Thermal Conductivity of Cane Fiberboard (U)

by
D. R. Leader
Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

DOE Contract No. DE-AC09-89SR18035

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
THERMAL CONDUCTIVITY OF CANE FIBERBOARD (U)

by

D. R. Leader

ISSUED: May, 1995

Authorized Derivative Classifier

D. Thomas Reddin

SRTC
SAVANNAH RIVER TECHNOLOGY CENTER, AIKEN, SC 29808
Westinghouse Savannah River Company
Prepared for the U. S. Department of Energy under Contract DE-AC09-89SR18035
THERMAL CONDUCTIVITY OF CANE FIBERBOARD (U)
SUMMARY

The thermal conductivity of cane fiberboard was measured in two planes; parallel to the surface and perpendicular to the surface of the manufactured sheet. The information was necessary to better understand the thermal response of a loaded shipping container. The tests demonstrated that the thermal conductivity of cane fiberboard in the plane parallel to the surface of the sheet was nearly twice as great as the conductivity of the same material in a plane perpendicular to the sheet. There was no significant difference in the conductivity in different directions within the plane parallel to the surface, and the presence of glue between layers of fiberboard did not significantly change the conductivity of the assembly. The tests revealed that the thermal conductivity measured in a direction perpendicular to the plane of the surface of a stack of cane fiberboard sheets not bonded together, decreases with an increase in the mean temperature. This was determined to be the result of air gaps between the sheets of fiberboard, and not related to the properties of the material itself.

BACKGROUND

The thermal conductivity of cane fiberboard samples was measured in the Thermal Measurements Laboratory at the Center for Applied Technology in St. Petersburg, Florida.* The thermal Measurements Lab is a small part of a major commercial testing laboratory that serves the building industry to establish the R-values of building materials.

The lab has the capability of measuring the R-value of assembled doors, windows and walls as well as small samples of building materials. The thermal conductivity of cane fiberboard samples for these tests was measured in a Dynatech (Cambridge, Mass) "Rapid-K" thermal conductivity instrument. This instrument is designed to measure the thermal transmission properties of a 12" x 12" sample up to 2" thick in accordance with ASTM specification C 518-91. The technique uses a heat flux transducer to measure the flow of heat through the center 4" x 4" section of the sample. The apparatus establishes a steady state unidirectional heat flux through the sample, which is clamped between two parallel plates that are each at constant but different temperatures. The calibration of the instrument is verified periodically per ASTM C 518-91 by measurement of a specimen of known thermal conductivity that is traceable to the National Institute of Standards and Technology (NIST).

* Center For Applied Engineering, Inc. 10301 Ninth Street North, St. Petersburg FL 33716, Phone (813) 576-4171.
Cane fiberboard is used in shipping containers for the weapons complex both as thermal insulator and energy absorber to cushion the payload under impact conditions. Disks that are slightly smaller than the inside diameter (ID) of a stainless steel drum are cut from 1/2" thick 4' x 8' sheets of cane fiberboard and stacked in the drum to completely fill it. A cylindrical hole is cut in the center of the stack for placement of the containment vessel that is to be shipped. In the older shipping containers, the stack of 1/2" disks is held together by four 1/4" diameter rods with a bolt on each end, but the latest design requires the disks to be glued together.

Cane fiberboard has been used by the building construction industry for many years as sheathing on the outside walls of residential and commercial buildings. It is manufactured from the crushed stalks of the sugar cane plant as well as some cellulose from recycled newsprint paper. Because the long cane fibers lie primarily in a plane parallel to the surface of the board, and because fibers are likely to transfer more heat along their axis than across them, it is reasonable to assume that cane fiberboard would have a higher thermal conductivity parallel to the surface than perpendicular to the surface. Although thermal conductivity perpendicular to the plane surface of the 1/2" thick sheet is well documented, no published information is available for the thermal conductivity parallel to the plane surface of the sheet.

Knowledge of thermal conductivity in both planes is necessary to understand the performance and thermal response of a loaded shipping package, because most of the heat is transferred through the fiberboard in a plane parallel to the surface of the sheets.

SAMPLE DESCRIPTION

The thermal conductivity of individual sheets of fiberboard as well as five different assemblies was measured in these tests. A description of each sample follows (The designation in brackets is the sample designation used in the test report from the Center for Applied Engineering):

Sample Assembly #1 (L-flat) - Four 12" x 12" x 1/2" sheets of cane fiberboard held together by water-base carpenters wood glue that was applied to the outer 1-inch edge of each surface. The purpose of the glue was to hold the four pieces together without having any influence on the thermal conductivity of the center 4" x 4" area where the heat flux was measured. This sample simulates fiberboard in the "old" packages, in which the sheets of fiberboard are not bonded together.

Sample Assembly #2 (L) - A "picture frame" was made by cutting a 11" x 11" opening in the center of a stack of four 12" x 12" sheets of 1/2" thick cane fiberboard that have been glued together. Twenty two strips of cane fiberboard 2" wide, 11" long and 1/2" thick were stacked into the opening of the picture frame. Each of the strips was cut with the 11 inch dimension parallel to the 8-foot length of the original sheet of cane fiberboard. The strips were held in the picture frame by friction as the result of a close fit - no glue was used to hold them in place. This sample was used to determine the thermal
conductivity of fiberboard in a plane parallel to the surface. Both 12" x 12" surfaces of this sample were smoothed by rubbing the sample across a plane surface coated with abrasive paper. This was done to assure good contact with the surface of the plates in the test instrument.

Sample Assembly #3 (W) - This sample is identical to sample #2 in every respect except that the strips were cut with the 11-inch dimensions parallel to the 4-foot dimension of the original sheet of cane fiberboard. This sample was used to determine if there was any difference in thermal conductivity that was related to the orientation of the fiberboard. Both 12" x 12" surfaces of this sample were smoothed by rubbing the sample across a plane surface coated with abrasive paper. This was done to assure good contact with the surface of the plates in the test instrument.

