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ABSTRACT
Parallelism for gray participating media radiation heat transfer may be placed in two primary

categories: spatial and angular domain-based parallelism. Angular, e.g., ray based,
decomposition has received the greatest attention in the open literature for moderate sized
applications where the entire geometry may be placed on processor. Angular based

decomposition is limited, however, for large scale applications (0(106) to 0( 108) computational
cells) given the memory required to store computational grids of this size on each processor.
Therefore, the objective of this work is to examine the application of spatial domain-based
parallelism to large scale, three-dimensional, participating-media radiation transport calculations
using a massively parallel supercomputer architecture. Both scaled and fixed problem size
efficiencies are presented for an application of the Discrete Ordinate method to a three
dimensional, non-scattering radiative transport application with nonuniform absorptivity. The
data presented shows that the spatial domain-based decomposition paradigm results in some
degradation in the parallel efficiency but provides useful speedup for large computational grids.
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Coefficients of the discrete transport equation.
Relative solution error at node i for quantity@.
Mesh spacing.
Radiative intensity.
Unit Cartesian direction vectors.
Edge length of the computational domain.
Order of the angular quadrature set.
Outward directed unit surface normal.
Number of nodes in the global (distributed) computational grid.
Number of floating point operations performed by the local processor for the global
solution.
Number of nodes in the local subdomain.
Number of grid lines in the local subdomain in the x direction, N~,x= NL,Y=NL,Z.
Number of processors (subdomains).
Number of processors in the x, y, and z directions.
Number of nodes in the x, y, and z directions.
Radiative source term.
Radiative heat flux vector.
Spherical coordinates.
Location vector.
Distance along the ordinate direction ~.
Unit direction vector.
Temperature.
Communication time.
Grind time including communication.
Cartesian coordinates.

Global boundary.
Portion of the global boundary over which Dirichlet conditions are applied,
Emissivity.
Absolute fixed problem size efficiency.
Incremental fixed problem size efficiency.
Scaled problem size efficiency.
Theoretical efficiency.
Extinction cross section.
Absorption cross section.
Radiation frequency.
Stefan-Boltzmann constant.
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INTRODUCTION

The motivation for this study derives from the need for a efficient, parallel radiation transport
algorithm to be used for high temperature, transient, reacting flow simulations where complex
three-dimensional geometries are involved and high-resolution grids are required. Multiphysics
simulations in which the radiative transport is tightly coupled with a simultaneous solution of the
conservation equations for mass, momentum, energy and species triinsport place extreme
demands on the computational efficiency of the participating media radiation calculation.

For the complex three dimensional geometries of ultimate interest, and the associated
complex flow fields, high resolution computational grids are required to resolve the important

length scales in the flow, i.e., grids with on the order of 106 to 108 cells. In general, combined
radiation-flow problems may require grids with a different resolution for each transport mode.
However, here the radiation grid is assumed to conform to the flow grid as a first step in
developing a parallel algorithm. The spatial and temporal resolution requirements for this class of
multiphysics problem can only be considered tractable with the most powerful supercomputer
technology, specifically, massively parallel supercomputers.

The potential of parallel computing for heat transfer in general and radiation heat transport
specifically has been recognized by several authors in recent years [1-5]. Shih, et al. [1] provides
a description of parallel and vector architectures as well as a conceptual description of how
parallel processing techniques might be applied to heat transfer. The review articles by Howell [2,
3] focus more narrowly on radiation heat transport and discuss how parallel processing techniques
may effect future directions in radiation modeling research. Howell. [3] also discusses a N’ational
Science Foundation workshop held in 1993 [4], the purpose of which was to improve the
communication between the radiation heat transfer and supercompu.ting communities. Finally,
Azmy [5] reviews parallel processing techniques employed in neutron transport and provides a
useful taxonomy of parallel decomposition paradigms.

Azmy describes parallelism in terms of the portion of the solution space which is
decomposed. In general, the radiation heat transfer solution domain is defined by three spatial
coordinates (x, y, z), two angular coordinates (e, ~), and a radiation frequency (v). Using Azmy’s
nomenclature, spatial domain-based parallelism decomposes the spatial domain (x, y, z) and
assigns a processor to each sub-domain. Conversely, angular and frequency domain-based
parallelism subdivides the angular (6, ~) or frequency (v) domain and assigns processors to each
of these subdomains. In each case, the portions of the solution space which are not decomposed
are stored on each processor in their entirety.

The work of Burns, et al. [6, 7] demonstrated angular domain-based decomposition strategies
for Monte Carlo (MC) surface-based neutron, photon and electron transport on single-instruction
multiple-data (SIMD) supercomputers. In effect, this work focused upon the obvious and
inherent fine-grained parallelism in ray tracing to achieve a high degree of vectorization, i.e.,
SIMD parallelism. Haferrnan, et al. [8] also employed angular domain-based decomposition with
the Discrete Ordinate (Sri) method to model three dimensional atmospheric radiative transport.
Finally, Howell [9] suggested the use of angular decomposition to improve the performance of the
MC method for multiphysics applications.

The work of McGhee and Morel [10] has also focused upon primarily SIMD implementations
of the discrete ordinates (Sri) and simplified spherical harmonics (Sl>n) methods on the Thinking
Machines CM-200 and CM-5 by exploiting the parallelism available in multi-frequency (multi-

.

-4-



group) radiation transport. The work of Benmalek, et al. [11] followed this approach choosing to
distribute wavelength dependent radiation calculations across clusters of workstations, i.e., each
workstation performed a complete radiation calculation for a given wavelength.

de Oliveira, et al. [12] employed spatial domain-based decomposition in a spherical
harmonics (Pn) formulation to model neutron transport in complex geometries using a Cray T3D
distributed memory MIMD supercomputer. de Oliveira, et al. asserted that the spatial domain-
based decomposition paradigm yielded poor parallel performance for problems with localized
sources but performed better for problems with more uniform sources. de Oliveira, et al. also
suggested the use of dynamic processor re-mapping to improve the parallel performance of their
model.

