10/13-97950

SANDIA REPORT

SAND97-8210 • UC-706 **Unlimited Release** Printed December 1996

Mar 001305

Butyl Rubber O-Ring Seals: Revision of Test **Procedures for Stockpile Materials**

Linda A. Domeier, Kevin R. Wagter

SF2900Q(8-81)

MENT IS UNLIMITED DISTRIBUTION OF THIS DOCI

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors or subcontractors.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information P.O. Box 62 Oak Ridge TN 37831

Prices available from (615) 576-8401, FTS 626-8401.

Available to the public from:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd. Springfield, VA 22161

SAND97-8210 Unlimited Release Printed December 1996

BUTYL RUBBER O-RING SEALS: REVISION OF TEST PROCEDURES FOR STOCKPILE MATERIALS

Linda A. Domeier and Kevin R. Wagter Materials Processing Department Sandia National Laboratories/California

ABSTRACT

Revised test procedures have been defined for butyl rubber O-ring seals which characterize actual O-ring test specimens in place of the test slab specimens now evaluated. This program was initiated by the W87 system group (Org. 2266) due to concern over the extent to which such test slab evaluations reliably assess the quality and performance of O-rings being accepted for W87 warhead use. Butyl rubber O-rings, in particular, provide critical environmental protection from moisture and oxygen for various components in the W87 and other weapon systems. The program also identified an alternative vendor to the current supplier.

Extensive testing showed little correlation between test slab and O-ring performance. New procedures, comparable in ease to those used with the traditional test slabs, were defined for hardness, compression set and tensile property testing on sacrificial O-ring specimens. Changes in the target performance values were made as needed and were, in one case, tightened to reflect the O-ring performance data. An additional study was carried out on O-ring and slab performance vs. cure cycle and showed surprisingly little sensitivity of the material performance to large changes in curing time.

Further aging and spectral characterization of certain materials indicated that two sets of test slabs from the current vendor were accidently made from EPDM rather than butyl rubber. Random testing found no O-rings made from EPDM. As a result of these findings, an additional spectroscopic test will be added to the product acceptance procedures to verify the type of rubber compound used.

3

(THIS PAGE INTENTIALLY LEFT BLANK)

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Table of Contents

<u>page</u>

Introduction 7	
Program Outline and Overview 7	
Current Butyl Rubber Performance Requirements and Tests 9	
Table 1.Current Butyl Rubber Physical Testing Requirements10	
O-Ring Hardness Testing 11	
Figure 1. Shore M Hardness Testing Apparatus 13	
Table 2.Hardness Data: Slabs and O-Rings14	
Plot 1. Hardness of Unaged and Aged O-Ring Samples 15	
O-Ring Compression Set Testing 16	
Figure 2 Compression Set Apparatus and Laser Micrometer 18	
Table 3.Compression Set Data:Slabs and O-Rings19	
Plot 2. Compression Set of O-Ring Samples 20	
O-Ring Tensile Strength and Elongation Testing 21	
Figure 3. Insert Mount and Split-spool Fixtures for Tensile Testing 23	
Table 4.Tensile Strength Data:Slabs and O-Rings25	
Plot 3. Tensile Strength of Unaged and Aged O-Ring Samples 26	
Table 5.Tensile Elongation Data:Slabs and O-Rings27	
Plot 4. Tensile Elongation of Unaged and Aged O-Ring Samples 28	
Table 6. Preliminary O-Ring Tensile Strength and Elongation Requirements 28	
O-Ring Tensile Modulus and Work Testing 29	
Table 7. Tensile Modulus Data (0-25% Elongation): Slabs and O-Rings 31	
Plot 5. Tensile Modulus (0-25%) of Unaged and Aged O-Ring Samples 32	
Table 8. Tensile Work Data (0-20% Elongation): Slabs and O-Rings 33	
Plot 6. Tensile Work (0-20%) of Unaged and Aged O-Ring Samples 34	
O-Ring Tensile Properties vs. Test Speed 35	
Table 9. Tensile Strength, Elongation and Modulus vs. Crosshead Speed 36	
Plot 7. O-Ring Tensile Properties vs. Crosshead Speed 37	
O-Ring Properties vs. Cure Cycle 38	
Plots 8-13. Test Data from O-Ring Samples with Different Cures 40-4	1 5
Figure 4. DSC Scans Of Butyl Rubber Samples with Different Cures 46	
Rubber Composition Testing 47	
Figure 5. Solid State NMR Spectra for Butyl and EPDM Rubber 48	
Vendor Comparisons 49	
Summary 49	
Table 10. Test Data Summary for Materials from Different Vendors50	
Plot 14. Combined, Unaged O-Ring Test Values from Different Vendors 51	
Table 11. Test Data Summary for RD Rubber Materials with Different Cures 52	
Plot 15. Combined, Unaged O-Ring Test Values with Different Cures 53	
Table 12. Proposed Butyl Rubber O-Ring Physical Testing Requirements 54	
Acknowledgments 55	

Table of Contents (continued)

<u>page</u>

Appendix A:	Proposed Test Method for Rubber O-Ring Hardness	56
Appendix B:	Proposed Test Method for Rubber O-Ring Compression Set	61
Appendix C:	Proposed Test Method for Rubber O-Ring Tensile Properties	67
Appendix D:	Current Butyl Rubber O-Ring Specification (SS453883)	75
1)	Current W87 Butyl Rubber O-Rings	76
$\tilde{2}$	Copy of SS453883	77
Appendix E:	Vendor Information	84
1)	Participating O-Ring Vendors	85
$\hat{2}$	Non-participating O-Ring Vendors	86
$(3)^{-7}$	Equipment Vendors	87
Appendix F:	Hardness Test Data	88
1)	Hardness and Compression Set Data on O-Rings	89
$\frac{1}{2}$	Effect of Sampling Rate on Hardness and Compression Set Data	90
(3-4)	Plots showing Effect of Sampling Rate on Hardness & Standard Deviation	91-92
5)	Hardness Data from Single O-Rings Compared to Stacked O-Rings	93
6)	Operator Sensitivity of Hardness Testing	94
7)	Round-Robin Shore M Hardness Testing	95
8)	Shore A us Shore M Durometer Hardness Data	96
0,15)	Detailed Hardness Test Data on O-Rings and Test Slahs	90
Appendix G:	Compression Set Test Data	104
Appendix O.	see E. 1. Hardness and Compression Set Data on O Bings	104
$\frac{1}{2}$	see E.2. Effect of Sompling Date on Hardness and Compression Set Data	
$\frac{2}{3}$ (1)	Plots showing Effect of Sampling Pate on Compression Set & Std. Dev	105 106
5)	Thickness Measurements and Standard Deviations Summary	105-100
5)	O Bing Thickness vs. Time After Compression Aging	107
$\frac{0}{7}$ 12)	Detailed Compression Set Test Date on O Dings and Test Slobs	100 115
Annondiv U	Tongile Strength and Flongation Test Data On O-Kings and Test Stabs	109-115
	Tonsile Data va Fivture Decemptor and Test Speed	117
1)	Tonsile Strength and Elongetion Date on O Dinge	117
$\frac{2}{2}$ (11)	Detailed Strength and Elongation Test Data on O Dings and Test Slabs	110 127
J-11) Amondix I	Tensile Modulus and Work Test Data on O-Kings and Test Stabs	119-127
Appendix I:	Tensile Modulus and Work Test Data	120 120
(1-2)	Dista chowing Unoged and Acad Tancila Madulus Data (all along ranges)	129-130
3-4) 5)	Plots showing Unaged and Aged Tensile Modulus Data (all clong, ranges)	131-132
5)	Toroilo Work Data	133
() ()	Linear Madulus Data	134
/) 8 10)	Linear Modulus Data Detailed Medulus (0.25% clangetion) Test Data on O Dings and Test Clabs	135
0-12) Annondiv I	Detailed Modulus (0-25% elongation) Test Data on O-Kings and Test Slabs	130-140
Appendix J:	Hordness and Compression Set Data	141
1)	Tanuless and Complession Set Data	142
$\frac{2}{2}$	Tensile Modulus Data	145
5)	Tonsile Work Data	144-143
5)	Dista showing Unaged and Aged Tancile Madulus Data (all along ranges)	140
Annondiv V.	DSC Soons on Dubber Motorials	14/-148
Appendix K. 1	O Dings and Slobs from Different Van dars	149
$\frac{1}{2}$	O-Kings and Slads from Different vendors Stocknile A and W26 and W27 O Dings	150
4 nnondiv I .	Drowings for Topoilo Tost Eistures	151
Appendix L:	Angle Mount Drawing	152
1)	August Incorte for Different Ding Groes Sections	133
2-0)	would inserts for Different King Cross Sections	104-108

Introduction

Traditional acceptance testing methods for O-rings, within DOE and industry, have often relied on the testing of companion test slabs (typically $6 \times 6 \times 0.072$ in.) rather than testing of the actual O-rings. The test slabs are cut into either discs for hardness and compression set testing or into dog-bone specimens for tensile testing. Concerns have persisted, however, over the extent to which such slab testing reliably assesses the quality and performance of O-rings, often over a wide range of sizes, made from the same batch of rubber.

The W87 group initiated a program in 1994 to investigate the testing of butyl rubber O-ring samples in place of test slab samples, to determine the extent to which O-ring and slab test results correlated, and to define appropriate procedures and target test values for the product acceptance testing of O-ring samples. Butyl rubber O-rings, in particular, provide critical environmental seals within the W87 and other weapon systems. Revised test procedures developed for these particular O-rings should also be applicable to O-ring seals made from other elastomeric materials.

A second goal of the program was to identify alternate vendors whose butyl rubber O-rings would provide performance equivalent to or better than that now provided. The current W87 specification (SS453883 in Appendix D) requires the use of Parker Seals proprietary B612-70 butyl rubber formulation, effectively excluding all other vendors. Difficulties with Parker and the quality of their materials have made it desirable to qualify at least one additional vendor for these seals and to switch the specification to a performance basis rather than one restricted to a specific formulation.

Program Outline

The program involved several stages including

- 1) a survey of potential vendors to identify those capable of providing suitable materials
- 2) procurement of O-ring and test slab materials for testing
- 3) procurement of testing equipment
- 4) preliminary testing to define procedures, to determine the sensitivity of the test data to various parameters, and to modify the procedures and equipment as needed
- 5) definition of proposed test procedures and equipment
- 6) procurement of additional batches of rings and test slabs from the vendors
- 7) complete testing of multiple batches of materials

8) definition of revised test procedures for incorporation into new material specifications.

A total of 19 vendors (see details in Appendix E) were contacted including the current vendor, Parker Seals. Only two vendors other than Parker were able to supply non-halogenated butyl rubber O-rings in sizes close to those requested. Those vendors were RD Rubber Technology Corp. and Precision Associates. RD Rubber is already a supplier of other O-ring seals to the DOE.

The W87 uses butyl O-rings ranging in size from $0.116 \ge 0.038$ in. to $16.339 \ge 0.103$ in. (inner diameter, ID, of O-ring x cross section, CS, diameter or thickness of rubber cord). Most of the rings are close to one inch in inner diameter with only two significantly larger (details in Appendix D). Four representative sizes, including the two larger sizes, were selected for testing. Vendors other than Parker were allowed to supply O-rings of similar dimensions if custom tooling would be required to produce the exact dimensions requested. Later tests were also conducted on the smallest O-rings currently supplied by Parker (0.116 ≥ 0.038 in.) and on a smaller ring size from RD Rubber. Test slabs were also requested of each vendor and were to be prepared from the same batch of rubber used to fabricate the O-rings. The dimensions of the rings initially obtained from each vendor are shown below.

Parker Seals	RD Rubber	Precision
0.301 x 0.054 in.	0.551 x 0.070 in.	0.301 x 0.054 in.
1.364 x 0.070 in.	1.114 x 0.070 in.	1.364 x 0.070 in.
7.688 x 0.070 in.	7.185 x 0.103 in.	7.739 x 0.070 in.
16.339 x 0.103 in.	11.196 x 0.103 in.	16.995 x 0.139 in.

Existing ASTM methods were identified which describe procedures and equipment broadly suitable for the testing of O-ring samples. Commercial instruments and fixtures for hardness and compression set testing of rings were ordered. Tensile testing equipment was assembled including commercial fixtures as well as Sandia designed fixtures. Details of this equipment are discussed within each test section and vendor information is included in Appendix E.

O-rings of the sizes noted above were procured from each vendor and used in preliminary evaluations of the test equipment and probable test procedures based on the above ASTM procedures and equipment vendor recommendations. The sensitivity of the data to a range of test variables, including different operators, was investigated and appropriate changes in the equipment and procedures were made until robust procedures had been defined. Additional lots of O-rings were then procured from each vendor for additional testing and comparison to the initial results.

The data presented in the following discussions of each test therefore consists of two sets of data from two different lots of each O-ring size. A total of eight lots (4 ring sizes x 2 lots each) were thus evaluated from each vendor. In addition, single lots of two smaller ring sizes were examined, one from Parker and one from RD Rubber, providing a total of nine lots from those vendors. Standard tests were run on companion test slabs made from the same rubber batches, except in those cases where slabs were unavailable, for comparison to the O-ring data.

As a result of these multiple rounds of testing, proposed procedures (Appendices A-C) were developed for hardness, compression set and tensile acceptance testing for a wide range of O-ring sizes. Test values obtained during the program indicated a need to modify the test target values in several cases. No correlation was found throughout the program between test slab results and corresponding O-ring results.

An additional evaluation was carried out in cooperation with one vendor, RD Rubber Technologies, in which O-rings and test slabs were deliberately cured about 3-4 minutes rather than the normal 10 min. Undercuring has been a suspected cause of poorly performing materials and this test series was expected to define the sensitivity of the acceptance tests being used/proposed to such cure deviations. The surprising results showed comparable test behavior for materials cured for reduced periods and cured for the standard period. Subsequent DSC studies indicated that nearly complete cure was obtained with extremely short cure cycles, consistent with comments made by the vendor. While none of the performance tests could reliably distinguish materials processed with such varying cure times, it was, conversely, a desirable feature that O-ring properties appeared to be relatively insensitive to large process variations.

Aging tests being carried out at Allied Signal (Kansas City) on some of the study test slabs suggested unusually good compression aging behavior for a recent butyl rubber batch from Parker Seals. Further analysis on this sample showed, very unexpectedly, that it was prepared from EPDM, not butyl, rubber as ordered and labeled. Random analysis of other samples showed at least one additional Parker test slab to be prepared from EPDM rubber. No O-rings were found to be made from EPDM. As a result of this finding, an additional test is being proposed for the material specification to identify the type of rubber used, butyl vs. EPDM or others.

Current Butyl Rubber Performance Requirements and Tests

Current Kansas City acceptance tests for butyl rubber O-rings, as detailed in Appendix D, call for hardness, compression set and tensile testing of samples cut from test slabs prepared from the same batch of rubber as the O-rings being evaluated. Tests are carried out according to ASTM procedures. The only testing now carried out on the rings is a detailed dimensional and visual inspection per MIL-STD-413 which would be continued regardless of changes made in the physical test procedures.

Table I summarizes the current W87 physical test requirements, methods and samples used for butyl rubber materials. Density testing can be carried out on any suitably sized sample and no test method revisions were required. No measurement of tensile modulus is currently required and the possibility of adding such a requirement was included in the O-ring method development program. Neither are any measurements of oxygen or moisture permeability currently carried out in acceptance testing although experimental studies in this area have been conducted at Sandia, NM by Ken Gillen.

An extensive literature search revealed no systematic comparisons of rubber test methods using test slab vs. O-ring samples. Hardness testing, in general, has been criticized as a measure of material performance whether in rubber materials, polyurethanes or other polymers. Even the ASTM-D2240 method for hardness testing cautions that no simple relationship exists between hardness values and any fundamental rubber property. One paper suggested the use of tensile work (integration under the stress-strain curve) between 0-20% elongation as a useful parameter in elastomeric dog-bone samples and such testing is discussed in a following section.

General methods for testing rubber O-ring samples rather than test slab samples have been published as ASTM-D-1414. These procedures are typically vague and merely suggest the use of suitable Oring specimens in the existing ASTM procedures listed in Table I. These procedures served as a starting point to evaluate O-ring testing, but did not provide the detailed procedures eventually needed to insure reproducible results. The ASTM-D-1414 recommendations are discussed in the following sections on hardness, compression set and tensile test method development.

Property	<u>Requirement</u>	Test Method	Test Sample
Specific gravity	1.14±0.02	ASTM-D-297 (pycnometer or hydrostatic)	any suitable piece of test slab (or O-ring)
Hardness	65-75 Shore A pts before aging. Maximum change of 10 pts after aging*.	ASTM-D-2240	stack of 4-7 discs (1 in. diameter) cut from test slab or dog-bone end tabs)
Compression set**	15% maximum after aging 22 hours at 158 hours under 25% compression.	ASTM-D-395 Method B	stack of 4-5 discs (1 in. diameter) cut from test slab
Tensile strength	1600 psi minimum before aging. Maximum ±15% change after aging*.	ASTM-D-412	dog-bone samples cut from test slab
Tensile elongation	200% minimum before aging. Maximum ±15% change after aging*.	ASTM-D-412	dog-bone samples cut from test slab

Table I. Current Physical Testing Requirements for Butyl Rubber Test Slabs***

* Hardness and tensile aging conditions: 70 hours at 212°F.

** 15% compression set maximum corresponds to a maximum reduction in original thickness of 15% x 25% = 3.75%.

*** Test slab dimensions were typically 6 in. x 6 in. with thickness ranging from about 0.077 to 0.100 inches.

O-Ring Hardness Testing (Additional tables and plots in Appendix F)

The blunt, heavily weighted Shore A durometers used to measure hardness on quarter inch stacks of discs cut from test slabs, as noted in ASTM-D-1414, are unsuitable for testing of O-rings. Shore (now a division of Instron) sells a micro-indentor and durometer, the Shore M, specifically for O-ring testing. This durometer is mounted on a hydraulic stand with holding fixtures to position the O-rings, features recommended by ASTM. Both dial and slightly more expensive digital models are available. The micro-indentors, unlike the blunt Shore A probes, actually puncture the O-ring with a needle surrounded by a collar which rests on the O-ring surface. The Shore M durometer is not identical in operation to that currently specified in ASTM-D-1414 and Shore is apparently working on a revision of that specification. Zwick, a German manufacturer, offers a durometer said to conform exactly to the ASTM standard. Difficulties in even obtaining information from Zwick, however, led to the early selection of Shore M durometers which are already widely recognized and used.

In comparing Shore A tests on stacked discs to Shore M tests on O-rings (see Table 2), there is a shift of approximately 5 hardness points. Slabs giving Shore A hardness values of 65-75 are prepared from the same rubber batch as O-rings giving Shore M hardness values of 70-85. Direct comparisons between the Shore A and M durometers (Table F-8 in the Appendix) on similar samples (flat calibration blocks and test slabs) did not show this large shift, indicating good correlation between the two durometer types, and suggest that most of the difference is due to the change in sample geometry (thickness and curvature) and possibly differences in the degree of cure. Later studies on variably cured samples showed little correlation of hardness with cure time and point to the change in sample geometry as the key factor.

In the direct comparisons of Shore A and M dial-type durometers on flat blocks and slabs, it was also found that Shore M durometers were much less sensitive to either changes in sample thickness or the time delay between durometer impact and hardness reading (Table F-8). Shore M digital durometers, unlike the dial durometers, are designed to automatically take a reading one second after impact and eliminate any operator influence on the time from impact to reading. The heavier weight (1 Kg) used with Shore A durometers would account for the greater sensitivity of Shore A readings to sample thickness and time delay. As discussed below, there were small changes noted in Shore M hardness values when two stacked O-rings were compared to single O-ring samples.

Initial O-ring tests utilized a dial durometer (Shore Model 714) mounted on a hydraulic stand. This was eventually replaced with an automated digital durometer (Shore Model 2000, see Fig. 1) to increase resolution (from 0.5 to 0.1 pts) and to eliminate operator variables such as reading time after contact and dial position judgments. The hydraulic stand eliminates operator differences in lowering the durometer and impacting the O-rings and also insures correct positioning of the ring so that it is impacted near its midpoint. It was important to exercise the hydraulic stand about ten times immediately before taking a series of readings to insure reproducible operation and hardness values. The platform area of the hydraulic stand can readily support smaller O-rings but left the larger 7 and 16 inch rings drooping over the edges. Difficulties in reproducibly positioning these rings for measurement led to the use of an adjacent "Lab-Jack" stand covered with cardboard which allowed the larger rings to lay flat while being rotated through the double pin fixtures for measurement.

A series of double pin inserts were ordered to accommodate different ring thicknesses and these are easily interchanged according to the ring size being measured. Taller double pin inserts capable of holding two stacked O-rings are also available and suggested by ASTM-D-1414. As shown in Table F-5 in Appendix F, there was a reduction of about 2 hardness points, slightly less for the thinner rings, when a double ring rather than single ring sample was used. This difference was not significant enough to preclude adjusting the target values for ring hardness testing and also required far more care in positioning the samples for measurement. The increased difficulty of using two rings outweighed any partial benefits in matching Shore A and Shore M measurements and a single ring procedure was selected. This slight sensitivity of Shore M hardness values to sample thickness was later seen during the testing of large numbers of single O-rings of varying thickness. A drop in hardness of 2-3 points was noted at higher thickness although the drop was neither large enough or consistent enough to warrant any change in hardness target values with different O-ring thicknesses.

Table 2 and Plot 1 summarize the hardness data obtained on a series of O-ring (Shore M) and test slab (Shore A) lots obtained from the three vendors. Test slabs generally fell near the target of 65-75 points while ring samples made from the same rubber batches gave values of 70-85. As noted above, this higher range is attributed primarily to the change in sample geometry from flat discs to ring cross sections. There was no noticeable correlation of test slab data and O-ring data made from the same batch of rubber. RD Rubber materials gave slightly lower hardness values than Parker and Precision, even after aging. Tables F-1 and F-9 through F-15 provide more detailed data on the Table 2 tests.

The sampling scheme used for this study was generally 2 points each on 5 separate rings (10 data points total) for smaller O-rings and 8 points each on 3 separate rings (24 data points) for the larger rings having inner diameters of about 7 and 16 inches. The same rings and sampling rates were used before and after aging although the measurement sites were offset to avoid re-puncturing of the ring. While the data reported here for the larger rings utilized 8 measurements per ring on 3 rings before and after aging, analysis of that data indicated that 4 measurements per ring on 3 rings provided equivalent precision. Table F-2 and Plots F-3 and F-4 in Appendix F show that no loss of precision was incurred by reducing the number of measurement points while clearly reducing the time required.

Using the current slab hardness criteria of 65-75 Shore A points, Sandia tests would have rejected one RD Rubber slab lot as too low (14810). The proposed ring criteria of 70-85 Shore M points would have rejected no O-ring lots. A tighter 70-80 ring criteria would have rejected 3 Parker ring lots.

With one exception, all the materials gave higher hardness values after aging. Both the ring and slab samples generally showed a much smaller increase than the currently allowed 10 point variation. As discussed in the section on curing studies, there appeared to be a greater hardness change in less cured materials. A reduction of the allowed hardness change on aging from 10 points to 4 points would therefore help screen out undercured rings while having little total effect on the acceptance rate. Such a reduced aging variation should help insure somewhat greater uniformity in the rings being accepted.

A recognized contributor to uncertainty in hardness values is calibration of the individual durometers, a problem which has previously resulted in round-robin testing of Shore A durometers using test slab discs. Calibration by Shore of the durometers is stated to assure only that the durometer will measure within ± 3 pts of the stated values on calibration blocks supplied by Shore. Round-robin testing amongst three Shore M digital durometers (two at Sandia, CA and one at Kansas City) showed surprisingly good agreement, only a 1-2 point spread, with one of the Sandia durometers consistently giving the highest value and the KC durometer the lowest value. The only exception was noted in tests on a large O-ring. An assortment of standard blocks and O-rings was also evaluated as shown in Table F-7. While the agreement found here was quite acceptable, the stated precision of the durometers suggests that an overly rigid specification on O-ring hardness would probably result in unnecessarily low acceptance rates. The recommended hardness target for O-rings is therefore a 15 point range (70-85) instead of the 10 point range (65-75) now used with the test slabs. The allowed change on aging, however, would be reduced from 10 to 4 points as discussed above.

In a related study, the same Shore M dial and digital durometers were used by three different operators to measure the hardness of a set of O-rings. Measurement sites were systematically offset to avoid repuncture while still measuring in similar ring areas. Table F-6 shows some variation with operator, giving up to a 2 point spread in average value per ring. Uncontrolled sources of variation during this series included the ambient temperature and whether the hydraulic stand was properly "exercised" prior to taking readings. Generally good agreement was obtained even with the dial durometer although the digital version was clearly easier to use and provided higher precision.

The recommended procedure for hardness testing of O-rings is described in Appendix A and the recommended test values are summarized along with the other test changes in Table 12.

Figure 1. Shore M (Model 2000) Hardness testing apparatus with digital durometer, hydraulic stand and interchangeable double-pin inserts to position the O-rings.

O-ring is removed from double pin holder for viewing. Pins are spaced to correspond to the cross section of the O-ring being tested.

Vendor	Rubber	± Aging	Test	Slab Da	ata	O-Ring Data (Standard Deviations from ± 0.3 to ± 1.8 , avg. ± 0.7)					
	Batch		Vendor	KCP	Sandia	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103	
Parker	316104	unaged aged	72, 75	65 65	72.3 74.5		81.1 82.5	79.7 80.9	80.8 81.8	79.6 81.1	
Parker	316710	unaged aged	72		69.0 70.3		81.3 80.8			77.8 79.9	
Parker	317403	unaged aged	70		72.8 75.8			77.5 77.9			
Parker	31785 1	unaged aged	67, 69	73 73	73.0 73.3				72.2 75.3		
Parker	318466	unaged aged			72.8 74.0	74.9 78.1					
						0.301x0.054	0.551x0.070	1.114x0.70	7.185x0.103	11.196x0.103	
RD	14810	unaged aged	65, 65	64	63.3 68.5		75.1 76.2	73.7 75.7	71.0 72.4	72.6	
RU	14930	aged	00,00	00		70.4	74.0	75.0	74.0	74.8	
RD	15107	unaged aged	70		65.5 64.8	76.1 79.3	74.6 76.8	75.2 76.8	76.1	75.4	
							0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139	
Precision	17405	unaged aged	NA		NA			76.9 79.0			
Precision	19052	unaged aged	NA		72.8 74.8		74.6 80.0		78.4 80.9		
Precision	19422	unaged aged	NA		NA					75.6 78.1	
Precision	19895	unaged aged	73		71.5 75.5		78.3 79.4	77.6 79.2	77.7 80.6	76.3 79.1	
Precision	19921	unaged aged	73		NA						

٠

۹.

۲

£

Table 2. Hardness Data: Slabs and O-Rings

¥

.

Parker Rings

RD Rings

Precision Rings

ςτ

O-Ring Compression Set Testing (Additional tables and plots in Appendix G)

Compression set testing is probably the most important performance test carried out on O-ring sealant materials as it most closely approximates real performance requirements. The major challenge faced in compression set testing of O-rings vs. much thicker stacks of test slab discs was the higher precision needed in initial and final thickness measurements. The current specification calls for a 15% maximum compression set after aging under 25% compression. This translates to an overall loss of thickness of 15% x 25% or 3.75% of the initial thickness. For ring thicknesses as low as 0.038 inches, the corresponding maximum thickness loss would be 0.0014 inches. Additional challenges were posed by the non-uniformity of thickness around typical rings and the need, therefore, to insure that the same cross section location, both around and through the ring, was being measured before and after aging.

The dial or spring micrometers specified in D-1414 were found to provide inadequate resolution and a laser micrometer, similar to one already used at Kansas City, was acquired. Both the precision and ease of operation were improved with the laser micrometer which is shown in Figure 2. Laser micrometers provide resolution of ± 0.00001 inches, ten times that of the Shore micrometers, and the level of operator skill required was significantly reduced. Samples are simply placed on the fixture and the thickness measurement recorded.

The compression set aging apparatus, available from at least two vendors, is simply a set of chrome plated steel plates which are bolted together (see Fig. 2). The distance between the plates is fixed by using spacers of the desired thickness. The same apparatus used to compress the stacks of test slab discs is suitable for the O-ring samples and simply requires the use of thinner spacers. Compression tests typically call for the sample to be compressed 25% (i.e. to 75% of its initial thickness). Spacers were ordered corresponding to 75% of each of the ring thicknesses to be evaluated and samples were compressed to 75% of their nominal thickness. No adjustments were made for variations from this nominal thickness as is done with the thicker stacks of discs.

Slices about 2 in. long from larger O-rings are suggested in ASTM-D-1414 as samples. Shorter segments, with less curvature, tended to roll more easily and were difficult to position reproducibly with exactly the same ring cross-section exposed for measurement and compression. For smaller rings it is suggested in ASTM-D-1414 that a 1/8 in. section be removed and the remainder of the ring used as a sample. D-1414 strongly recommends that whole O-rings not be used as samples due to trapped air and potentially different aging conditions on the inside of the ring. It was found convenient in the Sandia tests to simply slice smaller O-rings into halves, each of which could be used as a sample in the compression set test. Ring segments were conveniently marked on their outside circumference with dots of ordinary white correction fluid to allow measurement of the same cross section location before and after aging. This can be seen in the detail in Fig. 2.

Early testing pointed out the need for careful removal of the ring segments from the compression apparatus. Segments needed to be gently scraped from the metal surface using a sheet of paper or similar "blade" so as to avoid any peeling or stretching of the segment. Mold release on the metal surface assisted this process, especially on poorly plated or degraded surfaces.

Laser micrometer measurements were carried out to determine the rate at which compression set aged samples rebounded and whether the 30 minute delay currently specified between sample removal from the hot apparatus and thickness measurement was critical in any way. Ring segments were removed from the apparatus, immediately placed in the laser micrometer fixture, and analyzed for height vs. time. Cooling effects, leading to contraction, compete with rebound expansion during the initial measurements, especially in the larger rings. Plot G-6 in the Appendix shows the overall thickness recovery rate in the laser micrometer for two ring sizes. In both cases the data indicates that the 30 minute waiting period is adequate to reach a relatively stable thickness. Most of the rebound is virtually instantaneous and shorter or longer waiting periods, for example 20 min. to 40 min., would

have no significant effect on the results. The recommended 30 min. waiting period should be adhered to as closely as possible, especially with thicker ring sizes, to insure good reproducibility.

Table 3 and Plot 2 summarize the compression set data obtained on a series of O-ring and test slab lots obtained from the three vendors. Ring samples, in general, showed significantly lower compression set values (5-12%) than the stacks of discs (6-20%). There was again no correlation of ring and test slab data and there was no consistent trend of compression set with ring thickness. Precision rings and slabs showed higher compression set than Parker or RD Rubber materials. The compression set values on their test slabs were well above the current 15% allowed and would have been cause for rejection.

As a result of this testing it was decided that the allowable compression set, measured on ring samples in place of disc stacks, could be reduced from 15% to 10% with no significant decrease in acceptance rate. The lower allowed value should ensure greater uniformity in the rings accepted and perhaps better long term performance as well. Using this 10% maximum compression set criteria and rounding the hardness data to the nearest whole integer would have rejected 1 of the Parker ring lots, none of the RD ring lots, and 5 of the Precision ring lots.

