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Abstract 

The multiple signal characterization (MUSIC) algorithm 
locates multiple asynchronous dipolar sources from elec- 
troencephalography (EEG) and magnetoencephalography 
(MEG) data. A signal subspace is estimatedfrom the data, 
then the algorithm scans a single dipole model through a 
three-dimensional head volume and computes projections 
onto this subspace. To locate the sources, the user must 
search the head volume for local peaks in the projection 
metric. Here we describe a novel extension of this approach 
which we refer to as RAP (Recursively Applied) MUSIC. 
This new procedure automatically extracts the locations of 
the sources through a recursive use of subspace projec- 
tions, which uses the metric of principal correlations as a 
multidimensional form of correlation analysis between the 
model subspace and the &a subspace. The dipolar orien- 
tations, a form of “diverse polarization,” are easily 
extracted using the associated principal vectors. 

1. Introduction 
The problem of localizing the sources of event related 

scalp potentials (the electroencephalogram or EEG) and 
magnetic fields (the magnetoencephalogram or MEG) can 
be formulated in terms of finding a least squares fit of a set 
of current dipoles to the observed data. Inverse methods 
based on direct minimization of the squared error through 
gradient-based optimization or simplex searches often lead 
to improper locations of the sources due to trapping in local 
minima. In an attempt to overcome this problem, we exam- 
ined the use of signal subspace methods that are common 
in the array signal processing literature (cf. [3]). The 
method that we used, a variant on the MUSIC algorithm 
introduced in [9], replaces the multiple dipole directed 
search with a procedure in which a single dipole is scanned 
through a grid confined to a three dimensional head or 
source volume. At each point on this grid, the forward 
model for a dipole at this location is projected against a sig- 
nal subspace that has been computed &om the EEG and/or 
MEG (E/MEG) data. The locations on this arid where the 
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tal Health Grant R01-MH53213, by the National Eye Institute 
Grant RO1-EY08610-04, and by Los Alamos National Labora- 
tory, operated by the University of California for the United States 
Department of Energy under contract W-7405-ENG-36. 

source model gives the best projection onto the signal sub- 
space correspond to the dipole locations. We also show in 
[7] that at each location we do not need to test all possible 
dipole orientations, but instead can solve a generalized 
eigenvalue problem whose solution gives us the orientation 
of the dipole (the “diverse polarization” [ 11, [9]) which 
gives the best fit to the signal space for a source at that loca- 
tion. 

One of the major problems with the MUSIC method, 
and one that is addressed by the new approach described 
here, is how we choose the locations which give the best 
projection on to the signal subspace. In the absence of noise 
and with perfect head and sensor models, the forward 
model for a source at the correct location will project 
entirely into the signal subspace. In practice, of course, 
there are errors in the estimate of the signal subspace due to 
noise, and errors in the forward model due to approxima- 
tions in our models of the head and data acquisition system. 

An additional problem is that we compute the metric 
only at a finite set of grid points. The effect of these practi- 
cal limitations is that the user is faced with the problem of 
searching the gridded source volume for “peaks” and 
deciding which of these peaks correspond to true locations. 
It is important to note that a local peak in this metric does 
not necessarily indlcate the location of a source. Only when 
the forward model projects entirely into the signal subspace 
- or as close as one would expect given errors due to noise 
and model mismatch - can we infer that a source is at that 
location. The effect of this limitation is that some degree of 
subjective interpretation of the MUSIC “scan” is required 
to decide on the locations of the sources. This subjective 
interpretation is clearly undesirable and can also lead to the 
temptation to incorrectly view the MUSIC scan as an image 
whose intensity is proportional to the probability of a 
source being present at each location. 

