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Abstract 
In this paper we look at the development of ScaLAPACK, a software library for dense and 
banded numerical linear algebra, and the NAG Numerical PVM Library, which includes 
software for dense and sparse linear algebra, quadrature, optimization and random number 
generation. Both libraries are aimed at distributed memory machines, including networks 
of workstations. 

The paper concentrates on the underlying design and the testing of the libraries. 
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1 INTRODUCTION 

This paper looks at the development of two software libraries aimed at  distributed memory 
machines, ScaLAPACK* and the NAG Numerical PVM Libraryi, concentrating on the 
underlying design of the libraries and issues concerned with testing the components of the 
libraries. 1 

The development of ScaLAPACK, and related software, had a strong influence on the 
NAG Numerical PVM Library and so much of the paper will concentrate on the develop 
ment of ScaLAPACK. 

ScaLAPACK itself is built upon LAPACKf, and so the paper will start with a brief 
discussion of the LAPACK project. 

The LAPACK project has produced a software package, also called LAPACK which 
stands for Linear Algebra PACKage, for dense and banded linear algebra problems tar- 
geted at high performance shared memory machines. Part of the ScaLAPACK project 
is concerned with porting LAPACK to distributed memory machines, and has produced 
the software package ScaLAPACK, which stands for Scalable Linear Algebra PACKage. 
There has  been a new release of each of these packages in 1996, and a further release of 
ScaLAPACK is planned for the autumn of 1996. 

LAPACK, ScaLAPACK and the NAG Numerical PVM Library are all intended to be 
portable and efficient in their target environments, as well as being maintainable, and we 
shall discuss the infrastructure that was required to achieve these attributes. 

LAPACK has built upon the development of the BLASS (Basic Linear Algebra Subpro- 
grams), which are used to achieve efficiency by performing the computationally intensive 
operations, and so form the portability layer for LAPACK. ScaLAPACK, which uses an 
SPMD message passing programming paradigm, utilizes the PBLAST (Parallel BLAS) for 
its computationally intensive parts and the BLACSll (Basic Linear Algebra Communica- 
tion Subprograms) for communication; the BLACS being the communication equivalents 
of the BLAS. The PBLAS themselves call the single node BLAS for computation and the 
BLACS for communication; indeed most of the calls to the BLACS from ScaLAPACK 
are made within the PBLAS. Thus the PBLAS are effectively the portability layer for 
ScaLAPACK. 

This structure has enabled the ScaLAP.4CK software to closely resemble the LAPACK 
software, thus considerably aiding the porting process. Additionally, the interfaces for the 
ScaLAPACK routines have been made as close as possible to the LAPACK routines, with 
the intention of making the porting of users programs straightforward. 

The NAG Xumerical PVM Library incorporates much of ScaLAP,4CK, uses the same 

*http: //wuu. netlib.org/scalapack/index. html 
thttp: //uuu.nag. co. uk 
thttp: //uuu .netlib. org/lapack/index. html 
Shttp: //uuu.netlib. org/blas/index. html 
ahttp://uuv .netlib. org/scalapack/html/pblas-qref . html 
Ilhttp: //uuw.netlib. org/blacs/index. html 
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programming model, and similarly utilizes the PBLAS and BLACS as much as possible 
elsewhere. 

The paper will include discussion of the development of the PBLAS and the BLACS, 
will look at the additional requirements for testing the libraries in a distributed mem- 
ory environment, and will mention the challenges of making the ScaLAPACK and NAG 
Numerical PVM Library reliable in a heterogeneous computing environment. 

2 THEBLAS 

Fundamental to the attempt to develop both portable and efficient software has been the 
specification of the Level 1, Level 2 and Level 3 BLAS (Basic Linear Algebra Subprograms; 
Lawson, Hanson, Kincaid & Krogh (1979), Dongarra, Du Croz, Hammarling & Hanson 
(1988) and Dongarra, Du Croz, Duff 5: Hammarling (1990)), and the implementation 
of efficient versions .by manufacturers and others on high performance machines. The 
BLAS encapsulate a set of computational kernels for numerical linear algebra and many 
of the algorithms of numerical linear algebra have been adapted to utilize these BLAS. 
LINPACK (Dongarra, Bunch, Moler & Stewart 1978), a widely used high quality public 
domain software package for the solution of dense and banded linear systems developed 
in the late 197Os, made extensive use of the Level 1 BLAS, the Level 2 BLAS have been 
successfully exploited on vector supercomputers (see for example Hammarling (1993) and 
the references given there), and the Level 3 BLAS have been widely used in software, such 
as LAPACK, aimed at shared memory machines with a hierarchy of memory and possibly 
multiple processors. 

