Growth and properties of InGaAs/FeAl/InAlAs/InP heterostructures for buried reflector/interconnect applications in InGaAs thermophotovoltaic devices

PDF Version Also Available for Download.

Description

Thermophotovoltaic cells consisting of InGaAs active layers are of extreme promise for high efficiency, low bandgap TPV conversion. In the monolithic interconnected module configuration, the presence of the InGaAs lateral conduction layer (LCL) necessary for the series connection between TPV cells results in undesirable free carrier absorption, causing a tradeoff between series resistance and optical absorption losses in the infrared. A potential alternative is to replace the LCL with an epitaxial metal layer that would provide a low-resistance interconnect while not suffering from free carrier absorption. The internal metal layer would also serve as an efficient, panchromatic back surface reflector, ... continued below

Physical Description

16 p.

Creation Information

Ringel, S.A.; Sacks, R.N.; Qin, L.; Clevenger, M.B. & Murray, C.S. November 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Bettis Atomic Power Laboratory
    Publisher Info: Bettis Atomic Power Lab., West Mifflin, PA (United States)
    Place of Publication: West Mifflin, Pennsylvania

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thermophotovoltaic cells consisting of InGaAs active layers are of extreme promise for high efficiency, low bandgap TPV conversion. In the monolithic interconnected module configuration, the presence of the InGaAs lateral conduction layer (LCL) necessary for the series connection between TPV cells results in undesirable free carrier absorption, causing a tradeoff between series resistance and optical absorption losses in the infrared. A potential alternative is to replace the LCL with an epitaxial metal layer that would provide a low-resistance interconnect while not suffering from free carrier absorption. The internal metal layer would also serve as an efficient, panchromatic back surface reflector, providing the additional advantage of increased effective optical thickness of the InGaAs cell. In this paper, the authors present the first results on the growth and development of buried epitaxial metal layers for TPV applications. High quality, single crystal, epitaxial Fe{sub x}Al{sub 1{minus}x} layers were grown on InAlAs/InP substrates, having compositions in the range x = 0.40--0.80. Epitaxial metal layers up to 1,000 {angstrom} in thickness were achieved, with excellent uniformity over large areas and atomically smooth surfaces. X-ray diffraction studies indicate that all FeAl layers are strained with respect to the substrate, for the entire composition range studied and for all thicknesses. The FeAl layers exhibit excellent resistance characteristics, with resistivities from 60 {micro}ohm-cm to 100 {micro}ohm-cm, indicating that interface scattering has a negligible effect on lateral conductivity. Reflectance measurements show that the FeAl thickness must be at least 1,000 {angstrom} to achieve > 90% reflection in the infrared.

Physical Description

16 p.

Notes

OSTI as DE99000486

Source

  • 4. National Renewable Energy Laboratory (NREL) conference on thermophotovoltaic generation of electricity, Denver, CO (United States), 11-14 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000486
  • Report No.: WAPD-T--3221
  • Report No.: CONF-981055--
  • Grant Number: AC11-93PN38195
  • Office of Scientific & Technical Information Report Number: 296648
  • Archival Resource Key: ark:/67531/metadc683583

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 2:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 25

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ringel, S.A.; Sacks, R.N.; Qin, L.; Clevenger, M.B. & Murray, C.S. Growth and properties of InGaAs/FeAl/InAlAs/InP heterostructures for buried reflector/interconnect applications in InGaAs thermophotovoltaic devices, article, November 1, 1998; West Mifflin, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc683583/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.