Even with the more precise laser micrometer, there was concern over the magnitude of the standard deviation values relative to the actual change in thickness being measured. Table G-1 summarizes the standard deviations typically observed and also the change in thickness observed after compression set aging. The ring samples show an average change in thickness which is roughly 2-3 times the average standard deviation of the thicknesses being measured. This largely reflects the non-uniform thickness of the original rings and would not be improved by a more precise measuring instrument. Given that the ring samples, although non-uniform, are at least being measured in the same locations before and after, this is probably an acceptable situation and one which is inherent to testing real ring samples.

The sampling scheme used in these tests was, as in the hardness tests, generally 2 points each on 5 separate rings (10 data points total) for smaller O-rings and 8 points each on 3 separate rings (24 data points) for the larger rings having inner diameters of about 7 and 16 inches. The same rings and the same thickness measurement sites were used before and after compression aging. This is detailed in the procedure in Appendix B. While the data reported here for the larger rings utilized 8 thickness measurements per ring on 3 rings (24 data points) before and after aging, analysis of that data again indicated that the use of 4 measurements per ring provided equivalent precision. Table F-2 and Plots G-1 and G-2 in the appendices show that no loss of precision was incurred by reducing the number of measurement points while clearly reducing the time required.

The recommended procedure for compression set testing of O-rings is described in Appendix B and the recommended test values are summarized along with the other test changes in Table 12.

Figure 2. Compression set apparatus and laser micrometer used for thickness measurements.

Compression set apparatus with spacers and O-rings.

Laser micrometer (Model 183) with fixture insert and O-ring marked and positioned for thickness measurement.

Vendor	Rubber	Test Slab Data			O-Ring Data					
· · · · · · · · · · · · · · · · · · ·	Batch	Vendor	KCP	Sandia	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103	
Parker	316104	11.0	14.5	11.0		4.6	6.1	7.7	7.8	
Parker	316710			9.9		9.7			8.7	
Parker	317403			10.4			10.1			
Parker	317851	10.0	9.8	15.9				8.2		
Parker	318466			18.9	10.7					
					0.301x0.054	0.551x0.070	1.114x0.70	7.185x0.103	11.196x0.103	
RD	14810	7.0	6.3	5.9		5.5	5.6	5.0		
RD	14936	6.3	8.7	NA					4.5	
RD	15107	10.5		12.6	6.5	5.7	7.1	5.6	4.8	
						0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139	
Precision	17405	NA		NA			8.8			
Precision	19052	NA		24.0		9.5		10.7		
Precision	19422	NA		NA					12.0	
Precision	19895	14.3		22.8		10.7	10.0	11.5	19.8	
Precision	19921	22.2		NA						

Table 3. Compression Set Data: Slabs and O-Rings

٠

4

.9

A

۰,

٠

Plot 2. Compression Set Values of O-Ring Samples

20

O-Ring Tensile Strength and Elongation Testing (Additional tables and plots in Appendix H)

ASTM-D-1414 recommends the use of whole O-rings for ring tensile testing along with the use of rotating ball-bearing spools and lubrication to minimize local stresses. A crosshead speed of 20 in./min. is suggested. All tests in this program were carried out on whole O-rings to avoid the inherent fixturing and stress localization problems associated with ring segment samples.

When the effects of such variables as fixture rotation, lubrication, multiple looping of larger rings, and test speed were evaluated there was little variation noted with any of these parameters. Table H-1 summarizes these early results. As part of this initial evaluation, a very simple set of grooved, split-spool fixtures was designed and fabricated. These non-rotating fixtures are shown in Fig. 3 and the design drawings are included in Appendix L. The interchangeable spools of different diameters can readily accommodate a wide range of O-ring sizes and were particularly suited for testing the very small rings typical of many W87 parts. Rod fixtures with optional rotation were obtained commercially. No significant differences in test values were noted among the three types of fixtures. While lubrication is still recommended and was used throughout this program, no significant effects were noted when it was not used with any of the fixture types evaluated. Similarly, no effects were noted when rings were fixtured with either 1, 2 or 3 loops. These initial looping tests utilized a rotating fixture. The non-rotating fixtures are probably more suitable for multi-looped rings as there is no potential interaction of the cross-over sites with the fixture.

Following these initial tests, the very simple, non-rotating split-spool fixtures in Fig. 3 were selected for further O-ring tensile testing. Similar fixtures can be fabricated and supplied to vendors and a set has already been provided to Kansas City. O-rings are simply slipped over the grooved top and bottom fixtures, the fixture gap is adjusted according to the O-ring and spool sizes to set the zero elongation point, and the ring is then stretched to failure. Tables in the proposed method in Appendix C detail the spool diameter to be used with each ring size and provide starting crosshead distances for the O-ring sizes used in the W87. Extensometers were not used and sample elongations were calculated from crosshead distances.

Test speeds in the initial studies above were varied between 10 and 20 in./min. and showed little effect on the data. Most of the data acquired during the program was taken at 20 in./min. as recommended by ASTM. A more detailed study of test speed effects was carried out near the end of the program and was motivated by potential difficulties noted in measuring modulus on smaller O-rings. At 20 in./min. these rings are stretched and broken very quickly, sometimes within seconds. That evaluation of test speed is discussed in a following section, but Plots H-2 and H-3 illustrate the effects on tensile strength and elongation when test speeds were varied over a wider range. Strength increased about 10-20% over the 5-20 in./min. range while elongation was essentially unaffected.

Test speeds eventually recommended for ring acceptance testing were 5 in./min. for all the smaller W87 rings and 20 in./min. for the two larger rings with inner diameters of about 7 and 16 inches. This should increase the precision of the tests and also allow the use of strip chart recorders in place of computerized data systems if desired. All rings were also tested with only one loop except for the two larger rings which were tested with a triple loop. No rings were double looped.

Tables 4 and 5 and Plots 3 and 4 summarize the tensile strength and elongation data obtained on a series of O-ring and test slab lot obtained from the three vendors. Unlike the hardness and compression set results, there was a clear correlation of tensile strength and elongation with ring size. The lower strength and elongation seen in larger rings may simply reflect a higher number of potential defects with increasing volume as suggested in "Rubber Technology Handbook", W. Hofmann (Hanser Publishers, 1989). This variation with ring size led to wide overall ranges in both tensile strength (1100-2500 psi) and elongation (170-400%). A range of tensile strength (1450-2300 psi) and elongation (150-250%) were also noted for the test slab data, however, which was all gathered on samples with identical dimensions. There was again no significant correlation of slab and ring data

from the same rubber batches. Slabs were cut with a stencil into dog-bone specimens, five per slab, for testing.

Both the initial strength and elongation decreased as ring size increased. A graduated range of minimal strength and elongation target values will therefore be required for ring testing in place of the single values now used with the test slabs. Final decisions on these targets will be made after additional testing at Kansas City, but a preliminary set of tensile strength and elongation requirements are shown in Table 6. As future tests on all but the larger rings will be carried out at 5 in./min. instead of the 20 in./min. used in this study, the strength and elongation values on smaller rings are expected to decrease slightly and the values shown in Table 6 were selected with that in mind.

Using the current slab criteria, the Sandia tests would have failed all the Parker slab lots (either for strength or elongation or both) and none of the RD Rubber or Precision slabs. Kansas City tests on the slabs, where available, were all passing. Using the proposed ring criteria in Table 6, the Sandia tests would have failed 1 of the Parker ring lots (for strength), none of the RD Rubber ring lots, and 1 of the Precision lots (for strength). Strength values obtained at slower speeds may be 10-20% lower and would increase the rejection rate, particularly of some of the Parker materials.

Aging of the samples gave roughly equal increases and decreases in tensile strength. Elongation decreased with aging in about 2/3 of the tests. The allowable $\pm 15\%$ percent change on aging, particularly of elongation, would have eliminated all but one lot of the O-rings received from Precision. All the Parker rings and all but one of the RD Rubber lots were within this 15% change on aging, however. No modification in the current aging specification appeared to be warranted.

Most of the tensile tests in this study utilized 8 rings for the initial properties and another 8 rings for the aged properties. Smaller numbers were used in some cases due to limited availability. A more convenient sample size for future acceptance testing would be 5 rings each before and after aging.

Based on discussions with the Kansas City personnel, it was decided that tensile testing on aged samples would probably not be required for acceptance of every O-ring lot received. Complete tensile testing (aged and unaged samples) would instead be required as a vendor qualification test on a regular interval to be decided. Factors in this decision were the absence of significant tensile stresses on the O-rings as used in compression and the large number of rings required for tensile testing.

The recommended procedure for tensile testing of O-rings is described in Appendix C and the recommended test values are summarized along with the other test changes in Table 12.

Figure 3. Insert mount and split-spool, interchangeable fixtures for O-ring tensile testing. Insert and split spools fabricated according to Sandia drawings.

Vendor	Rubber	± Aging	Test S	Slab Da	ta	O-Ring Data (Standard Deviations from 38 to 517, avg. 241)				
	Batch		Vendor	KCP	Sandia	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103
Parker	316104	unaged aged	1777, 1892	1742	1563 1458		1959 1964	1591 1573	1447 1561	1309 1430
Parker	316710	unaged aged	1721	5	2503 2282	;	2015 2032			1294 1430
Parker	317403	unaged aged	1942		1590 1764			1790 1708		
Parker	317851	unaged aged	1762, 1914	1832	2530 1940				1469 1671	
Parker	318466	unaged aged	s.		1459 1630	1891 1823				
						0.301x0.054	0.551x0.070	1.114x0.70	7.185x0.103	11.196x0.103
RD	14810	unaged aged	2176, 2176	2418	2218 2170		2524 2414	2142 2063	1734 1782	1004
RD	14936	unaged	2321, 2321	2403	NA NA					1458
RD	15107	unaged aged	2121		2123 2010	2237 2423	1965 1864	2039 2153	1579 1255	1436 1396
							0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139
Precision	17405	unaged aged	NA		NA NA			2078 1971		
Precision	19052	unaged aged	NA		1711 1696		2218 2162		1578 1653	
Precision	19422	unaged aged	NA		NA NA					1129 832
Precision	19895	unaged aged	2030	1	1657 1565		2233 2138	1935 1937		1315 1379
Precision	19921	unaged aged	2032		NA NA				1496 1616	

,

.

.4

Table 4. Tensile Strength Data: Slabs and O-Rings

_

Ð

Vendor	Rubber	± Aging	Test	Slab Da	ata	O-Ring Data (Standard Deviations from 4 to 85, ave					
	Batch		Vendor	KCP	Sandia	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103	
Parker	316104	unaged aged	215, 239	290	199 166		259 261	209 210	178 188	168 177	
Parker	316710	unaged aged	233, 264	260	186 172		272 271			188 203	
Parker	317403	unaged aged	286		221 221			281 269			
Parker	317851	unaged aged	421?		178 152				362 341		
Parker	318466	unaged aged			535 588	278 264					
						0.301x0.054	0.551x0.070	1.114x0.70	7.185x0.103	11.196x0.103	
RD	14810	unaged aged	372, 372	300	273 247		402 344	314 293	231 220		
RD	14936	unaged aged	273, 273	230	NA NA		••••	200		180 184	
RD	15107	unaged aged	320		243 220	308 303	293 261	296 300	215 171	175 152	
							0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139	
Precision	17405	unaged aged	NA		NA NA			313 261			
Precision	19052	unaged aged	NA		276 208		380 300		192 152		
Precision	19422	unaged aged	NA		NA NA					188 114	
Precision	19895	unaged aged	312		229 197		369 289	275 247		223 179	
Precision	19921	unaged aged	311		NA NA				226 181		

.

¥

,

· :#

Table 5. Tensile Elongation Data: Slabs and O-Rings

.

-81

¥

L2

Ring size	Initial Tensile Strength Minimum Value	Initial Tensile Elongation Minimum Value
less than 0.5 inch inner diameter and less than 0.060 inch cross section	1800 psi	225%
between 0.5 and 2 .0 inch inner diameter and over 0.06 inch cross section	1600 psi	200%
between 7 and 8 inch inner diameter and over 0.06 inch cross section	1400 psi	175%
over 10 inch inner diameter and over 0.06 inch cross section	1200 psi	150%
test slab dog-bones	1600 psi	200%

Table 6. Preliminary Tensile Strength and Elongation Requirements for O-Ring Testing

O-Ring Tensile Modulus and Work Testing (Additional tables and plots in Appendix I)

Tensile modulus is not currently measured as part of the test slab acceptance testing. While developing procedures for ring tensile strength and elongation testing, it was opportune to also measure modulus over a variety of elongations and to evaluate the possible value of including modulus as one of the acceptance tests. A literature report (C. Peacock, "Quality Control Testing of Rubber Shear Modulus," Elastomerics, p. 42-45, May 1992) suggesting that measurements of the integrated work up to 20% elongation might also provide a useful measure of elastomer performance led to inclusion of that parameter in the tensile test evaluation.

All the moduli were measured at a crosshead speed of 20 in./min. A study of tensile properties vs. test speed prompted by the rapid elongation and failure of smaller rings at this high speed is discussed in the following section. A modest increase in modulus (measured between 10-20% elongation) was noted in that study as the test speed increased from about 5 to 20 in./min.(see Table I-1).

Tensile moduli were measured over 5 different elongation ranges: 5-10%, 10-15%, 5-15%, 10-20% and 0-25%. These particular values were computer generated averages of the tangent to the stress-strain curve at each data point within that range. The highest moduli were generally observed in the 5-10% elongation range and the lowest moduli were generally observed in the 10-20% elongation range, reflecting a slight bending in the stress-strain slope.

A more simple and preferred modulus calculation would be the linear modulus defined by the stress at a given elongation. Such measurements would not require the computerized data handling required in the initial Sandia tests and would be compatible with basic strip chart recorder instruments. Such modulus measurements were carried out at Kansas City and also at Sandia and this simple linear modulus or stress at 25% elongation calculation is recommended in the test procedure in Appendix C.

Comparisons of the linear modulus to the computer generated tangential modulus values showed close agreement with the smaller rings. The larger ring sizes, 7 in. ID and up, showed slightly higher moduli with the simple linear calculation.

ASTM-D-1414 also describes the measurement of tensile "moduli" or stress at a defined elongation for typically 100 or 200% elongation. A limited amount of such "modulus" data was obtained at 100, 200 and 300% elongation during the initial trials with different fixtures as described in the preceding section. The highly non-linear nature of the stress-strain curves over these long elongations, however, led to the use of shorter elongation ranges in the present evaluations

Calculations of tensile work, over the 0-20% elongation range, were carried out by computer integration and summation of the rectangular areas under each data point in the stress-strain curve. Each rectangle was bounded by the stress at a given point and by the elongations midway between that point and its neighbors. Calculations of tensile work in units of absolute elongation (i.e. inch-lb. per square inch) reflected primarily the size of the O-ring and more meaningful results were obtained in units of percent elongation or percent-lb per square inch.

As described in the preceding section, tensile tests were carried out by setting both the force and elongation to zero at a starting crosshead distance calculated from the nominal ring diameter and the spool diameter. Tables in the proposed method in Appendix C provide these starting crosshead distances for O-ring sizes used in the W87.

Tables 7 and 8 and Plots 5 and 6 summarize the tensile modulus and work data obtained on a series of O-ring and test slab lot obtained from the three vendors. The modulus table and plot show only the simple linear data obtained with the 0-25% elongation range. All the tangential modulus data over different elongation ranges is detailed in additional tables and plots in Appendix I. Work, as noted above, was measured over the 0-20% elongation range.

Unlike the tensile strength and elongation data, there was no significant correlation of tensile modulus or work with ring size. More detailed data is again included in the Appendix. These results suggest that modulus and work, like hardness and compression set, are more reflective of bulk properties and are less sensitive to defects than strength and elongation measurements. There was again no significant correlation of slab and ring data from the same rubber batches.

Linear modulus values for the RD Rubber rings all fell between about 360-510 psi before aging and 390-560 psi after aging. Parker and Precision rings showed much higher moduli and also greater variability. A minimum modulus of 350 psi before aging would accept all the rings tested. A maximum change on aging of +15% (not $\pm 15\%$) would have excluded two Parker ring lots, one RD Rubber lot and three Precision lots. All but one Parker ring lot and two slab lots showed a higher modulus after aging and suggests that a loss of modulus is not typical of most butyl rubber materials and is probably undesirable.

Future tensile measurements at 5 in./min. instead of the 20 in./min. used here may reduce the observed values about 10%. None of the stiffer Parker or Precision ring materials would be rejected by a small reduction in the measured modulus. The lower modulus RD Rubber materials would be more borderline and may require adjustment of the tentative 350 psi minimum or perhaps an adjustment in the RD Rubber formulation. The RD Rubber materials also gave lower tensile work, hardness and compression set values than those from Parker and Precision. These lower RD Rubber values, clearly desirable in compression set, also tended to be more uniform than those from the other vendors. Overall, the RD Rubber formulation may provide a more desirable balance of properties.

Tensile work values (see Table 8 and plot 6) showed trends similar to those observed in the tensile modulus measurements and offered no particular insights into material quality. No unusual correlation with compression set results or other parameters was noted in either the lot to lot comparisons or the cure study comparisons. The results do not suggest any future use of tensile work measurements for acceptance testing.

As noted in the preceding section, it is anticipated that tensile testing would no longer be required for acceptance of each lot of O-rings but would instead be utilized in a periodic manner for vendor qualification.

The recommended procedure for tensile testing of O-rings is described in Appendix C and the recommended test values are summarized along with the other test changes in Table 12.

30

Vendor	Rubber	± Aging	Test Slab Data	O-Ring	Data (Stand	lard Deviation	is from 6 to 96	i, avg. 27)
	Batch		All Sandia results	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103
Parker	316104	unaged	761		754	683	896	868
		aged	1120		780	736	860	906
Parker	316710	unaged	981		812			819
		aged	956		819			842
Parker	317403	unaged	922			639		
		aged	1056			675		
Parker	317851	unaged	973				489	
		aged	958		i		586	
Parker	318466	unaged	569	527				
	i	aged	690	581	ļ			
·				0.20120.054	0 55120 070	1 114-0 70	7 195 20 103	11 106 -0 103
				0.301X0.034	0.551x0.070	1.114X0.70	7.10520.105	11.190X0.103
חמ	14910	upagod	570		259	360	/118	
עח	14010	anayeu	579		403	387	410	
חק	1/036	unaged	505 ΝΔ		400	507	400	465
	14500	aged	NΔ					496
BD	15107	unaged	641	447	367	389	507	477
	1010/	aged	666	493	414	431	553	560
		-gen						
					0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139
Dreelelen	17405	unaged	NIA			577		
Precision	17405	unageu				659		
Provision	10052	ayeu	1NA 721		551	030	788	
FIECISION	19052	anad	822		628		919	
Precision	10422	unaged	025 ΝΔ		020		515	576
TEOISION	1,7744	aged	NA					660
Precision	19895	unaged	766		516	585		614
		aged	803		642	623		729
Precision	19921	unaded	NA				760	
		aged	NA				834	

Table 7. Linear Tensile Modulus (0-25% Elongation) Data: Slabs and O-Rings

*

.

ï

r

.

ŧ

Vendor	Rubber	± Aging	Test Slab	O-Ring Data (Standard Deviations from 17 to 274, avg. 82)					
	Batch		Data	0.116x0.038	0.301x0.054	1.364x0.070	7.688x0.070	16.339x0.103	
Parker	316104	unaged	2278 3484		1662 1720	1464 1622	2027 1856	2233 2354	
Parker	316710	unaged aged	2617 2553		1749 1691			2155 2297	
Parker	317403	unaged aged	2777 3212			1530 1568			
Parker	317851	unaged aged	2532 2617				1280 1522		
Parker	318466	unaged aged	1387 1265	1095 1197	i				
				0.301x0.054	0.551x0.070	1.114x0.70	7.185x0.103	11.196x0.103	
RD BD	14810 14936	unaged aged unaged	1674 1627 NΔ		774 918	853 876	1048 1068	1172	
RD	15107	aged unaged aged	NA 1815 1846	1061 1076	828 900	900 1023	1310 1375	1206 1194 1352	
			·		0.301x0.054	1.364x0.070	7.739x0.070	16.955x0.139	
Precision	17405	unaged aged	NA NA			1414 1556			
Precision	19052	unaged aged	2298 2472		1322 1561		1857 2143		
Precision	19422	unaged aged	NA NA		х.			1492 1642	
Precision	19895	unaged aged	2336 2405		1190 1483	1384 1491		1686 1934	
Precision	19921	unaged aged	NA NA				1990 2159		

Table 8. Tensile Work Data (0-20% Elongation): Slabs and O-Rings (Data in percent-lb/sq.in.)

ų

.

٩

ħ

,

ę

Tensile Work (0-20% Elongation) of Aged and Unaged O-Ring Samples

78

O-Ring Tensile Properties vs. Test Speed

Because of the wide range of O-ring sizes being tested at a 20 in./min. fixture speed during the above evaluations, there was a correspondingly wide range of ring elongation rates. As shown in Table 9, a fixture speed of 20 in./min. corresponds to ring elongation rates, in percent/minute, ranging from 235%/min. for the largest rings up to 4230%/min. for the smaller rings. A typical ultimate elongation of 200% is reached for the smaller rings in only about 3 seconds, limiting the amount of data points to be measured. Concern over the possible effects of such different percent elongation rates led to a series of tensile tests in which the fixture speed was adjusted to provide ring elongation rates of either 20 or 200%/min. for each of the different O-ring sizes. Each ring was also tested at the fixture speed, 20 in./min., used in the tensile tests reported in the above section.

The tests in this series were carried out on rings previously obtained from Lutz, a distributor for Precision, before it was known Lutz was not the manufacturer.

As shown in the Table and in Plot 7, most properties demonstrated only a modest sensitivity to test speed. Individual plots of tensile strength (Plot H-2), tensile elongation (Plot H-3) and tensile modulus (Plot I-7) have been referred to in the preceding sections and are contained in the appendices. The very low fixture rates used to achieve 20%/min. in some cases did significantly reduce the observed tensile properties. Within the fixture speed range of 5-20 in./min., however, most rings gave only moderate increases, if any, in tensile values.

The major benefit to be gained from reducing the tensile test speed is a longer time to ring failure and larger number of data points with more resolution. It was considered impractical to use different fixture speeds for each ring size for routine testing and, based on the relative insensitivity of the data to test speed, unnecessary. A compromise recommendation calls for two fixture speeds to be designated: 20 in./min. for the two largest W87 ring sizes and 5 in./min. for the remaining O-rings, all less than 2 in. in inner diameter. That recommendation is contained in the proposed procedure in Appendix C. Using the reduced speed should provide a failure time for the 0.301 in. ID rings of over 10 seconds and even the smallest 0.116 in. ID rings should require about 4 seconds to break.

As noted in the preceding sections, a reduction in fixture speed from 20 to 5 in./min. might be expected to reduce the observed tensile values 10-20%. The proposed strength and elongation values already reflect this expectation. The proposed modulus requirement of 350 psi would have rejected none of the Lutz rings tested in this series. The lower moduli typical of RD Rubber materials might be more affected by the lower test speed and possibly lead to a higher rejection rate.

Additional tests being carried out at Kansas City will be using the 5 in./min. fixture speed for smaller rings and 20 in./min. speed for the two larger ring sizes. That data should allow any final adjustments to be made in the target tensile values if needed.
Ring size	Fixture Speed (inches/min.)	Ring Elongation Rate (%/min.)	Strength at Break	Percent Elongation at Break	Modulus (10-20% elongation)
0.301 x 0.065	0.09	20	821 ± 414	336 ± 165	763 ± 76
	0.95	200	1058 ± 458	501 ± 94	1041 ± 79
	20	4230	1168 ± 147	425 ± 51	1081 ± 111
1.364 x 0.070	0.43	20	1599 ± 270	315 ± 55	556 ± 30
	4.29	200	1649 ± 405	293 ± 70	590 ± 14
	20	933	2028 ±116	351 ± 19	630 ± 12
7.613 x 0.070	0.80	20	1260 ± 249	174 ± 40	726 ± 7
	7.97	200	1350 ± 377	168 ± 55	783 ± 14
	20	502	1488 ± 211	176 ± 26	825 ± 31
16.233 x 0.139	1.70	20	930 ± 177	184 ± 25	487 ± 6
	17.0	200	1178 ± 381	204 ± 50	544 ± 16
	20	235	1273 ± 278	218 ± 37	540 ± 18

Table 9. Tensile Strength, Elongation and Modulus vs. Test Speed

(All tests carried out on Lutz O-rings.)

Plot 7. O-Ring Tensile Properties vs. Fixture Speed

Fixture Speed (inches/min)

O-Ring Properties vs. Cure Cycle (Additional tables and plots in Appendix J & K)

O-ring materials failing the acceptance criteria, whether in the past using test slab samples or in the future using actual ring samples, might do so because of either formulation or processing errors. Lack of anti-oxidant, for example, would impair the material aging performance, poor mixing would affect performance uniformity, and different filler levels and under or over curing would be expected to affect many of the measured properties.

No previous Sandia studies, however, have attempted to actually correlate cure cycle with acceptance test performance. With the cooperation of RD Rubber and the Kansas City personnel, arrangements were made to deliberately undercure multiple lots of rings and slabs using one of the rubber batches already characterized as part of the study. Rheometric curing scans at Kansas City on the uncured rubber suggested that cure times of about 3 min. and 4 min. would produce degrees of cure of 45% and 70% instead of the nominal 95% produced by the current 10 min. cure cycle. All cures were carried out at 150°C. RD Rubber produced 4 lots of O-rings and one lot of test slabs each using these reduced cure times. The smallest O-ring size previously supplied (0.551 x 0.070 in.) was replaced in this series with the small O-ring size supplied by Parker and Precision (0.301 x 0.054 in.). All the rings and slabs in this series were prepared from RD Rubber butyl rubber batch 15107.

Surprisingly, none of the tests of initial material properties demonstrated a strong correlation of performance with cure time. The undercured materials gave more failures upon aging than the fully cured rings, but there was again no strong correlation of aging behavior with cure time. Plots 8 through 13 show the relative hardness, compression set, tensile strength, elongation, and tensile modulus and work for four different ring sizes and the test slabs, each with either 3, 4 or 10 minutes of cure. Corresponding tables in Appendix J provide more details.

None of the materials with reduced cure times would have failed the initial hardness test or the currently allowed change of 10 points after aging. Most of the undercured rings would have failed the proposed maximum aging change of 4 points, however, a finding which prompted that proposed specification modification.

Only two undercured ring lots would have failed the proposed compression set maximum of 10% and none would have failed the current maximum of 15%. The failing ring lots occurred randomly, however, and were not part of any general trend showing increasing compression set with decreasing cure time.

Only one ring lot, cured 4 minutes, would have failed the proposed tensile strength and elongation requirements. Two of the undercured lots would have failed the $\pm 15\%$ maximum aging change in tensile strength and four different lots would have failed the $\pm 15\%$ elongation change. One fully cured lot would also have failed a maximum strength and elongation change of $\pm 15\%$. Again, these failures were largely random and not part of any clear trend. The undercured test slabs would have also failed the aging elongation change although their tensile strength performance was acceptable.

Both tensile strength and elongation, in some ring sizes, seemed to show trends with cure time, but the same trends would not be observed in other ring sizes. There was overall, no definitive behavior which would insure that undercured materials would be identified via these tensile tests.

Tensile modulus and work measurements also gave no strong correlation with cure time. In some ring sizes the modulus actually decreased with longer cure while in others the values were virtually unchanged with cure. The decreasing modulus with cure time observed in two cases may suggest the cure temperature being used is degrading the rings to some extent. Again, this same trend was not observed in all the rings and was not consistent enough to warrant additional research or vendor efforts.

The lack of substantial changes in ring and slab properties with cure time suggested that, contrary to the rheometrics predictions, the rubber materials were nearly as fully cured after 3 or 4 minutes as they were after 10 minutes. In subsequent discussions with RD Rubber personnel, they indicated that the rubber is typically cured after only one minute in the heated press. Longer cure schedules are used to insure reproducibility.

DSC studies at Sandia on the uncured rubber and on the variously cured ring and slab samples confirmed that the cure is extremely rapid and that no significant differences in degree of cure could be noted in the materials cured 3, 4 or 10 minutes. As shown in the scans in Figure 4, slight trends noted in the rings on examining samples with 3, 4 and 10 minute cure times did not hold up in the slab samples. A DSC scan on an unknown sample would not be able to establish its degree of cure with any certainty. When the uncured rubber was examined (lower right of Fig. 4) a clear early endotherm was noted along with a broad exotherm. When similar samples were first cured in the DSC at 150°C for 2 to 15 minutes and then scanned, the observed initial endotherm had already disappeared and the subsequent exotherm was substantially reduced. The samples cured 2 or 4 minutes still gave slight exotherms, but the remaining samples were largely overlapping and featureless.

Lower temperature DSC scans were also carried out to measure anticipated increases in Tg as the cure time was increased. Again, all the samples showed similar Tg values and provided no quick and definitive measure of cure level.

Additional DSC scans (see Appendix K) of materials from the different vendors showed general similarities, particularly a broad endotherm starting at about 120°C, between the Parker and RD Rubber materials. This endotherm occurs at higher temperatures than the sharp endotherm observed only in the uncured material. The Precision materials did not show this broader endothermic profile in the one rubber batch examined

Stockpile aged butyl rubber O-rings from the W76 and W87 were also examined by DSC and showed a general increase in the above broad endotherm peak with aging. In these random samplings, the effect did not appear consistent enough to provide a useful measure of O-ring life, however. For example, three W76 O-rings from different rubber batches showed quite different DSC scans. In the W87 the limited scans available appeared more consistent in behavior, perhaps due to the use of a single O-ring vendor in this weapon. Future aged W87 O-rings should also be examined by DSC to monitor the growth of this endothermic peak and its possible correlation to O-ring performance. It should be noted that the "unaged" W87 Parker O-ring which had been stored in its shipping package and not stockpile aged did not show any endothermic peak such as that noted in more recent Parker and RD Rubber materials. This again reflects the ambiguity of assessing if observed DSC endotherms are due to aging or were present in the as-received materials.

The results of the cure study suggest two major points. First, none of the acceptance tests were able to differentiate the samples having different cure times with any certainty although the reduced maximum on hardness change with aging may be beneficial. Second, the sensitivity of properties to cure cycle is low and suggests that O-ring curing processes are both robust and tolerant of processing excursions. This may further suggest that out-of-spec materials result more from formulation and mixing deviations than from cure cycle deviations.

Plot 8. Hardness Values of Aged and Unaged RD Samples with Different Cures

ፒታ

Plot 11. Tensile Elongation of Aged and Unaged RD Samples with Different Cures

43

۶

ţ,

Tensile Modulus (0-25% Elong.) of Aged & Unaged RD Samples with Different Cures

Plot μ Tensile Work (0-20% Elong.) of Aged & Unaged RD Samples with Different Cures

5₽

1

•

Figure 4. DSC Cure Studies on RD Rubber Materials

46

•

Rubber Composition Tests

An unexpected discovery near the end of this program was the finding that two lots of test slabs supplied by Parker Seals and labeled as being prepared from specific batches of butyl rubber were actually prepared from EPDM rubber. Parker has been unable to fully account for how such a substitution could have occurred and whether such errors occur with any regularity.

The two Parker test slab lots made from EPDM were those labeled as butyl batches 316710 and 317851. Other assorted Parker and RD materials which were analyzed by solid state NMR and found to be made from the expected butyl rubber included Parker tests slabs from batches 316104 and 317403, Parker O-rings from batch 316710 (16.339 in. and 0.301 in. ID), Parker O-rings from batch 316710 (16.339 in. and 0.301 in. ID), Parker O-rings from batch 317851 (7.688 in. ID), RD Rubber test slabs from batches 14810 and 15107, and RD Rubber O-rings from batch 15107 (0.551 in. ID). No RD Rubber products and no O-rings from either vendor were found to be made from EPDM rubber. Typical proton NMR spectra for butyl and EPDM rubber are shown in Figure 5.