It is important to think of the BLAS as providing specifications, the intention being 
for manufacturers, or others, to provide tuned implementations on particular machines. 
Vanilla Fortran 77 versions are available from netlib** (Dongarra & Grosse 1987, Don- 
garra, Rowan & Wade 1993), but these are intended to be model implementations, rather 
than tuned versions for any specific machine. 

To support and encourage the use of the BLAS and their implementation a set of test 
programs are also supplied on netlib, designed to, ensure that implementations conform 
to the specification and have been correctly installed. The test programs for the Level 2 
and Level 3 BLAS have the following features: 

0 The parameters of the test problems and the names of the subprograms to  be tested 

0 The data for the test problems are generated internally and the results are checked 

0 The programs check that no input arguments are changed by the routines except the 

0 All error exits (caused by illegal argument values) are tested. 
0 The programs generate a history or snapshot file as an additional debugging aid. 

are specified by means of a data file, which can easily be modified for debugging. 

internally. 

designated output vector or matrix. 

**http//: wuu . netlib. org 
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An aspect that with hindsight should, perhaps, have been emphasized and more pre- 
cisely described in the specifications, is that the BLAS are also expected to be numerically 
accurate and so naturally the test programs examine the accuracy of the BLAS. A test 
ratio is determined by scaling the error bounds by the inverse of machine precision, e-l. 
This ratio is compared with a constant threshold value defined in the input data file. 
Test ratios greater than the threshold are flagged as suspect. On the basis of experience a 
threshold value of I 6  is recommended, but the precise value is not critical. Errors in the 
routines are most likely to be errors such as errors in array indexing, which will almost 
certainly lead to a totally wrong result. A more subtle potential error is the use of a single 
precision variable in a double precision computation. This is likely to lead to a loss of half 
the machine precision. The test programs regard a test ratio greater than e-$ as an error. 

It seems fair to say that the BLAS have been very successful in achieving their aim 
and are widely implemented on -todays workstations, high-performance shared memory 
machines and on single nodes of distributed memory parallel machines. 

3 LAPACK 

T h e  work on the BLAS and on adapting algorithms to utilize the BLAS has culmi- 
nated in the development of the dense linear algebra package, LAPACK (Anderson, Bai, 
Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov 
& Sorensen 1995), developed under the LAPACK project, for PCs, workstations, vector 
computers and shared memory high performance machines, which uses block-partitioned 
algorithms wherever possible and makes extensive use of the Level 3 BLAS, as well as the 
other BLAS. For background and further information on LAPACK see Dongarra & Ham- 
marling (1990) and Dongarra, Duff, Sorensen & van der Vorst (1991). See also Dongarra, 

. Pozo & Walker (1993) for discussion of an object oriented interface for LAPACK. At  the 
t ime of writing, the development of LAPACK continues, with the Release 3 in later in 
1996. Much of LAPACK has been incorporated into the NAG Fortran 77 Library and is 
utilized in the NAG Fortran 90 Library. 

A C version of LAPACK has been produced using the f2c translator (Feldman, Gay, 
Maimone & Schryer 1991) and a Fortran 90 interface to LAPACK has also been proposed 
in Dongarra, Du Croz, Hammarling, Wainiewski S: Zemla (1995). 

The  development of LAPACK has included the production of an extensive set of testing 
and timing routines. The test routines follow much the same philosophy as the devel- 
opment of the BLAS test programs discussed above, and are described in detail in the 
Installation Guide for LAPACK (Anderson, Dongarra & Ostrouchov 1992), together with 
a description of the timing routines. The testing of linear algebra software is discussed 
further in the paper by N. J. Higham in this volume. 

LAPACK contain routines for the solution of dense and banded systems of linear equa- 
tions, linear least squares problems and eigenvalue problems. The goals of the L.L\PACK 
project are efficiency so that the computationally intensive routines execute as fast as 
possible; reliability, including the return of error bounds; portability across machines; 
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flexibility so that users may construct new routines from well designed components; ease 
of use; maintainability; and good documentation. 