Sample Assembly #4 (L-glue) - This sample is identical to sample #2 in every respect except that the 2" x 11" surfaces of each strip were coated with water-based carpenters wood glue before assembly. This sample was used to determine if the glue had any influence on thermal conductivity of fiberboard measured in a plane parallel to the surface. Both 12" x 12" surfaces of this sample were smoothed by rubbing the sample across a plane surface coated with abrasive paper. This was done to assure good contact with the surface of the plates in the test instrument.

Sample Assembly #5 (Series III) - This sample was similar to sample number 1, except that the surface area of adjacent sheets was coated with glue to form an essentially solid sample. This sample was used to determine the effect of glued assembly on conductivity measured perpendicular to the surface of the fiberboard.

In addition to the five assemblies described above, four individual 12" x 12" samples of 1/2" thick cane fiberboard were used in the testing process. The individual sheets were never fastened together in any way, but the thermal conductivity was measured on one sheet, then a stack of two sheets, then a stack of three sheets and finally a stack of four sheets. (These samples were used in the "SERIES II" tests and were designated 1-flat, 2-flat, 3-flat and 4-flat.) Sample assemblies #1, #2, #3 and #4 and the four individual samples were made from the same 4' x 8' sheet of cane fiberboard sheathing, but sample assembly #5 was made from a different sheet.

TEST DESCRIPTION

The same test instrument (Rapid K #2) was used with the same samples to measure thermal conductivity at two different mean temperatures. The high temperature tests were run at an average sample temperature of 180°F and an average temperature difference between the hot and cold surface of 40°F. Low temperature tests were done on the same samples at an average sample temperature of 75°F and an average temperature difference between the hot and cold surface of 40°F. Sample Assembly #4 was not run at the high temperature. The calibration of the machine was verified before and after each series of tests by measuring the conductivity of a standard sample of known conductivity verified by the NIST.
In each test, the sample is clamped between the two temperature controlled plates in the thermal conductivity measurement apparatus. The energy required to maintain the two surface temperatures at the specified values is controlled by a computer. After equilibrium conditions are established and maintained for a predetermined time, the computer automatically calculates the thermal conductivity of the sample. The minimum time required for a sample to reach equilibrium in the test equipment ranges between one and three hours, but the test can be continued for as long as desired.

Photograph #1 shows the test instrument with sample #3 being held in front of the open door. After the sample is placed into the instrument, a lever on the right side (not seen in the photograph) raises the lower surface and applies a spring loaded force on the sample so it is in contact with both the lower and upper surface of the instrument. The front door, which is insulated, is then closed and latched. Only the edge of the door and the latch are visible in the photograph. The dial indicator on the top of the instrument indicates the thickness of the sample being tested.

Photograph #2 is the display for the computer that controls six different instruments in the laboratory. Sample #1 (L-flat) had been in instrument RX 2 (center top in the display) for 115 minutes when this photograph was made.

There were three series of tests done on the samples: Series I tests were run on samples #1, #2, #3 at two different temperatures and at the low temperature only on sample #4. The data from these tests are summarized in Table I.

Series II tests were done with four individual 12" x 12" samples of fiberboard. Thermal conductivity was measured on each individual sample and on stacks of 2, 3 and 4 samples at both the 75°F and the 180°F mean temperature. Results of series II tests are summarized in Table II.

Series III thermal conductivity tests were all done on sample number 5. Six or seven different tests at each temperature were done on the same sample of four sheets that were glued together to form a solid assembly. Results of series III tests are summarized in Table III.

RESULTS AND DISCUSSION

The test results from the series I tests are summarized in Table I. The results confirm the hypothesis that the thermal conductivity in the plane parallel to the surface of the sheet is greater than the conductivity perpendicular to the surface. This is a reasonable result because the long hollow cane fibers which are inclined to conduct heat preferentially along their length are randomly oriented with their axis in a plane more or less parallel to the surface.

Samples #2 and #3 differed only in the orientation of the sample relative to the length of the original sheet of material. Although the thermal conductivity is slightly higher for
the sample cut in the direction parallel to the 4-foot dimension of the original sheet of fiberboard for the low temperature test, the opposite is true at the high temperature. The difference appears to be within the range of experimental error. Again, this is a reasonable result because there is no apparent alignment of the long cane fibers in any one direction.

Samples #2 and #4 differed only in the fact that the 22 individual pieces in the sample were glued together in sample #4. Although the conductivity for sample #4 is slightly higher, the difference does not appear to be significant. The glue line is very thin relative to the sample, and even if the glue had a slightly different coefficient of heat transfer than the fiberboard, it would not be likely to make a major change in the measured coefficient of heat transfer for the assembly.

One apparently anomalous result of these tests was that the thermal conductivity of sample 1 decreased at the higher mean temperature. Because this is inconsistent with the expected behavior of cane fiberboard, the second series of tests was run. Sample #1 was made from four 12" x 12" sheets that were glued together only at the edges and the coefficient of heat transfer is measured at the 4" square in the center of the sample.

A second series of tests was done to determine the reason for the apparently anomalous test results from sample #1. The tests results from the series II tests are summarized in table II. In these tests, the thermal conductivity of four individual boards was first measured individually and then in stacks two, three and four sheets thick. These tests confirmed the behavior of sample #1 in the series I tests. The thermal conductivity of a stack of sheets decreased with an increase in the mean temperature. At this point it was postulated that the mechanism for this unusual behavior was the result of the air gap between adjacent sheets in a stack of cane fiberboard that is not glued together.

Series III tests were run to verify the hypothesis that the air gap between sheets on sample #1 and the samples in the series II tests caused the thermal conductivity to decrease with an increase in temperature. The tests results from the series III tests are included at the bottom of table I. In this test, four sheets of fiberboard were glued together to form a solid sample 12" x 12" x 2". Thermal conductivity was measured at both the high and low mean temperature in the direction perpendicular to the face of the sheets. The tests were repeated at least six times and all test results were within the range expected for an experiment of this type. The thermal conductivity of the sample increased, as expected, at the higher temperature. These results verify the hypothesis that the decrease in measured thermal conductivity at higher temperatures for a stack of fiberboard that is not bonded together is the result of the air gap between the individual sheets of fiberboard, and is not related to some peculiar property of the material itself.

