Microfluidic systems for electrochemical and biological studies

PDF Version Also Available for Download.

Description

Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies ... continued below

Physical Description

14 p.

Creation Information

Ackler, H. May 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies tens of microns in heights. the devices are designed to easily interface to electronic and fluidic interconnect packages that permit reuse of devices, rather than one-time use, crude glue-based methods. Such devices may be useful for many applications of interest to the electrochemical and biological community.

Physical Description

14 p.

Notes

OSTI as DE98057875

Other: FDE: PDF; PL:

Source

  • 194. meeting of the Electrochemical Society, Boston, MA (United States), 1-6 Nov 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98057875
  • Report No.: UCRL-JC--130905
  • Report No.: CONF-981108--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 333936
  • Archival Resource Key: ark:/67531/metadc683568

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 10, 2017, 1:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ackler, H. Microfluidic systems for electrochemical and biological studies, article, May 1998; California. (digital.library.unt.edu/ark:/67531/metadc683568/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.