2. Background 
Quasi-static approximations of Maxwell’s equations 

govern the relationship between neural current sources and 
the EMEG data that they produce. The measurements can 
be expressed as an explicit function of primary current 
activity; the passive volume currents are implicitly embed- 
ded in a “lead field” formula. The model should also 
account for the sensor characteristics of the measurement 
modality, such as gradiometer orientation and configura- 
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tion in MEG or differential pairs in EEG. We show in [6] 
that these effects can be incorporated into simple transfor- 
mations that modify the basic lead field kernels. The result 
is that our EEG or MEG measurement fm(r) at sensor 
location r may be expressed as 

where V is the volume of sources, j(r‘) represents the pri- 
mary current density at any point r’ in the volume, and 
g(r,  r’) is commonly known as the “lead field vector” (cf. 
[ 121). If we assume that the primary current exists only at a 
d i sc re t e  po in t  r q ,  i .e.,  t he  pr imary current  i s  
j(r’)S(r’ - rq) , where S(r’ - r ) is the Dirac delta func- 
tion, then ( I )  simplifies in E M 6 G  to f,(r) = g(r ,  rq) . q 
where q is the moment of a current dipole at rq . 

We assume here that our source consists of p current 
dipole sources. We assume simultaneous recordings at rn 
sensors for n time instances. We can express the rn x n 
spatio-temporal data matrix as 

Fm = U GO-^^) . .. eT. (2)  

We refer to the m x 3 matrix G(rqi) as the dipole “gain 
matrix” (cf. [7]), that maps a dipole at r . into a set of mea- 
surements. The three columns of the gain matrix, G(rqi),  
represents the possible forward fields that may be gener- 
ated by the three orthogonal orientations of the i th dipole 
at the rn sensor locations {rl, . . .) rm} . The columns of 
represent the time series associated with each of the three 
orthogonal components of each dipole, i.e., with each col- 
umn of the gain matrix. 

For the “fixed” dipole model, whose moment orientation 
is time invariant, we can separate the orientation of each 
source from the moments as [7]: 

41 

(3) 
... . . . . . . . . . 

[ 0 uqJ [sqp(t1) ... sqp(tnd 
such that qi(ti) = IC .s .(t.) , where u . is a unit norm ori- 

41 4‘ 1 4’ 
entation vector. We assume that the set of p dipoles is suf- 
ficiently spatially separated such that their gain matrices 
are unambiguous. The dipolar time series, however, may be 
linearly dependent, such that the rank of time series matrix 
is less than p . We therefore express (3) as 

(4) 
where p = { pl, . . .) p,} represents r clusters of dipoles, 
with the i th cluster comprising p i  synchronous dipoles 
with the location parameter set pi = { rq l ,  ..., r q P i ) .  The 
set 8 = { u . . . , ur } contains the corresponding unit norm 

vectors found as the extension of (3) to pi dipoles. The i th 
column of A(p, e) is therefore found as 

a ( p ,  ui) = G(rql) ... G(r ) ui = G(pi)ui (5 )  
We refer to this column vector as a “p i  -dipolar topogra- 
phy.” Each column of A(p, e) is therefore a pi-dipolar 
topography, with a corresponding time series found as the 
i th column of S . By regrouping the parameters in this 
manner, both A(p, e) and S are of full column rank and 
equal to the rank of our noiseless data matrix Fm . 

1 4Pi 1 

3. Subspace Correlations 
Under the assumptions of spatially white i.i.d. noise, we 

may express the expected outer product of a noise contam- 
inated matrix F = F ,  + N as 

n 
R F =  E { F F  T } = ASTSAT + E(n(ti)nT(ti)) (6) 

i =  1 

(7) 
where AF = A, + ncNz  is the r x r diagonal matrix com- 
bining both the model and noise eigenvalues, and 
An = ncTNZ is the ( m  - r )  x (rn - r )  diagonal matrix of 
noise-only eigenvalues. Therefore an eigendecomposition 
of R,  yields r eigenvalues greater than noN.  The r 
dimensional subspace spanned by Qs is the same as the r 
dimensional subspace spanned by the columns of A(p, e). 
We refer to this space as the signal subspace. The remain- 
ing rn - r vectors in Qs span the orthogonal signal sub- 
space, or noise-only subspace, 

