
C.

Case Studies on The Development of
ScaLAPACK and the NAG
Numerical PVM Library
J. J. Dongarra, The University of Tennessee at Knoxuille and Oak Ridge W I
National Laboratory
S. Hammarling, The University of Tennessee at Knoxville and The
Numerical Algorithms Group
A. Petitet, The University of Tennessee at Knoxville
The University of Tennessee at Knoxville, Computer Science Department,
lo4 Ayres Hall, Knoxville, TN 37996-1301, USA
Oak Ridge National Laborato y, Mathematical Sciences Section, P. 0. Box
2008, Bldg. 6012, Oak Ridge, T N 37831-6367, USA
The Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill
Road, Oxford, OX2 8DR, UK

Abstract
In this paper we look at the development of ScaLAPACK, a software library for dense and
banded numerical linear algebra, and the NAG Numerical PVM Library, which includes
software for dense and sparse linear algebra, quadrature, optimization and random number
generation. Both libraries are aimed at distributed memory machines, including networks
of workstations.

The paper concentrates on the underlying design and the testing of the libraries.

Keywords
BLAS, LAPACK, NAG, numerical libraries, numerical linear algebra, numerical software,
ScaLAPACK

"This submined manuscript has been
authored by a contractor of the U.S.
Government under Contract No. DE-ACOS-
960122464. Accordingly. the U.S.
Government retains a nonexclusive.
royalty-free license to publish or reproduce
the published form of this contribution. or
allow others to do so. for U S . Government
pirrpncec **

DISCLAlMER

This report was prepared as a n account of work sportsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or sem’ce by
trade name, trademark, manufacturer, or othenvise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
dOCUmf3lt.

2 Case Studies on The Development of ScaLAPACK and the NAG 1Vumen'cal PVM Libmry

1 INTRODUCTION

This paper looks at the development of two software libraries aimed at distributed memory
machines, ScaLAPACK* and the NAG Numerical PVM Libraryi, concentrating on the
underlying design of the libraries and issues concerned with testing the components of the
libraries. 1

The development of ScaLAPACK, and related software, had a strong influence on the
NAG Numerical PVM Library and so much of the paper will concentrate on the develop
ment of ScaLAPACK.

ScaLAPACK itself is built upon LAPACKf, and so the paper will start with a brief
discussion of the LAPACK project.

The LAPACK project has produced a software package, also called LAPACK which
stands for Linear Algebra PACKage, for dense and banded linear algebra problems tar-
geted at high performance shared memory machines. Part of the ScaLAPACK project
is concerned with porting LAPACK to distributed memory machines, and has produced
the software package ScaLAPACK, which stands for Scalable Linear Algebra PACKage.
There has been a new release of each of these packages in 1996, and a further release of
ScaLAPACK is planned for the autumn of 1996.

LAPACK, ScaLAPACK and the NAG Numerical PVM Library are all intended to be
portable and efficient in their target environments, as well as being maintainable, and we
shall discuss the infrastructure that was required to achieve these attributes.

LAPACK has built upon the development of the BLASS (Basic Linear Algebra Subpro-
grams), which are used to achieve efficiency by performing the computationally intensive
operations, and so form the portability layer for LAPACK. ScaLAPACK, which uses an
SPMD message passing programming paradigm, utilizes the PBLAST (Parallel BLAS) for
its computationally intensive parts and the BLACSll (Basic Linear Algebra Communica-
tion Subprograms) for communication; the BLACS being the communication equivalents
of the BLAS. The PBLAS themselves call the single node BLAS for computation and the
BLACS for communication; indeed most of the calls to the BLACS from ScaLAPACK
are made within the PBLAS. Thus the PBLAS are effectively the portability layer for
ScaLAPACK.

This structure has enabled the ScaLAP.4CK software to closely resemble the LAPACK
software, thus considerably aiding the porting process. Additionally, the interfaces for the
ScaLAPACK routines have been made as close as possible to the LAPACK routines, with
the intention of making the porting of users programs straightforward.

The NAG Xumerical PVM Library incorporates much of ScaLAP,4CK, uses the same

*http: //wuu. netlib.org/scalapack/index. html
thttp: //uuu.nag. co. uk
thttp: //uuu .netlib. org/lapack/index. html
Shttp: //uuu.netlib. org/blas/index. html
ahttp://uuv .netlib. org/scalapack/html/pblas-qref . html
Ilhttp: //uuw.netlib. org/blacs/index. html

, $

The BLAS 3

programming model, and similarly utilizes the PBLAS and BLACS as much as possible
elsewhere.

