Biodesulfurization of flue gases using synthesis gas delivered as microbubbles

PDF Version Also Available for Download.

Description

In this study, the authors have focused research on utilizing a gas mixture containing 36% H{sub 2}, 47% CO, 10% CO{sub 2}, 5% CH{sub 4} and a balance of N{sub 2} as a model coal synthesis gas as a low-cost feedstock for sulfate-reducing bacteria cultures. Coal synthesis gas will be readily available in power plants and the biological utilization of syn-gas as a carbon and energy source produces no organic end product that has to be processed prior to its disposal. Coal synthesis gas is, however, sparingly soluble in aqueous phase. This process utilizing SRB with syn-gas feedstock may be ... continued below

Physical Description

9 p.

Creation Information

Selvaraj, P.T.; Bredwell, M.D.; Little, M.H. & Kaufman, E.N. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this study, the authors have focused research on utilizing a gas mixture containing 36% H{sub 2}, 47% CO, 10% CO{sub 2}, 5% CH{sub 4} and a balance of N{sub 2} as a model coal synthesis gas as a low-cost feedstock for sulfate-reducing bacteria cultures. Coal synthesis gas will be readily available in power plants and the biological utilization of syn-gas as a carbon and energy source produces no organic end product that has to be processed prior to its disposal. Coal synthesis gas is, however, sparingly soluble in aqueous phase. This process utilizing SRB with syn-gas feedstock may be mass transfer limited and methods to enhance the mass transport have been investigated. A CSTR with cell recycle and a trickle bed reactor with cells immobilized in BIO-SEP{trademark} polymeric beads were operated with syn-gas feedstock to obtain maximum productivity for SO{sub 2} reduction to H{sub 2}S. The CSTR reactor was then fed with syn-gas as microbubbles in an effort to improve the mass transfer properties. With syn-gas fed as microbubbles, productivity in the CSTR increased from 1.2 to 2.1 mmol/h {center_dot} L in 33 h. This has been observed at the same biomass concentration of 5 g/L. This shows the mass transport limitation in the above process. In the trickle bed reactor, maximum productivity of 8.8 mmol/h {center_dot} L was achieved with less carbon and energy requirements (1 mol H{sub 2} and 1.2 mol CO per mol of SO{sub 2}) indicating better surface to volume ratio with cells immobilized in the pores of polymeric beads.

Physical Description

9 p.

Notes

OSTI as DE97002640

Source

  • 213. national meeting of the American Chemical Society, San Francisco, CA (United States), 13-17 Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97002640
  • Report No.: CONF-970443--4
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 459343
  • Archival Resource Key: ark:/67531/metadc684017

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Jan. 15, 2016, 12:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Selvaraj, P.T.; Bredwell, M.D.; Little, M.H. & Kaufman, E.N. Biodesulfurization of flue gases using synthesis gas delivered as microbubbles, article, March 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc684017/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.