Working with the superabrasives industry to optimize tooling for grinding brittle materials

PDF Version Also Available for Download.

Description

The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumented ... continued below

Physical Description

11 p.

Creation Information

Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L. & Gray, F.A. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumented procedures to CNC machine operators employing computerized routines for process control. In recent years, these developments, have inspired a number of US optics companies to invest in CNC equipment and participate in process development activities involving bound diamond tooling. This modernization process,extends beyond large optics companies that have historically embraced advanced equipment, to also include smaller optical shops where a shift to CNC equipment requires a significant company commitment. This paper addresses our efforts to optimize fine grinding wheels to support the new generation of CNC equipment. We begin with a discussion of how fine grinding fits into the optical production process, and then describe an initiative for improving the linkage between optics industry and the grinding wheel industry. For the purposes of this paper, we define fine wheels to have diamond sizes below 20 micrometers, which includes wheels used for what is sometimes called medium grinding (e.g. 10-20 micrometers diamond) and for fine grinding (e.g. 2-4 micrometers diamond).

Physical Description

11 p.

Notes

OSTI as DE97050735

Source

  • Spring topical meeting of the American Society for Precision Engineering: precision grinding of brittle materials, Annapolis, MD (United States), 3-6 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97050735
  • Report No.: UCRL-JC--124082
  • Report No.: CONF-960677--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 435055
  • Archival Resource Key: ark:/67531/metadc684041

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 18, 2016, 11:24 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L. & Gray, F.A. Working with the superabrasives industry to optimize tooling for grinding brittle materials, article, May 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc684041/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.