The paper will include discussion of the development of the PBLAS and the BLACS,
will look at the additional requirements for testing the libraries in a distributed mem-
ory environment, and will mention the challenges of making the ScaLAPACK and NAG
Numerical PVM Library reliable in a heterogeneous computing environment.

2 THEBLAS

Fundamental to the attempt to develop both portable and efficient software has been the
specification of the Level 1, Level 2 and Level 3 BLAS (Basic Linear Algebra Subprograms;
Lawson, Hanson, Kincaid & Krogh (1979), Dongarra, Du Croz, Hammarling & Hanson
(1988) and Dongarra, Du Croz, Duff 5: Hammarling (1990)), and the implementation
of efficient versions .by manufacturers and others on high performance machines. The
BLAS encapsulate a set of computational kernels for numerical linear algebra and many
of the algorithms of numerical linear algebra have been adapted to utilize these BLAS.
LINPACK (Dongarra, Bunch, Moler & Stewart 1978), a widely used high quality public
domain software package for the solution of dense and banded linear systems developed
in the late 197Os, made extensive use of the Level 1 BLAS, the Level 2 BLAS have been
successfully exploited on vector supercomputers (see for example Hammarling (1993) and
the references given there), and the Level 3 BLAS have been widely used in software, such
as LAPACK, aimed at shared memory machines with a hierarchy of memory and possibly
multiple processors.

It is important to think of the BLAS as providing specifications, the intention being
for manufacturers, or others, to provide tuned implementations on particular machines.
Vanilla Fortran 77 versions are available from netlib** (Dongarra & Grosse 1987, Don-
garra, Rowan & Wade 1993), but these are intended to be model implementations, rather
than tuned versions for any specific machine.

To support and encourage the use of the BLAS and their implementation a set of test
programs are also supplied on netlib, designed to, ensure that implementations conform
to the specification and have been correctly installed. The test programs for the Level 2
and Level 3 BLAS have the following features:

0 The parameters of the test problems and the names of the subprograms to be tested

0 The data for the test problems are generated internally and the results are checked

0 The programs check that no input arguments are changed by the routines except the

0 All error exits (caused by illegal argument values) are tested.
0 The programs generate a history or snapshot file as an additional debugging aid.

are specified by means of a data file, which can easily be modified for debugging.

internally.

designated output vector or matrix.

**http//: wuu . netlib. org

4 Case Studies on The Development of ScaLAPACh' and the NAG Numerical PVM L i b m y

An aspect that with hindsight should, perhaps, have been emphasized and more pre-
cisely described in the specifications, is that the BLAS are also expected to be numerically
accurate and so naturally the test programs examine the accuracy of the BLAS. A test
ratio is determined by scaling the error bounds by the inverse of machine precision, e-l.
This ratio is compared with a constant threshold value defined in the input data file.
Test ratios greater than the threshold are flagged as suspect. On the basis of experience a
threshold value of I 6 is recommended, but the precise value is not critical. Errors in the
routines are most likely to be errors such as errors in array indexing, which will almost
certainly lead to a totally wrong result. A more subtle potential error is the use of a single
precision variable in a double precision computation. This is likely to lead to a loss of half
the machine precision. The test programs regard a test ratio greater than e-$ as an error.

It seems fair to say that the BLAS have been very successful in achieving their aim
and are widely implemented on -todays workstations, high-performance shared memory
machines and on single nodes of distributed memory parallel machines.

3 LAPACK

T h e work on the BLAS and on adapting algorithms to utilize the BLAS has culmi-
nated in the development of the dense linear algebra package, LAPACK (Anderson, Bai,
Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov
& Sorensen 1995), developed under the LAPACK project, for PCs, workstations, vector
computers and shared memory high performance machines, which uses block-partitioned
algorithms wherever possible and makes extensive use of the Level 3 BLAS, as well as the
other BLAS. For background and further information on LAPACK see Dongarra & Ham-
marling (1990) and Dongarra, Duff, Sorensen & van der Vorst (1991). See also Dongarra,

. Pozo & Walker (1993) for discussion of an object oriented interface for LAPACK. At the
t ime of writing, the development of LAPACK continues, with the Release 3 in later in
1996. Much of LAPACK has been incorporated into the NAG Fortran 77 Library and is
utilized in the NAG Fortran 90 Library.

