Measurements in film cooling flows: Hole L/D and turbulence intensity effects

PDF Version Also Available for Download.

Description

Hot-wire anemometry of simulated film cooling was used to study the influence of freestream turbulence intensity and film cooling hole length-to-diameter ratio on mean velocity and turbulence intensity. Measurements were made in the zone where the coolant and freestream flows mix. Flow from one row of film cooling holes with a streamwise injection of 35{degree} and no lateral injection and with a coolant- to-freestream flow velocity ratio of 1.0 was investigated under freestream turbulence levels of 0.5 and 12%. Coolant-to-freestream density ratio was unity. Two length-to-diameter ratios for the film cooling holes, 2.3 and 7.0, are tested. Results show that ... continued below

Physical Description

13 p.

Creation Information

Burd, S.W.; Kaszeta, R.W. & Simon, T.W. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hot-wire anemometry of simulated film cooling was used to study the influence of freestream turbulence intensity and film cooling hole length-to-diameter ratio on mean velocity and turbulence intensity. Measurements were made in the zone where the coolant and freestream flows mix. Flow from one row of film cooling holes with a streamwise injection of 35{degree} and no lateral injection and with a coolant- to-freestream flow velocity ratio of 1.0 was investigated under freestream turbulence levels of 0.5 and 12%. Coolant-to-freestream density ratio was unity. Two length-to-diameter ratios for the film cooling holes, 2.3 and 7.0, are tested. Results show that under low freestream turbulence conditions, pronounced differences exist in the flowfield between L/D=7.0 and 2.3; the differences are less prominent at high freestream turbulence intensities. Generally, short-L/D injection results in ``jetting`` of the coolant further into the freestream flow and enhanced mixing. Other changes in the flowfield attributable to a rise in freestream turbulence intensity to engine- representative conditions are documented. 15 figs, 2 tabs, refs.

Physical Description

13 p.

Notes

OSTI as DE97051909

Source

  • 1996 international mechanical engineering congress and exhibition, Atlanta, GA (United States), 17-22 Nov 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97051909
  • Report No.: DOE/MC/29061--97/C0776
  • Report No.: CONF-961105--23
  • Grant Number: FC21-92MC29061
  • Office of Scientific & Technical Information Report Number: 464343
  • Archival Resource Key: ark:/67531/metadc683442

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Nov. 11, 2015, 12:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burd, S.W.; Kaszeta, R.W. & Simon, T.W. Measurements in film cooling flows: Hole L/D and turbulence intensity effects, article, December 31, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc683442/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.