We may estimate as from an appropriate eigenanalysis 
of the data matrix. We can find the source parameters, and 
hence the dipole locations, by comparing the column space 
of the matrix A(p, e) to this estimated signal subspace. We 
use the metric of subspace correlations [2] to measure the 
fit between these two subspaces. Since the signal subspace 
is spanned both by the columns of A(p, 9) and the eigen- 
vectors in Q, , there must exist a full rank ( r  x r )  transfor- 
mation matrix T relating the two spaces. The signal 
subspace is estimated from the data, such that we only have 
an approximation, 

= QsA,QS T + Qs I AnQs I T  

2 

2 

2 

I 

A(p, e)T = &s. (8) 
One approach to source localization using (8) is the 

weightedsubspacefitting (WSF) method (cf. [3], [lo], [13], 
[14]) in which the parameters { p, 8, T }  are found by min- 
imizing the squared error 

p s w  - A(p7 @)TI(; (9) 
where W is a weighting matrix designed to improve the 
estimator performance [ 141. Here we propose an alterna- 
tive procedure in which, rather than solving directly for the 
parameter set { p, 8, T }  , we instead examine the angles 
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between the subspaces spanned by A(p,  0) and Os using 
subspace correlations. 

The subspace correlation function subcorr{A, &s} = 
{ sl, s2, . . . , s r }  defined in the Appendix yields a set of r 
ordered scalars 1 2 s1 2 . . . 2 s ,  2 0 ; additional details can 
be found in [2], [5]. These scalars are equal to the cosines 
of the principal angles between pairs of principal vectors 
chosen from the two subspaces A and &s, where r is the 
minimum of the ranks of the two subspaces. The set of r 
principal vectors for each of the two subspaces are 
orthonormal. The first pair of principal vectors are chosen 
using one vector from each of the two subspaces so as to 
minimize the angle between the two vectors. The second 
pair are again chosen to minimize the angle between the 
vectors from the two spaces, but under the constraint that 
the second principal vector from A must be orthogonal to 
the first principal vector from A ,  and similarly for the first 
two principal vectors from &s. The process is repeated 
until a set of r pairs of principal vectors have been found, 
along with the associated ordered correlations correspond- 
ing to the cosines of the angles between each pair. 

The computation of the subspace correlation between 
the signal subspace as and the matrix A(p, e) provides 
the fundamental basis for the RAP MUSIC algorithm. The 
significance of the subspace correlation function is that if 
one subspace is entirely contained within another, then the 
cosines of all the principal angles will equal unity. Con- 
versely, if the two spaces are orthogonal, the cosines of all 
the principal angles will equal zero. For cases between 
these extremes, the set of cosine values provide a measure 
of the similarity between the two subspaces. The MUSIC 
metric corresponds to computing a subspace correlation 
between a single topography (the “manifold”) and the esti- 
mated signal subspace. 

The subspace correlations lead to a natural extension of 
MUSIC. We can recursively build up our source estimate 
by appending putative sources to the model matrix and 
using the minimum of the subspace correlations as a metric 
for adding a new source. We define the function 
distance(A, &s} [2] as a function of the minimum sub- 
space correlation, 

(10) 
2 distance{A, &s} = ,/1 - s r  . 

Assuming that the rank of A(p, e) is less than or equal to 
that of the signal subspace estimate &s, the distance as 
defined in (IO) will approach zero as the column space of 
A(p, e) matches that of &s. Consequently we can deter- 
mine the parameters { p ,  e} of the sources that produced 
the estimated signal subspace as the set that jointly mini- 
mize the distance between our topographies matrix 
A(p,  e) and our estimated signal subspace &s. 

