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ABSTRACT 
The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength 

degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t"". It is also 
shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the 
oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the 
special case of NicalonTM fibers. 

NOMENCLATURE 
a defect size (m) h 
A area (m') k l  
& strain KIC 
E Young's modulus (Pa) e 
F load (N) Po 

@ probability of failure, fraction m 
of failed fibers. N 

1. INTRODUCTION 
The driving force behind the development of Continuous 

Fiber-reinforced Ceramic Composites (CFCCs) is the promise of 
substantial economic and environmental benefits if they are used in 
defense, energy and related industrial technologies, particularly at 
elevated temperatures [l]. The main attraction for using CFCCs 
over other high temperature materials, particularly monolithic 
ceramics, is their potential for superior toughness, tolerance to the 
presence of cracks and non-catastrophic mode of failure. 

Since many of the potential applications for CFCCs involve 
components whose service lives are measured in tens of thousands 
of hours while subjected to relatively constant stresses [l], the 
successful design and implementation of CFCC components will 
depend on the availability of life-prediction methodologies and on 
knowledge of the evolution of the constituent properties over 
periods of time comparable to the expected service life of the 
component. For example, since the reliability and strength of 
CFCCs are primarily expected to be determined by the reliability 
and strength of the reinforcing fibers, it will be necessary to 
determine the time, stress, temperature and enviro'nmental 
dependence of fiber strengths, and accordingly, how these influence 
the reliability and strength of the component. 

The need to know the evolution of fiber strength, for example, 
calls for methodologies for the mechanical characterization of 
fibers subjected to conditions similar to those that will be found in 
practice. Since single fiber testing can be tedious, alternative 
approaches may involve the evaluation of fiber bundles. This 
alternative approach becomes attractive because it reproduces the 

gauge length (m) No Original number of fibers 
parabolic rate constant (m%) Ob bundle stress (Pa) . 
stress intensity factor (Pa mo3) zb bundle strength (Pa) . 
fiber length (m) a, characteristic strength (Pa) 
characteristic fiber length (m) t time (hours) 
Weibull modulus T fiber stress (Pa) 
number of surviving fibers Y geometric factor 

complex load history of a fiber when a composite is subjected to 
constant loading, although models of the mechanical behavior of 
fiber bundles will have to be available to interpret the experimental 
results. The complexity of the fiber load history arises from the 
fact that both the fiber strengths and fiber times-to-failure are 
statistically distributed, so that when a fiber fails. its load is 
redistributed to the surviving fibers in the fiber bundle. 

Currently the performance of many non-oxide CFCCs is 
limited by the lack of environmentally stable fibers and fiber 
coatings. which makes necessary the investigation of 
environmental effects on the thermomechanical behavior of fibers. 
This paper analyzes the effect of oxidation on the stress-rupture 
behavior of fiber bundles. 

The analysis presented here can be traced back to the work of 
Daniels, who developed a rigorous statistical theory for the 
relationships between tensile strength dis utions for bundles and 
the constituent fibers [2]. In Dani a 1s' odel. the fibers are 
considered classical in the sense that their strength is independent 
of the rate of loading, have a known statistical distribution of 
strengths and follow equal load sharing, so that when one fiber of 
such bundle fails, it can not cany more load and its load is taken up 
equally by the surviving fibers. Coleman showed that when there is 
no dispersion in the fiber strength, then the bundle strength is the 
same as the fiber strength, but that as the coefficient of variation in  
fiber strength increases above zero the bundle strength approaches 
zero in the limit of infinite dispersion [31. Coleman also developed 
statistical models to describe the mechanical breakdown of time- 
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dependent systems, such as fiber bundles, under different types of 
breakdown rules. He showed that under stress rupture conditions, 
for example. the lifetime of a fiber bundle is always shorter than the 
average lifetime of its component fibers [4]. Later on Phoenix and 
co-workers extended the work of Coleman by deriving rigorous 
analyses for the asymptotic time to failure of the fiber bundles 
subjected to different loading schedules [SI. In the next sections, 
an analysis is presented to determine the effect of oxidation on the 
stress-rupture behavior of fiber bundles composed of classical 
fibers. The special case of ceramic grade Nicalonm fibers is  
considered. 

