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Abstract 

In a recent paper, Watanabe, et. al. [Phys. Rev. E 49 4060 (1994)l used 

direct simulation Monte Carlo to study Fhyleigh-B&nard convection. They 

reported that, using stress-free boundary conditions, the onset of convection 

in the simulation occurred at a Rayleigh number much larger than the critical 

Rayleigh number predicted by linear stability analysis. We show that the 

source of their discrepancy is their failure to include the temperature jump 

effect in the calculation of Rayleigh number. 



The direct sirnulalion Monte Carlo method (DSMC), introduced by G. A. Bird, is a 

popular numerical scheme for computing rarefied gas flows [l]. The method is particularly 

useful in the simulation of flows with high Knudsen number (ratio of mean free path to 

characteristic length), where the conventional Navier-Stokes description of hydrodynamics 

breaks down. Numerical and experimental tests have confirmed the validity and accuracy 

of the DSMC algorithm in diverse scenarios [2]. Theoretical studies have also shown the 

mathematical convergence of DSMC methods to the solution of the fluctuating Boltzmann 

equation [3]. 

Consider a fluid confined between horizontal walls held at fixed temperatures T’ (lower 

wall) and Tu (upper wall), with TL > Tu. When a critical value of the temperature gradient 

is exceeded, the purely conductive state becomes unstable and a transition to well struc- 

tured convective behavior occurs [4]. This transition, known as the Rayleigh-Binard (RB) 

instability, is governed by the Rayleigh number, Ra, defined as: 

- 

cuATgL3 Ra = 
V A T  

,where L is the distance between the horizontal boundaries, g the gravitational acceleration, 

AT = TL-Tu is the temperature difference, u and AT are the kinematic viscosity and thermal 

diffusivity, respectively, and a = -(a log p / a T ) p  is the thermal expansion coefficient. 

In a recent paper, Watanabe, Kaburaki and Yokokawa [5] discuss DSMC simulations of 

Rayleigh-B&nard convection in low Knudsen number systems. The study of RB convection 

using DSMC is not new [6-81 and numerous molecular dynamics (MD) studies have also 

appeared [9-111. In their paper, Watanabe, et. al. consider two types of boundary conditions 

for the upper and lower boundaries: fully thermalizing and stress-free conditions. Varying 

AT,  they found that, €or fully thermalizing boundaries, the onset oi convection occurs at a 

Rayleigh number which roughly agrees with linear stability theory (see their Fig. 4). On 

the other hand. for stress-free boundaries (which they call “semislip”) they found the onset 

o€ convection occurring at a significantly higlier temperature diflerence than predicted by 

theory (see their Fig. 6). The?- concluded that the “semislip boundary condition, which 



has been frequently used in MD and DSMC simulations, was shown to be inadequate to 

simulate the thermal boundary condition." 

Particle-based simulations of RB convection often use stress-free boundary conditions be- 

cause convection occurs at a significantly lower Ra than with fully thermalizing boundaries. 

Since computational costs increase rapidly with Rayleigh number, it is more economical to 

study RB convection using stress-free boundaries. Furthermore, particle simulations with 

. stress-free boundaries are found to be in excellent agreement with numerical solutions of the 

Navier-Stokes equations (e.g., see Fig. 6 in I?], Fig. 1 in [8], Figs. 2-5 in [lo], and Fig. 7 in 

[ll]). Thus the question arises, why did Watanabe, et. al. find disagreement between the 

linear stability prediction for the critical Ra, and their DSMC simulations using stress-free 

boundaries? 

The answer is they neglected to account for "temperature jump" in their calculation 

of Rayleigh number. It was first pointed out by Maxwell that in a gas with a temperature 

gradient, the temperature of the gas near a wall does not match the wall's temperature. This 

phenomenon is known as temperature jump or temperature slip [12,13]. Specifically, the 

difference between the temperature of the wall and the temperature of the gas near the wall 

is 6V1T where V1T is the temperature gradient normal to the wall. For fully thermalizing 

boundaries, S M 2X where X is the mean free path in the gas [14]. For stress-free boundaries, 

where only the normal component of velocity is thermalized, the temperature jump can be 

significantly larger [15]. In some circumstances (e.g., the omet of explosion in exothermal 

gas-phase reactions 1161) the temperature jump effect can be dramatic. 

For a dilute gas, the density profile in the conduction state goes as p 0: T-" where 

c = 1 -rngL/kAT, m is the mass of a particle and k is Boltzmann's constant. To maintain an 

approximately constant density, one often fixes the gravity in a siniulatioii as g = kAT/n?L 

and Watanabe, et. al. set g in this manner. Using the Chapman-Enskog expressions for 11 

and AT; we may write the Rayleigh number as 

(2) 



where To is the mean temperature in the system. From this expression one sees that, keeping 

all else constant, the Rayleigh number varies quadratically with AT. 

The vertical temperature gradient measured in a DSMC simulation of RB convection 

using stress-free boundary conditions is shown in Fig. 1. The gas is convecting and the 

vertical cross-section shown in Fig. 1 is centered on one of the rolls. The system size is 

L = 40X and the wall temperatures are Tu = 0.5 and TL = 2.0. The important feature 

to notice is that the temperature gradient in the gas is significantly reduced due to the 

temperature jump at the walls. For this reason, linear stability analysis using AT = TL -Tu 

will not correctly predict the onset of convection in the simulation. Previous work comparing 

MD or DSMC simulations to Navier-Stokes solutions did account for temperature jump and 

thus found no discrepancy. Even non-linear stability analysis was shown to give quantitative 

agreement with hard disk MD simulations of RB convection provided the temperature jump 

- 

was included in the analysis [ll]. 

For fully thermalizing walls, a temperature jump is present but its magnitude, 6, is 

smaller. In the Watanabe, et. al. simulations using this boundary condition, if the critical 

Rayleigh number was shifted by about lo%, the effect would not be noticeable in their data. 

In conclusion, even at relatively low Knudsen numbers, microscopic effects, such as tem- 

perature jump, are important in particle simulations of fluids. Great care must be taken 

when comparing simulation results with continuum theory. 

The authors wish to acknowledge helpful discussions with M. Mareschal. This work 

was performed under the auspices of the U.S. Department of Energy Lawrence Livermore 

National Laboratory under Contract No. W-7405-ENG-4S. 
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FIGURES 
FIG. 1. Temperature profile measured in a DSMC simulation for a convecting Rayleigh-Bdnard 

system with stress-free boundaries. Wall temperatures are TL = 2.0 and Tu = 0.5; note that the 

temperature of the fluid near the wall does not match the wall’s temperature. 
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