Novo, et al. [13] considered the application of both spatial and angular domain-based
parallelism to two dimensional radiative heat transport using the Discrete Transfer (DT) method.
Novo observed poor fixed problem size efficiency (see Gustafson, et al. [14] for definitions of
fixed and scaled problem size efficiency) using spatial domain-based parallelism relative to
angular domain-based parallelism. Novo, et al. suggested that the relatively poor performance of
the spatial domain-based decomposition paradigm was due to an increase in the number of global
solution iterations resulting from the non-local character of radiative transport. The behavior
observed by both de Oliveira [12] and Novo, et al. will be discussed in greater detail in terms of
the Sn method later in this work.

Why Spatial Domain-Based Parallelism?

The principal justification for the use of spatial domain-based parallelism in this work is the
need for fine scale spatial resolution. On a distributed memory MIMD architecture, spatial
domain-based decomposition allows for large distributed computational grids. In contrast, the
spatial resolution of angular and frequency based decomposition is severely limited by the
available on-processor memory.

For example, Sandia’s Intel PARAGON parallel supercomputer has approximately 16 Mbytes
of available memory on each processor. Assuming that 0( 10) floating point values are required to
fully describe each element in an unstructured, three dimensional finite element grid (8 bytes per

float), then a maximum of 0( 105) elements may be stored on each processor without considering
the memory required for material properties, element connectivities, etc. Since angular and
frequency based parallelism require that the entire spatial grid be stored on each processor, the
maximum spatial resolution obtainable using angular based parallelism would be several orders of
magnitude below the level required by the application of interest in this work.

Azmy [5] points out that angular decomposition with the Sn method has a practical limit in the
number of angular directions that maybe used for parallelism. In fact, the degree of parallelism
falls far short of the massive parallelism provided by current supercomputer architectures. For
example, the Slfj level weighted quadrature set of Lathrop and Carlson [15] discretizes the unit

sphere into 288 ordinate directions which is considerably less than the number of processors
available on evolving parallel supercomputer architectures such as Sandia’s TeraFlop machine
with over 4500 computational nodes.

Novo, et al. [13] employed spatial domain-based decomposition because there is no analog for
angular or frequency based parallelism in advection/diffusion transport. This is an important
consideration for coupled, multiphysics applications since the use of different decomposition
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paradigms for the advection/diffusion transport and the radiation transport would significantly
complicate the overall parallel algorithm and increase the communication overhead.

The principal disadvantage of the spatial domain-based decomposition pwddigm is that it is
not a good match for the global nature of radiative transport. As will be demonstrated in this
work, the global nature of radiative transport for applications which are not optically thick results
in a serial character in the global solution sweeps when spatial domain-based parallelism is
employed. This serial character is manifested by a decrease in the parallel efficiency of the
algorithm as observed by Novo, et al. [13]. One of the objectives of this work is to examine how
serious this effect is in terms of the usable parallel speedup provided by spatial-domain based
parallelism.

Why Discrete Ordinates?

The texts by Modest [16] and Siegel and Howell [17], as well as the review article by Viskanta
and Mengiig [18] describe a number of common radiative transport models including the YIX,
finite element (FE), discrete transfer (DT), Monte Carlo (MC), discrete ordinate (Sri), and
spherical harmonics (Pn) methods. An order of magnitude analysis of the operation count and
communication overhead for each of these models suggests that the most promising candidates
for providing a efficient radiation heat transport algorithm include the differential (Siegel and
Howell [17]) Sn and Pn methods as well as the ray tracing DT method (Lockwood and Shah [19]).
For brevity, this computational complexity analysis will not be reproduced here although details
relating to the Sn method will be provided later in this work.

The Pn method was deemed unacceptable for this work given the complexity of the method
relative to its accuracy [3]. For example, the Pn method evaluates a coupled system of partial
differential equations for the directional radiative intensity distribution for both scattering and
nonscattering applications. In contrast, the system of directional radiative intensity equations
evaluated by the Sn method is uncoupled for nonscattering applications. This coupling causes the
computational expense of the Pn method to increase rapidly with the degree of angular resolution.

Some preliminary work by the authors with the DT [19] method showed that optimization of
the asynchronous interprocessor communication required by this method was problematic and
resulted in a large amount of wait time during interprocessor communication. This wait time
seriously degraded the parallel performance of the method. The DT algorithm described by
Novo, et al. [13] provided better synchronization between processors at the expense of the
directional continuity of rays communicated across processor bouncku-ies. Application of the Sn
model using spatial domain-based parallelism did not require a compromise of this sort.

Over the past decade, the Sn method has also been applied to a number of industrial furnace
and boiler applications [20, 21]. These industrial applications involve the same coupled,
multiphysics character as the application of interest in this work. Given the sir&rities, as well as
the limitations in the other radiative transport models, the Sn method was chosen for this work.
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Outline

The succeeding sections of this work describe the application of a spatial domain-based
parallel Sn algorithm to three dimensional radiative transport. A demonstration problem selected
from the literature is defined and a benchmark solution provided. Following the demonstration
problem description, the parallel Sn algorithm is outlined and a computational complexity
analysis conducted. Numerical results for the demonstration problem obtained using the parallel
Sn algorithm are presented and the spatial and angular convergence rates examined. The
performance of the parallel Sn algorithm is then examined in terms of the fixed and scaled
problem size efficiencies as well as communication overhead and cycle time (e.g., computation
time per node per ordinate direction). Finally, several conclusions are drawn from the data and
recommendations for additional work made.