The NMR analyses were prompted by the unusually good aging characteristics, more like EPDM than butyl rubber, found by Mark Wilson for the 316710 test slabs in stress relaxation tests at Kansas City Plant. Subsequent permeation tests by Ken Gillen at Sandia, NM showed also performance similar to that expected from EPDM (much poorer than butyl) and were followed by a solid state NMR analysis confirming the EPDM composition.

None of the normal acceptance tests, including physical properties and density, nor DSC can reliably distinguish butyl and EPDM rubber. Long term aging and permeation tests are more involved and time consuming and are not candidates for qualification testing. The most definitive means, in any case, of identifying a composition as either rubber would be spectroscopic such as NMR or IR and possibly mass spectra. The cost and limited availability of solid state NMR would suggest the use of IR and this method has been used at LLNL to identify rubber samples. SpectraTech ATR (attenuated total reflectance) instruments are available for about \$3K or less which are capable of running IR spectra on the as-received slab or ring samples. The IR spectra of the two rubbers, like the NMR spectra, are very distinct.

Inclusion of such an IR test in future rubber material specifications would preclude the inadvertent use of O-ring seals made from the wrong base rubber. EPDM rubber provides very different permeability characteristics and lower levels of environmental protection than butyl rubber. A final decision on the type of spectral test to be used has not yet been made and will largely be determined by equipment availability.

Figure 5. Typical Solid State NMR Spectra for Butyl and EPDM Rubber.

Vendor Comparisons

Of the three vendors participating in this program, only Precision provided O-rings of clearly inadequate quality. Precision is a very low cost vendor and the visual quality of their O-rings reflected their low cost. Most of the O-rings used in the test program were visually inspected at Kansas City to insure comparable quality prior to testing. Precision O-rings were typically coated with talc which had to be removed by washing and the percentage of rings passing visual inspection was low, generally less than 50%. Test results from the Precision O-rings, as noted in the preceding sections, showed higher and sometimes out-of-spec compression set values, a key parameter. Both the poor visual quality and inconsistent compression set performance led to a decision not to include Precision as a future vendor.

Parker rings showed more variability in measured properties and also had large numbers of rings rejected for visual quality. RD Rubber rings were typically lower in hardness and tensile modulus than Parker, but they were also slightly lower, and again more uniform, in compression set, a key criteria. Both vendors appear capable of providing rings which will meet W87 requirements.

Concerns with Parker revolve around the recently discovered mislabeling and shipment of test slabs made from EPDM rubber and general, on-going difficulties noted at Kansas City with product quality and technical service. The small volume of rings required for DOE warhead production and maintenance does not warrant a highly cooperative response from this high volume vendor. RD Rubber, in contrast, is a smaller vendor and has shown a high level of cooperation as exemplified by production of the special materials needed for evaluating cure cycle effects.

Summary

The accumulated test data on rings of various sizes and test slabs from three vendors indicate that hardness, compression set and tensile tests can be readily and reliably performed on O-ring samples in place of the current test slab samples. Tables 10 and 11 and Plots 14 and 15 summarize all of the hardness, compression set and tensile data discussed in the preceding sections.

Procedures and required equipment have been defined and incorporated into the new test methods detailed in Appendices A, B and C. These procedures are currently being reprocessed into the Kansas City format. Modifications have also been made where needed in the target test values and these are shown in Table 12. A comparison of Table 12 with Table 1 in the beginning of the report provides a quick review of the changes made in both procedures and target test values in switching from test slab to O-ring samples. Additional O-ring tests on materials available at Kansas City are in progress and will be evaluated before target test values, especially for the tensile tests, are finalized. An additional test proposed for future O-ring lot acceptance is spectroscopic confirmation of the rubber material used, possibly by IR. A final decision on the use of IR vs. other options has not yet been made.

Difficult remaining issues include the definition of sampling rates from O-ring lots of different ring sizes and ring counts. Appropriate statistical samples for lots with different ring counts, ranging from 100 to 1000 and beyond need to be defined in a manner which is feasible, not overly burdensome or costly, and which yet provides data with acceptable precision. If larger orders are placed to fill both current and future needs, the issue of re-certification of lots in storage will need to be addressed. The definition of the word "lot" even requires clarification as smaller rings are fabricated in molds holding multiple samples while larger rings may be molded one at a time and may require several molding days to fill an order. While a lot of O-rings would clearly need to be fabricated from a single batch of rubber, it is not clear what molding cycle constraints may also be required to insure lot uniformity. The test sampling rates suggested in Table 12 reflect only the rates required to obtain reasonable precision in the test measurements and need to be further reconciled with the sampling rates required for statistically valid sampling of lots with different ring counts.

Vendor	Ring Size	Rubber Batch	Hard	ness	Comp. Set	Tensile (p	Strength si)	Ten Elong	sile jation	0-25% Mod	a Ten. ulus	Ten. %-lb/	Work sq in.
			initial	aged		initial	aged	initial	aged	initial	aged	initial	aged
m 1.	0.110-0.0000	040400		7.0	407	1001	1000	070	264	527	506	1005	1107
Parker	0.116X0.0038	318466	(5	78	10.7	1891	1023	270	204	557	707	1662	1720
Parker	0.301X0.054	316104	81	83	4.0	1959	1904	209	201	020	910	17/0	1601
Parker	4 004-00 070	316/10	81	81	9.7	2015	2032	272	2/1	000	750	1/45	1622
Parker	1.364XU.07U	316104	80	81	5.1	1591	15/3	209	210	600	152	1520	1569
Parker		317403	18	78	10.1	1790	1708	201	209	030	000	2027	1956
Parker	7.688X0.070	316104	81	82	1.1	1447	1501	1/0	100	0/0	012	1280	1522
Parker		317851	12	75	8.2	1469	1671	302	341	452	015	1200	1522
Parker	16.339x0.103	316104	80	81	7.8	1309	1430	108	1//	820	040	2233	2354
Parker		316/10	78	80	8.7	1294	1430	188	203	(0)	109	2133	2291
Parker	test slabs	316104	72	15	11.0	1563	1458	199	100	013	902	22/0	3404
Parker	(*= EPDM)	316710*	69	70	9.9	2503	2282	186	1/2	940	910	2017	2000
Parker		317403	73	76	10.4	1590	1764	221	221	838	902	2///	3212
Parker		317851*	73	73	15.9	2530	1940	1/8	152	920	920	2002	1265
Parker		318466	73	74	18.9	1459	1630	535	200	002	110	1307	1205
рD	0 301 x0 054	15107	76	79	65	2236	2423	308	3.0.3	427	494	1061	1076
RD	0.551×0.070	14810	75	76	5 5	2524	2414	402	344	364	395	774	918
RD	0.00120.070	15107	75	77	57	1965	1864	293	261	372	422	828	900
RD	1.114×0.070	14810	74	76	5.6	2142	2063	314	293	368	385	853	876
	1,114,01070	15107	75	77	7 1	2039	2153	296	300	390	428	900	1023
RD	7.185x0.103	14810	71	72	5.0	1734	1782	231	220	370	386	1048	1068
RD		15107	74	76	5.6	1579	1255	215	171	424	474	1310	1375
RD	11.196x0.103	14936	73	75	4.5	1334	1458	180	184	416	453	1172	1206
BD		15107	73	75	4.8	1436	1396	175	152	423	508	1194	1352
BD	test slabs	14810	63	69	5.9	2218	2170	273	247	532	545	1674	1627
BD		15107	66	65	12.6	2123	2010	243	220	584	625	1815	1846
				• -					i				
Precision	0.301x0.054	19052	75	80	9.5	2218	2162	380	300	570	630	1322	1561
Precision		19895	78	79	10.7	2233	2138	369	289	530	625	1190	1483
Precision	1.364x0.070	17405	77	79	8.8	2078	1971	313	261	553	633	1414	1556
Precision		19895	78	79	10.0	1935	1937	275	247	576	600	1384	1491
Precision	7.739x0.070	19052	78	81	10.7	1578	1653	192	152	732	849	1857	2143
Precision		19895	78	81	11.5	1496	1616	226	181	700	772	1990	2159
Precision	16.955x0.139	19422	76	78	12.0	1129	832	188	114	527	610	1492	1642
Precision		19895	76	79	19.8	1315	1379	223	179	554	654	1686	1934
Precision	test slabs	19052	73	75	24.0	1711	1696	276	208	644	706	2298	2472
Precision		19895	72	76	22.8	1657	1565	229	197	677	705	2336	2405

Table 10. Test Data Summary for Butyl Rubber Materials (Rings and Slabs) from Different Vendors

Aged samples (except compression set) exposed to 70 hours at 212°F plus 24 hours at room temperature. Compression set samples exposed to 22 hours aging at 25% compression and 158°F plus 30 min., uncompressed, at room temperature.

*

۲.

,

a.

50

.

÷.

Plot 14. Unaged O-Ring Test Values vs. Ring Size and Vendor

Ring Size	Cure Time	Hard	iness	Comp. Set	Tensile (p	Strength si)	Ter Elong	nsile gation	0-25% Mod	a Ten. ulus	Ten. %-lb/	Work sq in.
		initial	aged		initial	aged	initial	aged	initial	aged	initial	aged
0.301 x 0.054	3 min. 12 sec.	76	81	7.9	2429	2556	340	276	469	547	997	1100
	4 min. 18 sec.	76	80	7.0	2374	2369	334	284	433	471	949	948
	10 min.	76	79	6.5	2236	2423	308	303	427	494	1061	1076
1.114 x 0.070	3 min. 12 sec.	73	80	10.8	2177	2089	319	223	390	479	893	970
	4 min. 18 sec.	73	77	6.6	2119	2099	291	258	391	464	900	1040
	10 min.	75	77	7.1	2039	2153	296	300	390	428	900	1023
7.185 x 0.103	3 min. 12 sec.	73	77	9.8	1879	1751	218	155	513	588	1260	1411
	4 min. 18 sec.	73	78	14.5	1170	1641	153	159	479	556	1366	1192
	10 min.	74	76	5.6	1579	1255	215	171	424	474	1310	1375
11.196 x 0.103	3 min. 12 sec.	72	77	8.0	1746	1902	228	184	421	546	1073	1365
	4 min. 18 sec.	74	77	6.7	1380	1869	190	194	411	514	1050	1310
	10 min.	73	75	4.9	1436	1396	175	152	423	508	1194	1352
Test Slabs	3 min. 12 sec.	67	70	13.5	2116	2034	221	189	613	635	1690	1784
	4 min, 18 sec.	67	70	10.8	2092	1950	247	179	536	640	1534	2090
	10 min.	66	65	12.6	2123	2010	243	220	584	625	1815	1846

+

•

Table 11. Test Data Summary on RD Rubber Materials (Batch 15107) With Differing Cure Schedules

3 min. 12 sec. = 45% cure.

4 min. 18 sec. = 70% cure.

10 min. = 95% cure

ę

70 hours at 212°F plus 24 hours at room temperature. 1.

22 hours compression set aging at 25% compression and 158°F plus 30 min. at room temperature. 2.

Property	Requirement	Test Method	Test Sample***
Specific gravity	1.14±0.02	ASTM-D-297 (pycnometer or hydrostatic)	any suitable piece of O-ring
Hardness	70-85 Shore M pts before aging. Maximum change of 4 pts after aging*.	Appendix A	5 small O-rings, each tested at 2 sites, or 3 large O-rings, each tested at 4 sites
Compression set**	10% maximum after aging 22 hours at 158 hours under 25% compression.	Appendix B	5 small O-rings, each cut into halves, or 3 large O-rings, each providing 4 slices about 2 in. long
Tensile strength at break	Minimum to be defined and to vary, possibly from 1200 to 1800 psi with decreasing ring size (see Table 6). Maximum ±15% change after aging*.	Appendix C	5 rings before and 5 rings after aging
Tensile elongation at break	Minimum to be defined and to vary, possibly from 150 to 225% with decreasing ring size (see Table 6). Maximum ± 15% change after aging*.	Appendix C	5 rings before and 5 rings after aging
Tensile modulus (from 0-25% elongation)	Minimum to be defined, possibly about 350 psi. Maximum +15% change after aging*.	Appendix C	5 rings before and 5 rings after aging

Table 12. Proposed Butyl Rubber O-Ring Physical Testing Requirements

* Hardness and tensile aging conditions: 70 hours at 212°F.

- ** 10% compression set maximum corresponds to a maximum reduction in original thickness of $10\% \ge 25\% = 2.5\%$.
- *** Test plans in the table are suggestions based on the procedures used in this report. Final sampling plans will need to incorporate statistically valid sampling rates for O-rings lots of different ring counts.

Acknowledgments

This program was initiated by Bob Anderson of the W87 group and benefited heavily from his active involvement. The successful implementation of any revisions to the current test procedures could not have happened without his involvement plus the enthusiastic cooperation of people at Kansas City. Julie Stuckey, Mark Wilson, Tom Snider and Ed Kibalo were all active collaborators as well as discerning customers. All the ring visual inspections were carried out at Kansas City and the materials required for the cure study were procured through KC. Even more important have been the continuous and open discussions regarding the history and issues involved in revising these O-ring test procedures.

The vast majority of the testing, data assembly, vendor contacts, sample exchanges with KC, and any other tasks were all very capably handled by co-author Kevin Wagter.

The tensile test procedures were developed and tests performed by John Totten and the innovative split-spool tensile fixtures were designed and procured by John Korellis. Molly Jacobs made the numerous initial contacts and orders with O-ring and equipment vendors and Ja Lee Yio made many of the very early hardness and ring thickness measurements. DSC characterization of the slabs and rings with different cures and of the various aged samples was carried out by Don Meeker.

Valuable suggestions were made by Craig Henderson and by Ken Gillen who also contributed his long experience in aging studies.

Appendix A: Proposed Test Method for Rubber O-Ring Hardness

(to be reformatted and issued as test specification 9951007A)

Test Method for Rubber O-Ring Hardness

1. Scope

1.1 This test method describes a procedure for measuring the hardness of rubber O-ring samples. The hardness is obtained by the difference in penetration depth of a probe of specified dimensions under two contact conditions: (1) with a small initial force and (2) with a much larger final force. The differential penetration is automatically taken at a specified time and converted to a hardness scale value.

2. Significance and Use

2.1 International Hardness tests are based on measurement of the penetration of a rigid probe into the rubber specimen under specified conditions. The measured penetration is converted into International Rubber Hardness Degrees ranging from zero to 100 where 100 represents a material of infinite elastic modulus.

3. Summary of Method

3.1 O-rings are marked for identification and positioning as test specimens.

3.2 Initial hardness measurements on test specimens are taken and recorded.

3.3 Test specimens are heat aged for 70 hours at 212°F..

3.4 Final hardness measurements on test specimens are taken and recorded approximately 24 hours after removal from the oven.

3.5 The heat aging difference is calculated from the average initial and final hardness measurements.

4. Apparatus

4.1 Micro Durometer- (See Figure 4.1)

4.1.1 A Shore M Digital Micro Durometer with a resolution of ± 0.01 points is required. Dial durometers are not suitable. The durometer should automatically record the hardness 1 second after impact.

4.1.2 The durometer must be mounted in a hydraulically controlled stand. 4.1.3 Double pin fixtures are required to hold the ring in place. Fixtures of a standard range are typically provided with the durometer. If the O-rings have a cross section not covered, a custom sized fixture should be ordered.

4.2 Oven- A force ventilated or gravity convection oven capable of maintaining a uniform temperatures of 212±10°F should be used. The oven should contain blocks or a fixtured perforated rack at least one inch, preferably several inches,

above the oven floor to support the aging rack. An additional verifying temperature chart recorder is desirable.

4.3 Heat Aging Rack-

4.3.1 The rack should have a flat, non-heat conducting surface that does not restrict air flow around the O-rings.

4.3.2 The rack frame can be made by assembling custom wood frame segments (used to build frames for painting canvases and available at crafts or art supply stores) or any thin wood slats (available at hardware stores).
4.3.3 The surface can be made out of any natural loose weave material. It needs to be open enough to allow air flow while being tight enough to completely support the O-rings. Needle point netting (available crafts or fabric supply stores) seems to work best, but any equivalent material will do. Avoid synthetic fibers which might contaminate or adhere to the O-rings.

4.3.4 Stretch the fabric over the frame like a canvas and staple it in place.

5. Number of Test Specimens

5.1 Sacrificial O-rings must be of the same size and from the same lot as the O-ring they are to represent.

5.2 Sampling plan. (to be determined)

6. Test Specimen Preparation

6.1 Lay out the O-rings on a flat surface. Arrange them in a flat and relaxed state, approximately circular, with no twists or loops.

6.2 Marking test specimens (See Figure 6.2)

6.2.1 Use water based correction fluid to mark target dots on the specimens.
6.2.2a On small O-rings (inside diameter ≤ 2.0 inches) mark two dots approximately 180° apart on the top surface to denote the sampling sites.
6.2.2b On large O-rings (inside diameter > 2.0 inches) mark four dots approximately 90° apart on the top to denote the sampling sites.
6.2.3 The A and UA designations indicate the location of hardness

measurements on unaged (UA) and aged (A) samples.

6.2.4 Mark a dot on the outside curve of the Ó-ring adjacent to a sample dot to denote the "origin".

7. Test Procedure

- 7.1 Preparations
 - 7.1.1 Preheat the oven to 212±10°F

7.1.2 With the double pin fixture removed from the durometer platform, raise and drop the durometer assembly ten times to equilibrate the oil in the piston. This will result in a smoother motion over the range of descent, giving more consistent measurements. This should be repeated whenever the durometer has been idle for more than 30 minutes.

7.1.3 Select the appropriate sized double pin fixture for the O-rings being tested and fit it into the durometer platform.

7.1.4 Carefully lower the probe, making sure it does not touch the metal platform. Check to see if the probe is exactly centered between the O-ring pins so that the durometer probe will contact the O-ring at its apex. Realign the platform or the probe if needed until the probe is centered.

- 7.2 Initial hardness readings
 - 7.2.1 Place the O-rings on the durometer platform in the same orientation as they were marked. For larger O-rings an adjacent flat surface, raised to the height of the durometer with a jack stand, is required to keep the O-ring from being distorted by drooping.

7.2.2 Make sure the O-ring is centered between the two posts of the O-ring fixture with the origin and site 1 dots slightly (about 1/4 inch) to the <u>left</u> of the pins.

7.2.3 There should be no distortions of the O-ring during the measurement. The ring may be held lightly to keep it centered as long as no bending or stretching forces are applied.

7.2.4 Flip the lever that starts the durometer descent. The durometer will take the measurement 1 second after contact with the O-ring. Record the value.

7.2.5 Raise the durometer back to its starting position.

7.2.6 Continue the sampling progression around the O-ring in a clockwise direction. The site dots should always be about 1/4 inch to the left of the pins.

7.2.7 Record vendor, part size, lot number and hardness reading of each site on each O-ring in a log book.

7.3 Heat Aging

7.3.1 Once the initial measurements are taken, place the O-rings on the heat aging rack. Arrange the O-rings so they are flat, relaxed and do not touch one another. The larger rings may have to be doubled over to fit on the rack.

7.3.2 Make a sketch of the layout to keep track of the locations and identity of the O-rings being aged if multiple lots are being tested. If desired, the O-rings may also be identified with tags attached with string.

7.3.3 Place the heat aging rack with O-rings in the preheated oven at 212±10°F for 70.0±0.5 hours.

7.3.4 Use hot gloves to remove the heat aging rack and O-rings from the oven.

7.3.5 Cool the O-rings on the rack for at least 16 and no more than 48 hours.

7.4 Take final hardness readings on the test specimens

7.4.1 Repeat the procedure used above except that all measurements should be made with the dots slightly (about 1/4 inch) to the <u>right</u> of the pins. Measurements may not be made in exactly the same location due to

puncturing of the ring surface by the hardness probe.

7.4.2 Record all measurements in a log book.

8. Calculation

8.1 Calculate the change in hardness expressed as difference from the original to final hardness as follows:

 $\Delta H = h_o - h_f$

where:	ΔH	=	change in hardness
	ho	=	average original hardness of specimens.
	h _f	=	average final hardness of specimens.

9. Report

The report shall include the following:

9.1 Description of O-ring lot, including vendor, rubber compound and batch number, ring part number, ring size (inside diameter and cross section), lot size (number of O-rings), and date the lot was produced and received.

9.2 Number of O-rings used, date and time of the test, and ambient temperature.9.3 Test Results

9.3.1 Original average hardness, h_o, of the O-rings.

9.3.2 Final average hardness, h_f of the O-rings.

9.3.3 Change in hardness, expressed as the difference in points between the average initial and average final hardness of the samples.

Appendix B: Proposed Test Method for Rubber O-Ring Compression Set (to be reformatted and issued as test specification 9951009A)

Test Method for Rubber O-Ring Compression Set

1. Scope

1.1 This test method describes a procedure for measuring the compression set of rubber O-ring samples under constant deflection conditions in air.

2. Significance and Use

2.1 Compression set tests measure the ability of rubber compounds to retain elastic properties after prolonged compressive stresses. The testing involves the maintenance of a fixed deflection at an elevated temperature. Compression set tests are primarily applicable to service conditions involving static stresses.

3. Summary of Method

3.1 O-rings are cut and marked for identification and positioning as test specimens.3.2 Initial cross section thickness measurements on test specimens are taken and recorded.

3.3 Test specimens are compressed to a constant deflection and maintained under this condition for 22 hours at 158°F.

3.4 Final cross section thickness measurements on test specimens are taken and recorded 30 ± 10 minutes after removal from the compression device.

3.5 The compression set value is calculated from the average initial and final thickness measurements.

4. Apparatus

4.1 Laser Micrometer- A laser micrometer capable of measuring sample thickness with a resolution of ± 0.0001 in. is required. Fixtures typically provided with such micrometers must be modified (see Figure 4.1) to provide a flat plane on which the O-ring samples can be placed. Use of such flat plane fixtures allows alignment of the compressed plane of the ring segments parallel to the laser reading beam

Figure 4.1

Stock LaserMic sample fixture

LaserMic sample fixture modified with aluminum wedges

4.2 Compression Device-

4.2.1 Samples are to be compressed in a constant deflection device consisting of two or more parallel compression plates assembled by means of a frame or threaded bolts. The device shall be portable and self-contained after assembly and designed such that the parallelism of the plates can be maintained.
4.2.2 The plates between which the test specimens are compressed shall be made of steel of sufficient thickness (typically 0.5 in.) to withstand the compressive stresses without bending. The surfaces against which the specimens are held

shall have a highly polished chrome-plated finish and shall be cleaned thoroughly and wiped dry before each test.

4.3 Spacer Bars- A set of 4 steel spacer bars are required, per layer, to maintain the constant deflection distance of 75% of the nominal Cross Section diameter of the O-rings being tested (\pm 0.001 inch).

4.4 Oven- A force ventilated or gravity convection oven capable of maintaining a uniform temperature of 158±10°F shall be used. The oven should contain a sturdy rack at least one inch, preferably several inches, above the oven floor to hold the compression set apparatus. An additional verifying temperature chart recorder is desirable

4.5 Cooling surface- A surface with low thermal conductivity, such as wood or cardboard covered with a clean layer of paper, should be used as a cooling surface.

5. Number of Test Specimens

5.1 Sacrificial O-rings must be of the same size and from the same lot as the O-rings they are to represent.

5.2 Sampling plan (to be determined)

6. Test Specimen Preparation

- 6.1 Cutting test specimens (See Figure 6.1)
 - 6.1.1 Small O-rings (< 2.0 inch inside diameter) are to be cut in half to give two specimens per O-ring.

6.1.2 Large O-rings (> 2.0 inch inside diameter) are to be cut into quarters, and a 2.0 inch specimen then cut from the end of each quarter. The rest of the O-ring pieces may be discarded or used for other tests.

O-Rings \leq 2.0 in. id

O-Rings > 2.0 in. id

6.2 Lay out the cut test specimens on a flat surface. Roll the specimens gently about until they are flat and stable.

6.3 Marking test specimens (See Figure 6.3)

6.3.1 Use water based correction fluid to mark target dots on the specimens.6.3.2 Mark two target dots, approximately 5 mm apart, about midway along the outside curve of the O-ring segment to denote the measurement area.

6.3.3 Mark a position dot on the top end of the segment to denote orientation

7. Test Procedure

7.1 Preparations

7.1.1 Preheat oven to 158±10°F

7.1.2 Clean the surfaces of the compression plates that will come in contact with the O-rings with alcohol (methanol, ethanol, or isopropanol) and wipe dry with lint free cloth or paper.

7.1.3 Spray the surfaces with a thin coat of dry Teflon mold release and rewipe.

7.1.4 Turn on, calibrate if necessary, and center the laser micrometer.

7.2 Initial thickness readings

7.2.1 Place test segments on the laser micrometer platform in the same orientation as they were marked, with the reading laser centered between the two target dots (See Figures 6.3 & 7.3).

7.2.2 Record vendor, part size, lot number, and thickness reading of each specimen in a log book.

7.3 Compressing test specimens

7.3.1 Place the compression set apparatus on a flat surface and remove the top nuts and top plates, leaving only the bottom plate and compression screws.7.3.2 Place the test specimens on the bottom compression plate in the same flat and relaxed manner with the dots to the side as was used in taking the initial thickness reading. Specimens should not touch each other or the screws.

7.3.3 Select spacers that are 75% of the nominal cross section of the O-rings that are being tested (see Table 7.3). Wipe any oil or dirt off the spacers and place them on the plates. Make sure the spacers do not touch the specimens.

Table 7.3

O-ring Cross Section Diameter

Appropriate Spacer Thickness

0.038 inches 0.054 inches 0.070 inches 0.103 inches 0.139 inches 0.0285 inches 0.0405 inches 0.0525 inches 0.0772 inches 0.1042 inches

7.3.4 A second layer plate, set of specimens and appropriate spacers may be added if desired.

7.3.5 Replace top plate and nuts, being careful not to disturb the specimens and spacers.

7.3.6 Finger tighten and then use a pair of wrenches to tighten down the plates. Cross tighten the nuts using half turns to keep the pressure as even as possible. Keep tightening the nuts until all the specimens are flattened and the spacers don't slide out when the assembly is tipped sideways. If there are many O-ring pieces this may require a lot of torque.

7.4 Place the assembled compression set apparatus in the preheated oven at $158\pm10^{\circ}$ F for 22.0±0.5 hours.

7.5 Cooling

7.5.1 Use hot gloves to remove the compression apparatus from the oven.

7.5.2 Immediately loosen and remove the nuts in reverse manner of how they were tightened and separate the plates.

7.5.3 Gently scrape the test specimens off the plates with a flat sheet of paper or a blade being careful not to bend or stretch them.

7.5.4 Place the O-ring segments on a clean piece of paper on a flat piece of wood in the same positions as when their initial thickness measurements were taken and let them cool for 30-60 minutes.

7.6 Take final thickness readings on the test specimens

7.6.1 Follow the same procedure used for the initial readings to take the final readings. Measurements should be made as close to the same orientation and location as the initial measurements.

7.6.2 Again record all measurements in a log book.

8. Calculations

8.1 Calculate the actual percent compression of the O-ring speciments as follows: (This value indicates how close the actual compression was to the target 75%.)

$$T\% = [(t_o - t_b) / t_o] \times 100$$

where:

T% = actual percent compression of the specimens.

 $t_o =$ average original thickness of the specimens.

 $t_b = thickness of spacer bar used.$

8.2 Calculate the compression set expressed as a percentage of the imposed compression as follows:

$$C = [(t_0 - t_f)/(t_0 - t_b)] \times 100$$

where:

- C = compression set.
- $t_o =$ average original thickness of the specimens.
- t_f = average final thickness of the specimens.
- $t_b = thickness of spacer bar used.$

9. Report

The report shall include the following:

9.1 Description of O-ring lot, including vendor, rubber compound and batch number, ring part number, ring size (inside diameter and cross section), lot size (number of O-rings), and date the lot was produced and received.

9.2 Number of specimens used, date and time of the test, and ambient temperature.9.3 Test Results

9.3.1 Original average thickness, t_o, of the test specimens.

9.3.2 Final average thickness, t_f, of the test specimens.

9.3.3 Size of spacers used, t_b.

9.3.4 Actual percentage compression of the specimen, $T_{\%}$.

9.3.5 Compression set, expressed as a percentage of the original deflection, C.

Appendix C: Proposed Test Method for Rubber O-Ring Tensile Properties (to be reformatted and issued as test specification 9951008A)

Test Method for Rubber O-Ring Tensile Properties

1. Scope

1.1 This test method describes a procedure for measuring the ultimate strength, ultimate elongation and linear modulus at 25% elongation of rubber O-rings before and after aging in air.

2. Significance and Use

2.1 The tensile properties of intact rubber O-rings reflect the bulk properties, the level of defects, and surface aging effects of the materials. Specific fixtures are used in the test which differ slightly from those used in ASTM tests and which accomodate multiple loops of larger O-rings. Different test elongation speeds are used for single vs. multiple looped rings.

3. Summary of Method

3.1 Two identical sets of O-rings are bagged and labeled as test specimens.

3.2 Initial tensile measurements on the first set of test specimens are taken and recorded.

3.3 The second set of test specimens is heat aged for 70 hours at 212°F.

3.4 Final tensile measurements on the second set of test specimens are taken and recorded approximately 24 hours after removal from the oven.

3.5 The heat aging difference is calculated from the average initial and final tensile measurements.

4. Apparatus

4.1 Testing Machine-

4.1.1 Tensile tests shall be made on a screw driven machine equipped to produce uniform grip separation speeds between 5 and 20 inches/minute for a distance of at least 30 inches. Different speeds are used for smaller and larger O-rings to insure adequate data collection times for the smaller rings and reasonable test times for the larger rings. No significant sensitivity of the tensile data to test speed has been noted within the ranges used.

4.1.2 The testing machine shall have both a suitable load cell and a recording device for measuring the applied force within $\pm 2\%$. Both chart recorders and computer controlled recorders may be used if they provide suitable resolution.

4.2 Test Fixtures- All tests will be conducted on Sandia furnished fixtures or fixtures designed to Sandia specifications.

4.2.1 The base fixtures are shown in Figure 4.2 and are designed to fit a standard screw driven test machine.

4.2.2 The split spool fixtures are made with a range of groove and spool sizes to accommodate different O-rings and are designed to fit interchangeably on the base fixtures.

4.2.3 The spools required for different O-ring sizes, and the initial spool separation distance for each O-ring size are given in Table 4.2

4.3 Oven- A force ventilated or gravity convection oven capable of maintaining a uniform temperatures of 212±10 °F should be used. The oven should contain blocks or a fixtured perforated rack at least one inch, preferably several inches, above the oven floor to support the aging rack. An additional verifying temperature chart recorder is desirable.