A copy of the test report from the Center for Applied Engineering is attached to this memo along with a copy of all of the original test data.
CONCLUSIONS

The thermal conductivity of cane fiberboard in a direction parallel to the surface is about twice the value of conductivity through the sheet. There is no significant difference in conductivity measured in different directions parallel to the surface based on the results of tests in two directions. The use of wood glue to bond multiple sheets together does not influence the conductivity in a direction parallel to the surface of the sheets, but the presence of an air gap between layers that are not bonded together results in decreased thermal conductivity at higher temperatures for a stack of unbonded sheets of fiberboard. All of the results appear reasonable and in agreement with the expected behavior of this material.
<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>MEAN TEMP. °F</th>
<th>Apparent Thermal Conductivity (Btu in/h ft² °F)</th>
<th>Direction of Heat Flow Relative to the Surface of the sheet</th>
<th>Sheets Glued Together?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [L-Flat]</td>
<td>74.7</td>
<td>0.420 (1)</td>
<td>Perpendicular</td>
<td>No</td>
</tr>
<tr>
<td>1 [L-Flat]</td>
<td>179.9</td>
<td>0.290 (1)</td>
<td>Perpendicular</td>
<td>No</td>
</tr>
<tr>
<td>2 [L]</td>
<td>75.0</td>
<td>0.762 (2)</td>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>2 [L]</td>
<td>179.9</td>
<td>0.755 (1)</td>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>3 [W]</td>
<td>75.1</td>
<td>0.803 (2)</td>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>3 [W]</td>
<td>180.3</td>
<td>0.727 (1)</td>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>4 [L-Glue]</td>
<td>75.0</td>
<td>0.797 (2)</td>
<td>Parallel</td>
<td>Yes</td>
</tr>
<tr>
<td>4 [L-Glue]</td>
<td>180.0</td>
<td>Not measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 [SERIES III]</td>
<td>74.9</td>
<td>0.398 (1)</td>
<td>Perpendicular</td>
<td>Yes</td>
</tr>
<tr>
<td>5 [SERIES III]</td>
<td>180.0</td>
<td>0.440 (1)</td>
<td>Perpendicular</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
(1) Average of two or more test results.
(2) Single test result.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mean Temperature (°F)</th>
<th>Thickness (inch)</th>
<th>Apparent Thermal Conductivity (Btu in/h ft² °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Series II Tests</td>
</tr>
<tr>
<td>1-flat</td>
<td>74.6</td>
<td>0.523</td>
<td>0.387</td>
</tr>
<tr>
<td>2-flat</td>
<td>74.8</td>
<td>0.515</td>
<td>0.391</td>
</tr>
<tr>
<td>1,2-flat</td>
<td>74.9</td>
<td>1.024</td>
<td>0.411</td>
</tr>
<tr>
<td>3-flat</td>
<td>75.1</td>
<td>0.511</td>
<td>0.391</td>
</tr>
<tr>
<td>1,2,3-flat</td>
<td>74.8</td>
<td>1.547</td>
<td>0.426</td>
</tr>
<tr>
<td>4-flat</td>
<td>74.9</td>
<td>0.527</td>
<td>0.381</td>
</tr>
<tr>
<td>1,2,3,4-flat</td>
<td>75.4</td>
<td>2.058</td>
<td>0.415</td>
</tr>
<tr>
<td>1-flat</td>
<td>180.2</td>
<td>0.527</td>
<td>0.470</td>
</tr>
<tr>
<td>2-flat</td>
<td>180.1</td>
<td>0.529</td>
<td>0.460</td>
</tr>
<tr>
<td>1,2-flat</td>
<td>179.9</td>
<td>1.041</td>
<td>0.420</td>
</tr>
<tr>
<td>3-flat</td>
<td>180.1</td>
<td>0.529</td>
<td>0.450</td>
</tr>
<tr>
<td>1,2,3-flat</td>
<td>179.9</td>
<td>1.554</td>
<td>0.285</td>
</tr>
<tr>
<td>4-flat</td>
<td>180.3</td>
<td>0.528</td>
<td>0.449</td>
</tr>
<tr>
<td>1,2,3,4-flat</td>
<td>180.1</td>
<td>2.064</td>
<td>0.165</td>
</tr>
</tbody>
</table>
Photograph #1: Conductivity Measurement Instrument
Photograph #2: Computer Display
To: Mr. Douglas R. Leader
Westinghouse Savannah River Company
P. O. Box 616
Bldg. 773-A, Room D-1142
Aiken, SC 29802-0616

Subject: ASTM C518 Tests on Cane Fiberboard

SERIES I TESTS

Series I tests were conducted on samples identified by the client as L-flat, L-glue, L and W. Tests at mean temperatures of 180°F and 75°F were conducted on all samples except L-glue which was tested at 75°F only. Test results are summarized on the attached table. The L-flat data are questionable as the apparent thermal conductivity at 180°F was lower than at 75°F. This is inconsistent with typical thermal data.

SERIES II TESTS

Series II tests were conducted on samples identified as 1-flat, 2-flat, 3-flat and 4-flat. After testing individual samples, samples were stacked and identified as 1,2-flat; 1,2,3-flat; and 1,2,3,4-flat. Tests were conducted on all samples at both 180°F and 75°F mean temperature, a total of 14 tests. Densities of the 4 samples were:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density (lb/ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-flat</td>
<td>15.3</td>
</tr>
<tr>
<td>2-flat</td>
<td>15.9</td>
</tr>
<tr>
<td>3-flat</td>
<td>15.7</td>
</tr>
<tr>
<td>4-flat</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Test results are summarized on the attached Table. The data obtained at 75°F mean temperature appear to be consistent with the overall average thermal conductivity obtained at 75°F from Series III. The 180°F data are questionable as the thermal conductivity should not decrease as additional samples are stacked, i.e., 1,2,3-flat and 1,2,3,4-flat.