A C version of LAPACK has been produced using the f2c translator (Feldman, Gay,
Maimone & Schryer 1991) and a Fortran 90 interface to LAPACK has also been proposed
in Dongarra, Du Croz, Hammarling, Wainiewski S: Zemla (1995).

The development of LAPACK has included the production of an extensive set of testing
and timing routines. The test routines follow much the same philosophy as the devel-
opment of the BLAS test programs discussed above, and are described in detail in the
Installation Guide for LAPACK (Anderson, Dongarra & Ostrouchov 1992), together with
a description of the timing routines. The testing of linear algebra software is discussed
further in the paper by N. J. Higham in this volume.

LAPACK contain routines for the solution of dense and banded systems of linear equa-
tions, linear least squares problems and eigenvalue problems. The goals of the L.L\PACK
project are efficiency so that the computationally intensive routines execute as fast as
possible; reliability, including the return of error bounds; portability across machines;

ScaLAPACIi and the PBLAS and BLACS 5

flexibility so that users may construct new routines from well designed components; ease
of use; maintainability; and good documentation.

4 SCALAPACK AND THE PBLAS AND BLACS

The ScaLAPACK project is a continuation of the LAPACK project and part of the project
has been concerned with porting the LAPACK software to distributed memory parallel
machines, producing the ScaLAPACK software package (Choi, Demmel, Dhillon, Don-
garra, Ostrouchov, Petitet, Stanley, Walker & Whaley 1995, Choi, Dongarra, Ostrouchov,
Petitet, Walker & Whaley 1995a, Choi, Dongarra & Walker 1995a). Naturally, ScaLA-
PACK shares the goals of LAPACK mentioned above and hence uses the same approach
of promoting and utilizing standards. ScaLAPACK additionally aims at scalability as the
problem size and number of processors grows on distributed memory parallel machines.

As an aid to achieving these goals the ScaLAPACK software has been designed to look
as much like the LAPACK software as possible. Because the BLAS have proven to be very
useful tools both within LAPACK and outside, the ScaLAPACK project chose to build a
set of Parallel BLAS, or PBLAS (Choi, Dongarra, Ostrouchov, Petitet, Walker & Whaley
1995b), whose interface is as similar to the BLAS as possible. This decision has permitted
the ScaLAPACK code to be quitesimilar, and sometimes nearly identical, to the analogous
LAPACK code. Only one substantially new routine was added to the PBLAS, matrix
transposition, since this is a complicated operation in a distributed memory environment
(Choi, Dongarra & Walker 1995b).

It is hoped that the PBLAS will provide a distributed memory standard, just as the
BLAS have provided a shared memory standard. This would simplify and encourage the
development of high performance and portable parallel numerical software, as well as
providing manufacturers with a small set of routines to be optimized. The acceptance
of the PBLAS requires reasonable compromises among competing goals of functionality
and simplicity. The PBLAS, like ScaLAPACK, perform global operations and call the
BLAS to perform computations at single (local) nodes. In addition they call a set of Basic
Linear Algebra Communication Subprograms, the BLACS (Dongarra & Whaley 1995), to
perform the communication between processors. The BLACS can be thought of as playing
the role for communication as the BLAS do for computation. The software hierarchy for
ScaLAPACK is illustrated in Figure 1.

The fact that ScaLAPACK software has the same structure as LAPACK greatly facil-
itates the production, maintenance and portability of the software, and has also enabled
the user interface to be almost the same, thus making it much easier for users to port
their programs between LAPACK and ScaLAPACK. Further details of the design of
ScaLAPACK, together with performance results, can be found in Choi, Demmel, Dhillon,
Dongarra, Ostrouchov, Petitet, Stanley, Walker & Whaley (199.5).

6 Case Studies on The Development of ScaL.4P.4CK and the ,VAG ,Vumerical PVM L i b m y
ScaLAPACK Software Hierarchy

ScaLAPACK

@¶PI, PVM, etc)

Figure 1

5 TESTING THE PBLAS

PBLAS test programs have been designed, developed and included with the PBLAS code
along similar lines to those of the BLAS test programs. This test package consists of
several main programs and a set of subprograms generating test data and comparing the
results with those obtained by element-wise computations of the sequential BLAS. These
test programs assume the correctness of the BLAS and the BLACS routines (Whaley
1995); i t is therefore highly recommended that one run the testing programs provided
with both of these packages before performing any PBLAS tests.