2. ANALYSIS 
Consider a bundle with a large but finite number of fibers' of 

uniform cross-sectional area, A ,  that have the same linear stress- 
strain curve. If it is assumed that the strength-controlling flaws are 
restricted to the surface of the fibers, and that the strength of the 
fibers is described by a two-parameter Weibull distribution, then 
the probability of failure of the fibers when subjected to a uniform 
tensile stress T. will be given by 

where e is the fiber length. 0, is the Weibull characteristic strength, 
and m is the Weibull modulus. In this case, o, is the stress required 
to cause on average, one failure in a fiber of length e, [6]. The 
Weibull modulus is a material constant that "measures" the 
variability in defect sizes, and henceforth, in strength. The 
probability of failure of the fibers will also equal the fraction of 
broken fibers in the bundle. i. e. 

N @ = I - -  
NO 

where N is the number of unfractured fibers, and No is the original 
number of fibers in the bundle. The bundle stress, 0,. is defined as 
the ratio of the applied load, F, and the original cross-sectional area 
of the bundle. Nd. By adopting a two-parameter Weibull 
distribution (Equation 1) to describe the distribution of fiber 
strengths, it is assumed that the threshold strength is zero, so that 
for a b  > 0. the stress on each fiber will be always larger than the 
bundle stress. By considering a bundle in the Daniels sense, i. e. 
that the load applied to the bundle is equally distributed among the 
surviving fibers, the relationship between the applied load to the 
bundle, F, and the stress on each fiber. T, will be given by 

The so-called bundle-strength, Zb, given by the maximum load 
divided by the original cross-sectional area of $e bundle & be 

determined by setting dF/dT, from Equation 3. equal to zero, which 
yields 

1 
/ f l  I-- 

m (4) 

and 

although when the bundle reaches its strength, the stress acting on 
the unfractured fibers will be larger than the bundle strength and 
will equal 

Of practical interest in the experimental and analytical 
characterization of fiber bundles is their elongation as a function of 
time. In the case considered here of a bundle subjected to a constant 
bundle stress, ub, less than C,, the elongation of the bundle will be 
given by 

where E is th :lasti 
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modulus of the fibers. 
Consider a fiber bundle composed on non-interacting fibers, 

that is subjected to constant loading in air at a temperature at which 
the fibers do not flow (i. e. do not creep), but do oxidize'. For 
simplicity it is assumed that both the Weibull and Young's moduli 
of the fibers remain constant and that the only effect of oxidation is 
to decrease the characteristic strength of the fibers. In this case, 
the strength of the fibers will be controlled by surface defects 
resulting -from oxidation, with the thickness of the oxide layer 
representing the size of the average strength-controlling flaw [7 1. 

According to linear elastic fracture mechanics, the relationship 
between strength and flaw size is given by 

where K,= is the critical stress intensity factor, Y is a geometric 
parameter, 0, is the strength and a is the size of thk strength- 
controlling flaw. 

* It is assumed that the oxide scales do not bridge between fibers 
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Considering that the oxidation of most Si-based fibers is  
controlled by oxygen diffusion through the oxide layer, the oxide 
layer will grow according to: 

s = f i  (9) 

where 6 is the thickness of the oxide layer at time t. and k is the 
parabolic rate constant [8-91. By assuming that the fracture 
toughness of the fibers remains constant, the combination of 
Equations 8 and 9 yields expressions for the time-dependency of the 
characteristic fiber strength: 

Equation 10 indicates that there exists an incubation period 
equal to the time required to grow an oxide layer as thick as the size 
of the average critical flaw in the unoxidized fibers'. Based on 
these and the corbiderations outlined above, both the deformation 
and strength of a fiber bundle subjected to constant loading can be 
determined as a function of time. This is described in the next 
section. 

3. ALGORITHM 
Except for a small number of values of rn, this algorithm is 

based on the numerical solution of the iterated function system 
(IFS) formed by Equations 1 and 3. Despite its simplicity, a 
description of the algorithm is presented here because it reflects 
physical aspects of .  the problem which are intrinsic to the 
mechanics of deformation of fiber bundles. 