Figure 4.2

Split spool triple loop fixture with

additional

grooves to hold

large O-rings

	Table 4.2	O-Ring Dimension	ns and Correspo	onding Fixture	and Test	Parameters
--	-----------	------------------	-----------------	----------------	----------	------------

O-ring inside diameter (id)	O-ring cross section (cs)	spool diameter (D)	groove diameter	number of loops (#)	initial fixture gap distance (L _i)	fixture speed (in./ min.)
0.116 in.	0.038 in.	0.090 in.	0.038 in.	1	0.041 in.	5.0
0.301 in.	0.054 in.	0.196 in.	0.054 in.	1	0.165 in.	5.0
0.652 in.	0.070 in.	0.250 in.	0.070 in.	1	0.631 in.	5.0
1.239 in.	0.070 in.	0.250 in.	0.070 in.	1	1.554 in.	5.0
1.301 in.	0.070 in.	0.250 in.	0.070 in.	1	1.651 in.	5.0
1.364 in.	0.070 in.	0.250 in.	0.070 in.	1	1.750 in.	5.0
1.487 in.	0.103 in.	1.000 in.	0.103 in.	1	0.765 in.	5.0
1.739 in.	0.070 in.	0.250 in.	0.070 in.	1	2.339 in.	5.0
1.913 in.	0.070 in.	0.250 in.	0.070 in.	1	2.612 in.	5.0
7.688 in.	0.070 in.	1.040 in.	0.070 in.	3	2.392 in.	20.0
16.339 in.	0.103 in.	1.000 in.	0.103 in.	3	6.984 in.	20.0

4.4 Heat Aging Rack- (See Figure 4.4)4.4.1 The rack should have a flat, non-heat conducting surface that does not restrict air flow around the O-rings.

4.4.2 The rack frame may be made by assembling custom wood frame segments (used to build frames for painting canvases and available at crafts or art supply stores) or any thin wood slats (available at hardware stores).
4.4.3 The surface can be made out of any natural loose weave material. It needs to be open enough to allow air flow while being tight enough to completely support the O-rings. Needle point netting (available at crafts or fabric supply stores) seems to work best, but any equivalent material will do. Avoid synthetic fibers which might contaminate or adhere to the O-rings.
4.4.4 Stretch the fabric over the frame like a canvas and staple it in place.

Slats

Frame and Netting

Finished Rack

5. Number of Test Specimens

5.1 Sacrificial O-rings must be of the same size and from the same lot as the O-ring they are to represent.

5.2 Sampling plan (to be determined)

6. Test Specimen Preparation

6.1 Select and label two sets of O-rings, designating one set "<u>non-aged</u>" and the other as "<u>aged</u>". It is convenient to store the O-rings in labeled plastic bags.

7. Test Procedure

7.1 Preparations

7.1.1 Preheat oven to 212±10°F.

7.2 Heat Aging

7.2.1 Place the O-rings which are later to be used to determine "aged" tensile properties on the heat aging rack. Arrange the O-rings so they are flat, relaxed and do not touch one another. Some of the largest O-rings may have to be doubled over to fit on the rack.

7.2.2 Place the heat aging rack with O-rings in the preheated oven at 212±10°F for 70.0±0.5 hours.

7.2.3 Use hot gloves to remove the heat aging rack and O-rings from the oven.

7.2.4 Cool the O-rings on the rack for at least 16 and no more than 48 hours.

7.3 Initial tensile readings on "non-aged" test specimens

7.3.1 Select the appropriate sized split spool O-ring fixture for the O-rings being tested and fit it into the base fixture (see Table 4.2). O-rings with inner diameters of 7.185 inch or larger shall be tested using the three loop

configuration to insure adequate elongation and ring failure. The required crossings in the multi-looped configurations should be arranged such that there is single crossing of strands on each side of the spools (see Figure 7.3).

Figure 7.3

7.3.2 Bring the two halves of the split spool fixture together and reset the gap distance (L) to zero.

7.3.3 Adjust the initial gap distance (L_i) to the value given in Table 4.2 for the O-ring being tested.

7.3.4 Lubricate the O-ring with mineral oil and install the O-ring in the groove(s) of the split spool spindle.

7.3.5 Reset the strain force (F_i) equal to zero.

7.3.6 Set the fixture separation speed at either 5 inches/minute (for single-looped rings) or 20 inches/minute (for larger, triple-looped rings).

7.3.7 Start the stress-strain recording device and begin elongation at the selected speed. Continue elongation until sample failure.

7.3.8 Identify and save data as appropriate to the chart recorder or computer.

7.3.9 Repeat the procedure on the remaining O-rings.

7.4 Tensile measurements on the "aged" test specimens should follow the same procedure used for the initial measurements. The aged O-rings should be tested 16 to 48 hours after removal from the oven, preferably about 24 hours.
8. Data Analysis

8.1 Definitions (see Figure 8.1)

Figure 8.1

i.d. = the nominal inside diameter of the O-ring.

- c.s. = the nominal cross section diameter of the O-ring.
 - C = the inside Circumference of the O-ring. (C = id X π)
 - D = the **D**iameter of the split spool fixture.
 - G = the circumference of the split spool fixture. (G = D X π)
 - L_i = the initial fixture gap distance or Length between the split spool fixtures that corresponds to 0% elongation of the O-ring being tested. These values are given in Table 4.2

for the single looped O-rings $L_i = (C - G)/2$

for the triple looped O-rings $L_i = (C - 3G) / 6$

 F_i = the initial Force when the split spool fixtures, with O-ring installed, are set to L_i By definition, $F_i = 0$.

 L_x and F_x are the fixture gap distance and corresponding force at any point "x" during the test. $L_{25\%}$ and $F_{25\%}$ are used for the modulus calculations.

L_f and F_f are the final fixture gap distance and corresponding force at the maximum elongation before break.

8.3 Calculations

8.3.1 Maximum Elongation at break ($e\%_{max}$) is calculated as a percentage of the original O-ring circumference:

8.3.1a Elongation for single looped small O-rings

 $e_{max} = [(2 X \Delta L_f) / C] X 100$ where $\Delta L_f = L_f - L_i$

8.3.1b Elongation for triple looped large O-rings

 $e_{max} = [(6 X \Delta L_f) / C] X 100$ where $\Delta L_f = L_f - L_i$

8.3.2 Maximum Strength (S_{max}) is calculated as pounds per square inch.8.3.2a Strength for single looped small O-rings

 $S_{max} = \Delta F_f / [2 X (cs/2)^2 X \pi]$ where $\Delta F_f = F_f - F_i$

8.3.2b Strength for triple looped larger O-rings

 $S_{max} = \Delta F_f / [6 X (cs/2)^2 X \pi]$ where $\Delta F_f = F_f - F_i$

If the recording device has been reset such that F_i is zero, then $\Delta F_f = F_f$ in the above calculations.

8.3.3 Modulus is calculated as pounds per square inch. Use Table 8.3.3 to find the $L_{25\%}$ Distance value corresponding to the O-rings being tested. Convert the $L_{25\%}$ value to a $F_{25\%}$ Force value using the Force vs Distance graph for that O-ring (see the example in Figure 8.3)

8.3.3a Modulus (or stress at 25% elongation) for single looped rings

$$M_{25} = \Delta F_{25\%} / [2 X (cs/2)^2 X \pi] / 0.25$$
 where $\Delta F_{25\%} = F_{25\%} - F_i$

8.3.3b Modulus (or stress at 25% elongation) for triple looped rings

$$M_{25} = \Delta F_{25\%} / [6 X (cs/2)^2 X \pi] / 0.25$$
 where $\Delta F_{25\%} = F_{25\%} - F_i$

If the recording device has been reset such that F_i is zero, then $\Delta F_{25\%} = F_{25\%}$ in the above calculations.

Figure 8.3 Force vs. Elongation Distance Graph

 Table 8.3.3
 O-Ring and Spool Dimensions and Corresponding Test Parameters

<u>O-Ri</u> O-ring inside diameter	n <u>g Dimer</u> O-ring inside r circum.	<u>isions</u> O-ring cross section	<u>Spoo</u> spool diameter	ol Dimen spool circum.	<u>sions</u> groove diameter	no. of loops	<u>Te</u> initial fixture gap, L _i	est Param O-ring circum. X125%	<u>eters</u> L _{25%} fixture gap	L _{25%} -L _i -
(inches)	(inches)	(inches)	(inches)	(inches)	(inches)		(inches)	(inches)	(inches)	(inches)
0.116 0.301 0.652 1.239 1.301	0.364 0.946 2.048 3.892 4.087	0.038 0.054 0.070 0.070 0.070	0.090 0.196 0.250 0.250 0.250	0.283 0.616 0.785 0.785 0.785	0.038 0.054 0.070 0.070 0.070	1 1 1 1	0.041 0.165 0.631 1.554 1.651	0.455 1.181 2.559 4.863 5.106	0.087 0.283 0.887 2.040 2.161	0.046 0.118 0.256 0.486 0.510
1.364	4.285	0.070	0.250	0.785	0.070	1	1.750	5.354	2.285	0.535
1.487	4.672	0.103	1.000	3.142	0.103	1	0.765	5.836	1.347	0.582
1.739	5.463	0.070	0.250	0.785	0.070	1	2.339	6.826	3.021	0.682
1.913	6.010	0.070	0.250	0.785	0.070	1	2.612	7.509	3.362	0.750
7.688	24.153	0.070	1.040	3.267	0.070	3	2.392	30.175	3.396	1.004
16.339	51.331	0.103	1.000	3.142	0.103	3	6.984	64.131	9.117	2.133

9. Report

The report shall include the following:

9.1 Description of O-ring lot, including vendor, rubber compound and batch number, ring part number, ring size (inside diameter and cross section), lot size (number of O-rings) and date the lot was produced and received.

9.2 Number of O-rings used, date and time of the test, and ambient temperature.9.3 Test Results

9.3.1 Original average value of e_{max} (maximum elongation at break), S_{max} (maximum strength at break) and M_{25} (linear 25% elongation modulus).

9.3.2 Final average value of $e\%_{max}$, S_{max} and M_{25} .

9.3.3 Change in $e\%_{max}$, S_{max} and M_{25} expressed as a percentage of the original values.

Appendix D: Current Butyl Rubber O-Ring Specification (SS453883)

Contents:

- 1) Table D-1. Current W87 Butyl Rubber O-Rings.
- 2) Copy of SS453883

W87 Part No.	Parker No.	Quantity	Application	Size (id x cs in inches)
453907	5-102	13	FSA seal screw/WES deck	0.116 x 0.038
453882	5-710	4.	RF conn/mon plug and aft bulkhead	0.301 x 0.054
455915	5-252	1	purge valve cap/valve body (part 458376, Parker 2-112, in Alt 342 list)	0.652 x 0.070
453876	2-026	1	MSAD actuator/WES deck	1.239 x 0.070
453879	2-027	1	MSAD actuator cover/actuator	1.301 x 0.070
453877	2-028	1	FSA/WES deck (det. cable hole)	1.364 x 0.070
453878	2-128	2	CF2703/WES deck & aft bulkhead	1.487 x 0.103
453880	2-031	1	det. conn. cover/FSA	1.739 x 0.070
453881	5-796	1	monitor plug/WES deck	1.913 x 0.070
453875	non-std	1	WES deck/RV body	7.688 x 0.070
453874	non-std	1	aft bulkhead/RV body	16.339 x 0.103
adjusting pin top cover connector cover screws	2-008 2-029 2-017 non-std	$\begin{array}{c}1\\1\\1\\2\end{array}$	LLNL parts supplied within actuator assembly	

Table D-1. Current W87 Butyl Rubber O-Rings (all made from Parker B612-70 per SS453883)

W87 Non-Butyl Rubber O-Rings

W87 Part No.	Parker Compound	Quantity	Application	Rubber Type
453468	V894-90	1	pit tube/WES deck (SS453864)	Viton
455887	E692-75	1	purge valve/aft bulkhead (SS453414)	EP/EPDM
455888	E692-75	1	purge valve seal (SS453414)	EP/EPDM
452889	E981-50	2	CF2711 & CF2989 conn pad	EP/EPDM
231485-02	E515-80	2	stem seal/valve	EP/EPDM

CAGE CODE 14214

S. BEASLEY

PC5KC 5366 ME1KC (W1/ZL.DOC)

PAGE 1 OF 7

. .

SS453883

Released 1-25-96 +

PREFORMED PACKINGS, ELASTOMERIC REQUIREMENTS FOR W87 (U)

CHANGE HISTORY

CONTROL NUMBER	ISSUE	RELEASE/CHANGE NO.	· DATE
SS453883-000	Ν	951806KC C REV 2	1/96

77

1. GENERAL

1.1. Scope.

This specification defines the material, design parameters and acceptance requirements for preformed elastomeric packings for the W87.

1.2. Purpose.

The W87 O-rings are intended to maintain a moisture and chemical barrier for a 20 year stockpile life.

1.3. Records.

The Production Agency shall retain records of all tests and certifications indicated in the text for a period of 25 years.

1.4. Definitions.

1.4.1. Design Agency.

Sandia National Laboratories, Livermore, California, Code Ident. 14214.

1.4.2. Production Agency.

AlliedSignal Corporation, Kansas City Division, Code Ident. 14061.

1.4.3. Manufacturer.

R. D. Rubber Technology, Corporation or Parker Hannifin Corporation.

1.4.4. Deleted.

1.4.5. Batch Definition.

A batch shall be that quantity of material compounded at one time either on a mill or in a mixer.

1.4.6. Manufacturer's Cure Date Definition.

The date the preformed packings are manufactured (quarter and year).

1.4.7. Expiration Date.

The first day of the month following the shelf life. Example: Cure date 1089 - Shelf life 12 quarters from cure date. Expiration date would be 4/1/92.

2. DOCUMENTS

The following documents form a part of this specification to the extent stated herein.

MIL-STD-413	Visual Inspection Guide for
	Elastomeric O-rings
MIL-B-131	Barrier Materials, Watervaporproof,
	Heatsealable
ANSI/ASQC Z1.4	Sampling Procedures and Tables for
	Inspection by Attributes

3. **REQUIREMENTS**

3.1. Design.

The preformed packing shall be an O-ring type.

3.2. Raw Material.

The preformed packing shall be made from a non-halogenated, Butyl rubber compound.

Approved Compound	Company/Manufacturer	
B612-70	Parker Hannifin Corporation	,

3.3. Dimensions and Tolerances.

- a. The dimensions and tolerances are given on individual drawings.
- b. Maximum allowable flash extension is 0.003 inch and maximum allowable flash thickness is 0.005 inch.

SS453883 ISSUE N PAGE 4 OF 7

3.4. Physical Properties.

The physical properties of the preformed packings shall meet the requirements listed in Table 1 when tested on ASTM test sheets.

TABLE 1:

Property	Values	Test Method		
Original		•		
Tensile Strength, psi Elongation, % Hardness, Shore A pts. Specific Gravity	1600 minimum 200 minimum 65-75 1.14 ±0.02	ASTM-D-412 ASTM-D-412 ASTM-D-2240 ASTM-D-297		
Air Age, 70 ±0.1 hours @ 212 ±5°F Tensile Strength, psi Elongation Hardness, Shore A, pts.	±15% max change ±15% max change 10 pts. max change	3.4.1 ASTM-D-412 ASTM-D-412 ASTM-D-2240		
Air Age, 22 ±0.1 hours @ 158 ±5°F Compression Set	15% maximum	ASTM-D-395, Method B		

3.4.1. Air Aging.

Air Aging for 70 \pm .1 hours at 212 \pm 5°F. The test specimens shall be aged per ASTM-D-573 and cooled at room temperature for 24 hours \pm 2 hours prior to testing per Table 1.

3.5. Workmanship.

- a. Each preformed packing shall be consistent with requirements established in MIL-STD-413. There must be no defects or foreign materials in the rubber which will alter its ability to form a seal or endanger longevity by chemical interactions. Questionable flaws should be cleared with the KC product engineer for approval or rejection.
- b. When an off-resigter (mismatch) condition exists that is acceptable per MIL-STD-413, any cross-section diameter measurements, other than 90° from the parting line, shall be an average of two measurements taken approximately equidistant in opposite directions from the parting line.

3.6. Identification.

Permanent marking is not required on the individual preformed packing. Product shall be identified by markings on unit packages specified in 5.1. Temporary marking of packings for the manufacturer's identification are allowed, but shall in no way affect the properties or function of the packings.

3.7. Shelf Life.

The manufacturer's cure date shall be designated by the quarter and year in which the O-ring was cured (i.e. 1096 would designate an O-ring cured during the first quarter of 1996). The shelf life of the O-ring shall be 36 months from the end of the quarter designated as the cure date. The expiration date is the first day of the month following the shelf life (i.e. for a cure date of 1096, the expiration date would be 4/1/99).

4. QUALITY PROVISIONS

4.1. Manufacturer's Certification.

The manufacturer shall identify the material content of the product by compound number, batch or lot number, and cure date.

4.2. **Production** Agency Inspection.

4.2.1. Sampling.

An AQL of 0.25, general inspection level II per ANSI/ASQC Z1.4 is required. If the sample fails, 100% inspection of the entire lot is acceptable for lot disposition. Any portion of the parts returned to the Supplier or scrapped shall not be considered part of the 100% inspection.

4.2.2. Dimensional Inspection.

The Production Agency shall verify conformance with individual drawings.

4.2.3. Physical Properties.

a. The Production Agency shall verify properties on ASTM test sheets molded from the same batch of material and molded within 30 days of the product the test sheets represent. Properties shall meet the requirements and shall be determined per 3.4.

SS453883 ISSUE N PAGE 6 OF 7

i

- b. Manufacturer's certification shall be verified on each shipment of product. The manufacturer shall certify that the product conforms to 3.4. Actual test data shall be furnished with each lot submitted for acceptance.
- c. For the purposes of physical properties verification, the properties for several part numbers may be combined to meet the requirements of this specification provided the requirements of 4.2.3.a are met.

4.2.4. Workmanship.

The Production Agency shall examine the preformed packing per 3.5.

5. PACKAGING AND HANDLING

5.1. Packaging Material.

Heat sealable, foil lined, kraft bag per MIL-B-131, Class 2.

5.1.1. Supplier.

The supplier shall ship preformed packings to KCD sealed in either bulk or individual packaging per 5.1. The supplier must provide KCD with unsealed individual packaging when using bulk packaging. The supplier must package the preformed packings per 5.1 no later than one quarter from the cure date.

5.1.2. KCD.

Packaging per 5.1.1 must remain sealed until time of inspection. The preformed packings in a package opened for inspection shall be reheat sealed within 45 days in individual packaging per 5.1. After inspection, the sealed packages may not be opened until use.

5.2. Marking.

Each unit package shall be marked with the following information.

Design Agency Part Number Manufacturer's Name Manufacturer's Compound Number Manufacturer's Batch or Lot Number Manufacturer's Cure Date (Quarter and Year) Expiration Date:

DO NOT OPEN UNTIL READY FOR INSPECTION OR USE.

5.3. Storage Conditions.

Preformed packings covered by this specification shall be stored by the Production Agency at 45°F to 100°F.

6. ENVIRONMENTS

All seals will encounter the	following environments:
Temperature Extremes	Tmax = 100°F Tmin = -25°F Short Term (<2 hrs) Tmax = 175°F Tmin = -30°F
Moisture	Dew Point 50°F External to Sealed Zone
Freon 12	220 ppm max
Ozone	0.60 ppm short term 0.23 ppm long term 0.045 ppm average annual
Salt	21300 ppm by mass of air 2700 long term
Molds and Fungi	Any within the Continental US
Expected Life	20 years after assembly
Intrinsic Radiation	Low Level β

Appendix E: Vendor Information

Contents:

- 1) Table E-1. Participating O-Ring Vendors
- 2) Table E-2. Non-participating O-Ring Vendors
- 3) Table E-3. Equipment Vendors

Vendor and Phone No.	Address	Items Ordered
Parker Seals O Ring Division 606-269-2351	2360 Palumbo Dr. Lexington, KY 50505	0.301 x 0.054 in. 1.364 x 0.070 in. 7.688 x 0.070 in. 16.339 x 0.103 in. test slabs (6 x 6 x 0.072 in.)
RD Rubber 310-802-7888	13230 E. Firestone Blvd. Suite P Santa Fe Springs, CA 90670	0.551 x 0.070 in. 1.114 x 0.070 in. 7.185 x 0.103 in. 11.196 x 0.103 in. test slabs (6 x 6 x 0.072.in.)
Precision 612-333-7464	742 N. Washington Ave. Minneapolis, MN 55401	0.301 x 0.054 in. 1.365 x 0.070 in. 7.354 x 0.070 in. 16.955 x 0.139 in. test slabs (6 x 6 x 0.072 in.)

Table E-1. Participating Vendors

Vendor and Phone No.	Address	Reason for not participating
Apple Rubber Products 716-684-656	310 Erie St. Lancaster, NY 14086	Butyl rubber material made by offshore vendor and cannot guarantee it is non-halogenated.
Bryant Rubber 310-530-2530	1112 Lomita Blvd. Harbor City, CA 90710	No butyl rubber
Burke Rubber 209-571-6400	2250 S. 10th St. San Jose, CA 95112	Custom tooling required
Century Rubber 800-364-9541	21609 Parthenia St. Conoga Park, CA 91304	Custom tooling required
GAPI USA 800-442-4274	P.O. Box 90064-T Dayton, OH 45490-0064	No butyl rubber
Hydroseal 909-279-9981	170 Vander Unit A Corona, CA 91720	Distributor for Precision
Kirkhill Rubber Co. 714-529-4901	Cypress Court Brea, CA 92621	Custom tooling required
Kotek America Inc., 714-863-3126	17752 Cowan St. Irvine, CA 92714	Minimum batch size 1,000 pieces
Lutz Sales Co. 708-437-9393	55 North Lively Blvd. Elk Grove Village, IL 60007	Distributor for Precision
Parco Inc. 909-947-2200	2150 Parco Ave Ontario, CA 91761	Halogenated butyl rubber- Distributor for Kirkhill?
Polyseal 800-274-9722	725 Channing Wy Berkeley, CA 95376	No butyl rubber
Price Rubber 209-239-7478	17760 Ideal Pkwy Manteca, CA 95336	Custom tooling required
Ro-Lab 800-726-1009	8830 W. Linne Road Tracy, CA 95376	Halogenated butyl rubber
R.T. Enterprises 800-423-9272	7540 Linder Ave. Skokie, IL 60077	No butyl rubber
Southwest Rubber & Supply 602-252-9524	4007-TS. 20th St. Phoenix, AZ 85040-1400	Minimum batch size 1,000 pieces
Wynn's Precision, Inc. 602-894-2361	708 West 22nd Street Tempe, AZ 85282	Could not meet material requirements.

Table E-2. Non-participating Vendors

Table E-3. Equipment Vendors

Vendor Information	Items Ordered
Instron Corp. (Shore Division acquired through purchase) 100 Royal St. Canton, MA 02021 617-575-5856	Shore M Durometers (digital and dial) plus hydraulic stands and O-ring double pin fixtures. cost: \$3921 for Model 2000 digital durmometer and stand plus \$250 for custom fixtures Shore Model 910 Thickness Gauge (shown to
	have inadequate resolution for O-ring measurements). cost: \$1251
Laser Mike, Inc. 6060 Executive Blvd. Dayton, Ohio 45424 513-233-9935	Laser Micrometer, Model 183B, plus V-block platform and calibration pins. cost: \$6863
E.H. Benz Co. 73 Maplehurst Ave. Providence, RI 02908 800-230-8684	Compression set test fixtures, double layer (smaller and poorer design than those from Custom Scientific, but with better surface finish). cost: \$2990
Custom Scientific Instruments 13 Wing Drive Cedar Knolls, NJ 07927 800-229-1274	Compression set test fixtures, double layer (more robust design than those from Benz, but plagued with poor surface finishes and unresponsive technical service). cost: \$1900
Charles F. Siebenthal 3819 Osuna, N.E. Albuquerque, NM 87109 505-344-3467	Gauge blocks used as spacers in compression set tests. 8 each of 5 sizes (0.02850, 0.04050, 0.05200, 0.07725, and 0.10425 inches) cost: \$1490

Appendix F: Hardness Test Data

Contents:

- Table F-1.
 Hardness and Compression Set Data on Butyl Rubber O-Rings
- Table F-2.Effect of Sampling Rate (4 vs. 8 points per ring) on Hardness and Compression Set
Data
- Plot F-3. Effect of Sampling Rate (4 vs. 8 points per ring) on Hardness Values
- Plot F-4. Standard Deviations of Hardness Measurements vs. Sample Rate
- Table F-5.
 Hardness Data from Single O-Rings Compared to Stacked O-Rings
- Table F-6Operator Sensitivity of Hardness Testing
- Table F-7.Round-Robin Shore M Hardness Testing
- Table F-8.Shore A vs. Shore M Durometer Hardness Data
- Table F-9.
 Hardness of Small RD Rubber O-Rings (detailed test data)
- Table F-10.
 Hardness of Medium RD Rubber O-Rings (detailed test data)
- Table F-11.
 Hardness of Large RD Rubber O-Rings (detailed test data)
- Table F-12.
 Hardness of Small Parker and Precision O-Rings (detailed test data)
- Table F-13.
 Hardness of Medium and Large Parker O-Rings (detailed test data)
- Table F-14. Hardness of Medium and Large Precision O-Rings (detailed test data)
- Table F-15. Hardness Data for Test Slabs (detailed test data)

Vendor	Ring size	Rubber Batch	data p	Hardness its. unage	s, Shore M d aged	Δ	data p	ts. orig. thick	Compression set aged thick	change	comp. se
Parker	0.116 x 0.038	318466	5 x 2	74.9 ± 1.8	78.1 ±1.8	+3.2	5 x 2	0.03958±0.00053	0.03840±0.00046	0.00118	10.7
Parker	0.301 x 0.054	316104	3 x 2	81.1 ± 0.3	82.5 ± 0.3	+1.4	2 x 4	0.05441±0.00068	0.05377±0.00083	0.00064	4.6
Parker		316710	5 x 2	81.3 ± 0.6	80.8 ± 0.4*	-0.5	5 x 2	0.05494±0.00071	0.05354±0.00057	0.00140	9.7
Parker	1.364 x 0.070	316104	3 x 2	79.7 ± 0.3	80.9 ± 0.3	+1.2	3 x 4	0.07190±0.00031	0.07072±0.00021	0.00118	6.1
Parker		317403	5 x 2	77.5 ± 0.7	77.9 ± 0.8	+0.4	5 x 2	0.07054±0.00066	0.06871±0.00075	0.00183	10.1
Parker	7.688 x 0.070	316104	3 x 8	80.8 ± 0.7	81.8±0.6	+1.0	3 x 8	0.07177±0.00043	0.07029±0.00042	0.00148	7.7
Parker		317851	3 x 8	72.2 ± 1.0	75.3 ± 0.9	+3.1	3 x 8	0.07160±0.00064	0.07004±0.00068	0.00156	8.2
Parker	16.339 x 0.103	316104	3 x 8	79.6 ± 0.7	81.1 ± 0.7	+1.5	3 x 8	0.10336±0.00092	0.10131±0.00103	0.00205	7.8
Parker		316710	3 x 8	77.8 ± 1.0	79.9 ± 0.6	+2.1	3 x 8	0.10271±0.00072	0.10048±0.00080	0.00223	8.7
RD	0.301 x 0.054	15107	5 x 2	76.1 ± 0.4	79.3 ± 0.6	+3.2	5 X 2	0.05524±0.00044	0.05429±0.00041	0.00095	6.5
RD	0.551 x 0.070	14810	5 x 2	75.1 ± 0.3	76.2 ± 0.7	+1.1	5 x 2	0.07096±0.00022	0.06995±0.00031	0.00101	5.5
RD		15107	5 x 2	74.6 ± 0.8	76.8 ± 0.7	+2.2	5 x 2	0.07109±0.00034	0.07004±0.00026	0.00105	5.7
RD	1.114 x 0.070	14810	5 x 2	$\textbf{73.7} \pm \textbf{0.3}$	75.7 ± 0.4	+2.0	5 x 2	0.06937±0.00030	0.06842±0.00028	0.00095	5.6
RD		15107	5 x 2	75.2 ± 0.8	$\textbf{76.8} \pm \textbf{0.6}$	+1.6	5 x 2	0.06930±0.00022	0.06811±0.00019	0.00119	7.1
RD	7.185 x 0.103	14810	3 x 8	71.0 ± 0.4	$\textbf{72.4} \pm \textbf{0.5}$	+1.4	3 x 8	0.10453±0.00067	0.10316±0.00071	0.00137	5.0
RD		15107	3 x 8	74.2 ± 0.8	76.1 ± 0.7	+1.9	3 x 8	0.10473±0.00064	0.10318±0.00058	0.00155	5.6
RD	11.196 x 0.103	14936	3 x 8	72.6 ± 1.0	74.8 ± 0.9	+2.2	2 x 8	0.10680±0.00067	0.10545±0.00076	0.00135	4.5
RD		15107	3 x 8	72.8 ± 0.9	75.4 ± 1.4	+2.6	3 x 8	0.10685±0.00078	0.10540±0.00069	0.00145	4.8
Precision	0.301 x 0.054	19052	5 x 2	74.6 ± 1.1	80.0 ± 0.7	+5.4	5x2	0.05644±0.00108	0.05494±0.00033	0.00150	9.5
Precision		19895	5 x 2	78.3 ± 1.0	79.4 ± 1.1	+1.1	5 x 2	0.05626±0.00050	0.05457±0.00041	0.00169	10.7
Precision	1.364 x 0.070	17405	5 x 2	76.9 ± 1.1	79.0 ± 0.5	+2.1	5 x 2	0.06968±0.00048	0.06816±0.00040	0.00152	8.8
Precision		19895	5 x 2	77.6 ± 0.6	$\textbf{79.2} \pm \textbf{0.6}$	+1.6	5 x 2	0.06932±0.00086	0.06764±0.00087	0.00168	10.0
Precision	7.739 x 0.070	19052	3 x 8	78.4 ± 0.9	80.9 ± 0.7	+2.5	3 x 8	0.07129±0.00096	0.06927±0.00084	0.00202	10.7
Precision		19895	3 x 8	$\textbf{77.7} \pm \textbf{0.9}$	80.6 ± 0.9	+2.9	3 x 8	0.07105±0.00061	0.06893±0.00048	0.00212	11.5
Precision	16.955 x 0.139	19422	3 x 8	75.6 ± 0.5	78.1 ± 0.6	+2.5	3 x 8	0.14120±0.00101	0.13677±0.00101	0.00425	12.0
Precision		19895	3 x 8	$\textbf{76.3} \pm \textbf{0.9}$	79.1 ± 0.6	+2.8	3 x 8	0.14048±0.00099	0.13327±0.00218	0.00721	19.8

Table F-1. Hardness and Compression Set Data on Butyl Rubber O-Rings

.

41

-34

۶.