ACOUSTICAL, FIRE, PHYSICAL AND THERMAL MEASUREMENTS LABORATORIES

Accredited by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for selected test methods for Acoustical Test Services and Thermal Insulation Materials.
SERIES III TESTS

Series III tests were conducted on a stack of four (4) nominal 0.5-inch thick fiberboard samples. The 4 samples were adhered with Carpenter’s glue and allowed to dry overnight with heavy weights on top. The stack was placed in an oven and dried for approximately 24 hours at 215°F. The initial weight was 1345.9 grams; after drying the weight was 1178.5 grams. The stack was placed in a desiccator over the weekend and reweighed just prior to testing, 1182.0 grams. After testing at 180°F all day, the stack was reweighed, 1182.2 grams. The density of the sample was 15.7 lb/ft³.

For both mean temperature tests, the stack was left in the heat flow meter all day with ASTM C518 acceptable data taken throughout the day. As can be seen in the attached Table, the data are extremely constant for the 6 or 7 readings. These data are also as would be expected, the thermal conductivity at 180°F is approximately 11 percent higher than at 75°F.

R. G. MILLER
Manager
Materials Testing Services

RGM:dds
encl.
SUMMARY OF FIBERBOARD TEST RESULTS

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mean Temperature (°F)</th>
<th>Thickness (inch)</th>
<th>Apparent Thermal Conductivity (Btu in/h ft² °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Series I Tests</td>
</tr>
<tr>
<td>L-Flat</td>
<td>74.3</td>
<td>2.083</td>
<td>0.432</td>
</tr>
<tr>
<td></td>
<td>75.1</td>
<td>2.075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>74.7</td>
<td>0.420</td>
</tr>
<tr>
<td></td>
<td>179.8</td>
<td>2.102</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>180.0</td>
<td>2.081</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>179.9</td>
<td>0.290</td>
</tr>
<tr>
<td>L-Glue</td>
<td>75.0</td>
<td>2.012</td>
<td>0.797</td>
</tr>
<tr>
<td>L</td>
<td>75.0</td>
<td>2.008</td>
<td>0.762</td>
</tr>
<tr>
<td></td>
<td>179.9</td>
<td>2.020</td>
<td>0.772</td>
</tr>
<tr>
<td></td>
<td>179.9</td>
<td>2.008</td>
<td>0.737</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>179.9</td>
<td>0.755</td>
</tr>
<tr>
<td>W</td>
<td>75.1</td>
<td>2.017</td>
<td>0.803</td>
</tr>
<tr>
<td></td>
<td>180.5</td>
<td>2.029</td>
<td>0.795</td>
</tr>
<tr>
<td></td>
<td>180.2</td>
<td>2.021</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td>180.2</td>
<td>2.021</td>
<td>0.682</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>180.3</td>
<td>0.727</td>
</tr>
</tbody>
</table>

This report is for the information of the client. It may be used in its entirety for the purpose of securing product acceptance from duly constituted approval authorities; however, this report or the name of Center For Applied Engineering, Inc. shall not be used in publicity or advertising.

Accredited by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for selected test methods for Acoustical Test Services and Thermal Insulation Materials.
SUMMARY OF FIBERBOARD TEST RESULTS

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mean Temperature (°F)</th>
<th>Thickness (inch)</th>
<th>Apparent Thermal Conductivity (Btu in/h ft² °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series II Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-flat</td>
<td>74.6</td>
<td>0.523</td>
<td>0.387</td>
</tr>
<tr>
<td>2-flat</td>
<td>74.8</td>
<td>0.515</td>
<td>0.391</td>
</tr>
<tr>
<td>1,2-flat</td>
<td>74.9</td>
<td>1.024</td>
<td>0.411</td>
</tr>
<tr>
<td>3-flat</td>
<td>75.1</td>
<td>0.511</td>
<td>0.391</td>
</tr>
<tr>
<td>1,2,3-flat</td>
<td>74.8</td>
<td>1.547</td>
<td>0.426</td>
</tr>
<tr>
<td>4-flat</td>
<td>74.9</td>
<td>0.527</td>
<td>0.381</td>
</tr>
<tr>
<td>1,2,3,4-flat</td>
<td>75.4</td>
<td>2.058</td>
<td>0.415</td>
</tr>
<tr>
<td>1-flat</td>
<td>180.2</td>
<td>0.527</td>
<td>0.470</td>
</tr>
<tr>
<td>2-flat</td>
<td>180.1</td>
<td>0.529</td>
<td>0.460</td>
</tr>
<tr>
<td>1,2-flat</td>
<td>179.9</td>
<td>1.041</td>
<td>0.420</td>
</tr>
<tr>
<td>3-flat</td>
<td>180.1</td>
<td>0.529</td>
<td>0.450</td>
</tr>
<tr>
<td>1,2,3-flat</td>
<td>179.9</td>
<td>1.554</td>
<td>0.285</td>
</tr>
<tr>
<td>4-flat</td>
<td>180.3</td>
<td>0.528</td>
<td>0.449</td>
</tr>
<tr>
<td>1,2,3,4-flat</td>
<td>180.1</td>
<td>2.064</td>
<td>0.165</td>
</tr>
</tbody>
</table>

Note: For the information of the client, it may be used in its entirety for the purpose of securing product acceptance from regulated approval authorities; however, this report or the name of Center For Applied Engineering, Inc. shall not be used for advertising.

by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation or selected test methods for Acoustical Test Services and Thermal Insulation Materials.
SUMMARY OF FIBERBOARD TEST RESULTS

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mean Temperature (°F)</th>
<th>Thickness (inch)</th>
<th>Apparent Thermal Conductivity (Btu in/h ft² °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series III Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4, Nominal 0.5-inch Samples of Fiberboard Glued with Carpenter's Glue