For multiple dipoles, the key concept that makes sub- 
space distance easier to use than least-squares fitting is that 

if A(p, 0) is parallel to Qs,  then so is each column (each 
topography)  of A @ , @ ) .  S i n c e  s ,  = 
win{ subcorr{ A ,  dS}} corresponds to the linear combi- 
nation of the columns of A that minimizes the subspace 
correlation between the two spaces, it follows that the i th 
column of A , i.e., the i th independent topography, must 
have a correlation greater than or equal to this minimum 
subspace correlation, 

subcorr{a(pi, ui) ,  &s} 2 rninsubcorr{A(p, e), &s} . ( 11 )  

In our model, each column of A represents an indepen- 
dent topography, where each topography may comprise 
multiple synchronous dipoles. For exemplary purposes, let 
us assume that each topography represents a single current 
dipole. Let us further assume that we have a perfect signal 
subspace estimate Os, in which case the minimum sub- 
space correlation will be unity for the true parameters 
{ p ,  e} . From ( I I ) ,  each of the independent topographies 
formed by each dipole must also have a correlation of unity 
with the subspace. We can therefore find the dipole param- 
eters by searching for the p dipole locations that each have 
unity correlation. 

Thus a search strategy for minimizing the distance 
between the topographies matrix and the rank r signal sub- 
space estimate is to search for a single dipole model whose 
subspace correlation is maximized with respect to &s . We 
should find r such dipole locations in our dipolar space, 
each yielding a correlation value of unity. This search strat- 
egy is the basis of the MUSIC algorithm that we described 
in [7]. 

Before proceeding to a brief description of MUSIC and 
RAP-MUSIC, we first address the problem of finding the 
orientation vector ui . The dipole parameters are chosen to 
maximize 

subcorr{a(pi, ui), &s} 
However, ui simply represents a linear combination of the 
columns of the gain matrix G(p,) . We can avoid searching 
for the optimal orientation vector by noting that the maxi- 
mum of t h e  subspace  co r re l a t ion  vector  
subcorr{G(pi), &s} gives us the best way of combining 
the columns of G(p,) so that they are as close as possible 
to the signal subspace. We can therefore find the optimal 
orientation vector ui for each candidate location p i  as that 
which maximizes the subspace correlation at that location, 
1.e.: 

m a {  subcorr{G(pi), &s}} (13) 
Therefore we can find the dipole locations by solving 

(13) at each candidate dipole location, and then searching 
for the true locations at which this maximum correlation 
equals, or is sufficiently close to, unity. Once we find these 
locations, we can then explicitly form the corresponding 
best orientation (from the Appendix, set ui to “xl ” and 
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scale to unity norm), to determine the independent topog- 
raphy vector a ( p i ,  ui) . 

4. RAP-MUSIC 
In [7] we adapted a “diversely polarized” form of 

Schmidt’s original multiple signal characterization 
(MUSIC) algorithm ([l], [9]) to the problem of multiple 
point dipoles. In terms of the subspace correlations dis- 
cussed here,  le t  s1 be the principal correlation, 
m{ subcorr$G(r$ &s}}. The MUSIC metric in [7] is 
therefore 1 - s1 , e ectively the square of the max correla- 
tion of a dipole gain matrix with the noise-only subspace, 
the original proposal by Schmidt. As we discussed in [7], 
plotting the inverse of this measure makes graphical loca- 
tion of the peaks easier; however, since that publication we 
have found it more informative to plot the principal corre- 
lation, since correlation is a direct measure of how well the 
model fits the data 

Problems with the use of MUSIC arise when there are 
errors in the estimate of the signal subspace and the sub- 
space correlation is computed at only a finite set of grid 
points. The largest peak is usually easily located by search- 
ing over the grid for the largest correlation; however, the 
second and subsequent peaks must be located by means of 
a three-dimensional “peak-picking” routine. While locat- 
ing multiple peaks in a single parameter case (as is com- 
mon in much of the MUSIC array signal processing 
literature) is possible, we found the problem confounding 
in even the simplest case of single dipolar topographies, 
where we must search for peaks in a three-dimensional 
space. Graphically searching for multiple peaks in two- 
dipolar topographies (a six-dimensional space) is generally 
not practical. 

The RAP-MUSIC methods overcomes this problem by 
recursively building up the model. We assume that our 
independent topographies each comprise one or more 
&poles. We search first for the single dipolar topographies, 
then the two-dipolar topographies, and so forth. As we dis- 
cover each topography model, we add it to our existing 
model and continue the search. We build the source model 
by recursively applying the subspace correlation measure, 
the key metric of MUSIC, to successive subspace correla- 
tions. 