÷

Vendor	Ring size	Rubber	ľ	Hardness	s, Shore M		I		Compression Set		
	•	Batch	data pts.	unaged	aged	Δ	data pt	s. orig. thick	aged thick	change	comp. set
Parker	7.688 x 0.070	316104	3 x 8	$\textbf{80.8} \pm \textbf{0.7}$	81.8 ± 0.6	+1.0	3 x 8	0.07177±0.00043	0.07029±0.00042	0.00148	7.7
		ODDS	3 x 4	80.8 ± 0.7	81.8 ± 0.5	+1.0	3 X 4	0.07173±0.00044	0.07028±0.00046	0.00145	7.5
		EVENS	3X4	80.8±0.7	81.8±0.7	+1.0	3 X 4	0.07182±0.00042	0.07030±0.00037	0.00152	1.0
Parker		317851	3 x 8	72.2 ± 1.0	75.3 ± 0.9	+3.1	3 x 8	0.07160±0.00064	0.07004±0.00068	0.00156	8.2
		ODDS	3 x 4	72.4 ± 1.0	75.3 ± 0.7	+2.9	3 x 4	0.07155±0.00073	0.07016±0.00068	0.00139	7.3
		EVENS	3 x 4	72.0 ± 0.9	75.3 ± 1.0	+3.3	3 x 4	0.07165±0.00053	0.06993±0.00066	0.00172	9.0
Parker	16 339 x 0.103	316104	3 x 8	79.6 + 0.7	81,1 + 0,7	+1.5	3 x 8	0.10336±0.00092	0.10131±0.00103	0.00205	7.8
i untoi	101000 / 01100	ODDS	3 x 4	79.7 ± 0.5	81.1 ± 0.8	+1.4	3 x 4	0.10339±0.00085	0.10132±0.00092	0.00207	7.8
		EVENS	3 x 4	79.5 ± 0.9	81.1 ± 0.6	+1.6	3 x 4	0.10332±0.00099	0.10130±0.00112	0.00202	7.7
Parker		316710	3 x 8	77.8 + 1.0	79.9 ± 0.6	+2.1	3 x 8	0.10271±0.00072	0.10048±0.00080	0.00223	8.7
1 41101		ODDS	3 x 4	77.8 ± 0.9	79.9 ± 0.8	+2.1	3 x 4	0.10262±0.00062	0.10039±0.00059	0.00223	8.7
		EVENS	3 x 4	77.8 ± 1.0	79.9 ± 0.3	+2.1	3 x 4	0.10280±0.00079	0.10057±0.00096	0.00223	8.6
BD	7.185 x 0.103	14810	3 x 8	71.0 ± 0.4	72.4 ± 0.5	+1.4	3 x 8	0.10453±0.00067	0.10316±0.00071	0.00137	5.0
		ODDS	3 x 4	71.0 ± 0.5	72.3 ± 0.5	+1.3	3 x 4	0.10478±0.00075	0.10329±0.00069	0.00149	5.4
		EVENS	3 x 4	71.0 ± 0.4	72.4 ± 0.5	+1.4	3 x 4	0.10428±0.00045	0.10303±0.00071	0.00125	4.6
BD		15107	3 x 8	74.2 ± 0.8	76.1 ± 0.7	+1.9	3 x 8	0.10473±0.00064	0.10318±0.00058	0.00155	5.6
		ODDS	3 x 4	74.3 ± 0.7	75.9 ± 0.6	+1.6	3 x 4	0.10495±0.00053	0.10344±0.00050	0.00151	5.4
		EVENS	3 x 4	74.1 ± 0.8	76.2 ± 0.7	+2.1	3 x 4	0.10451±0.00067	0.10292±0.00053	0.00159	5.8
RD	11.196 x 0.103	14936	3 x 8	72.6 ± 1.0	74.8 ± 0.9	+2.2	2 x 8	0.10680±0.00067	0.10545±0.00076	0.00135	4.5
		ODDS	3 x 4	72.6 ± 1.1	74.9 ± 1.0	+2.3	2 x 4	0.10685±0.00075	0.10550±0.00087	0.00135	4.6
		EVENS	3 x 4	72.6 \pm 0.8	74.7 ± 0.7	+2.1	2 x 4	0.10674±0.00058	0.10540±0.00063	0.00134	4.5
BD		15107	3 x 8	72.8 ± 0.9	75.4 ± 1.4	+2.6	3 x 8	0.10685±0.00078	0.10540±0.00069	0.00145	4.9
		ODDS	3x4	72.5 ± 0.6	75.2 ± 1.2	+2.7	3 x 4	0.10698±0.00094	0.10547±0.00083	0.00151	5.1
		EVENS	3 x 4	73.1 ± 1.0	75.6 ± 1.5	+2.5	3 x 4	0.10673±0.00055	0.10534±0.00049	0.00139	4.7
Precision	7,739 x 0,070	19052	3 x 8	78.4 ± 0.9	80.9 ± 0.7	+2.5	3 x 8	0.07129±0.00096	0.06927±0.00084	0.00202	10.7
		ODDS	3 x 4	78.4 ± 1.0	80.9 ± 0.6	+2.5	3 x 4	0.07122±0.00082	0.06912±0.00081	0.00210	11.2
		EVENS	3 x 4	78.4 ± 0.7	80.8 ± 0.8	+2.4	3 x 4	0.07135±0.00107	0.06942±0.00085	0.00193	10.2
Precision		19895	3 x 8	77.7 ± 0.9	80.6 ± 0.9	+2.8	3 x 8	0.07105±0.00061	0.06893±0.00048	0.00212	11.5
1.100101011		ODDS	3 x 4	77.8 ± 0.8	80.4 ± 1.1	+2.6	3 x 4	0.07123±0.00073	0.06918±0.00055	0.00205	11.0
		EVENS	3 x 4	77.6 ± 1.0	80.7 ± 0.7	+3.1	3 x 4	0.07088±0.00037	0.06867±0.00016	0.00221	12.0
Precision	16.955 x 0.139	19422	3 x 8	75.6 ± 0.5	78.1 ± 0.6	+2.5	3 x 8	0.14120±0.00101	0.13677±0.00101	0.00425	11.9
		ODDS	3 x 4	75.8 ±0.4	78.1 ± 0.5	+2.3	3 x 4	0.14113±0.00090	0.13667±0.00077	0.00446	12.0
		EVENS	3 x 4	75.3 ±0.5	78.1 ± 0.7	+2.8	3 x 4	0.14127±0.00111	0.13687±0.00120	0.00440	11.8
Precision		19895	3 x 8	76.3 ± 0.9	79.1 ± 0.6	+2.8	3 x 8	0.14048±0.00099	0.13327±0.00218	0.00721	19.8
		ODDS	3 x 4	76.3 ± 0.9	78.9 ± 0.7	+2.6	3 x 4	0.14097±0.00095	0.13336±0.00163	0.00761	20.6
		EVENS	3 x 4	76.4 ± 1.0	79.3 ± 0.5	+3.0	3 x 4	0.14000±0.00078	0.13319±0.00261	0.00681	18.9

Table F-2. Effect of Sampling Rate (4 vs. 8 points per ring) on Hardness and Compression Set Data

Sample Rate on O-Ring Hardness Values 8 points/ring) vs. 4 Effect of

Precision Rings

RD Rings

Parker Rings

91

Ring dimensions	<u>Hardness</u>	Values on Sin	igle Rings	Hardness Values on Stacked Rings				
	<u>Ring #1</u>	<u>Ring #2</u>	<u>Average</u>	<u>Ring #1 on</u> <u>top</u>	<u>Ring #2 on</u> top	Average		
0.301 x 0.065	78.3 ± 1.1	78.9 ± 1.1	78.6	77.9 ± 0.7	77.6 ± 1.7	77.8		
1.364 x 0.070	78.0 ± 0.5	78.2 ± 0.3	78.1	76.2 ± 0.2	76.3 ± 0.3	76.3		
7.688 x 0.070	79.5 ± 0.4	78.8 ± 0.3	79.2	76.9 ± 0.5	77.1 ± 0.8	77.0		
16.339 x 0.140	74.2 ± 0.9	73.2 ± 0.7	73.7	71.5 ± 1.2	71.8 ± 1.4	71.7		

Table F-5. Hardness Data from Single O-Rings Compared to Stacked O-Rings

All measurements carried out on Lutz O-rings. Each value in the table is the average of five measurements. Rings with a cross section of 0.065 inches were tested in the double pin fixture with a gap of 0.070 inches.

Table F-6. Operator Sensitivity of Hardness Testing...(BOLD = high reading, *italics* = low reading)

using Shore M Digital Durometer with automatic 1 second readings:

Ring dimensions	Readings/ring		<u>Initial H</u>	<u>Iardness</u>		I			
_	<u>x no. of rings</u>	Operator #1	Operator #2	Operator #3	<u>Range</u>	Operator #1	Operator #2	Operator #3	Range
								_	
0.301 x 0.054	2 x 5	79.3 ± 0.7	79.4 \pm 0.6	78.1 ± 0.8	78.1-79.4	81.1 ± 0.3	80.3 ± 1.3	81.1 ± 0.8	80.3-81.1
1.364 x 0.070	2 x 5	75.6 ± 0.6	77.4 ± 0.4	77.5 ± 0.9	75.6-77.5	80.5 ± 0.6	79.6 ± 0.6	80.1 ± 0.5	79.6-80.5
7.688 x 0.070	2 x 5	77.3 ± 1.0	78.6 ± 1.1	79.0 ± 0.8	77.3-79.0	81.1 ± 0.6	80.9 ± 0.6	81.2 ± 0.6	80.9-81.2
16.339 x 0.103	2 x 5	77.1 ± 0.8	77.4 ± 0.9	77.9 ± 1.5	77.1-77.9	80.2 ± 0.5	79.6 ± 0.7	80.7 ± 0.9	79.6-80.7

using Shore M Dial Durometer with estimated 1 second readings:

Ring dimensions	Readings/ring		<u>Initial H</u>	ardness		Hardness after Aging					
	<u>x no. of rings</u>	Operator #1	Operator #2	Operator #3	<u>Range</u>	Operator #1	Operator #2	Operator #3	<u>Range</u>		
0.301 x 0.054	4 x 1	76.9 ± 0.6	75.9 ± 1.9	74.3 ± 1.2	74.3-76.9						
1.364 x 0.070	8 x 1	74.8 ± 0.7	74.6 ± 0.9	73.5 ± 0.7	73.5-74.8						
7.688 x 0.070	72 x 1	76.2 ± 1.1	75.8 ± 1.2	74.7 ± 1.0	74.7-76.2						
16.339 x 0.103	72 x 1	77.6 ± 0.9	77.4 ± 1.0	76.6 ± 0.9	76.6-77.6						

using Shore M Dial Durometer with estimated 10 second readings:

5.

۰.

Ring dimensions	Readings/ring	ĺ	<u>Initial H</u>	ardness		Hardness after Aging						
	<u>x no. of rings</u>	Operator #1	Operator #2	Operator #3	Range	Operator #1	Operator #2	Operator #3	Range			
0.301 x 0.054	4 x 1	78.3 ± 0.6	77.0 ± 2.0	75.1 ± 1.1	75.1-78.3							
1.364 x 0.070	8 x 1	75.2 ± 0.9	75.3 ± 1.1	74.0 ± 0.7	74.0-75.3							
7.688 x 0.070	72 x 1	76.7 ± 0.9	76.5 ± 1.1	75.0 ± 1.0	75.0-76.7							
16.339 x 0.103	72 x 1	77.3 ± 0.7	77.4 ± 1.0	76.4 ± 0.9	76.4-77.4							

All tests used Parker Batch 316104 O-rings. Readings were taken on the same durometer and on the same face of the O-ring. Readings were grouped to measure similar ring areas but offset to avoid re-puncturing of the ring. Operator code: #1 = JY, #2 = KW, #3 = LD.

1

a:

r

Table F-7. Round-Robin Hardness Testing with Shore M Digital Durometers

(**Bold** = high reading and *italics* = low reading)

Durometer No.	SN 3217	SN 3225	SN 3224
Sample:			
Green std. block (63.1 hardness)	64.4 ± 0.2	63.3 ± 0.3	62.5 ± 0.7
Red std. block (71.2 hardness)	73.4 ± 0.6	72.8 ± 0.4	71.2 ± 0.5
Brown std. block (79.7 hardness)	80.8 ± 0.5	80.1 ± 0.5	78.5 ± 1.2
Parker 0.301 x 0.054 (316710)	82.1 ± 0.4	81.0 ± 0.6	80.6 ± 0.8
Parker 7.688 x 0.070 (317851)	73.0 ± 0.9	72.6 ± 0.7	71.7 ± 1.1
Parker 16.399 x 0.103 (316710)	76.6 ± 1.1	78.2 ± 0.7	78.2 ± 0.9

Hardness standard blocks: 5 readings taken

O-Rings: 5 rings x 2 readings = 10 readings taken

Durometers SN 3217 and 3225 are located at Sandia, CA and tests were run by Kevin Wagter.

Durometer SN 3224 is located at Kansas City Plant and tests were run by Julie Stuckey.

Sample	<u>Type A Dial</u>	Durometer	<u>Type M Dia</u>	<u>l Durometer</u>
Read time:	<u>~ 1 sec.</u>	<u>~ 10 sec.</u>	<u>~ 1 sec.</u>	<u>~ 10 sec.</u>
Test Blocks (given value)				
White (31.9)	29.6±0.4 (5)	27.5 ± 0.5 (5)	29.6±0.5 (5)	29.5 ± 0.5 (5)
Yellow (47.0)	44.1 ± 0.2 (5)	41.9 ± 0.2 (5)	46.2 ± 0.3 (5)	46.2 ± 0.3 (5)
Blue(56.2)	50.6±0.7 (5)	49.2 ± 0.4 (5)	54.0 ± 0.0 (5)	54.0 ± 0.0 (5)
Breen (64.0)	59.4 ± 0.5 (5)	57.0±0.0 (5)	62.0 ± 0.5 (5)	61.5 ± 0.5 (5)
Red (74.5)	70.0 ± 0.0 (5)	67.8 ± 0.4 (5)	73.0 ± 0.0 (5)	72.0 ± 0.0 (5)
Brown (83.3)	81.2 ± 0.4 (5)	79.2 ± 0.4 (5)	81.6±0.5 (5)	81.0±0.6 (5)
Black (90.9)	88.4 ± 0.9 (5)	87.0±0.9 (5)	89.3 ± 0.7 (5)	89.0±0.7 (5)
Test Slabs (batch number)				
Parker single (316104)	75.2 ± 1.4 (30)	71.0 ± 1.5 (30)	74.0±0.3 (30)	72.6±0.9 (30)
Parker stack (316104)	72.4 ± 0.7 (30)	67.6±0.7 (30)	73.5 ± 0.7 (30)	72.1 ± 0.9 (30)
RD Rubber single (14810)	68.0 ± 1.0 (30)	62.6 ± 1.0 (30)	66.4 ± 0.4 (30)	64.8 ± 0.4 (30)
RD Rubber stack (14810)	63.3 ± 0.7 (30)	56.3 ± 0.7 (30)	65.5 ±0.5 (30)	64.3 ± 0.5 (30)
Precision single (19052A)	74.1 ± 2.1 (30)	69.5 ± 1.8 (30)	74.0±0.3 (30)	71.1 ± 0.9 (30)
Precision stack (19052A)	69.8 ±2.9 (30)	64.8 ± 2.7 (30)	72.4 ± 0.9 (30)	70.7 ± 1.0 (30)
O-Rings, I.D. X C.S. (Parker 316104, RD 14810)				
Parker 0.301 x 0.054	NA	NA	74.6 ± 2.2 (4)	75.8 ± 2.6 (4)
Parker 1.364 x 0.070	NA	NA	75.4±0.7 (9)	75.8±0.7 (9)
Parker 7.688 x 0.070	NA	NA	73.7 ± 1.4 (37)	73.6 ± 1.5 (37)
Parker 16.339 x 0.103	NA	NA	76.8 ± 1.4 (37)	75.9 ± 1.3 (37)
RD Rubber 0.551 x 0.070	NA	NA	69.3 ± 0.7 (9)	70.6 ± 0.8 (9)
RD Rubber 1.114 x 0.070	NA	NA	68.1 ± 0.6 (9)	69.1 ± 0.8 (9)

Table F-8. Shore A vs. Shore M Dial Durometer Hardness Data (1 vs. 10 sec. readings)

Numbers in parentheses indicate the number of individual readings taken.

Table F-9. Hardness of Small RD Rubber O-Rings (0.301x0.054, 0.551x0.070 and 1.114x0.054)

0.301 x	0.054		RD 15107	0.301 x	0.054 (4 min. cure)	RD 15107	0.301 x	0.054 (3 min. cure)	RD 15107
Ring	<u>Site</u>	Initial Hardness	Aged Hardness	<u>Ring</u>	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness
1	1	76.1	79.8	1	1	74.8	79.4	1	1	75.0	79.6
	2	75.8	79.4		2	75.5	80.3		2	75.4	80.4
2	1	75.9	79.7	2	1	74.6	79.1	2	1	76.6	81.2
	2	76.6	79.5		2	73.7	81.0		2	75.6	81.6
3	1	76.4	79.0	3	1	75.7	80.4	3	1	75.6	80.0
	2	75.9	78.9		2	76.4	79.4		2	76.3	81.4
4	1	76.2	79.3	4	1	76.1	80.8	4	1	74.7	79.7
	2	76.6	79.1		2	75.5	80.5		2	74.5	80.8
5	1	75.0	78.1	5	1	76.4	80.4	5	1	77.8	82.3
	2	76.0	80.5		2	77.2	80.1		2	77.7	81.3
Avg ± S	5.D.:	76.1±0.5	79.3±0.6	Avg ± S	.D.:	75.6±1.0	80.1±0.6	Avg ± S	.D.:	75.9±1.2	80.8±0.9
Hardne	ss Chan	ge	3.2	Hardness Change		4.5	Hardne	ss Chan	ige	4.9	
1.114 x	0.070		RD 15107	1.114 x	0.070 (4 min. cure)	RD 15107	1.114 x	0.070 (3 min. cure)	RD 15107
Ring	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness
1	1	75.6	77.5	1	1	73.0	78.2	1	1	73.4	80.1
	2	76.0	76.6		2	73.9	77.1		2	70.8	80.1
2	1	75.1	75.6	2	1	73.8	76.7	2	1	74.6	79.9
	2	73.9	77.2		2	71.9	76.4		2	71.9	79.6
3	1	76.0	77.0	3	1	72.8	77.0	3	1	72.3	80.2
	2	74.6	76.9		2	73.3	77.9		2	74.2	80.1
4	1	76.3	76.8	4	1	71.5	77.5	4	1	74.7	80.1
	2	75.1	76.7		2	73.5	77.0		2	73.9	80.4
5	1	75.9	76.2	5	1	73.2	77.2	5	1	73.5	79.4
	2	<u>73.8</u>	<u>77.8</u>		2	<u>72.3</u>	<u>77.0</u>		2	<u>73.7</u>	80.0
Avg ± S	.D.:	75.2±0.9	76.8±0.6	Avg ± S	.D.:	72.9±0.8	77.2±0.5	Avg ± S	.D.:	73.3±1.3	80.0±0.3
Hardne	ss Chan	ge	1.6	Hardne	ss Char	ige	4.3	Hardne	ss Chan	ige	6.7
0.551 x	0.070		RD 14810	0.551 x	0.070		RD 15107	1.114 x	0.070		RD 14810
<u>Ring</u>	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness
1	1	75.2	74.7	1	1	76.0	77.8	1	1	73.7	75.9
	2	75.4	76.4		2	75.9	77.8		2	73.4	75.6
2	1	75.1	76.7	2	1	74.1	76.3	2	1	74.1	75.5
	2	75.1	77.1		2	73.8	76.4		2	73.8	74.9
3	1	74.6	75.6	3	1	74.8	76.2	3	1	74.2	76.3
	2	75.6	76.4		2	74.3	75.7		2	73.2	75.5
4	1	75.7	76.1	4	1	73.9	77.7	4	1	73.9	76.1
	2	74.9	76.6		2	74.1	77.2		2	73.9	76.1
5	1	74.9	75.6	5	1	75.3	76.8	5	1	73.8	75.7
	2	<u>74.8</u>	77.2		2	<u>74.1</u>	<u>76.5</u>		2	<u>73.1</u>	<u>75.2</u>
Avg ± S	.D.:	75.1±0.4	76.2±0.8	Avg ± S	.D.:	74.6±0.8	76.8±0.7	Avg ± S	.D.:	73.7±0.4	75.7±0.4
Hardne	ss Chan	ge	1.1	Hardne	ss Char	ige	2.2	Hardnes	ss Chan	ge	2.0

.....

÷

٤.

.....

61

Table F-10. Hardness of Medium RD Rubber O-Rings (7.185x0.103)

(

٠.

7.185	7.185 x 0.103 RD 15107		7.185 x 0.103 RD 15107 4 minute cure			7.185 x 0.103 RD 15107 3 minute cure				7.185 x 0.103 RD 14810					
Ring	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.	<u>Ring</u>	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.
1	1	74.2	75.1	1	1	73.4	77.5	1	1	73.7	77.0	1	1	72.3	73.3
	2	73.1	76.3		2	73.0	77.6		2	73.1	77.8		2	71.4	72.5
	3	73.5	75.3		3	72.7	78.1		3	72.2	77.4		3	70.9	72.2
	4	72.8	76.0		4	73.0	77.9		4	73.3	77.1		4	71.3	72.4
	5	74.9	75.7		5	72.2	77.9		5	74.3	77.5		5	70.6	73.2
	6	73.7	76.2		6	73.1	78.5		6	72.0	77.6		6	71.4	73.7
	7	74.6	76.6		7	73.0	78.0		7	70.5	76.7		7	71.4	71.4
	8	73.7	76.7		8	73.1	77.6		8	73.3	75.4		8	71.3	72.9
2	1	74.7	77.0	2	1	72.5	77.5	2	1	73.0	78.7	2	<u>1</u>	71.0	72.1
	2	74.5	75.8		2	73.9	77.7		2	74.5	77.1		2	71.7	72.4
	3	73.5	75.3		3	73.2	77.2		3	71.2	76.7		3	71.4	72.6
	4	73.7	77.0		4	72.8	77.0		4	74.3	76.8		4	70.6	72.3
	5	75.6	75.1		5	72.8	78.1		5	74.3	77.1		5 ′	70.2	72.2
	6	75.6	74.8		6	73.3	77.5		6	74.6	78.9		6	70.5	72.7
	7	74.9	76.2		7	73.2	77.4		7	74.1	76.8		7	70.9	72.1
	8	75.2	75.3		8	73.5	77.6		8	74.5	76.7		8	70.5	72.2
3	1	74.3	76.8	3	1	73.7	77.5	3	1	70.8	76.5	3	1	70.9	72.4
	2	73.7	77.3		2	73.2	77.2		2	72.5	76.0		2	71.1	72.3
	3	73.7	75.9		3	74.3	77.7		3	69.3	76.6		3	71.0	71.9
	4	74.1	76.6		· 4	73.9	77.6		4	72.8	75.4		4	70.9	72.0
	5	73.0	75.6		5	72.9	78.1		5	70.4	76.4		5	70.8	72.1
	6	74.1	76.2		6	73.0	77.5		6	73.1	77.0		6	70.8	71.7
	7	74.2	76.2		7	72.6	77.5		7	70.9	75.7		7	70.8	72.0
	8	<u>74.9</u>	<u>76.7</u>		8	<u>73.0</u>	<u>77.4</u>		8	<u>73.8</u>	<u>77.8</u>		8	<u>70.7</u>	72.2
Avg ±	S.D.:	74.2±0.8	76.1±0.7	Avg ± \$	S.D.:	73.1±0.5	77.7±0.3	Avg ±	S.D.:	72.8±1.5	76.9±0.9	Avg ±	S.D.:	71.0±0.5	72.4±0.5
Hardn	ess Cł	nange	1.9	Hardne	ess Ch	nange	4.5	Hardn	iess Cl	hange	4.2	Hardn	ess C	hange	1.4
Odd N	io. Val	ues Only		Odd N	o. Valı	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only	
Avg ± Hardn	S.D.: ess Cł	74.3±0.7 nange	75.9±0.7 1.6	Avg ± S Hardne	S.D.: ess Cł	73.0±0.6 hange	77.7±0.3 4.7	Avg ± Hardn	S.D <i>.:</i> less Cl	72.1±1.8 hange	76.9±0.7 4.9	Avg ± Hardn	S.D.: ess Cl	71.0±0.5 hange	72.3±0.5 1.3
F		luce Only		Even	10 1/2			Even				Even	No Ve	lues Only	
	vo. va		76 0+0 7		vo. va s n ·	73 0+0 A	77 6+0 /		NO. V8	73 K+0 0	77 በ+1 በ		SD.	71 0+0 4	72,4+0,5
Hardn	ess Ch	nange	2.1	Hardne	ess Ch	nange	4.4	Hardn	less Cl	hange	3.5	Hardn	ess Cl	nange	1.4

•

2

Table F-11. Hardness of Large RD Rubber O-Rings (11.196x0.103)

*

•

11.196 x 0.103 RD 15107		11.196 x 0.103 RD 15107				11.196 x 0.103 RD 15107				11.19	11.196 x 0.103 RD 14936				
				4 min	ute cu	re		3 min	ute cu	re					
<u> Ring</u>	<u>Site</u>	Initial Hard.	Aged Hard.	<u>Ring</u>	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.
1	1	71.9	77.4	1	1	72.3	77.4	1	1	70.3	77.5	1	1	72.5	74.6
	2	73.1	74.0		2	73.3	77.8	•	2	72.8	77.4		2	73.2	75.4
	3	72.4	75.0		3	73.8	77.2		3	69.4	76.7		3	72.2	74.8
	4	73.2	74.8		4	73.1	76.6		4	70.0	75.7		4	71.6	74.5
	5	72.6	75.6		5	73.4	77.0		5	69.7	76.7		5	71.0	74.5
	6	71.6	75.8		6	72.5	76.6		6	70.6	77.2		6	71.2	74.6
	7	72.9	74.2		7	73.5	76.3		7	69.4	74.2		7	70.4	72.7
	8	72.1	74.1		8	73.7	78.0		8	70.2	75.3		8	71.9	73.9
2	1	72.8	75.2	2	1	73.6	74.6	2	1	71.7	77.0	2	1	72.9	74.7
	2	74.5	78.0		2	73.8	76.0		2	73.5	76.4		2	72.8	75.2
	3	73.2	75.6		3	74.2	76.0		3	72.7	77.6		3	74.2	75.9
	4	73.4	78.0		4	73.7	76.5		4	72.6	77.3		4	73.6	76.1
	5	73.0	76.0		5	73.8	76.9		5	73.8	77.8		5	72.3	75.5
	6	73.9	76.2		6	73.8	75.8		6	74.2	77.8		6	73.6	75.3
	7	73.2	75.7		7	73.0	76.2		7	72.0	77.5		7	73.3	76.0
	8	74.7	77.1		8	74.4	77.5		8	74.1	78.0		8	71.8	73.9
3	1	71.4	73.8	3	1	73.5	76.0	3	1	74.3	77.5	3	1	74.1	75.5
	2	71.3	73.3		2	73.0	76.8		2	74.1	77.0		2	73.4	75.7
	3	71.6	72.6		3	73.5	76.6		3	73.1	76.6		3	73.0	76.3
	4	72.7	74.6		4	73.9	76.7		4	74.1	76.5		4	73.0	73.9
	5	72.5	75.8		5	73.8	76.7		5	73.6	77.7		5	72.2	73.3
	6	73.2	76.6		6	75.1	76.0		6	73.2	76.9		6	72.0	74.0
	7	72.5	75.5		7	73.8	76.5		7	73.0	76.4		7	73.4	75.4
	8	<u>73.6</u>	75.2		8	<u>73.4</u>	<u>77.3</u>		8	<u>74.0</u>	<u>76.4</u>		8	<u>73.5</u>	<u>74.3</u>
Avg ±	S.D.:	72.8±0.9	75.4±1.4	Avg ±	S.D.:-	73.6±0.6	76.6±0.7	Avg ±	S.D.:	72.4±1.7	76.9±0.9	Avg ±	\$.D.:	72.6±1.0	74.8±0.9
Hardn	ess Cł	nange	2.6	Hardn	ess Cl	nange	3.0	Hardn	ess Cl	nange	4.5	Hardn	ess C	hange	2.2
Odd N	o. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only	
Avg ±	S.D.:	72.5±0.6	75.2±1.2	Avg ±	S.D.:	73.5±0.5	76.5±0.7	Avg ±	S.D.:	71.9±1.8	76.9±1.0	Avg ±	S.D.:	72.6±1.1	74.9±1.1
Hardn	ess Cł	nange	2.7	Hardn	ess Cl	nange	2.9	Hardn	ess Cl	nange	5.0	Hardn	ess Cl	nange	2.3
Even I	No. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	lues Only	
Avg ±	S <i>.</i> D.:	73.1±1.1	75.6±1.6	Avg ±	S.D.:	73.6±0.7	76.8±0.7	Avg ±	S.D.:	72.8±1.6	76.8±0.8	Avg ±	S.D.:	72.6±0.9	74.7±0.8
Hardn	ess Cł	nange	2.5	Hardn	ess Cl	nange	3.2	Hardn	ess Cł	nange	4.0	Hardn	ess Cl	nange	2.1

c4:

13

чę.