<table>
<thead>
<tr>
<th></th>
<th>180.0</th>
<th>2.055</th>
<th>0.430</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>179.9</td>
<td>2.055</td>
<td>0.442</td>
</tr>
<tr>
<td>3</td>
<td>180.0</td>
<td>2.055</td>
<td>0.444</td>
</tr>
<tr>
<td>4</td>
<td>180.0</td>
<td>2.055</td>
<td>0.443</td>
</tr>
<tr>
<td>5</td>
<td>180.0</td>
<td>2.055</td>
<td>0.441</td>
</tr>
<tr>
<td>6</td>
<td>179.9</td>
<td>2.055</td>
<td>0.441</td>
</tr>
<tr>
<td>Average</td>
<td>180.0</td>
<td>2.055</td>
<td>0.440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>74.9</th>
<th>2.038</th>
<th>0.395</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>74.9</td>
<td>2.038</td>
<td>0.400</td>
</tr>
<tr>
<td>3</td>
<td>74.9</td>
<td>2.038</td>
<td>0.399</td>
</tr>
<tr>
<td>4</td>
<td>74.9</td>
<td>2.038</td>
<td>0.398</td>
</tr>
<tr>
<td>5</td>
<td>74.9</td>
<td>2.038</td>
<td>0.397</td>
</tr>
<tr>
<td>6</td>
<td>74.9</td>
<td>2.038</td>
<td>0.397</td>
</tr>
<tr>
<td>7</td>
<td>74.9</td>
<td>2.038</td>
<td>0.398</td>
</tr>
<tr>
<td>Average</td>
<td>74.9</td>
<td>2.038</td>
<td>0.398</td>
</tr>
</tbody>
</table>

This report is for the information of the client. It may be used in its entirety for the purpose of securing product acceptance from duly constituted approval authorities; however, this report or the name of Center For Applied Engineering, Inc. shall not be used in publicity or advertising.

Accredited by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for selected test methods for Acoustical Test Services and Thermal Insulation Materials.
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165 Run ID: 257165
Sample Description: SAMPLE-L-FLAT-AMB.
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 181 minutes
Average Heat Flux = 8.57 Btu/(h sq-ft)
Average Hot Plate Temperature T_h = 94.9 deg F
Average Cold Plate Temperature T_c = 53.6 deg F
Average Temperature Difference = 41.3 deg F
Average Sample Temperature = 74.3 deg F
Average Thermal Resistance R = 4.82 h sq-ft F/Btu
Average Thermal Conductance C = 0.207 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.083 inch
Average Temperature Gradient = 19.83 deg F/inch
Apparent Thermal Conductivity k = 0.432 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165
Sample Description: SAMPLE-L-FLAT-AME
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:

Average Heat Flux = 7.80 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 95.0 deg F
Average Cold Plate Temperature Tc = 55.2 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 75.1 deg F
Average Thermal Resistance R = 5.09 h sq-ft F/Btu
Average Thermal Conductance C = 0.196 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.075 inch
Average Temperature Gradient = 19.16 deg F/inch
Apparent Thermal Conductivity k = 0.407 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165

Sample Description: SAMPLE-L-FLAT
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 125 minutes

Average Heat Flux = 5.36 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 159.7 deg F
Average Temperature Difference = 40.3 deg F
Average Sample Temperature = 179.8 deg F
Average Thermal Resistance R = 7.51 h sq-ft F/Btu
Average Thermal Conductance C = 0.133 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.102 inch
Average Temperature Gradient = 19.17 deg F/inch
Apparent Thermal Conductivity k = 0.280 Btu-in/(h sq-ft F)

Operator:

Comments: CHK. 1980 AT CONCLUSION OF TEST
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165

Sample Description: SAMPLE-L-FLAT

Specimen Orientation: Horizontal

Heat Meter Location: Cold Surface

Instrument Used: Rapid-k #2

Duration of Measurement:

Average Heat Flux = 5.87 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.4 deg F
Average Cold Plate Temperature Tc = 159.5 deg F
Average Temperature Difference = 40.9 deg F
Average Sample Temperature = 180.0 deg F
Average Thermal Resistance R = 6.96 h sq-ft F/Btu
Average Thermal Conductance C = 0.144 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.081 inch
Average Temperature Gradient = 19.64 deg F/inch
Apparent Thermal Conductivity k = 0.299 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165

Sample Description: SAMPLE-L-GLUE-AMB
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 66 minutes

Average Heat Flux = 15.66 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.8 deg F
Average Cold Plate Temperature Tc = 55.3 deg F
Average Temperature Difference = 39.5 deg F
Average Sample Temperature = 75.0 deg F
Average Thermal Resistance R = 2.52 h sq-ft F/Btu
Average Thermal Conductance C = 0.396 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.012 inch
Average Temperature Gradient = 19.64 deg F/inch
Apparent Thermal Conductivity k = 0.797 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE L
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:
Average Heat Flux = 15.11 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.9 deg F
Average Cold Plate Temperature Tc = 55.1 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 75.0 deg F
Average Thermal Resistance R = 2.64 h sq-ft F/Btu
Average Thermal Conductance C = 0.379 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.008 inch
Average Temperature Gradient = 19.83 deg F/inch
Apparent Thermal Conductivity k = 0.762 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165 Run ID: 257165

Sample Description: SAMPLE-L
Specimen Orientation: Horizontal
Instrument Used: Rapid-k #2

Heat Meter Location: Cold Surface

Duration of Measurement: 90 minutes

Average Heat Flux = 15.43 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.1 deg F
Average Cold Plate Temperature Tc = 159.6 deg F
Average Temperature Difference = 40.5 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance R = 2.62 h sq-ft F/Btu
Average Thermal Conductance C = 0.382 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.020 inch
Average Temperature Gradient = 20.06 deg F/inch
Apparent Thermal Conductivity k = 0.772 Btu-in/(h sq-ft F)

Operator:

Comments

&KH, 1990 at conclusion of test
&KH, 2018 at conclusion of test
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165
Sample Description: SAMPLE-L
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 131 minutes
Average Heat Flux = 14.75 Btu/(h sq-ft)
Average Hot Plate Temperature \(T_h\) = 200.0 deg F
Average Cold Plate Temperature \(T_c\) = 159.8 deg F
Average Temperature Difference = 40.2 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance \(R\) = 2.72 h sq-ft F/Btu
Average Thermal Conductance \(C\) = 0.367 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.008 inch
Average Temperature Gradient = 20.00 deg F/inch
Apparent Thermal Conductivity \(k\) = 0.737 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE W
Specimen Orientation: Horizontal
Instrument Used: Rapid-k #2
Heat Meter Location: Cold Surface

Duration of Measurement:

Average Heat Flux = 15.75 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.9 deg F
Average Cold Plate Temperature Tc = 55.3 deg F
Average Temperature Difference = 39.6 deg F
Average Sample Temperature = 75.1 deg F
Average Thermal Resistance R = 2.51 h sq-ft F/Btu
Average Thermal Conductance C = 0.398 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.017 inch
Average Temperature Gradient = 19.62 deg F/inch
Apparent Thermal Conductivity k = 0.803 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-W
Specimen Orientation: Horizontal
Instrument Used: Rapid-k #2

Duration of Measurement: 116 minutes

Average Heat Flux = 15.49 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.3 deg F
Average Cold Plate Temperature Tc = 160.7 deg F
Average Temperature Difference = 39.5 deg F
Average Sample Temperature = 180.5 deg F
Average Thermal Resistance R = 2.55 h sq-ft F/Btu
Average Thermal Conductance C = 0.392 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.029 inch
Average Temperature Gradient = 19.49 deg F/inch
Apparent Thermal Conductivity k = 0.795 Btu-in/(h sq-ft F)

Operator:
Comments: No change in THK.
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-W
Specimen Orientation: Horizontal
Instrument Used: Rapid-k #2
Heat Meter Location: Cold Surface

Duration of Measurement:
Average Heat Flux = 13.79 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 160.4 deg F
Average Temperature Difference = 39.6 deg F
Average Sample Temperature = 180.2 deg F
Average Thermal Resistance R = 2.87 h sq-ft F/Btu
Average Thermal Conductance C = 0.348 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.021 inch
Average Temperature Gradient = 19.60 deg F/inch
Apparent Thermal Conductivity k = 0.704 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-W
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 54 minutes
Average Heat Flux = 13.42 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.1 deg F
Average Cold Plate Temperature Tc = 160.3 deg F
Average Temperature Difference = 39.7 deg F
Average Sample Temperature = 180.2 deg F
Average Thermal Resistance R = 2.96 h sq-ft F/Btu
Average Thermal Conductance C = 0.338 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.021 inch
Average Temperature Gradient = 19.66 deg F/inch
Apparent Thermal Conductivity k = 0.682 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165

Sample Description: SAMPLE-1-FLAT-AMB

Specimen Orientation: Horizontal

Heat Meter Location: Cold Surface

Instrument Used: Rapid-k #2

Duration of Measurement: 175 minutes

Average Heat Flux = 29.54 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.6 deg F
Average Cold Plate Temperature Tc = 54.7 deg F
Average Temperature Difference = 39.9 deg F
Average Sample Temperature = 74.6 deg F
Average Thermal Resistance R = 1.35 h sq-ft F/Btu
Average Thermal Conductance C = 0.739 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.523 inch
Average Temperature Gradient = 76.36 deg F/inch
Apparent Thermal Conductivity k = 0.387 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165

Sample Description: SAMPLE-2-FLAT-AMB

Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 52 minutes

Average Heat Flux = 30.17 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.6 deg F
Average Cold Plate Temperature Tc = 54.9 deg F
Average Temperature Difference = 39.7 deg F
Average Sample Temperature = 74.8 deg F
Average Thermal Resistance R = 1.32 h sq-ft F/Btu
Average Thermal Conductance C = 0.759 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.515 inch
Average Temperature Gradient = 77.13 deg F/inch
Apparent Thermal Conductivity k = 0.391 Btu-in/(h sq-ft F)

Operator:

Comments:
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-1-2-FLAT-AMB
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:

Average Heat Flux = 15.98 Btu/(h sq-ft)
Average Hot Plate Temperature \(T_h \) = 94.8 deg F
Average Cold Plate Temperature \(T_c \) = 55.0 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance \(R \) = 2.49 h sq-ft F/Btu
Average Thermal Conductance \(C \) = 0.401 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 1.024 inch
Average Temperature Gradient = 38.39 deg F/inch
Apparent Thermal Conductivity \(k \) = 0.411 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165*
Run ID: 257165

Sample Description: SAMPLE-3-FLAT-AMB
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:

- Average Heat Flux = 30.26 Btu/(h sq-ft)
- Average Hot Plate Temperature Th = 94.9 deg F
- Average Cold Plate Temperature Tc = 55.4 deg F
- Average Temperature Difference = 39.6 deg F
- Average Sample Temperature = 75.1 deg F
- Average Thermal Resistance R = 1.31 h sq-ft F/Btu
- Average Thermal Conductance C = 0.765 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

- Thickness = 0.511 inch
- Average Temperature Gradient = 77.41 deg F/inch
- Apparent Thermal Conductivity k = 0.391 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165

Sample Description: SAMPLE-1-2-3-FLAT AMB
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 54 minutes
Average Heat Flux = 11.04 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.9 deg F
Average Cold Plate Temperature Tc = 54.8 deg F
Average Temperature Difference = 40.1 deg F
Average Sample Temperature = 74.8 deg F
Average Thermal Resistance R = 3.63 h sq-ft F/Btu
Average Thermal Conductance C = 0.276 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 1.547 inch
Average Temperature Gradient = 25.90 deg F/inch
Apparent Thermal Conductivity k = 0.426 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165
Sample Description: SAMPLE-4-FLAT-AMB
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 60 minutes