4 SCALAPACK AND THE PBLAS AND BLACS 

The ScaLAPACK project is a continuation of the LAPACK project and part of the project 
has been concerned with porting the LAPACK software to distributed memory parallel 
machines, producing the ScaLAPACK software package (Choi, Demmel, Dhillon, Don- 
garra, Ostrouchov, Petitet, Stanley, Walker & Whaley 1995, Choi, Dongarra, Ostrouchov, 
Petitet, Walker & Whaley 1995a, Choi, Dongarra & Walker 1995a). Naturally, ScaLA- 
PACK shares the goals of LAPACK mentioned above and hence uses the same approach 
of promoting and utilizing standards. ScaLAPACK additionally aims at scalability as the 
problem size and number of processors grows on distributed memory parallel machines. 

As an aid to achieving these goals the ScaLAPACK software has been designed to look 
as much like the LAPACK software as possible. Because the BLAS have proven to be very 
useful tools both within LAPACK and outside, the ScaLAPACK project chose to build a 
set of Parallel BLAS, or PBLAS (Choi, Dongarra, Ostrouchov, Petitet, Walker & Whaley 
1995b), whose interface is as similar to the BLAS as possible. This decision has permitted 
the ScaLAPACK code to be quitesimilar, and sometimes nearly identical, to the analogous 
LAPACK code. Only one substantially new routine was added to the PBLAS, matrix 
transposition, since this is a complicated operation in a distributed memory environment 
(Choi, Dongarra & Walker 1995b). 

It is hoped that the PBLAS will provide a distributed memory standard, just as the 
BLAS have provided a shared memory standard. This would simplify and encourage the 
development of high performance and portable parallel numerical software, as well as 
providing manufacturers with a small set of routines to be optimized. The acceptance 
of the PBLAS requires reasonable compromises among competing goals of functionality 
and simplicity. The PBLAS, like ScaLAPACK, perform global operations and call the 
BLAS to perform computations at single (local) nodes. In addition they call a set of Basic 
Linear Algebra Communication Subprograms, the BLACS (Dongarra & Whaley 1995), to 
perform the communication between processors. The BLACS can be thought of as playing 
the role for communication as the BLAS do for computation. The software hierarchy for 
ScaLAPACK is illustrated in Figure 1. 

The fact that ScaLAPACK software has the same structure as LAPACK greatly facil- 
itates the production, maintenance and portability of the software, and has also enabled 
the user interface to be almost the same, thus making it much easier for users to port 
their programs between LAPACK and ScaLAPACK. Further details of the design of 
ScaLAPACK, together with performance results, can be found in Choi, Demmel, Dhillon, 
Dongarra, Ostrouchov, Petitet, Stanley, Walker & Whaley (199.5). 



6 Case Studies on The Development of ScaL.4P.4CK and the ,VAG ,Vumerical PVM L i b m y  
ScaLAPACK Software Hierarchy 

ScaLAPACK 

@¶PI, PVM, etc) 

Figure 1 

5 TESTING THE PBLAS 

PBLAS test programs have been designed, developed and included with the PBLAS code 
along similar lines to those of the BLAS test programs. This test package consists of 
several main programs and a set of subprograms generating test data and comparing the 
results with those obtained by element-wise computations of the sequential BLAS. These 
test programs assume the correctness of the BLAS and the BLACS routines (Whaley 
1995); i t  is therefore highly recommended that one run the testing programs provided 
with both of these packages before performing any PBLAS tests. 

After each call to a subprogram being tested, its operation is checked in two ways. First, 
each of its input arguments, including all elements of the distributed operands, is checked 
to see if it has been altered by the subprogram. If any argument? other than the specified 
elements of the result scalar, vector or matrix, has been modified, an error is reported. This 
check includes the supposedly unreferenced elements of the distributed matrices. Second, 
the resulting scalar, vector or matrix computed by the subprogram is compared with the 
corresponding result obtained by the sequential BLAS or by simple Fortran code. We do 
not expect exact agreement because the two results are not necessarily computed by the 
same sequences of floating point operations. We do, however, expect the differences to be 
small relative to working precision. The error bounds are then the same as the ones used 
in the BLAS testers. A more detailed description of those tests can be found in Dongarra 
et al. (19SS) and Dongarra et al. (1990). 

