BASIS FOR LOW BEAM LOSS IN THE HIGH-CURRENT APT LINAC

Title:

CONF-980827--

Author(s):

Submitted to:
LINAC '98, Chicago, IL, August 23-28, 1998

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Title: BASIS FOR LOW BEAM LOSS IN THE HIGH-CURRENT APT LINAC

Author(s): Thomas P. Wangler
Edward R. Gray
Frank L. Krawczyk
Sergey S. Kurennoy
George P. Lawrence
Robert D. Ryne

LANSCE-1
LANSCE-1
LANSCE-1
APT/TPO
LANSCE-1

Submitted To: LINAC '98
XIX INTERNATIONAL CONFERENCE
CHICAGO, IL AUGUST 23-28,1998
BASIS FOR LOW BEAM LOSS IN THE HIGH-CURRENT APT LINAC

Los Alamos National Laboratory, Los Alamos, NM 87545 USA
K. R. Crandall, TECHSOURCE, Santa Fe, NM 87594-1057

Abstract

We present evidence that the APT proton linac design will meet its goal of low beam loss operation. Our conclusion has three main bases: 1) extrapolation from our understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, 2) our theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and 3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value.

Beam Loss and Activation in the APT Accelerator

The APT accelerator [1] is a cw (100% duty factor) medium-energy proton linac with an average beam current of 100 mA, a number of particles per bunch equal to 1.8×10^4, a final energy of 1030 MeV or higher, depending on the desired production rate, corresponding to a very high output beam power in the hundred MW range. It must be designed to operate with extremely low beam losses to avoid radioactivation of the machine components. It is important to achieve hands-on maintenance capability along most of the machine in order to meet overall plant availability requirements, although remote maintenance techniques could be employed at a few highbeam-loss locations without major impact.

The maintenance criterion limits post-shutdown activation levels to a few mrem/hr at the beamline. The corresponding beam loss rate that can be tolerated, as a function of beam energy, has been estimated in Ref [2]. Expressed in beam power, the loss above 100 MeV must be limited to a few tens of watts per meter, a value that is consistent with experience at the LANSCE linac, which operates with hands-on maintenance. LANSCE is the highest power operating proton linac in the world. It is a pulsed machine with multiple beam operation that includes a 6%-duty-factor, 1-mA average current, 800-MeV output beam. For LANSCE the average fractional H' loss rate above 100 MeV is about 10^{-4}/m, although the typical fractional loss rate is a few times 10^{-5}/m. (A rule of thumb is that at 800 MeV, 1 nA/m loss rate produces about 20 mRem/hr near the beamline, 1 hr after shutdown.) The number of particles per bunch in APT is only about four times more than for LANSCE, and the beam focusing in the APT design is greater so that the beam physics regimes of the two linacs are nearly the same. The APT peak beam current of 100 mA is by no means a record for proton linear accelerators; the Brookhaven and Fermilab injector linacs have operated with H' beams at peak proton currents of 300 mA. Nevertheless, the challenge for the APT linac is to deliver an average current 100 times higher than LANSCE in the same energy range, while achieving a beam-loss rate that is no larger in absolute terms. This scales for APT to an average fractional loss per meter of about 10^{-5}/meter, or a total of about 10^{-4} fractional beam loss above 100 MeV.

Evaluating the APT Beam-Loss Threat

Our evaluation of the beam-loss threat in APT and its impact on the linac design is based on a combination of operational experience, and theory plus simulation. The approach we have used has several aspects and components:

- Use of measurements of beam performance and activation levels in LANSCE combined with computer simulations to determine the causes of beam loss in that accelerator.
- Choice of the APT linac design architecture and parameters to avoid the halo-generating and loss-mechanisms seen in LANSCE.
- Use of analytic modeling and computer simulation to understand the remaining physical mechanisms responsible for generating halo, and the amplitudes of particles projected into the halo.
- Confirmation of the predicted beam performance (at low energies) by measurements on the Low Energy Demonstration Accelerator (LEDA) now being built at Los Alamos. In the present schedule, data should be available in late FY99.

