 7 gives the results of multiplicity assay measurements of four plutonium oxide standards of varying purity over a 5-month period. From these data, we conclude that the instrument is performing reliably and up to specifications.

Of the metal buttons, four have also been assayed using calorimetry to give reference values against which the multiplicity assays could be compared. This step is extremely important because of the bias problem that has been encountered with multiplicity assays of compact metals at other facilities. [11] The assay results for these four samples are given in Fig. 8. The assays for these buttons include a bias correction based on the measured multiplication. A Known-Alpha analysis is included for comparison. This latter analysis assumed that the buttons were pure plutonium metal with zero (alpha,n) neutron emissions. Examination of these results reveals that the multiplicity bias correction was not adequate for the lowest mass sample. Figure 9 illustrates why. In this plot of the measured multiplication from the multiplicity analysis verses the assay bias observed in data taken over the last eight years in three different instruments, the lowest mass FB-line metal button displays an anomalous behavior relative to the other data. The reason for this is the unusually large (alpha,n) emissions from this sample. The multiplicity analysis suggests that there (alpha,n) emission exceed the spontaneous fission emissions by about 25%. This compares to the other samples whose (alpha,n) emissions are no more than a few tens of percent of the spontaneous fission emissions. Calculations reported in Ref. 11 have predicted this behavior, but this is the first time it has been observed experimentally. Other new metal buttons measured at FB-line have had (alpha,n) neutron emissions as high as 90% of their spontaneous fission emissions. So we plan to investigate this behavior further because we anticipate that a further bias correction that includes the (alpha,n) emissions will have to be implemented.
Fig. 8. Assay results for 4 metal buttons with the FBLNMC.

Fig. 9. Multiplicity assay results for metal buttons uncorrected for bias.
Six sand, slag, and crucible samples that had reference values from calorimetry were also assayed with the FBLNMC. These samples would not necessarily be considered good candidates for multiplicity counting because of their high (alpha,n) emissions. For these samples, the ratio of (alpha,n) neutron emissions to that from spontaneous fission varied from 8 to nearly 30. Also, the mean energies of these (alpha,n) emissions is greatly different than for plutonium metal or pure oxide. As a result, the FBLNMC's assays of these samples were biased by an average 7%. With the bias corrected, the assay results were as shown in Fig. 10. These samples, counted for an hour, agreed on average to within 7% of the reference mass.

CONCLUSIONS
The FBLNMC has now been used to measure impure plutonium oxides; new FB-line plutonium metal buttons; and sand, slag, and crucible samples. The instrument has performed to within specifications. Because of the impurities in the FB-line buttons, an alpha dependence to the known bias behavior of the multiplicity assays has been discovered. We plan to investigate this further by obtaining reference values for a larger set of new buttons by calorimetry and studying the bias behavior in the FBLNMC's assays.

Sand, slag, and crucible samples have also been studied. Although these samples have high (alpha,n) emissions, they assayed to within 7% of their reference masses in an hour count time.

REFERENCES

*This work is supported by the US Department of Energy, Office of Arms Control and Nonproliferation, International Safeguards Division.