The  PBLAS testing programs are thus very similar to those for the BLAS. However, 
it was necessary to slightly depart from the way the BLAS testing programs operate 
due to  the difficulties inherent in the testing of programs written for distributed-memory 
computers. In the following paragraphs, some essential features of the PBLAS testing 
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programs design are presented in greater detail, together with discussion of the problems 
encountered, the ones we were able to solve, as well as the ones that remainopen questions. 

Very little distributed memory parallel programming experience is required to realize 
that having a pr.ogram running correctly, say, on 2 processors does not necessarily imply 
that it will successfully run on p > 2 processors. Further increasing the number of potential 
test cases is the fact that parallel dense linear algebra kernels ordinarily assume a processor 
grid, typically a two dimensional grid. Furthermore, a general software library such as the 
PBLAS has to behave correctly even in degenerate cases, such as when the distributed 
matrix does not span all processors in one or both dimensions of the grid. Finally, it 
should also be possible to vary the size and location of the submatrices to operate on, the 
data decomposition parameters such as the block sizes used for the matrix partitioning 
and distribution, or even the local leading dimension of the arrays that locally store the 
pieces of the distributed matrices. Note that none of these remarks apply to the sequential 
testing problem. 

These remarks suggest that it is in practice impossible to test even a very small portion 
of all the pass-ible different test cases. However, it is important to be able to generate 
any possible case, so that the tester can also be used to check a given operation for a 
particular data distribution. 

These facts motivated the decision to permit a user configurable set of tests for every 
PBLAS routine. Concretely, the input testing files allow for the precise specification of 
a limited number of tests. The input files for each test contain for each test, a complete 
description of the data layout of each operand allowing one to mimic exactly a given 
call to a PBLAS subroutine. Consequently, one can test the PBLAS with any possible 
machine configuration as well as data layout. The obvious drawback of such generality is 
that the input testing file is slightly longer and more complex than the input files used 
for the sequential BLAS testers. 

The PBLAS software follows an SPMD or data-parallel programming model. If a PBLAS 
routine is called with an invalid value for any of its arguments, then it must report the fact 
and terminate the execution of the program. In the model implementation, each routine, 
on detecting an error, calls a common error-handling routine. 

This input error checking aspect of the software is also tested. It is straightforward to 
plug in an erroneous combination of input arguments and check that the error handler 
behaves correctly. It is however interesting to notice that a PBLAS routine cannot ensure 
that every process does indeed call this subroutine. 

Since checking arguments in a global fashion would add a global synchronization step, 
for efficiency purposes, the PBLAS routines only perform a local validity check of their 
argument list. If a value is invalid in at least one process of the current context, the 
program execution is stopped. As a result, different processes may have different values of 
an argument that should be the same. thus causing non predictable results.. We comment 
further on the problems of networks of heterogeneous computers in Section S below. 
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6 TESTING SCALAPACK 

The ScaLAPACK test programs are modeled on those of LAPACK, but are not yet as 
extensive as those of LAPACK. As well as the additional complexity mentioned above, 
ScaLAPACK testing can put a serious strain on memory requirements since testing gen- 
erally requires one or more additional copies of matrices to compute quantities such as the 
residuals required for the error bounds. Currently the testing routines also serve as the 
timing routines, but it is hope to change that in the future since the additional memory 
requirements can severely limit the size of matrix. 

Further details on testing and timing for ScaLAPACK can be found in Choi, Dongarra, 
Ostrouchov, Petitet & Whaley (1995)., 

'7 THE NAG NUMERICAL PVM LIBRARY 

The NAG Library does not readily port to distributed memory machines, and many of 
the routines in the Library are either not designed for parallel machines, or are performing 
functions that are not appropriate in a parallel setting. Even if the Library were suitable, 
the software support is such that we could not currently contemplate such a port. We 
hope that in the future HPF (Koelbel, Loveman, Schreiber, Steele Jr. & Zosel 1994) may 
prove to be a suitable vehicle, but the language and the compilers are not yet sufficiently 
mature for us to seriously contemplate the use of HPF. 