Assume that the fiber bundle is subjected to a constant tensile 
load, F. For this load, and the corresponding bundle stress, a value 
for the fiber stress, T, can be obtained from Equation 3. assuming 
that all the fibers are intact (0 = 0). However, once the load is 
appliqd, some fibers will fail due to their statistical distribution of 
strengths, and the number of failed fibers can be determined from 
Equation 1 for that value of T. With the number of failed fibers at 
the stress Tjust found, a new value of Tis calculated using Equation 
3'. because according to the global load sharing assumption. the 
load applied to the fiber bundle is redistributed among the surviving 

It is usually found that at short oxidation times the strength of 
Sic increases because the oxide layer heals surface defects. 
However, at longer times, oxidation results in strength reduction. 
Here it is assumed that the strength of the fibers remains constant 
until the oxide layer becomes larger than the critical defect size 
associated with the chaiactenstic strength of the original 
unoxidized fiber strength distribution. 

fibers. Then. a new probability of failure is calculated using 
Equation 1. and the process is repeated until: 

1. The IFS settles at an attractor. which means that there exists a 
value of T that satisfies simultaneously both Equations I and 

The IFS diverges, (ob> &)e  

3. (4 zb9) 'or 
2. 

If the bundle load is applied instantaneously. then the process 
described by the algorithm also occurs instantaneously. The 
existence of an attractor indicates that the fiber bundle reaches an 
equilibrium point so that the surviving fibers are capable of bearing 
the applied load. otherwise, the divergence of the IFS indicates the 
failure of the fiber bundle. 

Although a fiber bundle may survive the initial application of 
the load, the oxidation of the fibers will initiate a process that will 
ultimately lead to the failure of the fiber bundle. The elongation, 
fiber loading history and the life of the fiber bundle under 
consideration are determined as follows: At a given time after the 
elapse of a time interval At, 0 I t + At S t the average thickness 

f of the fiber oxide layer is determined using Equation 9, and the 
characteristic strength is modified according to Equation 10. Then 
the algorithm described above is repeated. resulting in either a new 
equilibrium point, or the divergence of the IFS reflecting the failure 
of the fiber bundle. This process can be visualized by considering 
that changes in the characteristic strength of the fibers result in the 
translation of the curves associated with Equations 1 and 3 in the @- 
T space [lo]. As long as these curves intersect, meaning that there 
exists an attractor for the FS, the fiber bundle can bear the applied 

' load, otherwise, the inexistence of an intersection point 
symbolizes the failure of the fiber bundle. 

4. RESULTS AND DISCUSSION 
Using the numerical values given in Table I. stress and strain 

histories were generated for a hypothetical bundle of ceramic grade 
Nicalonm fiber. Figure 1 shows the results at three different 
temperatures from fiber bundles subjected to a constant fiber bund1 
stress of 500 MPa that was applied ,instantaneously such as during 

relation to Equation 10 in Section 2. neither the bundle strain r the f 
fiber stress change with time. The duration'of this incubation 
period is inversely proportional to temperature, in accordance to 
the thermally activated nature of the fiber oxidation process. 
Although the applied bundle stress is 500 MPa, the fiber stress at 
time zero is 512 MPa. because based on the numerical values used, 
and the explanation provided in Section 3. a small number of fibers 
will fail (2.4%) upon the application of the load, as shown in 
Figure 2. Note in Figure 1 that at the end of the incubation period, 
both the bundle strain and the fiber stress increase nonlinearly with 
time, and the arrows indicate the occurrence of the bundle failure. 
This portion of the curves represents a regime of accelerated 
deformation in which the effective load-bearing area of the bundle 
decreases with time as a result of fiber failure. This is analogous to 
the necking process exhibited by metals during creep. The shape of 
the strain versus time curves shown in Figure 1 is also similar to 
that exhibited by some CFCCs when subjected to stress-rupture 
conditions [ 1 I]. 

stress-rupture test. During the incubation period, explaine p 



Note that because the fiber’s Young’s modulus is assumed to be 
constant with temperature, the three curves start at the same strain 
value. The results in Figure I show, as expected. that the time-to- 
failure of the fiber bundle increases with decreasing temperature. 
Furthermore. it is illustrative to observe that although the force 
applied to the bundle is kept constant during the test, the stress in 
the fibers increases with time, consistent with the global load 
sharing assumptions. The reader is reminded that no effects, other 
than oxidation, have been considered in the analysis, and that the 
elongation of the bundle with time results from a collective 
structural breakdown process, and not from material flow. 