After each call to a subprogram being tested, its operation is checked in two ways. First,
each of its input arguments, including all elements of the distributed operands, is checked
to see if it has been altered by the subprogram. If any argument? other than the specified
elements of the result scalar, vector or matrix, has been modified, an error is reported. This
check includes the supposedly unreferenced elements of the distributed matrices. Second,
the resulting scalar, vector or matrix computed by the subprogram is compared with the
corresponding result obtained by the sequential BLAS or by simple Fortran code. We do
not expect exact agreement because the two results are not necessarily computed by the
same sequences of floating point operations. We do, however, expect the differences to be
small relative to working precision. The error bounds are then the same as the ones used
in the BLAS testers. A more detailed description of those tests can be found in Dongarra
et al. (19SS) and Dongarra et al. (1990).

The PBLAS testing programs are thus very similar to those for the BLAS. However,
it was necessary to slightly depart from the way the BLAS testing programs operate
due to the difficulties inherent in the testing of programs written for distributed-memory
computers. In the following paragraphs, some essential features of the PBLAS testing

Testing the PBLAS 7

programs design are presented in greater detail, together with discussion of the problems
encountered, the ones we were able to solve, as well as the ones that remainopen questions.

Very little distributed memory parallel programming experience is required to realize
that having a pr.ogram running correctly, say, on 2 processors does not necessarily imply
that it will successfully run on p > 2 processors. Further increasing the number of potential
test cases is the fact that parallel dense linear algebra kernels ordinarily assume a processor
grid, typically a two dimensional grid. Furthermore, a general software library such as the
PBLAS has to behave correctly even in degenerate cases, such as when the distributed
matrix does not span all processors in one or both dimensions of the grid. Finally, it
should also be possible to vary the size and location of the submatrices to operate on, the
data decomposition parameters such as the block sizes used for the matrix partitioning
and distribution, or even the local leading dimension of the arrays that locally store the
pieces of the distributed matrices. Note that none of these remarks apply to the sequential
testing problem.

These remarks suggest that it is in practice impossible to test even a very small portion
of all the pass-ible different test cases. However, it is important to be able to generate
any possible case, so that the tester can also be used to check a given operation for a
particular data distribution.

These facts motivated the decision to permit a user configurable set of tests for every
PBLAS routine. Concretely, the input testing files allow for the precise specification of
a limited number of tests. The input files for each test contain for each test, a complete
description of the data layout of each operand allowing one to mimic exactly a given
call to a PBLAS subroutine. Consequently, one can test the PBLAS with any possible
machine configuration as well as data layout. The obvious drawback of such generality is
that the input testing file is slightly longer and more complex than the input files used
for the sequential BLAS testers.

The PBLAS software follows an SPMD or data-parallel programming model. If a PBLAS
routine is called with an invalid value for any of its arguments, then it must report the fact
and terminate the execution of the program. In the model implementation, each routine,
on detecting an error, calls a common error-handling routine.

This input error checking aspect of the software is also tested. It is straightforward to
plug in an erroneous combination of input arguments and check that the error handler
behaves correctly. It is however interesting to notice that a PBLAS routine cannot ensure
that every process does indeed call this subroutine.

Since checking arguments in a global fashion would add a global synchronization step,
for efficiency purposes, the PBLAS routines only perform a local validity check of their
argument list. If a value is invalid in at least one process of the current context, the
program execution is stopped. As a result, different processes may have different values of
an argument that should be the same. thus causing non predictable results.. We comment
further on the problems of networks of heterogeneous computers in Section S below.

8 Case Studies on The Development of ScaLAPACIi and the iYAG llrumerical PVM Libm y

6 TESTING SCALAPACK

The ScaLAPACK test programs are modeled on those of LAPACK, but are not yet as
extensive as those of LAPACK. As well as the additional complexity mentioned above,
ScaLAPACK testing can put a serious strain on memory requirements since testing gen-
erally requires one or more additional copies of matrices to compute quantities such as the
residuals required for the error bounds. Currently the testing routines also serve as the
timing routines, but it is hope to change that in the future since the additional memory
requirements can severely limit the size of matrix.