Following the ScaLAPACK lead NAG therefore took the somewhat reluctant step of 
developing a parallel message passing library, based initially upon PVM (Geist, Beguelin, 
Dongarra, Jiang, Manchek & Sunderam 1994). This library has been carefully designed 
with the future very much in mind, both short term and longer term. In the short term 
NAG are, at the time of writing, about to distribute an MPI (Snir, Otto, ,Huss-Lederman, 
Walker & Dongarra 1996) version of the library, since MPI is set to become widely available 
as the (de facto) standard message passing system. In the longer term the hope is that 
this library, together with the Fortran 90 Library, can feed into an HPF library activity. 
Thus, as with ScaLAPACK, NAG has adopted an SPMD model of parallelism for the 
library, in which (possibly) many instances of a single program are executed concurrently 
on different data sets; NAG has tried to limit the use of PVM as much as possible, using 
the BLACS wherever it is sensible to do so; and, in common with ScaLAPACK, assumes 
a two-dimensional logical grid. 

The use of the SPMD model is not always straightforward. for example in the quadrature 
algorithms a farming model is more natural, but it was nevertheless felt sensible to adhere 
to the SPMD model since that is the current HPF model of programming, and it does 
not really place any undue restriction on the user. The user may spawn off other tasks so 
long as the group of library tasks behave according to the SPMD model. NAG are also 
providing utility routines to further insulate the user and themselves from the underlying 
message passing system. Before calling the library the user calls an initialization routine, 
and calls an exit routine at the end. along the lines of the following example. 

, 



Helemgeneous Computing Environments 9 

* . . cal l  t h e  NAG i n i t i a l i z a t i o n  rou t ine  . . 
call  nagspawn( . . . ) 

ca l l  d02hafp( . . . 
cal l  f07adf ( . . . ) 

* .. cal l  t h e  NAG clean-up routine .. 
ca l l  nagexit(  . . . ) 

Initializing PVM and/or the BLACS (or any other future communication system that 
is adopted) is done within nagspawn. From the user’s perspective the error handling 
mechanism and interface is the same as for the Fortran 77 Library, with some additional 
error checks such as ensuring that a global variable has the same value on all processors. 

Naturally NAG have adapted their stringent test programs, in a similar manner to 
ScaLAPACK, to the distributed memory environment in order to maintain their reputa- 
tion for numerical quality and reliability. 

8 HETEROGENEOUS COMPUTING ENVIRONMENTS 

In principal, both ScaLAPACK and the NAG parallel library can be run on networks 
of heterogeneous machines, but in this final section we mention the special challenges 
associated with writing and testing numerical software that is to be executed on net- 
works containing heterogeneous processors, that is, processors which perform floating 
point arithmetic differently. This includes not just machines with different floating point 
formats and semantics such as Cray vector computers and workstations performing IEEE 
standard floating point arithmetic, but even supposedly identical machines running dif- 
ferent compilers, or even just different compiler options or runtime environments. 

Moreover, on such networks, floating point data transfers between two processes may 
require a data conversion phase and thus a possible loss of accuracy. It is therefore imprac- 
tical, error-prone and difficult to compare supposedly identical computed values on such 
heterogeneous networks. As a consequence, the validity and correctness of the tests per- 
formed can only currently be guaranteed for networks of processors with identical floating 
point formats. 

It is not enough to require identical floating point representation across all processors 
of a parallel computer. The way arithmetic is performed should also agree to some extent. 
For example, having a processor in the network that does not produce and recognize 
denormalized number representations can cause problems when receiving such a number 
from other processors that can properly generate denormalized numbers. We have not 
yet tried to make the testing programs generate input data on the edge of the floating 
point number range, in order to identify and trap these problems. Whilst this is highly 
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desirable, we have not yet sufficiently investigated the generation of such test problems 
to be confident of exposing the difficulties. 

Further discussion of the dangers of heterogeneous computing can be found in Demmel, 
Dongarra, Hammarling, Ostrouchov & Stanley (1996) and citeasnounBCDDDHPRSW:UTK- 
cs:96. 

9 FURTHER INFORMATION 

Many working notes have been produced as part of the LAPACK and ScaLAPACK 
projects and these are available from h t t p  : / / w w  . n e t l i b  .org/lapack/lawns/ 
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