DEMONSTRATION PROBLEM

The demonstration problem used in this work was first introduced by Hsu and Farmer [22]
with additional data provided by Bums, et al. [23] and Tan and Hsu [24]. The demonstration
problem consists of an isothermal unit cube centered on the origin and oriented so that the sides of
the cube are orthogonal to the principal Cartesian axes. The walls of the cube are cold and black
and the interior of the cube consists of a gray, nonscattering, absorbing/emitting material with a
spatially varying absorptivity. The absorptivity varies according to the trilinear function:

‘aL=09(1-2;)(’-2:)(’-2;)+01 (1)

The domain is discretized using a uniform, orthogonal finite difference grid of nnxnnxnn

computational nodes where the total number of nodes in the global mesh is N= nn3. The

computational domain is decomposed into nPxnPxnP nonoverlapping spatial subdomains with one

subdomain per processor where the total number of processors is NP= n~3. Since nodes are shared

on the interprocessor boundaries, the number of nodes on each subdomain is given by:

(2)

Figure 1 provides an example of the sub-domain mapping for nP= 4 where the subdomains are

separated for clarity.
The benchmark results used for comparison to the Sn results were obtained from direct

numerical integration of the radiative heat flux equation [16]. Highly accurate benchmark results
were obtained for this work using zeroth order (piecewise constant) Newton-Cotes integration in
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spherical coordinates. The spherical integration provided faster convergence under spatial
refinement than the Cartesian formulation described in Burns, et al [23]. Sensitivity studies were
performed to assess the influence of the spatial resolution on the benchmark solution accuracy.

The final spatial resolution used to obtain the benchmark results employed 320 intervals in the
radial, azimuthal, and zenith (r, (3,$) directions respectively. Furthermore, optical distances
between points in the cube were calculated using Simpson’s 1/3 rule and 10 integration intervals.
The maximum change (absolute) in the solution using 160 (r, f3,$) intervals and 320 (r, 8, $)

intervals was less than 5X10-5 for the radiative flux divergence and less than 10-5 for the
components of the radiative heat flux. Increasing the number of Simpson’s integration intervals

from 10 to 50 for the optical distance calculation resulted in a chang,e of less than 10-5 in both the
flux and flux divergence values. Table 1 summarizes the benchmark values for the radiative heat
flux and flux divergence at various locations within the cube. Values obtained by Tan and Hsu
[24] are also included in Table 1 for comparison.

ALGORITHM DESCRIPTION

This section provides a detailed description of the parallel Sn algorithm used to obtain the
numerical and parallel performance results for the demonstration problem described above. This
section begins with a review of the continuous governing equations and boundary conditions
employed by the Sn method as described in the texts by Modest [16] and Siegel and Howell [17].
The discrete forms of the continuous equations are then derived and the solution logic is
described. Finally, a theoretical estimate of the on-processor operation count is made.

Governing Equations

The Sn method evaluates a system of Boltzmann transport equations corresponding to a

number of ordinatedirections, S. Each transport equation describes the variation of the directional

radiative intensity , I(r, $), throughout the domain. For gray radiative transport, the Boltzmann

transport equation may be written in the form:

(3)

where, p is the total extinction cross section (i.e., scattering + absorption cross section), and Q is
the radiative source term which includes volume emission and in-scattering. Each Boltzmann
equation in the set corresponds to an ordinate direction from an angular quadrature set that
discretizes the unit sphere. For nonscattering applications, the set of equations is uncoupled since
the in-scattering term is zero.

Boundary conditions for Eq. (3) are only required along those portions of the global boundary,

r, over which the inner product of the unit direction vector, ii, and the outward directed unit

normal vector, ii, is less than zero:
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r, = {~:(~Sr)A($fi(~)<o)}Cr, (4)

All global boundaries are assumed to be gray, diffuse boundaries where the boundary intensity is
given by:

I(r, i) = ECJ~4(r) + (1 – E)[q,(r)” ii(r)], Vr e r~, (5)

where, E is the ernissivity, and q~is the radiative heat flux vector. For the demonstration problem

described above, all global boundaries are assumed to be cold and black so

I(r, f) = 0, ‘drcr,.

The radiative heat flux and flux divergence at any point in the domain are obtained by
integrating the directional intensities over all solid angles about location r [16]:

{

2X X

1V - q,(r) = pa(r) 4oT4(r) - j jl(r, f)sin(kf(ki$ , (7)

00

where, T is the temperature, pa is the absorptivity, o is the Stefan-Boltzmann constant, and e and

@are the zenith and azimuthal angles respectively, i.e., ~ = ‘- sine sin$t – cOsej– sinecos$t.

For this work, Eq. (3) is discretized using a one sided finite difference stencil on an orthogonal
computational grid, cf. Figure 1. The resulting discrete representation of Eq. (3) for the intensity
at node p may be written:

APIP – AeIe – Awlw – AnIn – A#~ – AtIt – AbIb = Q(rp), (8)

Ap = Aw+Ae+A$ +An+Ab+At+p(rp), (8a)

AW = (;)rf%ol> (8b)

A,= (y-ml> (8c)

$
A,= (;)rij701? (8d)
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An= (;)kiol> (8e)

Ab = (;)[~Lol , (8f)

At= (;)[-,%01 , (8g)

where, ra,b 1 is the maximum value of a and b, rp is the location of node p, and his the node

spacing. One sided differencing is used in the present work to preserve the diagonal dominance
of the differencing operator as the extinction cross section approaches zero.

As stated above, the boundary intensity is set to zero at all nodes on the global boundary. The
specification of the intensity at nodes on interprocessor boundaries is described in the next
section.

Angular discretization is provided by the level weighted, even moment quadrature set of
Lathrop and Carl son [15]. The directional intensity distribution is evaluated for each direction in
the quadrature set and the radiative flux and flux divergence are approximated by:

n(n +2)

i=l

{

n(n + 2)

)
v “ ~~(rp) = ~a(rp) 4GT4(rp) – ~ ‘(rp, ‘i)Wi >

i=l

where, m is the number of ordinate directions in the quadrature set, and wi are the angular

quadrature weights.