Further details on testing and timing for ScaLAPACK can be found in Choi, Dongarra,
Ostrouchov, Petitet & Whaley (1995).,

'7 THE NAG NUMERICAL PVM LIBRARY

The NAG Library does not readily port to distributed memory machines, and many of
the routines in the Library are either not designed for parallel machines, or are performing
functions that are not appropriate in a parallel setting. Even if the Library were suitable,
the software support is such that we could not currently contemplate such a port. We
hope that in the future HPF (Koelbel, Loveman, Schreiber, Steele Jr. & Zosel 1994) may
prove to be a suitable vehicle, but the language and the compilers are not yet sufficiently
mature for us to seriously contemplate the use of HPF.

Following the ScaLAPACK lead NAG therefore took the somewhat reluctant step of
developing a parallel message passing library, based initially upon PVM (Geist, Beguelin,
Dongarra, Jiang, Manchek & Sunderam 1994). This library has been carefully designed
with the future very much in mind, both short term and longer term. In the short term
NAG are, at the time of writing, about to distribute an MPI (Snir, Otto, ,Huss-Lederman,
Walker & Dongarra 1996) version of the library, since MPI is set to become widely available
as the (de facto) standard message passing system. In the longer term the hope is that
this library, together with the Fortran 90 Library, can feed into an HPF library activity.
Thus, as with ScaLAPACK, NAG has adopted an SPMD model of parallelism for the
library, in which (possibly) many instances of a single program are executed concurrently
on different data sets; NAG has tried to limit the use of PVM as much as possible, using
the BLACS wherever it is sensible to do so; and, in common with ScaLAPACK, assumes
a two-dimensional logical grid.

The use of the SPMD model is not always straightforward. for example in the quadrature
algorithms a farming model is more natural, but it was nevertheless felt sensible to adhere
to the SPMD model since that is the current HPF model of programming, and it does
not really place any undue restriction on the user. The user may spawn off other tasks so
long as the group of library tasks behave according to the SPMD model. NAG are also
providing utility routines to further insulate the user and themselves from the underlying
message passing system. Before calling the library the user calls an initialization routine,
and calls an exit routine at the end. along the lines of the following example.

,

Helemgeneous Computing Environments 9

* . . cal l t h e NAG i n i t i a l i z a t i o n rou t ine . .
call nagspawn(. . .)

ca l l d02hafp(. . .
cal l f07adf (. . .)

* .. cal l t h e NAG clean-up routine ..
ca l l nagexit(. . .)

Initializing PVM and/or the BLACS (or any other future communication system that
is adopted) is done within nagspawn. From the user’s perspective the error handling
mechanism and interface is the same as for the Fortran 77 Library, with some additional
error checks such as ensuring that a global variable has the same value on all processors.

Naturally NAG have adapted their stringent test programs, in a similar manner to
ScaLAPACK, to the distributed memory environment in order to maintain their reputa-
tion for numerical quality and reliability.

8 HETEROGENEOUS COMPUTING ENVIRONMENTS

In principal, both ScaLAPACK and the NAG parallel library can be run on networks
of heterogeneous machines, but in this final section we mention the special challenges
associated with writing and testing numerical software that is to be executed on net-
works containing heterogeneous processors, that is, processors which perform floating
point arithmetic differently. This includes not just machines with different floating point
formats and semantics such as Cray vector computers and workstations performing IEEE
standard floating point arithmetic, but even supposedly identical machines running dif-
ferent compilers, or even just different compiler options or runtime environments.

Moreover, on such networks, floating point data transfers between two processes may
require a data conversion phase and thus a possible loss of accuracy. It is therefore imprac-
tical, error-prone and difficult to compare supposedly identical computed values on such
heterogeneous networks. As a consequence, the validity and correctness of the tests per-
formed can only currently be guaranteed for networks of processors with identical floating
point formats.

It is not enough to require identical floating point representation across all processors
of a parallel computer. The way arithmetic is performed should also agree to some extent.
For example, having a processor in the network that does not produce and recognize
denormalized number representations can cause problems when receiving such a number
from other processors that can properly generate denormalized numbers. We have not
yet tried to make the testing programs generate input data on the edge of the floating
point number range, in order to identify and trap these problems. Whilst this is highly

'

10 Case Studies on The Development of ScaL.4 PA CIi and the NAG Xumerical P VM Library

desirable, we have not yet sufficiently investigated the generation of such test problems
to be confident of exposing the difficulties.