For exemplary purposes, we assume that the r indepen- 
dent topographies each comprise a single dipole. Concep- 
tually, RAP-MUSIC begins by finding the first dipole 
location to maximize (13).  Single dipole locations are 
readily found by scanning the head volume. At each point 
in the volume, we calculate 

(14) 
where {sl, s2, ...} is the set of subspace correlations. We 
find the dipole location F a ,  which maximizes the primary 

{ sl, s2, . . . } = subcorr{ G(ry), &s} 

correlation sl, then refine this location using a directed 
search algorithm. As discussed in the Appendix, the corre- 
sponding dipole orientation GI is easily obtained from the 
subcorr{G(Pql), &s} routine, and we designate our 
topography model comprising this first dipole as 

To search for the second dipole, we again search the 
head volume; however, at each p8yt  in the head, we first 
form the model matrix M = [A , G(iq)] . We then cal- 
culate 

{ sl, s2, . . . } = subcorr{ M ,  &s} (16) 
but now we find the dipole point that maximizes the second 
subspace correlation, s2 ; the first subspace correlation 
should already account for a(?ql, kl) in the model. Again, 
an unconstrained directed search may be used to refine this 
second location, since the metric does not peak at the first 
solution. The corresponding dipole orientation 2, may be 
readily obtained by projecting this second topography 
against the subspace, ~ubcorr{G(?~,) ,  &s}, and we 
append this to our model to form 

We repeat the process r times, maximizing the k th sub- 
space correlation at the kth pass, k = 1, ..., r .  The final 
iteration is effectively attempting to minimize the subspace 
distance between the full r topographies matrix and the 
signal subspace estimate. 

If the r topographies comprise rl single-dipolar topog- 
raphies and r2 2-dipolar topographies, then RAP-MUSIC 
will first extract the rl single dipolar models. At the rl + 1 
iteration, we will find no single dipole location that corre- 
lates well with the subspace. We then increase the number 
of dipole elements per topography to two. We must now 
search simultaneously for two dipole locations, such that 

is maximized for the subspace correlation srl + , where 
p = { rq l ,  ry2} comprises two dipoles. If the combinato- 
rics are not impractical, we can exhaustively form all pairs 
on our grid and compute maximum subspace correlations 
for each pair. The alternative is to begin a two-dipole non- 
linear search with random initialization points to maximize 
this correlation. This low-order dipole model can be easily 
performed using standard minimization methods. 

We proceed in this manner to build the remaining r2 2- 
dipolar topographies. As each pair of two dipoles is found 
to maximize the appropriate subspace correlation, the cor- 
responding pair of dipole orientations may be readily 
obtained from subcorr{G(p), hS} ,  as described in the 
Appendix. Extensions to more dipoles per independent 
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Fig. 1 : Simulated MEG data, for 229 sensors by 50 
time slices. True sources are three asynchronous 
fixed dipoles. Gaussian white noise was added 
such that the squared Frobenius norm of the 
noiseless data matrix was 3.16 times that of the 
noise-only matrix, i.e. 10 dB SNR 
topography are straightforward, although the complexity of 
the search obviously increases. In any event, the complex- 
ity of the search will always remain less than the least- 
squares search required for finding all dipoles simulta- 
neously. 

Once we find the optimal { p ,  e},  we may find the 
remaining linear temporal parameters as 

Le., we use the pseudoinverse of A@, e), as discussed in 
[7] and its references. 

ST = Ai@,  6)F (19) 

5. Example 
We illustrate the ability of RAP-MUSIC to extract mul- 

tiple correlation peaks using simulated MEG data for 
dipoles in a spherical head; see [6], [7] for forward model 
specifics. We arranged 229 radially-oriented sensors about 
2 cm apart on the upper hemisphere of a 12 cm virtual 
sphere. Each sensor was modeled as a first-order gradiom- 
eter with a baseline separation of 5 cm. For exemplary pur- 
poses, we arranged three sources in the same z-plane, 
z = 7 cm. We fixed the orientation of each source and 
assigned each an independent time series. We then added 
white Gaussian i.i.d. noise on each sensor channel. The 
noiseless and noisy data are displayed in Fig. 1. 