Logic Flow

(9)

(lo)

The logic flow diagram for the parallel Sn algorithm developed for this work is given in
Figure 2. At the start of the algorithm, each processor performs preprocessing tasks including
initializing the message passing interface, reading the problem description file, and generating the
angular direction (ordinate) set and the local (on-processor) computational grid. Once
preprocessing is completed, all of the processors are synchronized and the total grind time counter
is started before the radiative transport is calculated for each of the ordinate directions in the
quadrature set.

For each ordinate direction, each processor calculates the coefficients of Eq. (8) for each node
in the interior of the local mesh and sets the intensity to zero for nodes on r~. During the first

global solution sweep, the intensities at nodes on the interprocessor boundaries along which
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S “fi(rp) c O are set to zero. At subsequent sweeps, the intensities at these shared nodes are set to

the value communicated from the neighboring processor/subdomain during the previous global
solution sweep,

Once the linear system and boundary conditions are set, each processor conducts two Gauss-
Seidel sweeps through the local system of equations. To accelerate convergence, the Gauss-

Seidel sweeps are ordered relative to the ordinate direction. That is, the value of rP -$ is

evaluated at each node and the corresponding nodal equations are evaluated in order from the

minimum to maximum value of rP “$. In this way the boundary condition along r~ propagates

naturally through the local grid in the 3 direction and local, e.g., on processor, convergence may

be obtained in a small number of Gauss-Seidel solution sweeps.
After the local Gauss-Seidel solution sweeps, a global reduction step is then executed to

calculate the global residual norm from the local residual values and the global residual value is
broadcast back to all processors. If the global residual value is less than some convergence

criteria (10-6) then the solution proceeds to the next ordinate direction. If the global solution is
not converged, then each processor communicates the intensities at nodes on the interprocessor

boundaries where 3 “ii (rP) >0 to the corresponding neighboring processor and the algorithm

returns to the Gauss-Seidel solution step.

Computational Complexity Analysis

The computational complexity analysis presented here provides a theoretical estimate for the
on-processor operation count required by the algorithm outlined above. The operation count is
estimated for each global solution sweep and then the total number of solution sweeps is
estimated to provide the total operation count. An expression is sought in terms of the number of
nodes in the global domain and the number of subdomains.

Within an order of magnitude, the operation count per local Gauss-Seidel solution sweep, per
ordinate direction is proportional to the number of nodes in the local mesh (Eq. (2)). Since nn>> 1

and nn/nP >>1, the average on-processor operation count per solution sweep, per ordinate

direction is proportional to (nJnP) 3= N/NP. Additionally, for a three dimensional angular

quadrature set of order n, there ;e a total ‘of n(n+2) ordinate directions which discretize the unit
sphere [17]. Thus, the on processor operation count per local Gauss-Seidel solution sweep is
0[n(n+2)N/NP].

A consequence of the global nature of radiation transport for applications which are not
optically thick is that the number of global solution sweeps required to obtain convergence using
spatial domain-based parallelism increases as the number of processors. The cause of this
behavior lays in the directional (i.e., hyperbolic) nature of the Boltzmann transport equation (Eq.
(3)). Figure 3 provides an illustration of this behavior in one dimension.

Figure 3 shows a one dimensional domain decomposed into NP nonoverlapping subdomains.

During the first global solution sweep, only processor zero obtain; the correct solution since this
subdomain contains the global bounda~ at s= O. All other subdomains converge to an incorrect
solution since these local solutions are based upon an unknown “upstream” boundary condition.
During the second global solution sweep, the intensity ats= SOis communicated to subdomain 1
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and now both sukdomains O and 1 obtain the correct local solution. The global solution proceeds
in this fashion until the boundary condition ats= Ohas propagated through all the subdomains and
the correct global solution is obtained.

As a result of the serial algorithmic effect described above, the nwnber of global iterations
required to obtain a converged global solution increases with the number of processors. The
situation is improved somewhat for three dimensions since the solution proceeds along “planes”
of subdomains orthogonal to the ordinate direction so there are more processors performing .
useful work. Also, for optically thick problems, the solution on eac!h subdomain will depend only
on the solution in neighboring subdomains and the number of global solution sweeps will be less
dependent on the number of subdomains. For moderate optical thickness, the subdomain
mapping summarized in Figure 1, O(nP) global solution sweeps will be required for each ordinate

direction.
By combining the expressions described above, the operation count for a single processor for

the entire computation is given by:

Nflop = Cn(n +2)473, (11)
Np

where, C is a constant of 0( 1).

RESULTS

All of the results presented in this report were obtained on Sandia National Laboratories Intel
PARAGON massively parallel supercomputer using the native NX message passing library [25].
Some development work was also performed using the MPI message passing library [26] on a
network of SUN SPARC workstations as well as an IBM SP distributed memory parallel machine.
The Intel PARAGON architecture consists of 1840 compute nodes each consisting of two Intel
i860XP processors with 16 Mbytes of memory per compute node. IEachprocessor runs under the
SUNMOS operating system developed jointly by Sandia National Laboratories and the University
of New Mexico in Albuquerque, New Mexico. The compute nodes are connected through a two
dimensional mesh communication network with links in each direction capable of communicating
at up to 200 Mbytes/second. Intel rates the peak speed of the PARAGON at 140 GFLOPS.

Numerical Performance

The overall numerical accuracy of the Sn solution was gauged b y the accuracy of the radiative
flux and flux divergence values along the lines (x, 0.5, O) and (x, O, (O)respectively. The nodal Sn
values where compared to the benchmark solution (cf. Table 1) by defining a relative error at each
node:
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(12)

where, e is the relative error, $ refers to the radiative flux or flux divergence, i refers to a specific
nodal location, Sn refers to the Sn solution value, b.m. refers to the benchmark value, and

ll$b.~.11~~ refers to the maximum benchmark value along the line.

