Reinvestigation of ionic motion in amorphous materials: A power law approach to the a.c. conductivity. Progress report

PDF Version Also Available for Download.

Description

The motion of mobile ions in glassy materials produces a dielectric response that is characteristically non-Debye. This deviation from ideal Debye behavior is evidenced both in the a.c. conductivity, {sigma}(f), which increases anomalously as a power law of the form {sigma}(f) = {sigma}{sub 0}(1+(f/f{sub 0}){sup n}), and in the electric modulus which is better described by a stretched-exponential relaxation of the form {phi}(t) = exp({minus}(t/{tau}){sup {beta}}). The authors have examined the dielectric response of sodium germanate glasses over a wide composition range. In accordance with other studies, they observed substantial narrowing of the electric modulus with decreasing alkali content. However, ... continued below

Physical Description

2 p.

Creation Information

Creator: Unknown. January 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The motion of mobile ions in glassy materials produces a dielectric response that is characteristically non-Debye. This deviation from ideal Debye behavior is evidenced both in the a.c. conductivity, {sigma}(f), which increases anomalously as a power law of the form {sigma}(f) = {sigma}{sub 0}(1+(f/f{sub 0}){sup n}), and in the electric modulus which is better described by a stretched-exponential relaxation of the form {phi}(t) = exp({minus}(t/{tau}){sup {beta}}). The authors have examined the dielectric response of sodium germanate glasses over a wide composition range. In accordance with other studies, they observed substantial narrowing of the electric modulus with decreasing alkali content. However, no changes were evident in the power law response of the a.c. conductivity, and {sigma}(f) could be scaled to a common response curve at all compositions. This result clearly rules out inter-ionic interactions as a source for the non-Debye relaxation. The authors extended the study of sodium germanates to examine also the power law dynamics in the mixed alkali (MA) glass.

Physical Description

2 p.

Notes

OSTI as DE99001725

Source

  • Other Information: PBD: Jan 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001725
  • Report No.: DOE/ER/45696--T1
  • Grant Number: FG03-98ER45696
  • DOI: 10.2172/314150 | External Link
  • Office of Scientific & Technical Information Report Number: 314150
  • Archival Resource Key: ark:/67531/metadc683866

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 6, 2015, 4:31 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Reinvestigation of ionic motion in amorphous materials: A power law approach to the a.c. conductivity. Progress report, report, January 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc683866/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.