Turbulent scaling in fluids

PDF Version Also Available for Download.

Description

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of turbulence in fluids that are subject to different body forces and to external temperature gradients. Our focus was on the recent theoretical prediction that the Kolomogorov picture of turbulence may need to be modified for turbulent flows driven by buoyancy and subject to body forces such as rotational accelerations. Models arising from this research are important in global climate modeling, in turbulent transport problems, and in the fundamental understanding of fluid turbulence. Experimentally, ... continued below

Physical Description

8 p.

Creation Information

Ecke, R.; Li, Ning; Chen, Shiyi & Liu, Yuanming November 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of turbulence in fluids that are subject to different body forces and to external temperature gradients. Our focus was on the recent theoretical prediction that the Kolomogorov picture of turbulence may need to be modified for turbulent flows driven by buoyancy and subject to body forces such as rotational accelerations. Models arising from this research are important in global climate modeling, in turbulent transport problems, and in the fundamental understanding of fluid turbulence. Experimentally, we use (1) precision measurements of heat transport and local temperature; (2) flow visualization using digitally- enhanced optical shadowgraphs, particle-image velocimetry, thermochromic liquid-crystal imaging, laser-doppler velocimetry, and photochromic dye imaging; and (3) advanced image- processing techniques. Our numerical simulations employ standard spectral and novel lattice Boltzmann algorithms implemented on parallel Connection Machine computers to simulate turbulent fluid flow. In laboratory experiments on incompressible fluids, we measure probability distribution functions and two-point spatial correlations of temperature T and velocity V (both T-T and V-T correlations) and determine scaling relations for global heat transport with Rayleigh number. We also explore the mechanism for turbulence in thermal convection and the stability of the thermal boundary layer.

Physical Description

8 p.

Notes

OSTI as DE97000717

Source

  • Other Information: PBD: [1996]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97000717
  • Report No.: LA-UR--96-3330
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/399361 | External Link
  • Office of Scientific & Technical Information Report Number: 399361
  • Archival Resource Key: ark:/67531/metadc683732

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • March 10, 2016, 1:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ecke, R.; Li, Ning; Chen, Shiyi & Liu, Yuanming. Turbulent scaling in fluids, report, November 1, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc683732/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.