Figures 4 and 5 show the variation of the nodal relative errors for the normalized [23] radiative
flux and flux divergence respectively for angular quadrature order n= 10 and node spacings of h=
1/10, 1/20, 1/40, 1/80, and 1/160. The data in Figures 4 and 5 show that the errors decrease in
general with increasing spatial refinement. The maximum errors in the radiative flux divergence
occur near the center of the cube where the absorptivity is maximum (cf. Eq. (1)). The maximum
errors in the radiative heat flux, by comparison, occur in the corners of the cube.

An RMS error norm was also defined to express the overall solution accuracy in a compact

.

form:

1141RMS=

nn 1/2

2
xl ‘@, i

(13)

Figures 6 and 7 show the RMS error norm for the radiative heat flux and flux divergence for
angular quadrature orders n= 4, 6, 8, 10, 12, 14, 16, 18, and mesh spacings of h= 1/10, 1/20, and
1/40. Additionally, Figures 6 and 7 show RMS error values using a rotated angular quadrature set
which was obtained by rotating the Lathrop and Carlson [15] quadrature set by 45° relative to the
principal Cartesian axes, This data set was obtained to evaluate the effect of the structure of the
quadrature set on the solution accuracy.

The data shown in Figure 6 shows that the spatial discretization level has a much stronger
effect on the radiative heat flux at the wall of the cube than does the angular discretization level.
For h= 1/10, increasing the angular quadrature set order from n= 4 to n= 10 decreases the RMS
error by approximately 1%. Further increase in the angular quadrature order does not
significantly decrease the RMS error. For h= 1/20 and h= 1/40, the angular quadrature set order
has a negligible effect on the RMS error. Rotating the quadrature set also does not significantly
improve the accuracy of the Sn solution. In contrast, increasing the spatial resolution from h= 1/
10 to h= 1/40 reduces the RMS radiative heat flux error by a factor of approximately 3 from 5-6%
to 2%.

Figure 7 shows that both angular and spatial resolution have a strong effect on the accuracy of
the radiative flux divergence. The RMS flux divergence error decreases significantly for all three
spatial resolution levels when the angular quadrature set order is increased from n= 4 to n= 10.
The improvement in the solution accuracy is much less pronounced for n>10 although the RMS
error does continue to decrease for h= 1/20 and h= 1/40. Rotating the quadrature set decreases the
RMS flux divergence error significantly over the unrotated set for all quadrature set orders. The
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rotated quadrature set RMS error is also nearly constant relative to the quadrature set order.
Figure 8 shows the spatial convergence rate of the Sn results for an unrotated angular

quadrature setoforder n=lOand spatial resolution ofh=l/lO, l/2(), 1/40, l/8O, 1/160. The data
in Figure 8 shows that the solution accuracy for both the radiative flux and flux divergence
continues to improve as the spatial resolution in increased but that the overall convergence rate for
the radiative flux and flux divergence is sublinear. This relatively slow convergence rate maybe a
result of the first order differencing used to obtain the directional intensity combined with the
angular integration of the intensity required to evaluate the flux and flux divergence (cf. Eqs. (6)
and (7)). The slope of the convergence data shown in Figure 8 appears to be fairly constant for h=
1/10 to 1/80 but appears to decrease to some extent for h= 1/160. This may indicate that
additional angular refinement (n>lO) is necessary to maintain the same spatial convergence rate.

Parallel Performance

Gustafson, et al. [14] define two measures of parallel efficiency: fixed problem size and scaled
problem size. Fixed problem size implies that the size of the global (distributed) mesh is constant
as the number of processors is increased. For ideal parallelism, the ratio of the single processor
grind time to the grind time with NP processors (parallel speedup) should be equal to the number

of processors. The fixed problem size efficiency may be defined as:

tg(l)

‘“f = NP$(NP) ‘
(14)

where, t&NP) is the grind or wall clock time for the entire calculation using NP processors.

For large computational grids, it may not be possible to fit the entire grid on a single
processor. In this case an incremental fixed problem size efficiency maybe defined by extending
Eq. (14):

Ivp,~tg(ivp, J
~f, 1 = Ivptg(ivp) ‘

(15:)

where, N~,i is the smallest number of processors required to store the problem of interest. The

incremental fixed size efficiency reduces to the absolute efficiency for Np,i= 1, q f,1= qfi

Scaled problem size implies that the size of the local on-processor grid is fixed and, therefore,
the size of the distributed global grid increases as the number of processors increases.
Theoretically, since each processor has the same amount of work to do, the grind time should not
increase as the number of processors increases. Thus, the scaled problem size efficiency may be
defined:
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tg(l)
~.=—

tg(Np)
(16)

Theoretical expressions for each of the efficiencies defined above maybe obtained by
substituting Eq. (11) for the grind time in each expression. The resulting theoretical efficiencies,
q*, may be written:

(17)

(18)

(19)

From Eqs. (17)-(19), it is expected that the efficiency of the parallel Sn algorithm to be relatively
poor. For example, for NP= 8, the fixed size efficiency should be on the order of 50$70and drop to

as low as 109i0for NP= 1000. As discussed above, this rapid decrease in the parallel efficiency is

very similar to the performance observed by de Oliveira, et al. [12] and Novo, et al. [13].
Table 2 summarizes the actual fixed problem size performance for global grid sizes of

N= 5.06x104, 2.27x105, and 1.77x106 nodes for a fixed angular quadrature order of n= 10. The
table shows the grind time, communication time, communication overhead, cycle time, and fixed
size efficiencies as a function of the number of processors. The communication overhead is
defined as the ratio of the communication time to the grind time and the cycle time is defined as
the grind time per ordinate direction per node.

Both the incremental and absolute (i.e., Np,i= 1) fixed size efficiencies are compared to the

theoretical expressions of Eqs. (17) and ( 18) in Figure 9. It is difficult to compare the incremental
and absolute values directly since the incremental values do not take into account the dramatic
decrease in the efficiency at NP= 1. As a result, the incremental efficiencies tend to be higher than

the absolute values as in the N= 1213 case in Table 2. Nevertheless, the actual values compare
well with the theoretical predictions.