Understanding Beam Loss at LANSCE

LANSCE routinely achieves hands-on maintenance at all locations in the accelerator and beam transport. Typical H' loss rates after the major focusing transitions in the linac, which occur below about 200 MeV, are very low, less than 0.2 nA/m, translating into a fractional local loss rate of 2×10^{-5}/m. The integrated fractional loss along the high-energy linac is normally less than 5×10^{-4} and never more than 10^{-3}. Simulations of the LANSCE linac [3] have shown several causes of beam loss. The main cause is the incomplete bunching action of the 2-cavity 201.25-MHz bunching system in the low-energy beam transport. This system, which pre-dates the development of the RFQ, produces a beam with an extended tail in longitudinal phase space, leading to poor longitudinal capture and losses along the accelerator. A significant beam loss occurs downstream from the frequency jump at 100 MeV, where the 201.25-MHz drift-tube linac (DTL) transitions to the 805-MHz coupled-cavity linac (CCL);
here both the transverse and the longitudinal acceptance decrease substantially, and the beam is also poorly matched longitudinally. Near 200 MeV, there is a sudden reduction in the transverse focusing strength, which leads to additional losses downstream.

Several other effects are believed to contribute to beam loss in LANSCE. First, the dual beam (H⁺ and H⁻ accelerated together) operation of the accelerator limits the effectiveness of beam steering and other corrections. In practice, beam steering is restricted to the low-energy beam transport and the transition region between the DTL and CCL. Second, LANSCE is a pulsed linac, and as much as 40% of the beam loss occurs during the beam-turn-on transients. This loss can be caused by several factors, including beam-neutralization variations in the low-energy transport, and the beam-induced transient in accelerating-cavity fields, uncorrected by feedforward signals. Finally, the aperture radii in the LANSCE focusing elements and accelerating structures are relatively small, 1.6 to 1.9 cm in the high-energy linac, and the transverse focusing is relatively weak, because of the large spacing of quadrupole magnets. These two factors taken together result in a small “aperture ratio” (the ratio of physical aperture radius to rms beam radius), which varies from about only 4 to 7 in the high-energy linac.

How the APT Design Addresses the Beam-Loss Mechanisms in the LANSCE Linac

How are the beam-loss mechanisms identified in LANSCE addressed in the APT linac design? First, the dominant mechanism in LANSCE, longitudinal tails caused by incomplete bunching, is almost completely eliminated in APT by the use of the RFQ, the modern replacement for the LANSCE injection and bunching architecture. Second, only one charge species, H⁺, is accelerated in the APT linac, allowing uncompromised beam steering and matching. Third, APT is a cw linac, so there are no losses due to beam-turn-on transients, except possibly during recovery from faults; these should be managed to a greater degree than in LANSCE by the modern rf control loops planned for this system. Fourth, APT is designed with much larger apertures than in LANSCE and with stronger transverse focusing. In the LANSCE high-energy linac the aperture radius is 1.9 cm, whereas in the APT high-energy linac it is 8 cm. Combined with the stronger focusing in APT, the resulting aperture ratio ranges from 13 at 100 MeV to about 50 at 1030 MeV, compared with aperture ratios in LANSCE ranging from 4 to 7 over approximately the same energy range. The very much larger aperture ratios in APT mean that beam halo is much more easily contained within the aperture. The very large aperture ratios at high energies, where the activation threat is greatest, are a major benefit of using superconducting cavities in that energy range. Finally, improved longitudinal margin is provided by conservative choice of the accelerating field in the superconducting linac. A 10% field increase is possible in most of the linac, which produces a 27% increase in bucket phase width and a 14% reduction in longitudinal beam size.

Dominant Beam-Loss Threat for APT: Beam Halo from Space-Charge Force in Mismatched Beams

Given that the LANSCE beam-loss mechanisms have been addressed in the APT design, what remains as the main potential cause of APT beam loss? The beam spends only a short time transiting the linac (a few microseconds) and effects common in circular machines, such as intrabeam scattering from single Coulomb collisions have much less time to develop. Far more important are collective space-charge forces due to the beam as a whole. Numerical-simulation studies predict that the most important potential cause of beam loss is that associated with space-charge-induced halo caused by beam-optics mismatches [4]. These mismatches produce beam-density oscillations that can resonantly drive particles to larger radial amplitudes. Theoretical and numerical studies of halo formation show particle amplitudes resulting from single mismatches that extend well beyond the Debye tail of a matched beam, but not growing without limit.

Improved matching is also addressed in the APT linac design. Beam-current-independent matching is obtained by maintaining the same transverse and longitudinal focusing strength across accelerating structure transitions, and focusing-strength changes are made adiabatically whenever possible. Operational setting errors that would lead to mismatch are reduced by providing adjustable focusing and improved beam diagnostics.