Further discussion of the dangers of heterogeneous computing can be found in Demmel,
Dongarra, Hammarling, Ostrouchov & Stanley (1996) and citeasnounBCDDDHPRSW:UTK-
cs:96.

9 FURTHER INFORMATION

Many working notes have been produced as part of the LAPACK and ScaLAPACK
projects and these are available from h t t p : / / w w . n e t l i b .org/lapack/lawns/

10 ACKNOWLEDGMENTS

We wish to thank our ScaLAPACK colleagues at the University of Tennessee at Knoxville
and the University of California at Berkeley, as well as colleagues at NAG involved with
the development of parallel software, for their valuable input.

REFERENCES

Anderson, E., Bai, Z., Bischof, C. H., Demmel, J., Dongarra, J. J., Du Croz, J., Greenbaum,
A., Hammarling, S., Mck'enney, A., Ostrouchov, S. & Sorensen, D. C. (1995). LAPACK
Users' Guide, 2nd edn, SIAM, Philadelphia, PA, USA. (Also available in Japanese,
published by Maruzen, Tokyo, translated by Dr Oguni).

Anderson, E., Dongarra, J. J. & Ostrouchov, S. (1992). Installation guide for LAPACK.
LAPACK Working Note No.41, Technical Report CS-92-151, Department of Computer
Science, University of Tennessee, 107 Ayres Hall, Knoxville, T N 37996-1301, USA.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J. J., Ostrouchov, S., Petitet, A., Stanley, K.,
Walker, D. W. & Whaley, R. C. (1995). ScaL44PACK: A portable linear algebra library
for distributed memory computers - design issues and performance, in J. J. Dongarra,
I<. Masden & J. Wainiewski (eds), Applied Parallel Computing, Springer-Verlag, Berlin.
Germany, pp. 95-106. (Proceedings of the Second International Workshop, PARA '95,
Lyngby, Denmark. See also LAPACK Working Note No.95).

Choi, J., Dongarra, J. J., Ostrouchov, S.: Petitet, A., Walker, D. 117. & Whaley, R. C.
(1995a). The design and implementation of the redhction routines in ScaLAPACK, in
J. J. Dongarra, L. Grandinetti, G. R. Joubert 8.1 J. Kowalik (eds), High Performance
Computing: Technology, Methods and Applications, Advances in Parallel Computing,
10, Elsevier, Amsterdam, The Netherlands, pp. 177-202. (See also LAPACK Working
Note No.80).

Choi, J., Dongarra, J. J., Ostrouchov, S., Petitet, A., Walker, D. W. & Whaley, R. G.
(1995b). A proposal for a set of parallel basic linear algebra subprograms, in J. J. Don-

Acknowledgments 11

garra, K. Masden & J. Wainiewski (eds), Applied Parallel Computing, Springer-Verlag,
Berlin, Germany, pp. 107-1 14. (Proceedings of the Second International Workshop.
PARA ‘95, Lyngby, Denmark. See also LAPACK Working Note No.100).

Choi, J., Dongarra, J. J., Ostrouchov, S.? Petitet, A. & Whaley, R. C. (1995). Installation
guide for ScaLAPACK. LAPACK Working Note No.93, Technical report, Department of
Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301,
USA.

Choi, J., Dongarra, J. J. & Walker, D. W. (1995a). The design of a parallel dense linear
algebra software library: Reduction to Hessenberg, tridiagonal and bidiagonal form,
Numerical Algorithms 10: 379-399. (See also LAPACK Working Note No.92).

Choi, J., Dongarra, J. J. & Walker, D. W. (1995b). Parallel matrix transpose algorithms
on distributed memory concurrent computers, Parallel Computing 21: 1387-1405.

Demmel, J., Dongarra, J. J., Hammarling, S., Ostrouchov, S. &. Stanley, K. (1996).
The dangers of heterogeqeous network computing: Heterogenous networks considered
harmful, Proceedings Heterogeneous Computing Wo rkshop ‘96, I EEE Com pu t er Society
Press, Los Alamitos, CA, USA, pp. 64-71.