Figure 9 also shows the fixed size efficiency values obtained by de Oliveira, et al. [12] and
Novo, et al. [13]. de Oliveira, et al. asserted that higher fixed size efficiencies were obtained for
applications with distributed rather than localized sources. This conclusion, however, was based
on a comparison between incremental efficiencies, used for the distributed source case, and
absolute efficiencies, used for the localized source case. The data in Figure 9 suggests that both
the distributed and localized source efficiencies observed by de Oliveira, et al. are comparable to
the data presented by Novo, et al. (uniform source) as well as the performance obtained in the
present work.
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1 Table 3 summarizes the actual performance data for two scaled problem cases using N~= 21:J

and 393 for a fixed angular quadrature order of n= 10. The largest distributed grid considered in

3 The resulting distributed grid for thisthis report was obtained using 512 processors and N~= 39.

case had 2.84x107 computational nodes.
Figure 10 compares the actual scaled problem size efficiency values in Table 3 with the

theoretical expression given in Eq. (19). As with the fixed problem. size cases, the scaled
efficiency agrees well with the theoretical prediction and shows a dramatic decrease in the
efficiency as the number of processors increases. Nevertheless, the scaled problem size cases
showed that the size of the distributed global mesh could be increased 400 fold with only a 10 folcl
increase in the computation time using the spatial domain-based decomposition paradigm.

Figure 11 compares the actual parallel grind time to the equivalent sequential grind time for
the fixed problem size cases. The sequential grind time was obtained by extrapolating the single
processor cases assuming that the sequential grind time was directly proportional to the product of
the number of nodes in the global mesh and the number of ordinate directions (cf. Eq. (1 l)). As
shown in the figure, the grind time obtained with the spatial domain-based parallel Sn algorithm is,
more than an order of magnitude less than the equivalent sequential grind time for the largest grid.

The data in both Tables 2 and 3 show that the communication overhead is very low for the
parallel algorithm outlined in Figure 2. The communication time required for the scaled problem.

cases was less than 5% of the total grind time forNL=213 and less than 39’0for NL= 393. Similar

performance was obtained for the fixed problem size cases provided the number of nodes in each
subdomain was greater than approximately 1000 nodes. As the number of nodes in each

I subdomain drops below this level (e.g., N= 373, NP= 216) the communication time becomes

significant relative to the number of operations performed by each processor.
The cycle times listed in Tables 3 and 4 decrease as the number of processors increases for

both the fixed and scaled problem size cases. Approximately 100 microseconds are required per
node per ordinate direction for a single processor. The cycle time decreases to several
microseconds for NP> 100. In contrast, the cycle times observed by de Oliveira, et al. [12] where

on the order of several hundred microseconds. It is unclear from the data presented by de
Oliveira, et al. whether these relatively high cycle times resulted from the complexity of the Pn
model or from the unstructured finite element grid used for the spatial discretization.

CONCLUSIONS AND RECOMMENDATIONS

This study demonstrates the application of spatial domain based parallelism to three
dimensional, participating media radiation heat transfer calculations, using the Sn method. The
objective was to provide data to support the development of a efficient parallel algorithm for use
in large scale, transient, coupled, muli-mode, high temperature, reacting flow applications. A
demonstration calculation was conducted using a well known benchmark solution from the open

literature. Computational grids ranging from 9X103 to 28x106 nodes were considered with total
computation times of several seconds to 1.7 hours depending on the number of processors
employed. The following general observations may be made from the data presented:
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1)

2)

3)

4)

5)

The spatial domain based decomposition paradigm permits the use of very large

computational grids on the order of 107 to 108 computational cells. Angular and
frequency domain based decomposition paradigms are limited to moderate sized
computational grids since these paradigms require that the entire computational grid be
stored in the local processor memory.

Of the Sn, Pn, YIX, FWFV, DT, and MC radiative transport models, the Sn, Pn, and DT
models appeared to be the best candidates for spatial domain based parallelism based on
operation count and communication overhead. Additional advantages of the Sn method
include the simplicity of the formulation and the synchronous nature of the
communication requirements.

The global character of radiative transport calculations in general gives rise to a
corresponding sequential nature in the global solution sweeps which degraded the parallel
efficiency of the Sn algorithm considered. Similar effects have been shown by other
authors for the DT and Pn methods and are expected to arise in some form in all of the
common radiative transport models currently in use.

The parallel efficiency should improve for optically thick problems as the local solution on
each subdomain becomes less dependent of the solution in other subdomains.

Although the algorithmic efficiency is relatively low, the actual parallel efficiency is very
close to the theoretical limit and significant parallel speedup was obtained using the
parallel Sn algorithm. Scaled speedup tests showed that the mesh size could be increased
more than 400 fold with only a 10 fold increase in the grind time.

It is anticipated that parallel supercomputer hardware with a processor speed approximately
10 times faster than the Intel PARAGON will become available in the near future. The ww
hardware will also have a greater memory capacity per processor and a larger number oi
processors than the Intel PARAGON. Additionally, the timing results presented in this report did
not use the full capacity of the Intel PARAGON (1840 compute nodes) and employed a relatively
high order angular quadrature set (n= 10). With these considerations in mind, it is estimated that
a 2-5 fold reduction in the current cycle time will be necessary to obtain reasonable turnaround

time (tg< 10 minutes) with 0(108) elements in an unstructured finite element grid and n= 6-10 on

the new hardware.
The results presented here were obtained using a structured finite difference grid. Work is

currently underway to develop an unstructured, finite element algorithm based on the results and
lessons learned in this analysis. The unstructured algorithm will serve as a prototype for a
parallel, radiation heat transport library which may be called by a larger high temperature,
reacting flow modeling program.