Average Heat Flux = 28.76 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.8 deg F
Average Cold Plate Temperature Tc = 55.0 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 1.38 h sq-ft F/Btu
Average Thermal Conductance C = 0.723 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.527 inch
Average Temperature Gradient = 75.47 deg F/inch
Apparent Thermal Conductivity k = 0.381 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments:
Calculations Based on Thickness Measured in Apparatus

Thickness = 2.058 inch
Average Temperature Gradient = 19.12 deg F/inch
Apparent Thermal Conductivity k = 0.415 Btu-in/(h sq-ft F)
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 25-165
Run ID: 25-165

Sample Description: SAMPLE-1 FLAT

Specimen Orientation: Horizontal Heat Meter Location: Cold Surface

Instrument Used: Rapid-k #2

Duration of Measurement: 58 minutes

Average Heat Flux = 35.28 Btu/(h sq-ft)

Average Hot Plate Temperature Th = 200.0 deg F

Average Cold Plate Temperature Tc = 160.4 deg F

Average Temperature Difference = 39.6 deg F

Average Sample Temperature = 180.2 deg F

Average Thermal Resistance R = 1.12 h sq-ft F/Btu

Average Thermal Conductance C = 0.391 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.527 inch

Average Temperature Gradient = 75.13 deg F/inch

Apparent Thermal Conductivity k = 0.470 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-2-FLAT
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:

Average Heat Flux = 34.67 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 160.1 deg F
Average Temperature Difference = 39.9 deg F
Average Sample Temperature = 180.1 deg F
Average Thermal Resistance R = 1.15 h sq-ft F/Btu
Average Thermal Conductance C = 0.369 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.529 inch
Average Temperature Gradient = 75.42 deg F/inch
Apparent Thermal Conductivity k = 0.460 Btu-in/(h sq-ft F)

Operator: _____________________________

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165 Run ID: 257165
Sample Description: SAMPLE-1+2-FLAT
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 90 minutes
Average Heat Flux = 16.38 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.2 deg F
Average Cold Plate Temperature Tc = 159.6 deg F
Average Temperature Difference = 40.6 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance R = 2.48 h sq-ft F/Btu
Average Thermal Conductance C = 0.403 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickenss = 1.041 inch
Average Temperature Gradient = 39.02 deg F/inch
Apparent Thermal Conductivity k = 0.420 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-3-FLAT
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 111 minutes

Average Heat Flux = 34.06 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.1 deg F
Average Cold Plate Temperature Tc = 160.0 deg F
Average Temperature Difference = 40.1 deg F
Average Sample Temperature = 180.1 deg F
Average Thermal Resistance R = 1.18 h sq-ft F/Btu
Average Thermal Conductance C = 0.350 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 0.529 inch
Average Temperature Gradient = 75.76 deg F/inch
Apparent Thermal Conductivity k = 0.450 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165 Run ID: 257165
Sample Description: SAMPLE-1+2+3-FLAT
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 186 minutes
Average Heat Flux = 7.37 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 159.7 deg F
Average Temperature Difference = 40.3 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance R = 5.46 h sq-ft F/Btu
Average Thermal Conductance C = 0.183 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 1.554 inch
Average Temperature Gradient = 25.91 deg F/inch
Apparent Thermal Conductivity k = 0.285 Btu-in/(h sq-ft F)

Operator: B

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Sample Description: SAMPLE-4-FLAT
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:
Average Heat Flux = 33.78 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.2 deg F
Average Cold Plate Temperature Tc = 160.4 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 180.3 deg F
Average Thermal Resistance R = 1.18 h sq-ft F/Btu
Average Thermal Conductance C = 0.849 Btu/(h sq-ft F)

56 minutes

Calculations Based on Thickness Measured in Apparatus
Thickness = 0.528 inch
Average Temperature Gradient = 75.32 deg F/inch
Apparent Thermal Conductivity k = 0.449 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 257165
Run ID: 257165

Sample Description: SAMPLE-1+2+3+4-FLAT

Specimen Orientation: Horizontal Heat Meter Location: Cold Surface

Instrument Used: Rapid-k #2

Duration of Measurement: 185 minutes

Average Heat Flux = 3.21 Btu/(h sq-ft)
Average Hot Plate Temperature T_h = 200.2 deg F
Average Cold Plate Temperature T_c = 160.0 deg F
Average Temperature Difference = 40.2 deg F
Average Sample Temperature = 180.1 deg F
Average Thermal Resistance R = 12.52 h sq-ft F/Btu
Average Thermal Conductance C = 0.080 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.064 inch
Average Temperature Gradient = 19.49 deg F/inch
Apparent Thermal Conductivity k = 0.165 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245 Run ID: GERRY
Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 174 minutes
Average Heat Flux = 8.37 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 160.0 deg F
Average Temperature Difference = 40.0 deg F
Average Sample Temperature = 180.0 deg F
Average Thermal Resistance R = 4.78 h sq-ft F/Btu
Average Thermal Conductance C = 0.209 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 0.2055 inch
Average Temperature Gradient = 19.46 deg F/inch
Apparent Thermal Conductivity k = 0.430 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245
Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 53 minutes

Average Heat Flux = 8.59 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 199.9 deg F
Average Cold Plate Temperature Tc = 160.0 deg F
Average Temperature Difference = 39.9 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance R = 4.64 h sq-ft F/Btu
Average Thermal Conductance C = 0.215 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.055 inch
Average Temperature Gradient = 19.42 deg F/inch
Apparent Thermal Conductivity k = 0.442 Btu-in/(h sq-ft F)

Operator: ____________________
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245
Run ID: GERRY

Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 52 minutes

Average Heat Flux = 8.63 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 160.1 deg F
Average Temperature Difference = 39.9 deg F
Average Sample Temperature = 180.0 deg F
Average Thermal Resistance R = 4.63 h sq-ft F/Btu
Average Thermal Conductance C = 0.216 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.055 inch
Average Temperature Gradient = 19.42 deg F/inch
Apparent Thermal Conductivity k = 0.444 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245
Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 53 minutes