Figure 2 shows the evolution of the probability of failure, or 
fraction of failed fibers as a function of time. It is interesting to 
observe that for the cases analyzed here. it only requires the failure 
of a relatively small fraction of fibers (= 20 %) to result in the 
failure of the fiber bundle. Also.notice that the fraction of fractured 
fibers that triggers this snow-buff effect resulting in the failure of 
the fiber bundle increases with decreasing temperature. By plotting 
the time-to-failure as a function of temperature, using an Arrhenius 
plot (Figure 3) we find that the temperature dependence of the failure 
times coincides with that of the oxidation of the fibers. 

The stress-dependence of both the fiber bundle strain and fiber 
stress histones is shown in Figure 4. Figure 4 shows curves 
generated at a temperature of 900°C for three different bundle 
stresses. Note that in this case’the curves start at different strain 
levels, but that the duration of the incubation period is the same 
since its duration only depends on temperature. It can be observed 
that the rate of deformation increases with the fiber bundle stress, 
and that the life of the bundle decreases with increasing fiber bundle 
stresses. Using the results in Figure 4 and plotting the fiber bundle 
strength vs. the time-to-failure, as indicated in Figure 5, it can be 
observed that the time dependence of the fiber bundle strength is 

, 

consistent with the time dependence of the characteristic strength 
of the fiber strength distribution; as indicated by Equation 10. Also 
in Figure 5 the effect of gauge length on the strength of the fiber 
bundle is illustrated. The results in Figure 5 indicate that the fiber 

bundle strength is higher for shorter bundles. or in other words, 
that shorter fiber bundles are more durable than longer fiber 
bundles, in agreement with the assumptions of the statistical 
distribution of defects and strengths. This dependency was already 
described by Equation 5, and it is shown graphically by Figure 6. 
This aspect of the analysis is imporrant because in actual 
components, the effective gauge length of the fiber bundles will be 
much shorter than what is typically evaluated in the laboratory. 

It should be indicated that the time-dependent elongation of 
the fiber bundles, as described in this paper, arises only from the 
collective breakdown of the bundle and not from material flow (Le. 
creep). Therefore, it is likely that the “stress-relaxation” of Sic 
yams that had been reported at room temperature can be explained 
using the concepts presented in this paper instead of the assumed 
viscoelastic behavior of the material [12]. 

5. CONCLUSIONS 
Using a simple analysis. the effect of fiber oxidation on the 

stress-rupture behavior of fiber bundles was determined. It was 
found for the particular case in which the fibers oxidize and do not 
flow and/or exhibit fatigue effects, that the life of the fiber bundle 
decreases with increasing temperature and stress. It was also found 
that the thermal dependence of the fiber bundie failure times was the 
same as that of the fiber oxidation process, whereas the time- 
dependence of the fiber bundle strength was proportional to t.”‘. 
Gauge length effects were also discussed, and it was shown that 
shorter fiber bundles are stronger and more durable than longer fiber 
bundles. This type of analysis will be useful to interpret 
experimental data generated from the evaluation of fiber bundles. 
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Table I. Numerical constants used in the calculations. These values are representative of ceramic grade Nicalonm fibers 
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Figure 1. Strain and fiber stress histories for fiber bundles subjected to a constant fiber bundle stress of 500 MPa. Results are presented for 
three different temperatures. The arrows indicate the failure of the fiber bundles. 
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Figure 2. Evolution of the fiber probability of failure (or fraction of failed fibers) for a fiber bundle subjected to a constant fiber bundle stress 
of 500 MPa. Results are presented for three different temperatures. The arrows indicate the failure of the fiber bundles. 

/’. 6 8 10 12 ’ 14 

lO,OOO/T(K) . d 
Figure 3. Arrhenius plot of the time to failure (in hours) for fiber bundles subjected to a constant fiber bundle stress of 500 
activation energy is that of the oxidation of the fibers. 
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Figure 4. Strain and fiber stress histones for fiber bundles subjected to different constant fiber bundle stresses at 900°C. The arrows indicate 
the failure of the fiber bundles. 
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Figure 5. Gauge length effect on the time-dependency of the fiber bundle strength. 
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Figure 6. Gauge-length dependence of the fiber bundle strength, according to Equation 5. 