Particle-core models of mismatched beams such as those in Refs.[5-14] have been constructed to provide quantitative estimates of the characteristics of halo-particle amplitudes caused by a single mismatch. In these models, the space-charge field from the oscillating beam core in a uniform linear-focusing channel is produced by an oscillating density distribution. The amplitude of the core oscillation is directly related to the magnitude of the rms mismatch of the beam. The behavior of halo particles is studied by representing them with test particles that oscillate through the core and interact with it. A parametric resonance occurs [6] when the particle oscillation frequency is half the core frequency. The amplitude growth for the resonant particles is self limiting, because outside the core the space-charge force falls off and the net restoring force increases nonlinearly with radius, producing a dependence of frequency on the particle amplitude such that the particles drop out of resonance as their amplitudes grow. A simple scaling formula has been derived [11] from the transverse halo models that shows how the maximum amplitude for an rms mismatched beam decreases with increased focusing strength. Halo formation due to rms mismatch has been studied in 3D bunches with self consistent stationary distributions [14] with bunch parameters close to the APT case. Results for the transverse halo are similar to those from 2D models; the relative extent of the longitudinal halo has been found to be smaller than that of the transverse halo. The halo models have provided a basic understanding of the underlying physics of the most important beam-loss mechanism expected in the APT linac.
Role of Numerical-Simulation Studies

Numerical simulation studies are an important tool for the analysis of the beam behavior in APT. Many simulations, using several design codes, have been carried out to support the basic design of the linac. Two-dimensional cylindrical-beam simulations with a single beam mismatch, initiating a breathing-mode core oscillation, were carried out for comparison with the particle-core halo models; these have shown remarkably good agreement in terms of maximum radial amplitude, as a function of mismatch\[11, 13\].

End-to-end (from injector to linac output) simulation studies of the LANSCE accelerator have also been carried out for comparison with beam measurements \[3\] and loss estimates. The simulations predicted measured rms quantities to within about 20%, except for the magnitudes of the beam losses. The major loss locations in the high-energy linac were correctly indicated by the simulations, but the loss magnitudes were overpredicted by about an order of magnitude. This discrepancy was not unexpected because of the sensitivity of the beam losses to the details of the particle distribution in the beam tails that are formed during the LANSCE bunching process, and the lack of longitudinal phase-space measurements, which are very difficult to make.

Both 2D and 3D space-charge codes have been compared with excellent agreement. Nevertheless, precise calculation of the details of the particle distribution at the edges of the beam by simulation may be beyond our present capabilities. Even assuming that the simulation code contains all the correct beam physics, and all the correct parameters of the accelerator as built, it may not possible to accurately predict very low levels of beam loss through simulation, because of the large number of particles that would need to be run, which exceeds current computation capability.

Supercomputers using massively-parallel processing are now being applied to these simulations. Some preliminary simulations looking at beam halo using 10^7 particles per run have already been done, and have shown the potential of applying increased computing power to the halo problem. Unlike the LANSCE simulations, the APT simulations for a linac with realistic errors produce zero beam loss above 100 MeV when using 10^7 particles per calculation. An integrated loss of about 100 particles along the high energy APT linac with this level of simulation would correspond to the same average beam loss at LANSCE. This is an encouraging result, and is positive evidence of a successful design.

At present, no direct measurements of beam-halo amplitude distributions are available for comparison with the codes. Such measurements are not trivial, and to be definitive must be carried out with careful preparation and measurement of the input beam in all six phase-space dimensions, and precision beam diagnostics capable of taking beam measurements over a large intensity range. Such measurements are planned to be carried out on LEDA.

Beam-Loss Control in APT Linac Design

We believe that the practical design approach to achieving very-low beam loss in the APT linac is to produce a high-quality beam in the low-energy normal-conducting linac, including an RFQ, and inject this beam into the large-aperture high-energy superconducting linac. Strong focusing was provided throughout the linac. The beam halo observed in the simulations does not extend radially beyond 5σ for a well-matched beam, or beyond about 10σ for a beam with mismatches produced from realistic errors. Throughout the linac, rf phase and amplitude (feedback) control loops keep the beam well centered within the longitudinal bucket, and beam steering is provided to keep the beam well centered in the aperture.

Acknowledgments

The authors acknowledge support from the U.S. Department of Energy, and wish to thank Robert Gluckstern for useful discussions.

References