An SVD of the noisy spatio-temporal data matrix 
clearly showed the signal subspace to be rank three; how- 
ever, to illustrate insensitivity to rank overselection, we 
chose a signal subspace of rank five. We created a 1.5 mm 
spaced grid in the correct z -plane and computed the three- 
dimensional gain matrix G(r,J for each location on the 

-2 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 

Fig. 2: MUSIC scan of dipolar models, imaging 
the principal correlation between model and sig- 
nal subspace. The arrows indicate the true loca- 
tions. The noise and partial ambiguities of 
dipolar models makes discerning each peak diffi- 
cult. The maximum correlation was located in the 
grid, then used to initiate a directed search for a 
refined maximum of 99.1 % correlation at the cor- 
rect solution of [1.0,0.5,7.0] cm (rounded to 
1 mm). 
grid. We then computed the standard MUSIC metric (14) of 
the correlations between each gain matrix and the rank five 
signal subspace. As discussed in [5],  our preference is to 
view the maximum correlations { s1 } directly as an image; 
however, for publication purposes here we resort to the 
conventional MUSIC display of plotting 1/( 1 - sl) , as 
displayed in Fig. 2. Note that in this figure there are three 
peaks corresponding to the correct dipole locations and a 
fourth peak which represents an incorrect location. This 
fourth peak corresponds approximately to a dipole location 
that would give a local minimum in a least squares search. 
Since the intensity 1/( 1 - sl) corresponding to this incor- 
rect source location exceeds that of the third true source 
location, a MUSIC scan which picks out the three largest 
peaks would mislocate one of the dipoles. As we will see 
below, RAP MUSIC avoids this problem. We located the 
maximum correlation using a directed search and obtained 
the dipolar orientation at this point to form the first spatial 
topography (15). We then concatenated this topography 
with each grid point and reran the subspace correlation of 
the combined model (16). In  Fig. 3 we see the MUSIC scan 
of the second subspace correlation, and we observe that the 
first source is now suppressed in the metric. 

2 

2 

Since this first peak is suppressed, we readily perform 
an unconstrained directed-search for the maximum of the 
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 

Fig. 3: MUSIC scan of second principal correla- 
tion, holding constant the first source from Fig. 2. 
The MUSIC peak from the first source is sup- 
pressed, and we readily performed a directed- 
search for the maximum of this second correla- 
tion, 99.1% a t  the correct solution of 
[ 0.0, 0.0,7.0] . 
second subspace correlation. With the second source 
located, we again extracted its orientation and formed the 
two source topography ( I7) .  We then repeated the correla- 
tion analysis to yield the MUSIC image of the third sub- 
space correlation, displayed in Fig. 4. Again, a directed- 
search algorithm readily locates the peak of this metric. 
The other smaller peak in this image is spurious; after fix- 
ing the third source, a search for a fourth source yielded a 
maximum correlation of 26% and the algorithm was prop- 
erly terminated. 

6. Conclusions 
RAP-MUSIC is an extension of the MUSIC algorithm 

for E/MEG source localization that overcomes some of the 
problems encountered using the basic MUSIC method 
described in [7].  Problems with the use of MUSIC arise 
when there are errors in the estimate of the signal subspace 
and the subspace correlation is computed at only a finite set 
of grid points. Locating sources requires a three-dimen- 
sional “peak-picking” routine. Suppose that an incorrect set 
of locations are picked. While individually each of the 
dipoles may have good correlations with the signal sub- 
space, there is no guarantee that their combined source 
model has a small distance from the signal subspace, since 
we test only one dimension at a time. The RAP-MUSIC 
methods overcomes this problem by recursively building 
up the source estimate and comparing this full model to the 
signal subspace. By modifying our definition of the source 

-c 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 

Fig. 4: MUSIC scan of third principal correlation, 
holding constant the first two sources. The 
MUSIC peaks from the first two sources are sup- 
pressed, and we readily performed a directed- 
search for the maximum of this third correlation, 
99.1% at the correct solution of [-1.0, -1.0,7.0]. 

matrix we are also able to locate synchronous sources using 
the RAP-MUSIC algorithm. In [5],  we describe this new El 
MEG spatio-temporal model, which we refer to as spatially 
independent topographies (SPITS), that allows direct appli- 
cation of RAP-MUSIC to fixed, “rotating” and synchro- 
nous dipolar sources. 