-17-



REFERENCES

1. T.M. Shih, L.J. Hayes, W.J. Minkowycz, K.-T. Yang, W. Aung, Parallel Computations in
Heat Transfer, Numerical Heat Transfer, vol. 9, pp. 639-662, 1986.

2. J.R. Howell, Thermal Radiation in Participating Media: The Past, the Present, and Some
Possible Futures, ASME Journal of Heat ‘Transfer, vol. 110, November, pp. 1220-1229,
1988.

3. J.R. Howell, Radiative Heat Transfer: Opportunities and Challenges, Proceedings of zhe
ASME/JSME Thermal Engineering Conference, Honolulu, Hawaii+ pp. 23-33, 1995.

4. R.D. Skocypec, L.A. Gritzo, T.W. Tong, Summary of the NSF Workshop on Using High-
Performance Computing to Solve Participating Media Radiative Heat Transfer Problems,

presented at the 6fhAIAA/ASME Joint Thermophysics and Heat Transfer Conference,
Colorado Springs, CO, June, 1994.

5. Y.Y. Azmy, Multiprocessing for Neutron Diffusion and Deterministic Transport Methods,
Invited for Publication in Progress in Nuclear Energy, 1995,

6. P. J. Burns, M. Christon, R. Schweitzer, O. M. Lubeck, H. J. Wasserman, M. L. Simmons, ancl
D. V. Pryor, Vectorization of Monte Carlo Particle Transport: An Architectural Study Using
the LANL Benchmark “GAMTEB”, Proceedings Supercomputing ’89, pp. 10-20, 1989.

7. P. J. Burns, J. D. Maltby, and M. A. Christon, Large-Scale Surface to Surface Transport for

8.

9.

10.

11.

12.

Photons and Electrons via Monte Carlo, Computing” Systems in Engineering, Vol. 1, No. 1,
pp. 75-99, 1990.

J.L. Haferman, T.F. Smith, W.F. Krajewski, Multi-Dimensional Radiative Transfer
Computations Using a Scalable Parallel Implementation of the Discrete-Ordinates Method,
Proceedings of the International Geosciences and Remote Sensing Symposium (IGARSS),
Pasadena, CA, vol. 3, pp. 1623-1625, 1994.

J.R. Howell, Improving the Monte Carlo Method for Radiative Transfer by Use of Parallel
Processors, Heat Transfer in Thermal Systems Seminar-Phase 11,National Cheng Kung
University, Taiwan, January 13-14, pp. 53-57, 1986.

J. M. McGhee and J. E. Morel, NIKIYATHENA User’s Manual, LA- UR-94-4312, Los
Alamos National Laborato~, Los Alamos, NM, 1994.

A. Benmalek, W. Li, and T. W. Tong, MYST User’s Manual - Sequential and Parallel
Versions, Department of Mechanical and Aerospace Engineering, Arizona State University,
Tempe, Arizona, 1995.

C.R.E. de Oliveira, C.C. Pain, A.J.H. Goddard, Parallel Domain Decomposition Methods
for Large-Scale Finite Element Transport Modeling, pp. 490-498, 1995

-18-



13.

14.

15.

16.

17.

18.

19.

P.J. Novo, P.J. Coelho, M.G. Carvalho, Parallelization of the Discrete Transfer Method:
Two Different Approaches, Proceedings of the 31st Nationa~ Heat Transfer Conference,
August 3-6, Houston, TX, ASME HTD-VOL 325, pp. 45-54, 1996.

J.L. Gustafson, G.R. Montry, R.E. Benner, Development of Parallel Methods for a 1024-
Processor Hypercube, SIAM Journal on Scientific and Statistical Computing, vol. 9, no. 4,
pp. 609-638, 1988.

K.D. Lathrop, B.G. Carlson, Discrete Ordinates Angular Quadrature of the Neutron
Transport Equation, Los Alamos Scienti$c Laboratory Report, LA-3186, Los Alamos, New
Mexico, 1965.

M.F. Modest, Radiative Heat Transfer, McGraw Hill, Inc., New York, NY, 1993

R. Siegel, J.R. Howell, Thermal Radiation Heat TransfeK 3rd ed., Hemisphere Publishing
Corp., Washington, D. C., 1992

R. Vkkanta, M.P. Mengiiq, Radiation Heat Transfer in Combustion Systems, Progress
Energy Combustion Science, vol. 13, pp. 97-160, 1987

F.C. Lockwood, N.G. Shah, A New Radiation Solution Method for Inco~oration in General
Combustion Prediction Procedures, Eighteenth Symposium (International on Combustion,
The Combustion Institute, Pittsburg, PA, pp. 1405-1414, 1988

20. W.A. Fiveland, Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-
Ordinates Method, Journal of Therrnophysics and Heat Transfer, vol. 2, no. 4, pp. 309-316,
1988.

21.

22.

23.

24.

W.A. Fiveland, Combustion Modeling for Fossil-Fired Applications, Presented at the 31st
National Heat Transfer Conference, August 3-6, Houston, TX, 1996.

P. Hsu, J.T. Farmer, Benchmark Solutions of Radiative Heat Transfer Within
Nonhomogeneous Participating Media Using the Monte Carlo and YIX Methods,

Proceedings of the 30th National Heat Transfer Conference, ASME HTD-vo1. 315, Portland,
OR, pp. 29-36, 1995.

S.P. Burns, J.R. Howell, D.E. Klein, Finite Element Solution for Radiative Heat Transfer
With Nongray, Nonhomogeneous Radiative Properties, Proceedings of the 30th National
Heat Transfer Conference, ASME HTD-voL 315, Portland, OR, pp. 3-10, 1995.

Z. Tan, P. Hsu, High Order Interpolation Schemes in the YIX Method, Presented at the 30th
National Heat Transfer Conference, Open Forum on Radiative Heat Transfer in Participating
Media, Portland, OR, 1995.