Table F-12. Hardness of Small Parker and Precision O-Rings (0.116x0.038, 0.301x0.054 and 1.364x0.070)

0.116	5 x 0.03	8	Parker 318466	0.301	x 0.05	54	Parker 316104	0.301	x 0.05	4	Parker 316710
Ring	Site	Initial Hardness	Aged Hardness	<u>Rina</u>	<u>Site</u>	Initial Hardness	Aged Hardness	<u>Ring</u>	<u>Site</u>	Initial Hardness	Aged Hardness
1	1	77.9	79.5	1	1	81.5	82.9	1	1	82.1	80.6
	2	77.1	80.5		2	80.9	82.4		2	80.3	80.9
2	1	76.2	78.6	2	1	80.9	82.0	2	1	80.5	79.8
	2	76.0	79.9		2	81.0	82.6		2	81.2	81.3
3	1	74.2	75.7	3	1	80.8	82.5	3	1	80.6	80.7
-	2	74,4	76.8		2	81.4	82.3		2	81.5	81.2
4	1	72.4	77.1					4	1	81.3	80.7
•	2	75.0	79.5						2	81.5	80.9
5	1	72.6	75.0					5	1	81.8	81.1
Ŭ	2	73.2	78.4						2	82.0	80.8
Ava +	· s n ·	74 9+1.8	78.1+1.8	Ava +	S.D.:	81.1±0.3	82.5±0.3	Ava ±	S.D.:	81.3±0.6	80.8±0.4
Hard	ness Ch	nange	3.2	Hardr	ness Cl	hange	1.4	Hardr	ness C	hange	-0.5
1 26/	× 0.07	70	Parker 31610/	1 364	× 0.07	70	Parker 317403	0 301	x 0.05	54	Precision 19052
Rina	Sito	Initial Hardness	Aged Hardness	Bing	Site	Initial Hardness	Aged Hardness	Ring	Site	Initial Hardness	Aged Hardness
1	1	70.8	80.8	1	1	76.2	77.8	1	1	75.7	80.6
1	2	79.0	80.6		2	77.3	76.4	•	2	73.0	79.7
2	- 1	79.9	81.0	2	1	77.1	77.9	2	1	73.4	79.7
2	י ס	79.2	81.4	-	2	78.2	77.3	-	2	73.1	80.1
2	1	79.6	80.6	3	1	77.5	78.1	3	1	74.6	79.8
3	2	80.2	80.7	Ŭ	2	78.9	78.6	Ũ	2	73.8	79.9
	2	00.2	00.7	4	1	76.6	78.7	4	1	75.6	78.6
				7	2	70.0	79.0	•	2	75.6	80.1
				5	1	78.1	77.1	5	1	75.4	80.0
				Ũ	2	777	78.3	Ŭ	2	76.1	81.3
Avad		70 7+0 2	80 0+0 3	Δνα +	· 9 D ·	77 5+0 8	77 9+0 8	Ava +	·sīv	74 6+1 2	80.0+0.7
Hard	ness Ch	19.7±0.5	1.2	Hardr	ness Cl	hange	0.4	Hardr	ness C	hange	5.4
						•				-	
0.301	x 0.05	4	Precision 19895	1.364	x 0.07	0	Precision 17405	1.364	X 0.07		Precision 19895
<u>Ring</u>	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	<u>Site</u>	Initial Hardness	Aged Hardness	Ring	Site	Initial Hardness	Aged Hardness
1	1	77.6	.79.0	1	1	76.7	78.9	1	1	78.3	80.2
	2	78.9	78.0		2	75.5	79.3		2	76.9	78.2
2	1	78.6	79.7	2	1	76.5	78.3	2	1	77.1	79.0
	2	78.4	80.1		2	77.4	79.0		2	76 <i>.</i> 8	79.2
3	1	76.3	77.6	3	1	77.2	78.4	3	1	77.3	79.3
	2	78.7	80.0		2	74.4	78.7		2	78.8	79.5
4	1	79.8	80.3	4	1	77.3	79.9	4	1	77.6	79.7
	2	78.6	81.5		2	78.8	79.8		2	78.2	797
5	1	78.9	79.3	5	1	77.3	78.8	5	1	78.0	78.3
	2	77.1	<u>78.4</u>		2	<u>77.6</u>	<u>79.3</u>		2	<u>77.1</u>	<u>79.4</u>
Avg d	: S.D.:	78.3±1.0	79.4±1.2	Avg ±	S.D.:	76.9±1.2	79.0±0.5	Avg ±	S.D.:	77.6±0.7	79.2±0.6
Hard	ness Ch	ņange ,	1.1	Hardr	ness Cl	hange , ,	2.1	Hardr	iess Cl	nange	· 4.6

7.688 x 0.070 Parker 316104		6104	7.688 x 0.070 Parker 317851			7851	16.339 x 0.103 Parker 316104				16.339 x 0.103 Parker 316710				
Ring	<u>Site</u>	Initial Hard.	Aged Hard.	<u>Ring</u>	<u>Site</u>	Initial Hard.	Aged Hard.	<u>Ring</u>	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.
1	1	81.6	82.5	1	1	73.2	74.8	1	1	80.5	82.0	1	1	78.8	81.4
	2	80.8	82.4		2	71.7	74.2		2	80.0	82.0		2	76.4	79.9
	3	80.7	82.0		3	70.8	75.1		3	80.0	81.6		3	76.7	78.0
	4	81.7	82.0		4	71.3	75.7		4	79.4	80.5		4	78.4	79.9
	5	81.7	82.0		5	72.8	75.1		5	79.8	80.5		5	77.6	79.9
	6	80.8	83.1		6	73.6	76.8		6	79.8	81.1		6	77.9	79.9
	7	81.6	82.6		7	74.3	76.9		7	80.0	81.2		7	78.4	79.9
	8	81.8	82.4		8	72.9	77.2		8	79.4	80.5		8	78.5	80.2
2	1	81.1	82.0	2	1	72.4	75.6	2	1	79.9	81.5	2	1	78.8	79.7
	2	80.4	81.6		2	72.9	75.6		2	79.5	81.5		2	77.6	79.6
	3	81.2	82.2		3	73.5	75.4		3	79.0	81.6		3	78.2	79.9
	4	81.9	81.3		4	71.2	76.2		4	79.5	81.6		4	78.2	79.1
	5	81.0	82.2		5	72.4	76.2		5	79.1	81.0		5	77.6	79.7
	6	81.2	82.5		6	72.2	75.7		6	78.2	80.7		6	79.0	79.8
	7	79.5	81.6		7	73.1	74.9		7	80.2	81.0		7	78.3	80.4
	8	80.0	80.9		8	72.6	74.9		8	80.9	81.4		8	78.1	80.0
3	1	80.7	81.3	3	1	70.5	75.3	3	1	79.9	81.2	3	1	78.5	80.9
	2	79.4	80.5		2	70.8	74.5		2	78.0	80.1		2	78.8	80.5
	З	80.6	81.1		3	72.2	74.2		3	79.4	79.1		3	76.0	80.4
	4	80.6	81.9		4	72.2	74.2		4	80.1	81.1		4	75.2	79.7
	5	80.6	81.1		5	72.1	75.3		5	79.5	82.0		5	78.0	79.1
	6	80.3	81.6		6	72.2	74.3		6	80.6	82.1		6	77.8	80.3
	7	79.3	81.5		7	71.5	74.4		7	78.9	80.4		7	76.2	80.0
	8	<u>80.8</u>	<u>81.3</u>		8	<u>70,6</u>	<u>74.8</u>		8	<u>78.1</u>	<u>80.7</u>		8	<u>77.4</u>	<u>80.1</u>
Avg ±	S.D.:	80.8±0.7	81.8±0.6	Avg ±	S.D.:	72.2±1.0	75.3±0.9	Avg ±	S.D.:	79.6±0.7	81.1±0.7	Avg ±	S.D.:	77.8±1.0	79.9±0.6
Hardn	ess Ch	nange	1.0	Hardn	ess Cl	nange	3.1	Hardn	ess Cł	nange	1.5	Hardn	ess Cł	nange	2.2
Odd N	lo. Valı	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	io. Val	ues Only	
Avg ±	S.D.:	80.8±0.8	81.8±0.5	Avg ±	S.D.:	72.4±1.1	75.3±0.7	Avg ±	S.D.:	79.7±0.5	81.1±0.8	Avg ±	S.D.:	77.8±1.0	79.9±0.9
Hardn	ess Ch	nange	1.0	Hardn	ess Cl	nange	2.9	Hardn	ess Cł	nange	1.4	Hardn	ess Cł	nange	2.2
Even I	No. Va	lues Only		Even I	No. Va	lues Only		Even	No. Va	lues Only		Even I	No. Va	lues Only	
Avg ±	S.D.:	80.8±0.8	81.8±0.7	Avg ±	S.D.:	72.0±0.9	75.3±1.0	Avg ±	S.D.:	79.5±0.9	81.1±0.6	Avg ±	S.D.:	77.8±1.1	79.9±0.4
Hardn	ess Ch	nange	1.0	Hardn	ess Cl	hange	3.3	Hardn	ess Cl	nange	1.7	Hardn	ess Ch	nange	2.1

18

. 45

Table F-13. Hardness of Medium and Large Parker O-Rings (7.688x0.070 and 16.339x0.103)

• 3

e

7.739 x 0.070 Precision 19052			7.739	x 0.07	0 Precision	19895	16.95	5 x 0.1	39 Precisio	n 19422	16.955 x 0.139 Precision 198			n 19895	
Rina	Site	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard.	Aged Hard.	Ring	<u>Site</u>	Initial Hard,	Aged Hard.	<u>Ring</u>	<u>Site</u>	Initial Hard.	<u>Aged Hard.</u>
1	1	77.0	80.1	1	.1	78.8	77.4	1	1	75.5	77.8	1	1	75.7	79.0
	2	77.0	80.3		2	78.1	79.9		2	75.2	78.1		2	76.1	79.6
	3	77.5	81.3		3	77.1	80.5		3	75.6	77.9		3	76.1	79.2
	4	78.2	79.3		4	77.2	81.2		4	75.3	77.5		4	77.3	79.1
	5	78.7	80.4		5	77.5	81.3		5	76.0	78.4		5	75.9	78.0
	6	79.3	81.2		6	76.1	80.5		6	75.4	77.9		6	76.4	78.8
	7	76.8	80.1		7	76.6	81.4		7	75.8	78.0		7	75.0	78.0
	8	77.9	80.4		8	78.5	81.4		8	76.0	78.2		8	75.3	79.3
2	1	77.8	81.1	2	1	76.5	79.5	2	1	75.9	77.1	2	1	75.2	78.4
	2	78.3	81.9		2	76.2	81.4		2	75.7	78.4		2	76.0	79.0
	3	80.0	81.8		3	78.0	79.9		3	75.3	78.5		3	76.9	79.5
	4	79.5	81.6		4	79.2	81.4		4	74.9	78.9		4	74.2	78.6
	5	78.4	81.1		5	77.9	81.2		5	76.5	79.1		5	75.9	79.4
	6	77.3	81.0		6	76.9	80.9		6	75.9	77.9		6	76.7	80.2
	7	77.9	80.6		7	78.2	81.0		7	76.6	78.9		7	76.3	78.8
	8	78.6	81.2		8	77.9	81.9		8	75.4	78.0		8	76.6	79.6
3	1	79.9	81.4	3	1	78.3	80.5	3	1	75.4	78.1	3	1	76.8	78.4
	2	78.9	80.9		2	78.4	79.7		2	75.3	79.6		2	75.2	78.5
	3	79.3	81.7		3	77.3	80.5		3	75.4	77.6		3	77.6	78.0
	4	79.1	82.0		4	76.7	80.0		4	74.4	76.9		4	77.3	79.7
	5	78.9	80.3		5	79.3	80.3		5	75.8	78.2		5	78.0	80.0
	6	78.1	79.3		6	78.6	80.2		6	74.7	78.1		6	77.7	79.6
	7	78.9	81.3		7	78.3	81.5		7	75.5	77.6		7	76.3	79.8
	8	<u>78.8</u>	<u>80.6</u>		8	<u>77.5</u>	<u>79.8</u>		8	75.7	<u>77.4</u>		8	<u>77.6</u>	<u>79.8</u>
Avg ±	S.D.:	78.4±0.9	80.9±0.7	Avg ±	S.D.:	77.7±0.9	80.6±1.0	Avg ±	S.D.:	75.6±0.5	78.1±0.6	Avg ±	S.D.:	76.3±1.0	79.1±0.7
Hardn	ess Cl	nange	2.4	Hardn	ess Cl	nange	2.8	Hardn	ess C	hange	2.5	Hardn	ess Cl	hange	2.8
Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	lues Only		Odd N	lo. Val	ues Only	
Avg ±	S.D.:	78.4±1.1	80.9±0.6	Avg ±	S.D.:	77.8±0.8	80.4±1.1	Avg ±	S.D.:	75.8±0.4	78.1±0.6	Avg ±	S.D.:	76.3±0.9	78.9±0.7
Hardn	ess Cl	nange	2.5	Hardn	ess Cl	nange	2.6	Hardn	ess C	hange	2.3	Hardn	iess Cl	hange	2.6
Even	No. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	alues Only		Even	No. Va	lues Only	
Avg ±	S.D.:	78.4±0.8	80.8±0.9	Avg ±	S.D.:	77.6±1.0	80.7±0.8	Avg ±	S.D.:	75.3±0.5	78.1±0.7	Avg ±	S.D.:	76.4±1.1	79.3±0.5
Hardn	ess Cl	nange	2.4	Hardn	ess Cl	nange	3.1	Hardn	ess C	hange	2.8	Hardn	ess C	hange	3.1

x 1

.

Table F-14. Hardness of Medium and Large Precision O-Rings (7.739x0.070 and 16.955x0.139)

ŧ.

.

¢

• •

Table F-15. Hardness Data for Test Slabs

ĸ.

..

RD 14810 <u>Site</u>

Parker 3	16104		Parker 31	Parker 316710			
<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	<u>Aged</u>		
1	71	74	1	68	70		
2	72	74	2	69	70		
3	73	75	3	69	71		
4	<u>73</u>	<u>75</u>	4	<u>70</u>	<u>70</u>		
Avg:	72.3±1.0	74.5±0.6	Avg:	69.0±0.8	70.3±0.5		
Hardness	Change:	2.2	Hardness	Change:	1.3		

RD 14810	2				
<u>Site</u>	Initial	Aged	<u>Site</u>	<u>Initial</u>	Aged
1	63	67	1	65	64
2	63	68	2	65	65
3	63	69	3	66	65
4	<u>64</u>	<u>70</u>	4	<u>66</u>	<u>65</u>
Avg:	63.3±0.5	68.5±1.3	Avg:	65.5±0.6	64.8±0.5
Hardness	Change:	5.2	Hardness	Change:	-0.7

Precisior	19052A		Precision	19895A	
<u>Site</u>	Initial	Aged	<u>Site</u>	<u>Initial</u>	<u>Aged</u>
1	73	76	1	71	76
2	73	75	2	71	75
3	73	74	3	72	75
4	<u>72</u>	<u>74</u>	4	<u>72</u>	<u>76</u>
Avg:	72.8±0.5	74.8±1.0	Avg: 7	71.5±0.6	75.5±0.6
Hardness	Change:	2.0	Hardness	Change:	4.0

<u>Site</u>	<u>Initial</u>	<u>Aged</u>	
1	72	76	
2	73	75	
3	72	76	
4	<u>74</u>	<u>76</u>	
Avg:	72.8±1.0	75.8±0.5	
Hardness	Change:	3.0	

Parker 317403

RD 15107 (4 min. cure)							
<u>Site</u>	<u>Initial</u>	Aged					
1	67	69					
2	66	69					
3	66	70					
4	<u>68</u>	<u>72</u>					
Avg:	66.8±1.0	70.0±1.4					
Hardness	Change:	3.2					

Parker 3	17851	Parker 318466				
<u>Site</u>	Initial	<u>Aged</u>	<u>Site</u>	Initial	<u>Aged</u>	
1	73	74	1	73	74	
2	72	73	2	73	75	
3	73	73	3	72	74	
4	<u>74</u>	<u>73</u>	4	<u>73</u>	<u>73</u>	
Avg:	73.0±0.8	73.3±0.5	Avg:	72.8±0.4	74.0±0.7	
Hardness	Change:	0.3	Hardness	Change:	1.2	

RD 15107 (3 min. cure)							
<u>Site</u>	Initial	<u>Aged</u>					
1	68	69					
2	66	69					
3	67	70					
4	<u>68</u>	<u>71</u>					
Avg:	67.3±1.0	69.8±1.0					
Hardness	Change:	2.5					

103

Appendix G: Compression Set Test Data

Contents:

Tables G-1 and G-2. See Tables F-1 and F-2.

- Plot G-3. Effect of Sampling Rate (4 vs. 8 points per ring) on Compression Set Data
- Plot G-4. Standard Deviations of Thickness Measurements vs. Sample Rate
- Table G-5.
 Thickness Measurements and Standard Deviations Summary

 Table G-6.
 O-Ring Thickness vs. Time After Compression Aging

Table G-7.Compression Set of Small RD Rubber O-Rings (detailed test data)

 Table G-8.
 Compression Set of Medium RD Rubber O-Rings (detailed test data)

 Table G-9.
 Compression Set of Large RD Rubber O-Rings (detailed test data)

 Table G-10.
 Compression Set of Small Parker and Precision O-Rings (detailed test data)

- Table G-11.
 Compression Set of Medium and Large Parker O-Rings (detailed test data)
- Table G-12.
 Compression Set of Medium and Large Precision O-Rings (detailed test data)
- Table G-13.
 Compression Set of Test Slabs (detailed test data)

RD Rings

Parker Rings

105

Standard Deviations of Thickness Measurements vs. Sample Rate

90T

Table G-5. Compression Set Thickness Measurements and Standard Deviations

Nominal ring thickness	Range of thickness measurements (before and after compression set)	Range of Standard Deviations	Average Standard Deviation	Range of thickness changes observed during compression set	Average observed thickness change
0.038	0.03840 - 0.03958	0.00046 - 0.00053	0.00050	0.00118	0.00118
0.054	0.05354 - 0.05644	0.00033 - 0.00108	0.00060	0.00064 - 0.00169	0.00124
0.070	0.06764 - 0.07190	0.00019 - 0.00096	0.00049	0.00095 - 0.00212	0.00147
0.103	0.10685 - 0.10048	0.00058 - 0.00103	0.00075	0.00135 - 0.00223	0.00167
ALL*		0.00019 - 0.00108	0.00058		

* Precision rings with a thickness of 0.139 excluded.

۶.

Table G-7. Compression Set of Small RD O-Rings (0.301x0.054, 0.551x0.070 and 1.114x0.070)

• 0

Ring Site Initial Thickness Aged Thickness Ring Site Initial Thickness Aged Thic)7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ness
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
5 1 .05476 .05394 5 1 .05478 .05384 5 1 .05558 .05464 2 .05466 .05380 2 .05499 .05408 2 .05532 .05434 Avg ± S.D.: 0.05524±0.00047 0.05429±0.00043 Avg ± S.D.: 0.05490±0.00035 0.05389±0.00033 Avg ± S.D.: 0.05552±0.00060 0.05433±0.0 Compression Set: 6.5 Compression Set: 7.0 Compression Set: 7.9	5
2 .05466 .05380 2 .05499 .05408 2 .05532 .05434 Avg ± S.D.: 0.05524±0.00047 0.05429±0.00043 Avg ± S.D.: 0.05499±0.00035 0.05389±0.00033 Avg ± S.D.: 0.05552±0.00060 0.05433±0.0 Compression Set: 6.5 Compression Set: 7.0 Compression Set: 7.9	ł
Avg ± S.D.: 0.05524±0.00047 0.05429±0.00043 Avg ± S.D.: 0.05490±0.00035 0.05389±0.00033 Avg ± S.D.: 0.05552±0.00060 0.05433±0.0 Compression Set: 6.5 Compression Set: 7.0 Compression Set: 7.9	ł
Compression Set: 7.0 Compression Set: 7.9)0072
1.114 x 0.070 RD 15107 1.114 x 0.070 (4 min. cure) RD 15107 1.114 x 0.070 (3 min. cure) RD 1510	07
Ring Site Initial Thickness Aged Thickness Ring Site Initial Thickness Aged Thickness Ring Site Initial Thickness Aged Thick	ness
1 1 .06950 .06820 1 1 .06922 .06808 1 1 .06954 .06790)
2 .06914 .06800 2 .06930 .06810 2 .06974 .06800)
2 1 .06936 .06824 2 1 .06990 .06864 2 1 .06952 .06780)
2 .06882 .06768 2 .06938 .06820 2 .06966 .06792	2
3 1 .06910 .06792 3 1 .06944 .06824 3 1 .07056 .06794	ł
2 .06948 .06828 2 .06914 .06798 2 .06926 .06756	3
4 1 .06950 .06832 4 1 .06948 .06852 4 1 .06936 .06784	ł
2 .06922 .06818 2 .06976 .06876 2 .06966 .06784	ł
5 1 .06944 .06824 5 1 .06978 .06866 5 1 .06972 .06766	;
2 .06948 .06802 2 . <u>06972 .06868</u> 2 <u>.06966 .06772</u>	<u>,</u>
Avg ± S.D.: 0.06930±0.00023 0.06811±0.00020 Avg ± S.D.: 0.06951±0.00026 0.06839±0.00029 Avg ± S.D.: 0.06967±0.00035 0.06782±0.0	00014
Compression Set:7.1Compression Set:6.6Compression Set:10.8	
0.551 x 0.070 RD 14810 0.551 x 0.070 RD 15107 1.114 x 0.070 RD 1481	10
Ring Site Initial Thickness Aged Thickness Ring Site Initial Thickness Aged Thickness Ring Site Initial Thickness Aged Thick	iness
1 1 .07086 .06992 1 1 .07074 .06990 1 1 .06984 .06806	;
2 .07064 .06984 2 .07132 .07020 2 .06912 .06850)
2 1 .07124 .07014 2 1 .07138 .07024 2 1 .06964 .06852	,
2 .07062 .06966 2 .07130 .07014 2 .06948 .06868	} •
3 1 .07084 .06976 3 1 .07104 .07014 3 1 .06898 .06800)
2 .07110 .07008 2 .07158 .07028 2 .06892 .06818	3
4 1 .07112 .06958 4 1 .07138 .07028 4 1 .06928 .06840	,
2 .07128 .07000 2 .07072 .06964 2 .06972 .06828	\$
5 1 .07106 .07072 5 1 .07050 .06950 5 1 .06944 .06860	,
2 .07088 .06984 2 .07090 .07004 2 .06924 .06896	
Avg ± S.D.: 0.07096±0.00023 0.06995±0.00032 Avg ± S.D.: 0.07109±0.00036 0.07004±0.00027 Avg ± S.D.: 0.06937±0.00031 0.06842±0.0	0030
Compression Set: 5.5 Compression Set: 5.7 Compression Set: 5.6	

1.8

۰.

.

Table G-8. Compression Set of Medium RD Rubber O-Rings (7.185x0.103)

7.185	x 0.10	3 RD 15107		7.185 x (4 minute	0.10 ∋ cu	3 RD 15107 re		7.185 3 min	x 0.10 ute cu	3 RD 15107 re	,	7.185 x 0.103 RD 14810			
Ring	Site	Initial Thick.	Aged Thick.	<u>Ring</u> S	ite	Initial Thick.	Aged Thick.	Ring	<u>Site</u>	Initial Thick.	Aged Thick.	Ring	<u>Site</u>	Initial Thick.	Aged Thick.
1	1	.10486	.10342	1	1	.10514	.10050	1	1	.10422	.10146	1	1	0.10632	0.10456
	2	.10372	.10234		2	.10504	.10058		2	.10400	.10158		2	0.10448	0.10290
	3	.10448	.10298		3	.10482	.10018		3	.10422	.10158		3	0.10352	0.10210
	4	.10486	.10316		4	.10502	.10076		4	.10450	.10212		4	0.10410	0.10262
	5	.10410	.10268		5	.10516	.10112		5	.10410	.10138		5	0.10460	0.10300
	6	.10382	.10236		6	.10476	.10042		6	.10424	.10150		6	0.10500	0.10440
	7	.10418	.10290		7	.10544	.10094		7	.10458	.10172		7	0.10458	0.10318
	8	.10434	.10320		8	.10472	.10102		8	.10380	.10114		8	0.10436	0.10370
2	1	.10476	.10330	2	1	.10476	.10060	2	1	.10422	.10150	2	1	0.10474	0.10334
	2	.10456	.10288		2	.10606	.10206		2	.10350	.10098		2	0.10358	0.10224
	з	.10482	.10308		3	.10418	.10032		3	.10434	.10160		3	0.10550	0.10418
	4	.10368	.10230		4	.10500	.10119		4	.10446	.10168		4	0.10446	0.10306
	5	.10462	.10320		5	.10448	.10049		5	.10418	.10136		5	0.10422	0.10274
	6	.10430	.10262		6	.10576	.10138		6	.10484	.10204		6	0.10380	0.10252
	7	.10542	.10376		7	.10438	.10048		7	.10526	.10206		7	0.10432	0.10298
	8	.10382	.10222		8,	.10510	.10082		8	.10440	.10164		8	0.10450	0.10416
3	1	.10536	.10386	3	1	.10644	.10264	3	1	.10454	.10196	З	1	0.10596	0.10434
	2	.10466	.10330		2	.10590	.10232		2	.10422	.10154		2	0.10356	0.10194
	З	.10548	.10380	,	3	.10618	.10236		3	.10398	.10140		3	0.10434	0.10290
	4	.10542	.10392		4	.10578	.10208		4	.10426	.10184		4	0.10420	0.10316
	5	.10548	.10386		5	.10686	.10314		5	.10474	.10204		5	0.10452	0.10290
	6	.10514	.10350	1 I	6	.10552	.10184		6	.10488	.10216		6	0.10440	0.10294
	7	.10578	.10449		7	.10596	.10206		7	.10436	.10170		7	0.10476	0.10326
	8	<u>.10580</u>	<u>.10328</u>	ł	B	<u>.10674</u>	<u>.10272</u>		8	<u>.10378</u>	<u>.10144</u>		8	<u>0.10496</u>	<u>0.10272</u>
Avg ±	S.D.:	0.10473	0.10318	Avg ± S.	D.:	0.10538	0.10133	Avg ±	S.D.:	0.10432	0.10164	Avg ±	S.D.:	0.10453	0.10316
		±0.00065	±0.00059			±0.00074	±0.00089			±0.00038	±0.00031			±0.00068	±0.00073
Comp	ressior	n Set:	5.6	Compres	sion	Set:	14.7	Comp	ressior	n Set:	9.9	Comp	ressio	n Set:	5.0
Odd N	lo. Valu	ues Only		Odd No.	Valu	ies Only		Odd N	io. Vali	ues Only		Odd N	o. Val	ues Only	
Avg ±	S.D.:	0.10495	0.10344	Avg ± S.I	D.:	0.10532	0.10124	Avg ±	S.D.:	0.1044	0.10165	Avg ±	S.D.:	0.10478	0.10329
		±0.00055	±0.00052			±0.00087	±0.00103			±0.00035	±0.00025			±0.00078	±0.00072
Comp	ression	n Set:	5.4	Compres	sion	Set:	15.2	Comp	ressior	n Set:	10.1	Compi	ressio	n Set:	5.4
Even l	No. Val	lues Only		Even No.	. Val	ues Only		Even l	No. Va	lues Only		Even N	vo. Va	lues Only	
Avg ±	S.D.:	0.10451 +0.00070	0.10292 +0.00055	Avg ± S.I	D.:	0.10545 +0.00061	0.10143 +0.00075	Avg ±	S.D.:	0.10424 +0.00042	0.10164 +0.00036	Avg ±	S.D.:	0.10428 +0.00047	0.10303 ±0.00074
Comp	ression	Set:	5.8	Compres	sion	Set:	14.3	Comp	ressior	Set:	9.6	Compr	essior	n Set:	4.6

• t

ł

11.19	6 x 0.1	03 RD 1510	7	11.196 4 minut	x 0.1	03 RD 1510	7	11.196 x 0.103 RD 15107 11.196 x 0.103 RD 14936 3 minute cure			6				
Rina	Site	Initial Thick	Aged Thick.	Ring	Site	Initial Thick.	Aged Thick.	Rina	Site	Initial Thick.	Aged Thick.	Rina	Site	Initial Thick.	Aged Thick.
1	1	.10590	.10454	1	1	.10394	.10192	1	1	.10552	.10276	1	1	.10618	.10496
	2	.10588	.10466		2	.10442	.10188		2	.10500	.10236		2	.10738	.10574
	3	.10794	.10624		3	.10328	.10144		3	.10542	.10270		3	.10692	.10512
	4	.10690	.10580		4	.10462	.10226		4	.10466	.10204		4	.10634	.10482
	5	10672	.10546		5	.10430	.10212		5	.10522	.10242		5	.10706	.10578
	6	.10662	.10554		6	.10442	.10230		6	.10522	.10328		6	.10696	.10572
	7	10788	.10670		7	.10354	.10162		7	.10464	.10188		7	.10678	.10542
	8	10684	10538		8	.10376	.10210		8	.10422	.10270		8	.10600	.10456
2	1	.10746	.10594	2	1	.10454	.10246	2	1	.10480	.10280	2	1	.10572	.10446
_	2	10704	.10568	-	2	.10308	.10142		2	.10430	.10230		2	.10604	.10496
	3	.10616	.10496		3	.10388	.10250		3	.10484	.10276		3	.10674	.10504
	4	.10652	.10550		4	.10382	.10232		4	.10512	.10292		4	.10638	.10492
	5	.10842	.10686		5	.10358	.10250		5	.10332	.10198		5	.10850	.10754
	6	.10684	.10584		6	.10332	.10224		6	.10426	.10220		6	.10744	.10606
	7	.10642	.10510		7	.10418	.10216		7	,10464	.10240		7	.10688	.10568
	8	.10640	.10502		8	.10358	.10178		8	.10460	.10224		8	.10740	.10644
3	1	.10810	.10604	3	1	.10374	.10182	3	1	.10434	.10222				
	2	.10664	.10440		2	.10356	.10172		2	.10400	.10210				
	3	.10688	.10460		3	10466	.10226		3	.10478	.10262				
	4	.10754	.10598		4	.10366	.10200		4	.10514	.10262				
	5	.10652	.10496		5	.10368	.10184		5	.10504	.10260				
	6	.10579	.10476		6	.10392	.10268		6	.10464	.10249				
	7	.10530	.10426		7	.10444	.10226		7	.10480	.10274				
	8	<u>.10774</u>	<u>.10546</u>		8	<u>.10350</u>	<u>.10192</u>		8	<u>.10382</u>	<u>.10196</u>				
Avg ±	S.D.:	0.10685	0.10540	Avg ± S	S.D.:	0.10386	0.10206	Avg ±	S.D.:	0.10468	0.10246	Avg ±	S.D.:	0.10680	0.10545
_		±0.00079	±0.00070			±0.00043	±0.00034			±0.00052	±0.00035			±0.00070	±0.00079
Comp	ressio	n Set:	4.9	Compre	essior	n Set:	6.8	Comp	ressio	n Set:	8.1	Comp	ressio	n Set:	4.6
Odd N	lo. Val	ues Only		Odd No	. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Va	lues Only	
Avg ±	S.D.:	0.10698	0.10547	Avg ± S	S.D.:	0.10392	0.10208	Avg ±	S.D.:	0.10478	0.10249	Avg ±	S.D.:	0.10685	0.10550
Ū		±0.00098	±0.00087	-		±0.00040	±0.00035	-		±0.00057	±0.00032			±0.00080	±0.00093
Comp	ressio	n Set:	5.1	Compre	essior	n Set:	6.9	Comp	ressio	n Set:	8.3	Comp	ressio	n Set:	4.6
Even	No. Va	lues Only		Even N	o. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	lues Only	
Avg ±	S.D.:	0.10673	0.10534	Avg ± S	S.D.:	0.10381	0.10205	Avg ±	S.D.:	0.10458	0.10243	Avg ±	S.D.:	0.10674	0.10540
÷		±0.00057	±0.00051	-		±0.00047	±0.00034	-		±0.00047	±0.00039			±0.00062	±0.00068
Comp	ressio	n Set:	4.7	Compre	essior	n Set:	6.6	Comp	ression	n Set:	7.9	Comp	ressio	n Set:	4.5

æ

÷

Table G-9. Compression Set of Large RD Rubber O-Rings (11.196x0.103)

¢

ŧ

Table G-10. Compression Set of Small Parker and Precision O-Rings (0.116x0.038, 0.301x0.054 and 1.114x0.070)