By maximizing each successive subspace correlation, 
the RAP-MUSIC approach solves the multiple peak search 
problem, since each peak corresponds to a separate corre- 
lation value. We also solved a second, more subtle issue 
regarding this search. In a subsequent review of the signal 
processing literature for similar approaches, we found two 
comparable MUSIC algorithms, S-MUSIC [8] and IES- 
MUSIC [ll], with the latter introduced as an extension of 
the former. These “successive” MUSIC algorithms were 
detailed for two single-parameter independent sources. The 
possibility of extending the successive approach to more 
sources in a manner similar to RAP-MUSIC is mentioned, 
but specifically not pursued ([1 13, Remark 2). Both meth- 
ods, however, implement the successive search in a projec- 
tion matrix approach different from the subspace 
correlations approach of RAP-MUSIC. As pointed out in 
[l I], both techniques require that the search for the second 
source algorithmically avoid the first location. By recur- 
sively shifting to the next subspace correlation, the RAP- 
MUSIC algorithm bypasses this problem of previous solu- 
tion points and simply maximizes each subsequent correla- 
tion. 
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Appendix: Subspace Correlation 

Given two matrices, A and B , where A is m x p , and 
B is m x q , let r be the minimum of the ranks of the two 
matrices. The steps to compute the subspace correlations 
are as follows [2] (p. 585), 

1. Perform a singular value decomposition (SVD) of A , 
such that A = U A X A V A .  Similarly decompose B . 
Retain only those components that correspond to non- 
zero singular values. 

2. Form C = U A U B .  Compute the singular value 
decomposition, C = U c C c V c .  Form the sets princi- 
pal vectors Ua = UAUc and U ,  = UBVc for sets A 
and B respectively. 
The matrices U ,  and U ,  are each orthogonal, and the 

columns comprise the ordered set of principal vectors for 
matrices A and B respectively. The r ordered singular 
values 1 2 s1 2 . . . 2 sr 2 0 are extracted from the diagonal 
of C ,  . The angles cosOk = sk are the principal angles, 
representing the geometric angle between the principle 
vectors, or analogously, sk is the correlation between these 
two vectors. If both mat re of the same subspace 
dmension, the measure F 1 - sr = sine, is called the dis- 
tance between spaces A and B [2]. 

We may also readily compute the specific linear combi- 
nations of A and B that yielded these principal vectors and 
angles. By construction, we know that AX = U ,  for some 
X , and X is simply found as using the pseudoinverse of A : 
x = vAxi1 U ,  . Similarly, we compute Y = vBzjl V ,  . 

In E/MEG MUSIC processing, we may compute the 
subspace correlations between a dipole model and the sig- 
naI subspace, e.g., subcorr{G(rq), as}. In this case, the 
orientations in X represent the dipole orientations. By scal- 
ing the first orientation to unity, u1 =xxl/IIxlll , we obtain 
the unit dipole orientation that best correlates the dipolar 
source at rq with the signal subspace. For a two-dipolar 
topography, subcorr{ [G(rql), G(rq2)], as} , then u1 rep- 
resents the concatenation of the two dipole orientations, 
u = [ql , q2 ] , such that the two-dipolar topography 

(20) 
best correlates with the signal subspace. See [4], [5] for fur- 
ther discussions on subspace correlations and examples of 
applying them to the problem of EMEG head modeling. 

T 

T 
T 

T T T  

[G(‘q1)7 G(rq2)1u1 = G(rql)! l l  + G(rq2)!12 
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