Dodson, D. S. (1983). Corrigendum: Remark on “Algorithm 539: Basic Linear Algebra
Subroutines for FORTRAN usage”, ACM Trans. Math. Software 9: 140. (See also
(Lawson et al. 1979) and (Dodson & Grimes 1982)).

Dodson, D. S. & Grimes, R. G. (1982). Remark on algorithm 539: Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Software 8: 403-404. (See also
(Lawson et al. 1979) and (Dodson 1983)).

Dongarra, J. J., Bunch, J. R., hloler? C. B. & Stewart, G. W. (1978). LIIVPACK Users’
Guide, SIAM, Philadelphia, PA, USA.

Dongarra, J. J., Du Croz, J., Duff, I. S. & Hammarling, S. (1990). A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Software 16: 1-28. (Algorithm 679).

Dongarra, J. J., Du Croz, J., Hammarling, S. & Hanson, R. J. (1988). An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Software 14: 1-32,
399. (Algorithm 656).

Dongarra, J. J., Du Croz, J., Hammarling, S., Wainiewski, J. & Zemla, A. (1995). A
proposal for a Fortran 90 interface for LAPACK, in J. J. Dongarra, K. Illasden &
J. Was’niewski (eds), Applied Parallel Computing, Springer-Verlag, Berlin, Germany,
pp. 158-165. (Proceedings of the Second International Workshop, P.4R.4 ’95, Lyngby.
Denmark. See also LAPACK Working Note No.101).

Dongarra, J. J., Duff, I. S., Sorensen, D. C. & van der Vorst, H. A. (1991). Soloing Linear
Systems on Vector and Shared hfemory Computers, SIAM. Philadelphia, PA. USA.

Dongarra, J. J. & Grosse, E. (1987). Distribution of mathematical software via electronic
mail, Communs Ass. comput. Mach. 30: 403-407.

Dongarra, J. J. & Hammarling, S. (1990). Evolution of numerical software for dense linear
algebra, in M. G. Cox & S. Hammarling (eds), Reliable Numerical Computation, Oxford
University Press, Oxford, UK, pp. 297-327.

Dongarra, J. J., Pozo, R. & Walker, D. W. (1993). An object oriented design for high
performance linear algebra on distributed memory architectures, Proceedings of OOK-

.

I V L

12 Case Studies on The Development of ScaLAPACK and the X,4G Sumencal PVM Library

SKI '99: First Object-Oriented Numerics Conference, Rogue Wave Software, Corvallis,

Software distribution using
Xnetlib, Technical Memorandum ORNL/TM-12318, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, USA.

Dongarra, J. J. & Whaley, R. C. (1995). A users' guide to the BLACS v1.0. LAPACK
Working Note No.94, Technical Report CS-95-281, Department of Computer Science,
University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA:

Feldman, S. I., Gay, D. M., Maimone, M. W. & Schryer, N. L. (1991). A Fortran-to-C
converter, Computer Science Technical Report 49, AT&T Bell Laboratories, Murray
Hill, NJ 07974, US.

Geist, A., Beguelin, A., Dongarra, J. J., Jiang, W., Manchek, R. & Sunderam, V. (1994).
PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel
Computing, MIT Press, Cambridge, MA, US.4.

Hammarling, S. (1993). Development of numerical software libraries for vector and parallel
machines, in A. E. Fincham & B. Ford (eds), Parallel Computation, Oxford University
Press, Oxford, UK, pp. 11-35.

Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Steele Jr., G. L. S; Zosel, &I. E. (1994).
The High Performance Fortran Handbook, The MIT Press, Cambridge, MA, USA.

Lawson, C. L., Hanson, R. J., Kincaid, D. & Iirogh, F. T. (19i9). Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Trans. Math. Software 5: 308-323. (Algo-
rithm 539. See also (Dodson & Grimes 1982) and (Dodson 1983)).

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. & Dongarra, J. J. (1996). MPI:
The Complete Reference, MIT Press, Cambridge, MA, USA.

Whaley, R. C. (1995). Installing and testing the BLACS, Technical report, Department of
Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, T N 37996-1301,
USA. (See http://www.netlib.org/blacs/BLACS/Install.html).

OR, USA, pp. 257-264.
Dongarra, J. J., Rowan, T. H. & Wade, R. C. (1993).

http://www.netlib.org/blacs/BLACS/Install.html