0.116	6 x 0.03	8	Parker 318466	0.301	x 0.09	54	Parker 316104	0.301	x 0.05	54	Parker 316710
Ring	<u>Site</u>	Initial Thickness	Aged Thickness	<u>Ring</u>	<u>Site</u>	Initial Thickness	Aged Thickness	<u> Bing</u>	<u>Site</u>	Initial Thickness	Aged Thickness
1	1	0.03917	0.03883	1	1	.05460	.05438	1	1	0.05440	0.05298
	2	0.03933	0.03836		2	.05510	.05466		2	0.05616	0.05388
2	1	0.03878	0.03805		3	.05472	.05410	2	1	0.05504	0.05380
	2	0.03949	0.03796		4	.05530	.05466		2	0.05496	0.05378
3	1	0.04026	0.03905	2	1	.05368	.05278	3	1	0.05536	0.05378
	2	0.04024	0.03925		2	.05312	.05224		2	0.05494	0.05368
4	1	0.03933	0.03826		3	.05462	.05392	4	1	0.05528	0.05376
	2	0.03903	0.03785		4	.05412	.05338		2	0.05338	0.05214
5	1	0.03978	0.03800	Avg ±	S.D.:	0.05441±0.00073	0.05377±0.00089	5	1	0.05444	0.05326
	2	0.04036	0.03835	Comp	ressio	n Set:	4. 6		2	0.05542	0.05430
Avg ±	S.D.:	0.03958±0.00053	0.03840±0.00046	•				Ava ±	S.D.:	0.05494±0.00075	0.05354±0.00061
Comp	pression	n Set:	10.7	1.364	x 0.0	70	Parker 316104	Comp	ressio	n Set:	9.7
•				<u>Ring</u>	<u>Site</u>	Initial Thickness	Aged Thickness	•			
1.364	x 0.07	0	Parker 317403	1	1	.07164	.07062	0.301	x 0.05	54	Precision 19052
Ring	Site	Initial Thickness	Aged Thickness		2	.07146	.07060	Bing	Site	Initial Thickness	Aged Thickness
1	1	.06996	.06844		3	.07188	.07086	1	1	.05636	.05426
	2	.07004	.06880		4	.07206	.07114		2	.05324	.05456
2	1	.07142	.06976	2	1	.07162	.07060	2	1	.05666	.05480
	2	.06966	.06832		2	.07188	.07070		2	.05690	.05494
3	1	.07062	.06904		3	.07184	.07074	3	1	.05680	.05552
	2	.07128	.06970		4	.07254	.07042		2	.05698	.05516
4	1	.07160	.06702	3	1	.07232	.07098	4	1	.05682	.05490
	2	.07074	.06910		2	.07178	.07052		2	.05678	.05502
5	1	.07018	.06868		3 -	.07214	.07102	5	1	.05692	.05510
	2	.06990	<u>.06826</u>		4	<u>.07180</u>	.07078		2	.05698	.05510
Avg ±	S.D.: (0.07054±0.00070	0.06871±0.00079	Avg ±	S.D.:	0.07191±0.00031	0.07075±0.00022	Avg ±	S.D.:	0.05644±0.00114	0.05494±0.00034
Comp	ressior	n Set:	10.1	Comp	ressio	n Set:	6.1	Comp	ressio	n Set:	9.5
0.301	x 0.05	4	Precision 19895	1.364	x 0.07	0	Precision 17405	1.364	x 0.07	0	Precision 19895
Ring	<u>Site</u>	Initial Thickness	Aged Thickness	<u>Ring</u>	<u>Site</u>	Initial Thickness	Aged Thickness	<u>Ring</u>	<u>Site</u>	Initial Thickness	Aged Thickness
1	1	.05638	.05526	1	1	.07028	.06860	1	1	.06828	.06676
	2	.05570	.05426		2	.06960	.06828		2	.06924	.06730
2	1	.05582	.05420	2	1	.06946	.06780	2	1	.06868	.06708
	2	.05572	.05404		2	.06968	.06822		2	.07086	.06928
3	1	.05678	.05500	3	1	.06972	.06822	3	1	.06872	.06686
	2	.05582	.05426		2	.06939	.06800		2	.06928	.06760
4	1	.05672	.05502	4	1	.07078	.06774	4	1	.06864	.06699
	2	.05712	.05454		2	.06908	.06906		2	.06874	.06722
5	1	.05660	.05488	5	1	.06946	.06768	5	1	.07068	.06904
	2	.05590	.05420		2	.06930	.06802		2	.07004	.06830
Ava ±	S.D.: 0	0.05626±0.00052	0.05457±0.00044	Ava ±	S.D.:	0.06968±0.00050	0.06816±0.00042	Avg ±	S.D.: (0.06932±0.00091	0.06764±0.00091
Comp	ression	Set:	10.7	Comp	ressio	n Set:	8.8	Comp	ressior	n Set:	• 1⁄0.0

7.688	x 0.07	0 Parker 316	6104	7.688	x 0.07	0 Parker 317	7851	16.339	9 x 0.1	03 Parker 3	16104	16.339	16.339 x 0.103 Parker 31		16710
Ring	<u>Site</u>	Initial Thick.	Aged Thick.	<u>Ring</u>	<u>Site</u>	Initial Thick.	Aged Thick.	<u>Ring</u>	<u>Site</u>	Initial Thick.	Aged Thick.	<u>Ring</u>	<u>Site</u>	Initial Thick.	Aged Thick.
1	1	.07124	.06992	1	1	.07124	.07038	1	1	.10294	.09994	1	1	0.10308	0.10080
	2	.07222	.07046		2	.07146	.06930		2	.10310	.10059		2	0.10392	0.10220
	3	.07140	.07000		3	.07150	.06999		3	.10464	.10228		3	0.10260	0.10082
	4	.07114	.06972		4	.07176	.06966		4	.10360	.10100		4	0.10198	0.10024
	5	.07162	.07024		5	.07074	.07020		5	.10342	.10180		5	0.10188	0.10028
	6	.07140	.07014		6	.07162	.07058		6	.10176	.09978		6	0.10260	0.10034
	7	.07242	.07084		7	.07062	.07036		7	.10218	.10094		7	0.10244	0.10000
	8	.07160	.07040		8	.07130	.07020		8	.10380	.10146		8	0.10152	0.09940
2	1	.07190	.07044	2	1	.07306	.07172	2	1	.10386	.10186	2	1	0.10262	0.10026
	2	.07218	.07066		2	.07158	.06944		2	.10356	.10138		2	0.10374	0.10106
	3	.07124	.07000		3	.07146	.06982		3	.10348	.10152		3	0.10288	0.10032
	4	.07222	.07072		4	.07146	.07006		4	.10238	.10000		4	0.10314	0.10028
	5	.07172	.06980		5	.07174	.06904		5	.10362	.10140		5	0.10240	0.10008
	6	.07240	.07048		6	.07170	.07020		6	.10296	.10106		6	0.10408	0.10272
	7	.07196	.07030		7	.07074	.07022		7	.10338	.10124		7	0.10298	0.10066
	8	.07126	.06966		8	.07188	.06956		8	.10334	.10188		8	0.10220	0.10000
3	1	.07170	.07032	3	1	.07220	.07052	3	1	.10426	.10182	3	1	0.10330	0.10066
	2	.07146	.06998		2	.07108	.06984	,	2	.10278	.10034		2	0.10204	0.09936
	з	.07110	.06954		3	.07230	.07024		3	.10140	.09932		3	0.10350	0.10152
	4	.07208	.07056		4	.07304	.07166		4	.10436	.10364		4	0.10278	0.10054
	5	.07260	.07126		5	.07084	.06894		5	.10404	.10284		5	0.10110	0.09896
	6	.07210	.07080		6	.07084	.06924		6	.10250	.10126		6	0.10236	0.10028
	7	.07188	.07072		7	.07216	.07044		7	.10346	.10092		7	0.10266	0.10032
	8	<u>.07174</u>	<u>.07006</u>		8	.07202	<u>.06938</u>		8	<u>.10572</u>	<u>.10322</u>		8	<u>0.10322</u>	<u>0.10046</u>
Avg ±	S.D.:	0.07177	0.07029	Avg ±	S.D.:	0.07160	0.07004	Avg ±	S.D.:	0.10336	0.10131	Avg ±	S.D.:	0.10271	0.10048
-		±0.00044	±0.00043			±0.00065	±0.00070			±0.00094	±0.00105			±0.00073	±0.00082
Comp	ressior	n Set:	7.7	Comp	ressio	n Set:	8.2	Comp	ressio	n Set:	7.8	Comp	ressio	n Set:	8.7
Odd N	lo. Vali	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Va	lues Only		Odd N	lo. Val	ues Only	
Avg ±	S.D.:	0.07173	0.07028	Avg ±	S.D.:	0.07155	0.07016	Avg ±	S.D.:	0.10339	0.10132	Avg ±	S.D.:	0.10262	0.10039
Ũ		±0.00046	±0.00048	-		±0.00077	±0.00072	- ·		±0.00089	±0.00097			±0.00065	±0.00061
Comp	ressior	n Set:	7.5	Comp	ressio	n Set:	7.3	Comp	ressio	n Set:	7.8	Comp	ressio	n Set:	8.7
Even	No. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	alues Only		Even I	No. Va	lues Only	
Avg ±	S.D.:	0.07182	0.0703	Avg ±	S.D.:	0.07165	0.06993	Avg ±	S.D.:	0.10332	0.10130	Avg ±	S.D.:	0.10280	0.10057
v		±0.00043	±0.00038	-		±0.00055	±0.00069	-		±0.00103	±0.00117			±0.00083	±0.00100
Comp	ressior	n Set:	7.8	Comp	ressio	n Set:	9.0	Comp	ressio	n Set:	7.7	Comp	ressio	n Set:	8.6

۰.

Table G-11. Compression Set of Medium and Large Parker O-Rings (7.688x0.070 and 16.339x0.103)

4

S)

7.739	x 0.07	0 Precision	19052	7.739	x 0.07	0 Precision	19895	16.95	5 x 0.1	39 Precisio	n 19422	16.955	5 x 0.1	39 Precision	า 19895
Ring	Site	Initial Thick.	Aged Thick.	Ring	Site	Initial Thick.	Aged Thick.	Ring	<u>Site</u>	Initial Thick.	Aged Thick.	Ring	<u>Site</u>	Initial Thick.	Aged Thick.
1	1	.07118	.06882	1	1	.07192	.06898	1	1	0.14172	0.13664	1	1	0.14224	0.13176
	2	.07262	.07002		2	.07064	.06874		2	0.13966	0.13594		2	0.14012	0.13332
	3	.07204	.06886		3	.07082	.06940		3	0.14124	0.13616		3	0.14086	0.13429
	4	.07076	.06866		4	.07058	.06860		4	0.14072	0.13590		4	0.13872	0.12884
	5	.07082	.06866		5	.07170	.06982		5	0.14058	0.13582		5	0.14172	0.13156
	6	.07138	.06978		6	.07182	.06902		6	0.14084	0.13604		6	0.14048	0.12978
	7	07306	.07134		7	.07128	.06944		7	0.14084	0.13694		7	0.14054	0.13112
	, 8	07020	.06862		8	.07068	.06854		8	0.14046	0.13634		8	0.14076	0.12988
2	Ť	07002	.06876	2	1	.07206	.06938	2	1	0.14216	0.13726	2	1	0.14236	0.13672
£	2	07120	.06980	-	2	.07100	.06859		2	0.14268	0.13764		2	0.13948	0.13830
	3	07204	.07008		3	.07056	.06886		3	0.14278	0.13794		3	0.14126	0.13490
	4	07028	06870		4	.07078	.06846		4	0.14318	0.13870		4	0.13988	0.13368
	5	07190	06958		5	.07096	.06888		5	0.14116	0.13692		5	0.14120	0.13510
	6	07166	06886		6	.07066	.06870		6	0.14230	0.13876		6	0.14126	0.13466
	7	07058	06848		7	.07036	.06886		7	0.14186	0.13772	•	7	0.14010	0.13240
	, 8	07420	07180		8	.07116	.06864		8	0.14246	0.13888		8	0.13958	0.13254
3	1	07100	.06908	3	1	.07212	.06924	3	1	0.14118	0.13626	3	1	0.14010	0.13189
Ũ	2	.07068	.06944	-	2	.07130	.06870		2	0.14034	0.13624		2	0.13866	0.13268
	3	.07054	.06846		3	.07020	.06806		3	0.14050	0.13728		3	0.13886	0.13312
	4	.07132	.06912		4	.07064	.06854		4	0.14006	0.13560		4	0.13976	0.13400
	5	.07068	.06878		5	.07234	.07036		5	0.14028	0.13558		5	0.14078	0.13340
	6	.07056	.06916		6	.07072	.06894		6	0.14076	0.13598		6	0.14040	0.13612
	7	.07082	.06856		7	.07048	.06886		7	0.13924	0.13556		7	0.14156	0.13402
	8	.07130	.06910		8	.07052	.06860		8	<u>0.14178</u>	<u>0.13646</u>		8	<u>0.14086</u>	<u>0.13448</u>
Ava +	• S.D.:	0.07129	0.06927	Ava ±	S.D.:	0.07105	0.06893	Avg ±	S.D.:	0.14120	0.13677	Avg ±	S.D.:	0.14048	0.13327
		+0.00098	±0.00086			±0.00062	±0.00049	Ũ		±0.00103	±0.00104	÷		±0.00101	±0.00222
Comp	pression	n Set:	10.7	Comp	oressio	n Set:	11.5	Comp	ressio	n Set:	12.0	Comp	ressio	n Set:	19.8
Odd I	No. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only		Odd N	lo. Val	ues Only	
Ava ±	: S.D.:	0.07122	0.06912	Avg ±	S.D.:	0.07123	0.06918	Avg ±	S.D.:	0.14113	0.13667	Avg ±	S.D.:	0.14097	0.13336
Ű		±0.00086	±0.00084			±0.00077	±0.00058			±0.00094	±0.00081			±0.00099	±0.00170
Comp	pression	n Set:	11.2	Comp	ressio	n Set:	10.5	Comp	ressio	n Set:	12.0	Comp	ressio	n Set:	20.6
Even	No. Va	lues Only		Even	No. Va	lues Only		Even	No. Va	alues Only		Even I	No. Va	lues Only	
Avg ±	: S.D.:	0.07135 +0.00112	0.06942	Avg ±	S.D.:	0.07088	0.06867 +0.00016	Avg ±	S.D.:	0.14127 +0.00116	0.13687 ±0.00125	Avg ±	S.D.:	0.14000 ±0.00081	0.13319 ±0.00272
Comp	oressio	n Set:	10.2	Comp	ressio	n Set	12.0	Comp	ressio	n Set:	11.8	Comp	ressio	n Set:	18.9

• 0

.

1

Table G-12. Compression Set of Medium and Large Precision O-Rings (7.739x0.070 and 16.955x0.139)

***** •

Table G-13. Compression Set Data for Test Slabs

٤

.3936

.3930

.3934

<u>.3933</u>

.3933

1

2

3

4

Avg:

Compression Set:

.3872

.3870

.3870

<u>.3871</u>

.3871

5.9

۹:

Parker 3	16104		Parker 3	16710		Parker 3	17403		Parker 3	17851		Parker 3	18466	
Site	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	<u>Aged</u>	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	<u>Aged</u>
1	.3190	.3093	1	.3164	.3085	1	.3178	.3090	1	.3110	.2976	. 1	.3100	.2988
2	.3199	.3102	2	.3170	.3087	2	.3174	.3095	2	.3110	.2989	2	.3092	.2945
3	.3199	.3115	З	.3173	.3089	3	.3181	.3094	3	.3103	.2990	3	.3099	.2936
4	<u>.3196</u>	<u>.3103</u>	4	<u>.3165</u>	<u>.3088</u>	4	<u>.3180</u>	<u>.3092</u>	4	<u>.3093</u>	<u>.2984</u>	4	<u>.3100</u>	<u>.2962</u>
Avg:	.3196	.3103	Avg:	.3168	.3087	Avg:	.3178	.3093	Avg:	.3104	.2985	Avg:	.3098	.2958
Compres	sion Set:	11.0	Compres	sion Set:	9.9	Compres	sion Set:	10.4	Compres	sion Set:	15.9	Compres	sion Set:	18.9
RD 1481	0		RD 1510	7		RD 1510	7 (70% cu	re)	RD 1510	7 (45% cu	re)			
<u>Site</u>	Initial	Aged	<u>Site</u>	Initial	<u>Aged</u>	<u>Site</u>	Initial	Aged	<u>Site</u>	Initial	Aged			

.3354

.3363

.3357

<u>.3358</u>

.3358

1

2

3

4

Avg:

Compression Set:

.3272

.3275

.3280

<u>.3273</u>

.3275

10.8

.3539

.3548

.3527

.3504

.3530

1

2

3

4

Avg:

Compression Set:

.3401

.3409

.3417

<u>.3415</u>

.3411

13.5

ı\$

-0

Precision	19052A		Precision	19895A	
<u>Site</u>	Initial	<u>Aged</u>	<u>Site</u>	<u>Initial</u>	Aged
1	.3190	.2980	1	.4064	.3792
2	.3196	.3004	2	.4071	.3785
3	.3194	.2996	3	.4050	.3793
4	<u>.3196</u>	<u>.2992</u>	4	<u>.4052</u>	<u>.3790</u>
Avg:	.3194	.2993	Avg:	.4059	.3790
Compressi	on Set:	24.0	Compressi	on Set:	22.8

.3305

.3301

.3298

<u>.3326</u>

.3308

1

2

3

4

Avg:

Compression Set:

.3180

.3204

.3185

<u>.3183</u>

.3188

12.6

Appendix H: Tensile Strength and Elongation Test Data

Contents:

- Table H-1.
 Tensile Data vs. Fixture Parameters and Test Speed
- Table H-2.
 Tensile Strength and Elongation Data on Butyl Rubber O-Rings
- Table H-3.Tensile Strength of RD Rubber O-Rings, Cure Study (detailed test data)
- Table H-4.
 Tensile Elongation of RD Rubber O-Rings, Cure Study (detailed test data)
- Table H-5.
 Tensile Strength and Elongation of Other RD Rubber O-Rings (detailed test data)
- Table H-6.
 Tensile Strength of Parker O-Rings (detailed test data)
- Table H-7.
 Tensile Elongation of Parker O-Rings (detailed test data)
- Table H-8.
 Tensile Strength of Precision O-Rings (detailed test data)
- Table H-9.
 Tensile Elongation of Precision O-Rings (detailed test data)
- Table H-10.
 Tensile Strength of Test Slabs (detailed test data)
- Table H-11.
 Tensile Elongation of Test Slabs (detailed test data)

Fixture Type	Test Speed	Lubed?	No of Loops	Maximum load	Tensile Elongation	Ter	sile Modulus (psi)
	(in./min.)		A	(pounds)	(percent)	100% elong.	200% elong.	300% elong.
Non-rotating, grooved,	10	yes	1	75±6	530±44			
spin-spoors.	10	no	1	70±4	486±36			
	20	yes	1	75±3	525±25			
	20	no	1	74±3	516±31			
Non-rotating rod*	10	yes	1	76±6	523±56			
	10	no	1	79±2	545±20			
	20	yes	1	72±6	504±50			
	20	no	1	73±7	503±50			
Rotating rod*	10	yes	1	74±3	516±29			
	10	no	1	74±2	519±20			
	20	yes	1	72±3	501±4			
	20	no	1	77±1	531±19			
Rotating rod*	20	yes	1	no break	no break	810±20	1850±590	NA
	20	yes	2	151±15	392±49	870±30	2230±30	3860±70
	20	yes	3	234±14	424±49	810±60	2090±130	3680±170

Table H-1. Tensile Data vs. Fixture Parameters and Test Speed (ten tests/value for all but loop study which used six tests/value)

4

.

\$

*

* All measurements carried out on **All measurements carried out on Parker Buna-S O-rings, 7.484 x 0.139 inches.

à.

Vendor	Ring size	Rubber Batch	Rings	Loops	max unaged	stress(psi) aged	% diff.	perce unaged	nt elongation aged	% diff.
Parker	0.116 x 0.038	318466	8/8	1	1891 ± 309	1823 ± 164	-4	278 ±41	264 ± 25	-5
Parker	0.301 x 0.054	316104	5/5	1	1959 ± 101	1964 ± 177	0	$\textbf{259} \pm \textbf{12}$	261 ± 11	1
Parker		316710	8/8	1	$\textbf{2015} \pm \textbf{91}$	$\textbf{2032} \pm \textbf{74}$	1	$\textbf{272} \pm \textbf{14}$	271 ± 10	0
Parker	1.364 x 0.070	316104	5/5	1	1591 ± 123	1573 ± 38	-1	209 ± 12	210 ± 4	0
Parker		317403	8/8	1	1790 ± 207	1708 ± 284	-5	281 ± 26	269 ± 45	-4
Parker	7.688 x 0.070	316104	5/5	3	1447 ± 78	1561 ± 94	8	178 ± 9	188 ± 10	6
Parker		317851	8/8	3	1469 ± 391	1671 ± 271	14	362 ± 85	341 ± 52	-6
Parker	16.339 x 0.103	316104	8/8	3	1309 ± 53	1430 ± 61	9	168 ± 5	177 ± 6	5
Parker		316710	8/8	3	1294 ± 257	1430 ± 148	11	188 ± 31	203 ± 16	8
RD	0 301 x 0 054	15107	8/8	1	2236+406	2423+122	8	308+46	303±13	-2
RD	0.551 x 0.070	14810	8/8	1	2524 + 71	2414 + 304	-4	402 ± 22	344 ± 44	-14
RD	0.001 × 0.010	15107	8/8	1	1965 ± 455	1864 ± 232	-5	293 ± 56	261 ± 28	-11
RD	1.114 x 0.070	14810	8/8	1	2142 ± 209	2063 ± 294	-4	314 ± 32	293 ± 43	-7
RD		15107	8/8	1	$\textbf{2039} \pm \textbf{236}$	2153 ± 107	6	296 ± 49	$\textbf{300} \pm \textbf{23}$	1
RD	7.185 x 0.103	14810	8/8	3	1734 ± 454	1782 ± 431	3	231 ± 53	$\textbf{220} \pm \textbf{39}$	-5
RD		15107	8/8	3	1579 ± 302	1255 ± 384	-21	215 ± 30	171 ± 39	-20
RD	11.196 x 0.103	14936	8/8	3	1334 ± 409	1458 ± 379	9	180 ± 38	184 ± 33	-2
RD		15107	8/8	3	1436 ± 355	1396 ± 451	-3	175 ± 29	152 ± 30	-13
_									000 101	01
Precision	0.301 x 0.054	19052	717	1	2218 ± 378	2162 ±229	-3	380 ±63	300 ±31	-21
Precision		19895	8/8	1	2233 ± 167	2138 ± 313	-4	369 ± 29	289 ± 37	-22
Precision	1.364 x 0.070	17405	6/8	1	2078 ±86	1971 ±181	-5	313 ± 15	261 ± 26	-17
Precision		19895	8/8	1	1935 ± 112	1937 ± 210	0	275 ± 18	247 ± 39	-10
Precision	7.739 x 0.070	19052	8/8	3	1578 ±342	1653 ±225	5	192 ± 64	152 ± 24	-21
Precision		19921	6/6	3	1496 ± 504	1616 ± 199	8	226 ± 23	181 ± 17	-20
Precision	16.955 x 0.139	19422	8/8	3	1129 ±250	832 ± 517	-26	$\textbf{188} \pm \textbf{35}$	114 ± 63	-39
Precision		19895	8/8	3	1315 ± 190	1379 ± 126	5	223 ± 23	179 ± 12	-20

Table H-2. Tensile Strength and Elongation Data on Butyl Rubber O-Rings

Table H-3. Tensile Strength Data for RD Rubber O-Rings, Batch 15107 Cure Study

0.301x	0.054		RD 15107	0.301x	0.054		RD 15107	0.301x	0.054		RD 15107
				(4 min.	. cure)	-	. .	(3 min	. cure)		
Ring	Initial	Ring	Aged	Ring	Initial	Ring	Aged	Ring	Initial	Ring	<u>Aged</u>
1	1412	9	2381	1	2270	9	2457	1	2510	9	2524
2	1816	10	2395	2	2443	10	2333	2	N/A	10	2605
3	2418	11	2482	3	2397	11	2342	3	2553	11	2290
4	2553	12	2594	4	2394	12	2056	4	2446	12	2752
5	2353	13	2199	5	2435	13	2459	5	2521	13	2643
6	2429	14	2553	6	2425	14	2416	6	2366	14	2539
7	2368	15	2396	7	2384	15	2317	7	2443	15	2614
8	<u>2543</u>	16	<u>2384</u>	8	<u>2244</u>	16	<u>2575</u>	8	<u>2163</u>	16	<u>2481</u>
Avg:	2237±406		2423±122	Avg:	2374±75		2369±153	Avg:	2429±133		2556±136
Streng	th Change:		8 %	Strengt	h Change:		0 %	Streng	th Change:		5 %
1.114x	0.070		RD 15107	1.114x	0.070		RD 15107	1.114x	0.070		RD 15107
				(4 min.	cure)			(3 min	. cure)		
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>	<u>Ring</u>	<u>Initial</u>	Ring	<u>Aged</u>	<u>Ring</u>	<u>Initial</u>	<u> Ring</u>	<u>Aged</u>
1	2247	9	2071	1	2307	9	2134	1	2380	9	1891
2	1795	10	2213	2	1904	10	2530	2	2206	10	2272
3	2044	11	1939	3	2151	11	2405	3	2281	11	2173
4	2182	12	2179	4	2234	12	2277	4	2269	12	2154
5	2223	13	2206	5	1907	13	2301	5	2364	13	2007
6	2191	14	2121	6	2248	14	217	6	2321	14	2337
7	2050	15	2280	7	2426	15	2408	7	1983	15	1880
8	<u>1582</u>	16	<u>2217</u>	8	<u>1773</u>	16	<u>2518</u>	8	<u>1608</u>	16	<u>1998</u>
Avg:	2039±236		2153±107	Avg:	2119±230		2099±771	Avg:	2177±261		2089±171
Streng	th Change:		6 %	Strengt	h Change:		-1 %	Streng	gth Change:		-4 %
7.185x	0.103		RD 15107	7.185x (4 min	0.103 cure)		RD 15107	7.185x	(0.103		RD 15107
7.185x	0.103	Ring	RD 15107	7.185x (4 min. Bing	0.103 . cure)	Bing	RD 15107	7.185x (3 min	(0.103 . cure)	Bing	RD 15107
7.185x <u>Ring</u>	0.103	<u>Ring</u>	RD 15107 Aged	7.185x (4 min. <u>Ring</u> 1	0.103 cure) Initial 1034	<u>Ring</u>	RD 15107	7.185x (3 min <u>Ring</u> 1	0.103 . cure) <u>Initial</u> 1502	Ring a	RD 15107 Aged
7.185x <u>Ring</u> 1	0.103 Initial 1660 1125	<u>Ring</u> 9	RD 15107 Aged 1124 1327	7.185x (4 min. <u>Ring</u> 1 2	0.103 cure) Initial 1034	Ring 9	RD 15107 Aged 1564 1749	7.185x (3 min <u>Ring</u> 1 2	(0.103 . cure) <u>Initial</u> 1502	Ring 9	RD 15107 Aged 1806
7.185x <u>Ring</u> 1 2 3	0.103 Initial 1660 1125 1243	<u>Ring</u> 9 10	RD 15107 Aged 1124 1327 1362	7.185x (4 min, <u>Ring</u> 1 2 3	0.103 cure) Initial 1034 1658	<u>Ring</u> 9 10	RD 15107 Aged 1564 1749 1854	7.185x (3 min <u>Ring</u> 1 2 3	0.103 . cure) <u>Initial</u> 1502 1850 2174	<u>Ring</u> 9 10	RD 15107 Aged 1806 1467 1778
7.185x <u>Ring</u> 1 2 3	Initial 1660 1125 1243	Ring 9 10 11	RD 15107 Aged 1124 1327 1362 536	7.185x (4 min. <u>Ring</u> 1 2 3	0.103 cure) Initial 1034 1658 999	<u>Ring</u> 9 10 11	RD 15107 Aged 1564 1749 1854 1709	7.185x (3 min Ring 1 2 3	(0.103 . cure) <u>Initial</u> 1502 1850 2174 2026	<u>Ring</u> 9 10 11	RD 15107 Aged 1806 1467 1778 1888
7.185x Ring 1 2 3 4 5	Initial 1660 1125 1243 1704	Ring 9 10 11 12	RD 15107 Aged 1124 1327 1362 536 1248	7.185x (4 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) <u>Initial</u> 1034 1658 999 1025 1016	Ring 9 10 11 12	RD 15107 Aged 1564 1749 1854 1709 1731	7.185x (3 min <u>Ring</u> 1 2 3 4 5	(0.103 . cure) <u>Initial</u> 1502 1850 2174 2026 1886	Ring 9 10 11 12	RD 15107 Aged 1806 1467 1778 1888 1557
7.185x Ring 1 2 3 4 5	Initial 1660 1125 1243 1704 1607	Ring 9 10 11 12 13	RD 15107 Aged 1124 1327 1362 536 1246 1979	7.185x (4 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) <u>Initial</u> 1034 1658 999 1025 1016	Ring 9 10 11 12 13	Aged 1564 1749 1854 1709 1731	7.185x (3 min <u>Ring</u> 1 2 3 4 5	0.103 . cure) <u>Initial</u> 1502 1850 2174 2026 1886 1500	Ring 9 10 11 12 13	RD 15107 Aged 1806 1467 1778 1888 1557 1907
7.185x Ring 1 2 3 4 5 6 7	Initial 1660 1125 1243 1704 1607 1515 2114	Ring 9 10 11 12 13 14	RD 15107 Aged 1124 1327 1362 536 1246 1878 1071	7.185x (4 min. <u>Ring</u> 1 2 3 4 5 6 7	0.103 . cure) Initial 1034 1658 999 1025 1016 887 1746	<u>Ring</u> 9 10 11 12 13 14	Aged 1564 1749 1854 1709 1731 1073 1607	7.185x (3 min 1 2 3 4 5 6	20.103 Initial 1502 1850 2174 2026 1886 1690 1694	<u>Ring</u> 9 10 11 12 13 14	RD 15107 Aged 1806 1467 1778 1888 1557 1907 1781
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8	Initial 1660 1125 1243 1704 1607 1515 2114 1662	Ring 9 10 11 12 13 14 15	RD 15107 Aged 1124 1327 1362 536 1246 1878 1071 1498	7.185x (4 min. Ring 1 2 3 4 5 6 7	0.103 . cure) Initial 1034 1658 999 1025 1016 887 1746 905	<u>Ring</u> 9 10 11 12 13 14 15	Aged 1564 1749 1854 1709 1731 1073 1607	7.185x (3 min 1 2 3 4 5 6 7	20.103 Initial 1502 1850 2174 2026 1886 1690 1694 2211	<u>Ring</u> 9 10 11 12 13 14 15	RD 15107 Aged 1806 1467 1778 1888 1557 1907 1781 1826
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1570+202	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255+284	7.185x (4 min. Ring 1 2 3 4 5 6 7 8	0.103 . cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170+222	<u>Ring</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 1564 1749 1854 1709 1731 1073 1607 <u>1845</u>	7.185x (3 min Ring 1 2 3 4 5 6 7 8	20.103 Initial 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1870+248	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751+157
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 20 %	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg:	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 %	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg:	0.103 . cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 7 %
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng	initial <u>Initial</u> 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 %	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng	0.103 . cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change:	<u>Ring</u> 9 10 11 12 13 14 15 16	Aged 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 %	7.185x (3 min <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng	20.103 Initial 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 %
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196	Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: 5x0.103	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107	7.185x (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 8 Avg: Streng 11.196 (4 min	0.103 .cure) <u>Initial</u> 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 cure)	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107	7.185x (3 min Ring 1 2 3 4 5 6 7 8 4 5 6 7 8 8 Avg: Streng (3 min (1.196)	(0.103 Initial 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 Ring	20.103 Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: 5x0.103	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107	7.185x (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 8 Avg: Streng 11.196 (4 min. Ping	0.103 .cure) <u>Initial</u> 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107	7.185x (3 min Ring 1 2 3 4 5 6 7 8 8 Avg: Streng 11.196 (3 min Ping	(0.103 Initial 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 Initial	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1	E.0.103 Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: E.X.0.103 Initial 1565	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640	7.185x (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Strengt 11.196 (4 min. <u>Ring</u>	0.103 . cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 . cure) Initial 1152	<u>Ring</u> 9 10 11 12 13 14 15 16 <u>Ring</u>	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1709	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: i. cure) <u>Initial</u> 1776	<u>Ring</u> 9 10 11 12 13 14 15 16 <u>Ring</u>	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2	Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: 5x0.103 <u>Initial</u> 1565 1499	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial 1153 1525	Ring 9 10 11 12 13 14 15 16 <u>Ring</u> 9	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 i. cure) <u>Initial</u> 1776 1472	<u>Ring</u> 9 10 11 12 13 14 15 16 <u>Ring</u> 9	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3	20.103 Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: 5x0.103 Initial 1565 1499 1920	Ring 9 10 11 12 13 14 15 16 Ring 9 10	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1082	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2 2	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial 1153 1525 1356	Ring 9 10 11 12 13 14 15 16 Ring 9 10	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 2	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 i. cure) <u>Initial</u> 1776 1473 2056	Ring 9 10 11 12 13 14 15 16 Ring 9 10	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622
7.185× <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4	10:103 10:11 16:00 11:25 12:43 17:04 16:07 15:15 21:14 16:62 15:79±302 th Change: 5x0.103 Initial 15:65 14:99 19:20 13:12	Ring 9 10 11 12 13 14 15 16 16 Ring 9 10 11 12 13	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2 3 4	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial 1153 1525 1356 1717	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1025	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 i. cure) <u>Initial</u> 1776 1473 2066 1522	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1426
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5	20.103 Initial 1660 1125 1243 1704 1607 1515 2114 1662 1579±302 th Change: 5x0.103 Initial 1565 1499 1920 1313 1096	Ring 9 10 11 12 13 14 15 16 16 Ring 9 10 11 12 13	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967	7.185x (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. <u>Ring</u> 1 2 3 4 5	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 995 1170±332 th Change: x0.103 .cure) Initial 1153 1525 1356 1717 1762	Ring 9 10 11 12 13 14 15 16 16 Ring 9 10 11 12 13 14 15 16 11 12 13	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 i. cure) <u>Initial</u> 1776 1473 2066 1528 1870	Ring 9 10 11 12 13 14 15 16 Bing 9 10 11 12 13 14 15 16 11 12 13	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	20.103 Initial 1660 1125 1243 1704 1607 1515 2114 <u>1662</u> 1579±302 th Change: 5x0.103 Initial 1565 1499 1920 1313 1096 832	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967 995	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2 3 4 5 6	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial 1153 1525 1356 1717 1763 921	Ring 9 10 11 12 13 14 15 16 16 Ring 9 10 11 12 13 14 15 16 11 12 13 14 12 13 14	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454 2016	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5 6	c.ure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 cure) <u>Initial</u> 1776 1473 2066 1528 1870 1690	Ring 9 10 11 12 13 14 15 16 Bing 9 10 11 12 13 14 15 16 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105 1840
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	10:103 10:11:1 1660 1125 1243 1704 1607 1515 2114 1662 1579±302 th Change: 5x0.103 Initial 1565 1499 1920 1313 1096 833 1799	Ring 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 11 12 13 14 15	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967 995 1101	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2 3 4 5 6 7	0.103 .cure) <u>Initial</u> 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) <u>Initial</u> 1153 1525 1356 1717 1763 921 1472	Ring 9 10 11 12 13 14 15 16 10 11 12 13 14 15 16 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454 2216 1075	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5 6 7 7 8 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	c.ure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 ure) <u>Initial</u> 1776 1473 2066 1528 1870 1680 1610	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105 1849 2050
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	10:103 10:103 10:10 10:10 11:25 12:43 17:04 16:07 15:15 21:14 16:62 15:79±302 th Change: 5x0.103 10:11 15:65 14:99 19:20 13:13 10:96 8:33 17:98 14:60	Ring 9 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967 995 1101 2282	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (4 min. Ring 1 2 3 4 5 6 7 8	0.103 .cure) <u>Initial</u> 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) <u>Initial</u> 1153 1525 1356 1717 1763 921 1472 1121	Ring 9 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454 2216 1975 1902	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5 6 7 8 8 Avg: 5 11.196 (3 min 5 6 7 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	co.103 i. cure) <u>initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 ath Change: 5x0.103 i. cure) <u>initial</u> 1776 1473 2066 1528 1870 1680 1919 1652	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105 1849 2050 2056
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 5 6 7 8 Avg: 7 8 Avg: 7 8 Avg: 7 8 Avg: 7 8 8 Avg: 7 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	10:103 10:103 10:10 10:10 11:25 12:43 17:04 16:07 15:15 21:14 16:02 15:79±302 th Change: 5x0.103 10:10 11:10 15:5 14:99 19:20 13:13 10:96 8:33 17:98 14:60 14:36±355	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967 995 1101 <u>2282</u> 1396±451	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 1 1.196 (4 min. Ring 1 2 3 4 5 6 7 8 8 4 5 6 7 8	0.103 .cure) <u>Initial</u> 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) <u>Initial</u> 1153 1525 1356 1717 1763 921 1472 <u>1131</u> 1280±205	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454 2216 1975 <u>1993</u> 1860±224	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5 6 7 8 Avg: 5 7 8 8 4 5 6 7 8 8 4 5 6 7 8 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	co.103 i. cure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 i. cure) <u>Initial</u> 1776 1473 2066 1528 1870 1680 1919 1653 1746±201	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105 1849 2050 <u>2056</u> 1902±252
7.185x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 11.196 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 Avg: Streng 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	10:103 10:1125 1243 1704 1607 1515 2114 1662 1579±302 1579±302 1579±302 1579±302 1579±302 1579±302 1579±302 1579±302 1400 1313 1096 833 1798 1460 1436±355 1499 1436±355 1499 1436±355 1499 1436±355 1499 1436±355 1400 1436±355 1400 1436±355 1400 1436±355 1400 1436±355 1400 1436±355 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1500	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1124 1327 1362 536 1246 1878 1071 <u>1498</u> 1255±384 -20 % RD 15107 <u>Aged</u> 1640 1546 1083 1557 967 995 1101 <u>2282</u> 1396±451 -3 %	7.185x (4 min. Ring 1 2 3 4 5 6 7 8 Avg: Streng 1 1.196 (4 min. Ring 1 2 3 4 5 6 7 8 Avg: 5 8 4 5 5 6 7 8 8 4 5 5 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8	0.103 .cure) Initial 1034 1658 999 1025 1016 887 1746 <u>995</u> 1170±332 th Change: x0.103 .cure) Initial 1153 1525 1356 1717 1763 921 1472 <u>1131</u> 1380±296 th Change:	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1564 1749 1854 1709 1731 1073 1607 <u>1845</u> 1642±251 40 % RD 15107 <u>Aged</u> 1708 1841 1827 1936 1454 2216 1975 <u>1993</u> 1869±224 35 %	7.185x (3 min Ring 1 2 3 4 5 6 7 8 Avg: Streng 11.196 (3 min Ring 1 2 3 4 5 6 7 8 Avg: 5 6 7 8 4 5 6 7 8 8 4 5 6 7 8 8 4 5 6 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8	c.ure) <u>Initial</u> 1502 1850 2174 2026 1886 1690 1694 <u>2211</u> 1879±248 th Change: 5x0.103 cure) <u>Initial</u> 1776 1473 2066 1528 1870 1680 1919 <u>1653</u> 1746±201 th Change:	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 1806 1467 1778 1888 1557 1907 1781 <u>1826</u> 1751±157 -7 % RD 15107 <u>Aged</u> 1956 2143 1622 1436 2105 1849 2050 <u>2056</u> 1902±252 0 %