PARAGON Fortran System Calls Reference Manual, dot. no. 312488-BETA, Intel

-19-



Supercoinpwer Systems Division, Beaverton, OR, March, 1994

26. W. Gropp, E. Lusk, A. Skjellum, Using MPI, Portable Parallel Programming with the
Message-Passing Interface, MIT Press, Cambridge, MA, 199:5

-20-



FIGURES

InterProcessor Boundary ~ Ay ~ Global Bounds

flain

Y

i’b
I /*

—o —Oe

/’ 1P
to

s

Stencil

FIGURE 1- Subdomain Mapping for 4x4x4 Subdomain Mesh.

-21-



23
Star

Preprocess

s!!=
Synchronize
processors

Start grind
timer

Sum contribution
to q=, div(ur)

No

-i_Ea
&EEl-

*
I Perform’2-(
] Gauss-Seidel I

sweepsI I

+1Communicate

l_zl

c1Calculate
global

residual norm

-<>

Global

Yes solution
converged?

Yes

Stop grind
Postprocess

timer
~>

End

FIGURE 2- Spatial Domain Based Parallel Discrete Ordinate Algorithm Logic Flow Diagram.

-22-



I(0)= 10

subdomain O subdomain 1 subdomain 2 ● ** subdomain Np- 1
I I

I I I
b

s

FIGURE 3- One Dimensional Spatial Domain Decomposition Example.

0.25 !, 1’
,,
+,,

5 i:
0>.-S
~ 0.10

/,,‘\----- ’’----- :~Y.<.- --------
, ., ., ,

, ,,

0.00 i ( , ,
-0.50 –0.30 –0.10 0.10 0.30 0.50

Position, x

FIGURE 4- Distributed Relative Error for the Scaled Radiative Heat flux along (x, 0.5, O) Using
Angular Quadrature Order n= 10.

-23-



0.25

0.20

: 0.15
g
$
.-
3
n 0.10a

0.05

, t
,’\

/ ‘\
/’ ‘\

/’ ‘\

, , I i

Position. x

000
-0.50 -0.30 -0.10 0.10 0.30 0.50

FIGURE 5- Distributed Relative Error for the Scaled Radiative Flux Divergence Along (x, O, O)
Using Angular Quadrature Order n= 10.

t i

i

‘20b====-4
L----A

4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
QuadratureOrder, n

FIGURE 6- Spatial and Angular Convergence for the Radiative Heat Flux Along (x, 0.5, O).

-24-



FIGURE 7- Spatial
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TABLE 1- Benchmark Results for Isothermal, Unit Cube with Absorptivity Varying Trilinearly
and No Scattering

3.07561 0.18802
0.000

3.07558’ 0.18806’

0.025 2.94305 0.18762

0.050 I 2.81677 0.18646

0.075 2.69362 0.18464

0.100 2.57196 0.18217

0.111 I 2.51807C I 0.18091C

=K=H+=-
0.175 2.20616 I 0.17163

0.200 2.08181 0.16721

0.222 1.96963C 0.16297’

0.225 1.95549 0.16241

0.250 1.82691 0.15727

0.275 I 1.69575
I

0.15181
I

-=d-==-t==i

0.375 I 1.14130 I 0.12731 I

+=--l-=%
0.444I 0.72462’ I 0.10781’ I

a. * 5xlo-5

b. A 10-5

c. Z. Tan, P. Hsu, High Order Interpolation Schemes in the YIX Method, Presented at the 30th

National Heat Transfer Conference, Open Forum on Radiative Heat Transfer in Participat-

ing Media, Portland, OR, 1995
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TABLE 2- Fixed Sized Timing Study Results, Parallel Sn Algorithm, n= 10

NL Np tg (see) tc(see) tJtg ‘cycle (W) ‘Vf, qf,i

N= 373

5.1X104 1 509.3 0.0 o% 84 100%

6.9x103 8 135.0 3.5 2.6% 22 47%

2.2X103 27 57.1 3.7 6.5% 9.4 33%

1.0X103 64 31.5 4.0 12.7% 5.2 25%

3.4X102 216 16.3 5.7 35.0% 2.7 1470

1

3.0X104 8 638.1 10.3 1.6% 23 100%

9.3X103 27 352.7 11.6 3.3% 13 54%

4.1X103 64 147.2 8.1 5.5% 5.4 54%

2.2X103 125 87.0 7.7 8.9% 3.2 47%

1.3X103 216 59.0 7.6 12.9% 2.1 40%

N= 1213

3.0X104 64 1086.5 25.8 2.4% 5.1 100%

1.6x104 125 649.3 21.2 3.3% 3.1 86%

9.3X103 216 441.6 19.0 4.3% 2.1 73%

4.1X103 512 244.8 18.4 7.5% 1.2 55%

.
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TABLE 3- Scaled Timing Study Results, Parallel Sn Algorithm, n= 10

N Np tg (see) tc(see)
F

LJg 1]
N~=213

9.3X103 1 81.1 0.0 o% 73 100%

6.9x104 8 186.3 4.5 2.4% 23 44%

2.3x105 27 352.7 11.6 3.3% 16 23%

5.3X105 64 437.0 16.6 3.8% 6.9 19%

1.OX1O6 125 377.5 16.9 4.5% 3.1 21%

1.8x106 216 609.5 26.3 4.3% 2.9 13%

2.8x106 343 708.4 33.1 4.7% 2.1 11%

4.2x106 512 788.1 38.7 4.9% 1.6 109?0

I NL= 393 I
5.9X104 1 601.6 0.0 o% 85 100%

4.6x105 8 1326.9 17.6 1.3% 24 45%

1.5X106 27 2670.5 45.7 1.7% 15 23%

3.6x106 64 3517.2 66.6 1.9% 8.2 17%

7.OX1O6 125 4141.1 90.2 2.2% 5.0 15%

1.2X107 216 3030.7 75.8 2.5% 2.1 20%

1.9X107 343 5554.0 114.3 2.1% 2.4 11%

2.8x107 512 6237.8 160.0 2.6% 1.8 9%
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