Average Heat Flux = 8.60 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 200.0 deg F
Average Cold Plate Temperature Tc = 160.0 deg F
Average Temperature Difference = 40.0 deg F
Average Sample Temperature = 180.0 deg F
Average Thermal Resistance R = 4.64 h sq-ft F/Btu
Average Thermal Conductance C = 0.215 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.055 inch
Average Temperature Gradient = 19.44 deg F/inch
Apparent Thermal Conductivity k = 0.443 Btu-in/(h sq-ft F)

Operator: [Signature]

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245
Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:

Average Heat Flux = 8.57 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 199.9 deg F
Average Cold Plate Temperature Tc = 160.0 deg F
Average Temperature Difference = 40.0 deg F
Average Sample Temperature = 180.0 deg F
Average Thermal Resistance R = 4.66 h sq-ft F/Btu
Average Thermal Conductance C = 0.215 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.055 inch
Average Temperature Gradient = 19.45 deg F/inch
Apparent Thermal Conductivity k = 0.441 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 950245 Run ID: GERRY
Sample Description: FIBER-BOARD-GERRY
Specimen Orientation: Horizontal Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:
Average Heat Flux = 8.58 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 199.9 deg F
Average Cold Plate Temperature Tc = 159.9 deg F
Average Temperature Difference = 40.0 deg F
Average Sample Temperature = 179.9 deg F
Average Thermal Resistance R = 4.66 h sq-ft F/Btu
Average Thermal Conductance C = 0.215 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.055 inch
Average Temperature Gradient = 19.45 deg F/inch
Apparent Thermal Conductivity k = 0.441 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:
Average Heat Flux = 7.67 Btu/(h sq-ft)
Average Hot Plate Temperature T_h = 94.7 deg F
Average Cold Plate Temperature T_c = 55.1 deg F
Average Temperature Difference = 39.6 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 5.16 h sq-ft F/Btu
Average Thermal Conductance C = 0.194 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.038 inch
Average Temperature Gradient = 19.43 deg F/inch
Apparent Thermal Conductivity k = 0.395 Btu-in/(h sq-ft F)

Operator:

Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Run ID: GERRY
Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 52 minutes

Average Heat Flux = 7.79 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.7 deg F
Average Cold Plate Temperature Tc = 55.0 deg F
Average Temperature Difference = 39.6 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 5.09 h sq-ft F/Btu
Average Thermal Conductance C = 0.196 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.038 inch
Average Temperature Gradient = 19.45 deg F/inch
Apparent Thermal Conductivity k = 0.400 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Run ID: GERRY

Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 55 minutes

Average Heat Flux = 7.77 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.7 deg F
Average Cold Plate Temperature Tc = 55.0 deg F
Average Temperature Difference = 39.7 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 5.11 h sq-ft F/Btu
Average Thermal Conductance C = 0.196 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.038 inch
Average Temperature Gradient = 19.47 deg F/inch
Apparent Thermal Conductivity k = 0.399 Btu-in/(h sq-ft F)

Operator: ____________________

Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Run ID: GERRY

Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 56 minutes

Average Heat Flux = 7.74 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.7 deg F
Average Cold Plate Temperature Tc = 55.0 deg F
Average Temperature Difference = 39.7 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 5.13 h sq-ft F/Btu
Average Thermal Conductance C = 0.195 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.038 inch
Average Temperature Gradient = 19.48 deg F/inch
Apparent Thermal Conductivity k = 0.398 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments
Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Run ID: GERRY

Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 52 minutes

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Heat Flux</td>
<td>7.74 Btu/(h sq-ft)</td>
</tr>
<tr>
<td>Average Hot Plate Temperature Th</td>
<td>94.8 deg F</td>
</tr>
<tr>
<td>Average Cold Plate Temperature Tc</td>
<td>55.1 deg F</td>
</tr>
<tr>
<td>Average Temperature Difference</td>
<td>39.7 deg F</td>
</tr>
<tr>
<td>Average Sample Temperature</td>
<td>75.0 deg F</td>
</tr>
<tr>
<td>Average Thermal Resistance R</td>
<td>5.13 h sq-ft F/Btu</td>
</tr>
<tr>
<td>Average Thermal Conductance C</td>
<td>0.195 Btu/(h sq-ft F)</td>
</tr>
</tbody>
</table>

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.038 inch
Average Temperature Gradient = 19.48 deg F/inch
Apparent Thermal Conductivity k = 0.397 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement: 53 minutes
Average Heat Flux = 7.75 Btu/(h sq-ft)
Average Hot Plate Temperature \(T_h \) = 94.7 deg F
Average Cold Plate Temperature \(T_c \) = 55.0 deg F
Average Temperature Difference = 39.8 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance \(R \) = 5.13 h sq-ft F/Btu
Average Thermal Conductance \(C \) = 0.195 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus
Thickness = 2.038 inch
Average Temperature Gradient = 19.51 deg F/inch
Apparent Thermal Conductivity \(k \) = 0.397 Btu-in/(h sq-ft F)

Operator:
Comments
Steady-State Thermal Transmission Properties
by Means of the Heat Flow Meter per ASTM C 518

Project No: 277165
Sample Description: FIBERBOARD-GERRY-AMB.-75
Specimen Orientation: Horizontal
Heat Meter Location: Cold Surface
Instrument Used: Rapid-k #2

Duration of Measurement:
52 minutes

Average Heat Flux = 7.75 Btu/(h sq-ft)
Average Hot Plate Temperature Th = 94.7 deg F
Average Cold Plate Temperature Tc = 55.0 deg F
Average Temperature Difference = 39.7 deg F
Average Sample Temperature = 74.9 deg F
Average Thermal Resistance R = 5.12 h sq-ft F/Btu
Average Thermal Conductance C = 0.195 Btu/(h sq-ft F)

Calculations Based on Thickness Measured in Apparatus

Thickness = 2.038 inch
Average Temperature Gradient = 19.49 deg F/inch
Apparent Thermal Conductivity k = 0.398 Btu-in/(h sq-ft F)

Operator: [Signature]
Comments