Table H-4. Tensile Elongation Data for RD Rubber O-Rings, Batch 15107 Cure Study

0.301x0),054		RD 15107	0.301x((4 min.	0.054 cure)		RD 15107	0.301x((3 min.	0.054 cure)		RD 15107
Ring	Initial	Ring	Aged	Ring	Initial	Ring	Aged	Ring	Initial	Ring	Aaed
1	218	9	307	1	320	9	289	1	354	9	280
2	255	10	307	2	348	10	279	2	N/A	10	283
3	323	11	305	3	333	11	288	3	344	11	266
4	344	12	319	4	336	12	251	4	338	12	296
5	326	13	280	5	337	13	295	5	347	13	281
6	329	14	316	6	348	14	287	6	321	14	271
7	321	15	301	7	343	15	279	7	362	15	272
8	346	16	289	8	303	16	302	8	303	16	258
Ava:	308±46		303±13	Ava:	334±15		 284±15	Ava:	338±20		276±12
Elongat	ion Chang	e:	-2 %	Elonga	tion Chang	e:	-15 %	Elongat	tion Chang	e:	-18 %
1.114x(0.070		RD 15107	1.114x	0.070		RD 15107	1.114x	0.070		RD 15107
				(4 min.	cure)			(3 min.	cure)		
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	Aged	Ring	<u>Initial</u>	<u> Ring</u>	Aged	<u>Ring</u>	Initial	<u>Ring</u>	<u>Aged</u>
1	336	9	293	1	300	9	220	1	351	9	191
2	273	10	318	2	248	10	285	2	322	10	223
3	268	11	271	3	309	11	269	3	332	11	255
4	326	12	309	4	328	12	259	4	328	12	273
5	354	13	304	5	277	13	233	5	353	13	244
6	333	14	263	6	314	14	257	6	347	14	229
7	263	15	326	7	316	15	246	7	294	15	178
8	213	16	<u>320</u>	.8	232	16	292	8	224	16	<u>191</u>
Avg:	296±49		301±23	Avg:	291±35		258±25	Avg:	319±43		223±34
Elongat	tion Chang	e:	2 %	Elonga	tion Chang	le:	-11 %	Elonga	tion Chang	e:	-30 %
7.185x(D.103		RD 15107	7.185x	0.103		RD 15107	7.185x	0.103		RD 15107
	1	D '	A I	(4 min.	cure)	D .		(3 min.	cure)	ο.	
Ring	<u>initiai</u>	Ring	Agea	Ring	<u>initiai</u>	Hing	Agea	Ring	<u>initial</u>	Ring	Agea
1	220	9	162	1	140	9	148	1	183	9	156
2	1/2	10	179	2	192	10	159	2	210	10	140
3	186	11	182	3	140	11	170	3	238	11	159
4	228	12	97	4	140	12	164	4	235	12	162
5	215	13	170	5	139	13	166	5	217	13	142
6 7	205	14	234	6	131	14	133	5	211	14	169
~	2/1	15	148	/	198	15	157	/	201	15	154
8	224	16	<u>192</u>	8	141	16	172	8	251	10	<u>157</u>
Avg:	215±30		171±39	Avg:	153±26		159±13	Avg:	218±22		155±10
Elonga	tion Chang	e:	-21 %	Elonga	tion Chang	je:	4 %	Elonga	tion Chang	le:	-29 %
11.196	x0.103		RD 15107	11.196 (4 min	x0.103 . cure)		RD 15107	11.196 (3 min.	x0.103 . cure)		RD 15107
Bina	Initial	Rina	Aged	Ring	Initial	Bina	Aged	Ring	Initial	Bina	Aged
1	179	9	165	1	169	9	184	1	228	9	190
2	178	10	159	2	204	10	195	2	199	10	218
3	211	11	131	- 3	184	11	186	3	266	11	159
4	166	12	163	4	226	12	201	4	201	12	138
5	148	13	121	5	226	13	158	5	244	13	199
6	126	14	125	6	149	14	229	6	224	14	175
7	209	15	136	7	201	15	205	7	246	15	195
8	180	16	212	8	161	16	195	8	216	16	194
Ava.	175+29	.0	152+30	Avo:	190+29	.0	194+20	Ava	228+23	10	184+25
Avg: 175±29 152±30 Elongation Change: -13 %							Avg: 228±23 Elongation Change:				

Table H-5. Tensile Strength and Elongation Data for RD Rubber O-Rings, Various Batches and Sizes

0.551x	0.070	1	RD 14810	0.551x	0.070	1	RD 15107	1.114x	0.070		RD 14810
<u>Ring</u>	Initial	<u>Ring</u>	Aged	Ring	<u>Initial</u>	<u> Ring</u>	Aged	Ring	<u>Initial</u>	<u>Ring</u>	Aged
1	2420	9	2353	1	2324	9	1541	1	2130	9	1664
2	2482	10	2424	2	948	10	1651	2	2128	10	2414
3	2571	11	2598	3	1928	11	2082	3	2359	11	1682
4	2495	12	2429	4	2251	12	2039	4	2210	12	2260
5	2465	13	2607	5	1840	13	1634	5	2267	13	2325
6	2533	14	2603	6	2162	14	2154	6	2242	14	1934
7	2608	15	2593	7	1920	15	1970	7	2134	15	2267
8	<u>2619</u>	16	<u>1704</u>	8	<u>2345</u>	16	<u>1843</u>	8	<u>1664</u>	16	<u>1954</u>
Avg:	2524±71		2414±304	Avg:	1965±455		1864±232	Avg:	2142±209		2063±294
Tensile	Strength Cl	hange:	-4%	Tensile	Strength C	Change:	-5%	Tensile	Strength C	Change:	-4%
	-	-									
7.185x	0.103	1	RD 14810	11.196	x0.103	ļ	RD 14936				
Ring	Initial	Ring	<u>Aged</u>	Ring	<u>Initial</u>	Ring	<u>Aged</u>				
1	2393	9	2324	1	1408	9	1282				
2	1278	10	1656	2	1093	10	1332				
3	1416	11	1910	3	1532	11	1221				
4	1793	12	2054	4	1548	12	1196				
5	2386	13	1962	5	586	13	1590				
6	1765	14	1615	6	1895	14	1299				
7	1224	15	868	7	1038	15	2345				
8	<u>1620</u>	16	<u>1865</u>	8	<u>1573</u>	16	<u>1397</u>				
Avg:	1734±454		1782±431	Avg:	1334±408		1458±379				
Tensile	Strength C	hange:	3%	Tensile	e Strength C	Change:	9%				
		-									
0.551x	0.070		RD 14810	0.551x	0.070	— ·	RD 15107	1.114x	0.070		RD 14810
Hing	Initial	Hing	Aged	Hing	<u>initial</u>	Hing	Aged	Hing	<u>initial</u>	Hing	Agea
1	370	9	330	1	349	9	218	1	314	9	242
2	386	10	338	2	176	10	243	2	306	10	361
3	416	11	375	3	295	11	275	3	351	11	238
4	388	12	343	4	342	12	273	4	327	12	311
5	391	13	385	5	257	13	239	5	328	13	324
6	409	14	366	6	298	14	308	6	329	14	263
7	437	15	370	7	294	15	269	7	314	15	314

<u>416</u> 402±22 Avg:

8

Ten. Elongation Change:

7.185x0	.103	F	RD 14810	11.196)	(0.103	F	RD 14936
Ring	Initial	<u> Ring</u>	<u>Aged</u>	Ring	Initial	Ring	<u>Aged</u>
1	311	9	266	1	198	9	178
2	180	10	208	2	168	10	175
3	197	11	233	3	202	11	158
4	230	12	246	4	191	12	167
5	308	13	237	5	118	13	195
6	231	14	206	6	246	14	166
7	175	15	138	7	160	15	261
8	<u>216</u>	16	<u>229</u>	8	<u>159</u>	16	<u>169</u>
Avg:	231±53		220±39	Avg:	180±38		184±33
Ten. Ele	ongation C	hange:	-5%	Ten. El	ongation C	hange:	2%

<u>245</u>

344±44

-14%

16

8

Avg:

<u>334</u>

293±56

Ten. Elongation Change:

16

269

<u>266</u>

261±28

-11%

7 314 15 314 8 <u>242</u> <u>287</u> 16 314±32 293±43 Avg: Ten. Elongation Change: -7%

0.116	x0.038 Parl	ker 31	8466
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>
1	2220	9	1615
2	2066	10	1753
3	1748	11	1815
4	1326	12	1932
5	2034	13	1664
6	1656	14	1734
7	2229	15	2086
8	<u>1851</u>	16	<u>1984</u>
Avg:	1891±309		1823±16
Streng	oth Change:		-4%

)))

0.301X	0.054	Parke	r 316104	0.301:	k0.054	Park	cer 316710	1.364x	0.070	Park	er 316104	1.364x	0.070	Par	ker 317403
Ring	Initial	Ring	Aged	Ring	Initial	<u>Ring</u>	Aged	Ring	<u>Initial</u>	<u> Ring</u>	<u>Aged</u>	Ring	<u>Initial</u>	Ring	Aged
1	1974	6	1946	1	2094	9	1898	1	1616	6	1532	1	1876	9	1430
2	1895	7	2049	2	1921	10	2107	2	1641	7	1618	2	1499	10	1932
3	2085	8	1663	3	1953	11	2064	3	1629	8	1549	3	1446	11	1636
4	2012	9	2068	4	2189	12	2109	4	1693	9	1559	4	1779	12	2070
5	1827	10	2094	5	2023	13	2029	5	1377	10	1610	5	1923	13	1947
-				6	1996	14	2089					6	1865	14	1882
				7	1926	15	1984					7	2011	15	1425
				8	2020	16	<u>1980</u>					8	<u>1924</u>	16	<u>1341</u>
Ava:	1959±101		1964±177	Avg:	2015±91		2033±74	Avg:	1591±123		1574±38	Avg:	1790±207		1708±284
Streng	th Change):	0%	Streng	oth Change	:	1%	Streng	th Change	:	-1%	Strengt	h Change:		-5%
7.688x	0.070	Park	er 316104	7.688	x0.070	Parl	cer 317851	16.339	x0.103	Park	er 316104	16.339)	x0.103	Par	ker 316710
7.688x Ring	0.070 Initial	Park Ring	er 316104 <u>Aged</u>	7.688 : <u>Ring</u>	x0.070 Initial	Parl <u>Ring</u>	cer 317851 Aged	16.339 <u>Bing</u>	x0.103 Initial	Park <u>Ring</u>	er 316104 Aged	16.339 : <u>Ring</u>	x 0.103 Initial	Par <u>Ring</u>	ker 316710 <u>Aged</u>
7.688x <u>Ring</u> 1	0.070 <u>Initial</u> 1553	Parko <u>Ring</u> 6	er 316104 <u>Aged</u> 1667	7.688 <u>Ring</u> 1	x0.070 <u>Initial</u> 995	Parl <u>Ring</u> 9	(er 317851 <u>Aged</u> 1559	16.339 <u>Ring</u> 1	9x0.103 Initial 1296	Park <u>Ring</u> 9	er 316104 <u>Aged</u> 1372	16.339 : <u>Ring</u> 1	x 0.103 <u>Initial</u> 1423	Par <u>Ring</u> 9	ker 316710 Aged 1582
7.688x <u>Ring</u> 1 2	0.070 <u>Initial</u> 1553 1335	Parke <u>Ring</u> 6 7	er 316104 <u>Aged</u> 1667 1415	7.688 <u>Ring</u> 1 2	x0.070 <u>Initial</u> 995 1097	Park <u>Ring</u> 9 10	ker 317851 <u>Aged</u> 1559 1706	16.339 <u>Bing</u> 1 2	0x0.103 <u>Initial</u> 1296 1358	Park <u>Ring</u> 9 10	er 316104 <u>Aged</u> 1372 1478	16.339 <u>Ring</u> 1 2	x0.103 <u>Initial</u> 1423 1338	Par <u>Ring</u> 9 10	ker 316710 <u>Aged</u> 1582 1546
7.688x <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 1553 1335 1434	Parko <u>Ring</u> 6 7 8	er 316104 <u>Aged</u> 1667 1415 1542	7.688 <u>Ring</u> 1 2 3	x0.070 <u>Initial</u> 995 1097 1877	Parl <u>Ring</u> 9 10 11	cer 317851 <u>Aged</u> 1559 1706 1800	16.339 <u>Bing</u> 1 2 3	0x0.103 <u>Initial</u> 1296 1358 1283	Park <u>Ring</u> 9 10 11	er 316104 Aged 1372 1478 1390	16.339 <u>Ring</u> 1 2 3	x0.103 <u>Initial</u> 1423 1338 1583	Par <u>Ring</u> 9 10 11	ker 316710 <u>Aged</u> 1582 1546 1482
7.688x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 1553 1335 1434 1463	Parke <u>Ring</u> 6 7 8 9	er 316104 <u>Aged</u> 1667 1415 1542 1576	7.688 <u>Ring</u> 1 2 3 4	k0.070 <u>Initial</u> 995 1097 1877 1235	Park <u>Ring</u> 9 10 11 12	cer 317851 <u>Aged</u> 1559 1706 1800 1874	16.339 <u>Bing</u> 1 2 3 4)x0.103 <u>Initial</u> 1296 1358 1283 1273	Park <u>Ring</u> 9 10 11 12	er 316104 Aged 1372 1478 1390 1506	16.339 <u>Ring</u> 1 2 3 4	x 0.103 <u>Initial</u> 1423 1338 1583 810	Par <u>Ring</u> 9 10 11 12	ker 316710 Aged 1582 1546 1482 1437
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 1553 1335 1434 1463 1452	Parke <u>Ring</u> 6 7 8 9	er 316104 Aged 1667 1415 1542 1576 1605	7.688 <u>Ring</u> 1 2 3 4 5	k0.070 <u>Initial</u> 995 1097 1877 1235 1939	Park <u>Ring</u> 9 10 11 12 13	cer 317851 <u>Aged</u> 1559 1706 1800 1874 1786	16.339 <u>Bing</u> 1 2 3 4 5	9x0.103 <u>Initial</u> 1296 1358 1283 1273 1416	Park <u>Ring</u> 9 10 11 12 13	er 316104 <u>Aged</u> 1372 1478 1390 1506 1460	16.339 <u>Ring</u> 1 2 3 4 5	x 0.103 <u>Initial</u> 1423 1338 1583 810 1560	Par <u>Ring</u> 9 10 11 12 13	ker 316710 Aged 1582 1546 1482 1437 1460
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 1553 1335 1434 1463 1452	Parke <u>Ring</u> 6 7 8 9 10	er 316104 <u>Aged</u> 1667 1415 1542 1576 1605	7.688 <u>Ring</u> 1 2 3 4 5 6	k0.070 <u>Initial</u> 995 1097 1877 1235 1939 1521	Park <u>Ring</u> 9 10 11 12 13 14	cer 317851 <u>Aged</u> 1559 1706 1800 1874 1786 1922	16.339 <u>Bing</u> 1 2 3 4 5 6	Dx0.103 <u>Initial</u> 1296 1358 1283 1273 1416 1258	Park <u>Bing</u> 9 10 11 12 13 14	er 316104 <u>Aged</u> 1372 1478 1390 1506 1460 1330	16.339 Ring 1 2 3 4 5 6	x 0.103 <u>Initial</u> 1423 1338 1583 810 1560 1237	Par <u>Ring</u> 9 10 11 12 13 14	ker 316710 Aged 1582 1546 1482 1437 1460 1148
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 1553 1335 1434 1463 1452	Parka <u>Ring</u> 6 7 8 9 10	er 316104 Aged 1667 1415 1542 1576 1605	7.6885 Ring 1 2 3 4 5 6 7	k0.070 Initial 995 1097 1877 1235 1939 1521 1899	Park <u>Ring</u> 9 10 11 12 13 14 15	cer 317851 <u>Aged</u> 1559 1706 1800 1874 1786 1922 1659	16.339 <u>Bing</u> 1 2 3 4 5 6 7	Dx0.103 <u>Initial</u> 1296 1358 1283 1273 1416 1258 1320	Park <u>Ring</u> 9 10 11 12 13 14 15	er 316104 <u>Aged</u> 1372 1478 1390 1506 1460 1330 1433	16.339 <u>Ring</u> 1 2 3 4 5 6 7	x0.103 Initial 1423 1338 1583 810 1560 1237 1068	Par <u>Ring</u> 9 10 11 12 13 14 15	ker 316710 <u>Aged</u> 1582 1546 1482 1437 1460 1148 1516
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 1553 1335 1434 1463 1452	Parka <u>Ring</u> 6 7 8 9 10	er 316104 Aged 1667 1415 1542 1576 1605	7.688 Ring 1 2 3 4 5 6 7 8	k0.070 Initial 995 1097 1877 1235 1939 1521 1899 1190	Park <u>Ring</u> 9 10 11 12 13 14 15 16	cer 317851 Aged 1559 1706 1800 1874 1786 1922 1659 <u>1066</u>	16.339 <u>Bing</u> 1 2 3 4 5 6 7 8	bx0.103 <u>Initial</u> 1296 1358 1283 1273 1416 1258 1320 <u>1272</u>	Park Bing 9 10 11 12 13 14 15 16	er 316104 Aged 1372 1478 1390 1506 1460 1330 1433 1471	16.339 Ring 1 2 3 4 5 6 7 8	x0.103 <u>Initial</u> 1423 1338 1583 810 1560 1237 1068 <u>1336</u>	Par <u>Ring</u> 9 10 11 12 13 14 15 16	ker 316710 Aged 1582 1546 1482 1437 1460 1148 1516 1270
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 1553 1335 1434 1463 1452	Parka <u>Bing</u> 6 7 8 9 10	er 316104 Aged 1667 1415 1542 1576 1605	7.6883 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	x0.070 <u>Initial</u> 995 1097 1877 1235 1939 1521 1899 <u>1190</u> 1469±391	Park <u>Ring</u> 9 10 11 12 13 14 15 16	cer 317851 <u>Aged</u> 1559 1706 1800 1874 1786 1922 1659 <u>1066</u> 1672±271	16.339 Bing 1 2 3 4 5 6 7 8 Avg:	bx0.103 <u>Initial</u> 1296 1358 1283 1273 1416 1258 1320 <u>1272</u> 1310±54	Park <u>Ring</u> 9 10 11 12 13 14 15 16	er 316104 <u>Aged</u> 1372 1478 1390 1506 1460 1330 1433 <u>1471</u> 1430±61	16.339 Ring 1 2 3 4 5 6 7 8 Avg:	x0.103 <u>Initial</u> 1423 1338 1583 810 1560 1237 1068 <u>1336</u> 1294±257	Par <u>Ring</u> 9 10 11 12 13 14 15 16	ker 316710 <u>Aged</u> 1582 1546 1482 1437 1460 1148 1516 <u>1270</u> 1430±148

r X

÷

Table H-7. Tensile Elongation Data for Parker O-Rings

÷ •

0.116>	0.038 Pai	rker 318	8466
Ring	Initial	<u>Ring</u>	Aged
1	326	9	234
2	298	10	259
3	255	11	269
4	205	12	284
5	300	13	233
6	242	14	255
7	320	15	306
8	<u>278</u>	16	<u>274</u>
Avg:	278±41		264±25
Elonga	tion Chang	ge:	-5%

0.301X	0.054	Park	er 316104	0.301x	0.054	Park	er 316710	1.364x	0.070	Park	er 316104	1.364x0	.070	Parl	cer 317403
Ring	Initial	<u>Ring</u>	<u>Aged</u>	Ring	<u>Initial</u>	Ring	Aged	<u>Ring</u>	<u>Initial</u>	Ring	Aged	Ring	<u>Initial</u>	Ring	<u>Aged</u>
1	260	6	250	1	288	9	264	1	212	6	204	1	302	9	224
2	244	7	257	2	249	10	286	2	214	7	214	2	226	10	300
3	277	8	274	3	269	11	257	3	213	8	207	3	261	11	274
4	261	9	252	4	285	12	281	4	218	9	212	4	280	12	335
5	<u>253</u>	10	<u>271</u>	5	261	13	274	5	<u>188</u>	10	<u>214</u>	5	281	13	298
				6	283	14	278					6	301	14	287
				7	262	15	265					7	295	15	215
				8	<u>276</u>	16	<u>260</u>					8	<u>301</u>	16	<u>217</u>
Avg:	259±12		261±11	Avg:	272±14		271±11	Avg:	209±12		210±4	Avg:	281±26		269±45
Elonga	ition Chan	ige:	1 %	Elonga	ation Chan	ige:	0 %	Elonga	tion Chan	ge:	1 %	Elongat	ion Change	:	-4 %
7.688x	0.070	Park	er 316104	7.688x	0.070	Park	er 317851	16.339	x0.103	Park	er 316104	16.339x	0.103	Par	ker 316710
		D :	Aged	Ring	Initial	<u>Rina</u>	Aged	Rina	<u>Initial</u>	Ring	Aged	<u>Ring</u>	Initial	Ring	<u>Aged</u>
Ring	<u>Initial</u>	Hing	11900									-			
<u>Ring</u> 1	<u>Initial</u> 192	Hing 6	198	1	250	9	312	1	165	9	171	1	202	9	217
<u>Hing</u> 1 2	<u>Initial</u> 192 168	6 7	198 173	1 2	250 305	9 10	312 340	1 2	165 172	9 10	171 182	1 2	202 188	9 10	217 219
<u>Hing</u> 1 2 3	<u>Initial</u> 192 168 174	<u>Ring</u> 6 7 8	198 173 186	1 2 3	250 305 441	9 10 11	312 340 376	1 2 3	165 172 166	9 10 11	171 182 173	1 2 3	202 188 222	9 10 11	217 219 207
1 2 3 4	<u>Initial</u> 192 168 174 180	<u>Hing</u> 6 7 8 9	198 173 186 188	1 2 3 4	250 305 441 314	9 10 11 12	312 340 376 373	1 2 3 4	165 172 166 165	9 10 11 12	171 182 173 183	1 2 3 4	202 188 222 129	9 10 11 12	217 219 207 205
<u>Ring</u> 1 2 3 4 5	<u>Initial</u> 192 168 174 180 <u>175</u>	6 7 8 9 10	198 173 186 188 <u>195</u>	1 2 3 4 5	250 305 441 314 496	9 10 11 12 13	312 340 376 373 361	1 2 3 4 5	165 172 166 165 179	9 10 11 12 13	171 182 173 183 179	1 2 3 4 5	202 188 222 129 222	9 10 11 12 13	217 219 207 205 206
<u>Ring</u> 1 2 3 4 5	Initial 192 168 174 180 <u>175</u>	6 7 8 9 10	198 173 186 188 <u>195</u>	1 2 3 4 5 6	250 305 441 314 496 337	9 10 11 12 13 14	312 340 376 373 361 393	1 2 3 4 5 6	165 172 166 165 179 164	9 10 11 12 13 14	171 182 173 183 179 167	1 2 3 4 5 6	202 188 222 129 222 181	9 10 11 12 13 14	217 219 207 205 206 173
<u>Ring</u> 1 2 3 4 5	Initial 192 168 174 180 <u>175</u>	6 7 8 9 10	198 173 186 188 <u>195</u>	1 2 3 4 5 6 7	250 305 441 314 496 337 436	9 10 11 12 13 14 15	312 340 376 373 361 393 343	1 2 3 4 5 6 7	165 172 166 165 179 164 170	9 10 11 12 13 14 15	171 182 173 183 179 167 176	1 2 3 4 5 6 7	202 188 222 129 222 181 165	9 10 11 12 13 14 15	217 219 207 205 206 173 211
Ring 1 2 3 4 5	Initial 192 168 174 180 <u>175</u>	6 7 8 9 10	198 173 186 188 <u>195</u>	1 2 3 4 5 6 7 8	250 305 441 314 496 337 436 <u>316</u>	9 10 11 12 13 14 15 16	312 340 376 373 361 393 343 <u>227</u>	1 2 3 4 5 6 7 8	165 172 166 165 179 164 170 <u>166</u>	9 10 11 12 13 14 15 16	171 182 173 183 179 167 176 <u>182</u>	1 2 3 4 5 6 7 8	202 188 222 129 222 181 165 <u>193</u>	9 10 11 12 13 14 15 16	217 219 207 205 206 173 211 <u>183</u>
<u>Ring</u> 1 2 3 4 5 Avg:	Initial 192 168 174 180 <u>175</u> 178±9	6 7 8 9 10	198 173 186 188 <u>195</u> 188±10	1 2 3 4 5 6 7 8 Avg:	250 305 441 314 496 337 436 <u>316</u> 362±85	9 10 11 12 13 14 15 16	312 340 376 373 361 393 343 <u>227</u> 341±52	1 2 3 4 5 6 7 8 Avg:	165 172 166 165 179 164 170 <u>166</u> 168±5	9 10 11 12 13 14 15 16	171 182 173 183 179 167 176 <u>182</u> 177±6	1 2 3 4 5 6 7 8 Avg:	202 188 222 129 222 181 165 <u>193</u> 188±31	9 10 11 12 13 14 15 16	217 219 207 205 206 173 211 <u>183</u> 203±16

4.1

٠.

Table H-8. Tensile Strength Data for Precision O-Rings

0.301	x0.054	Precis	sion 19052	0.301:	x0.054	Precis	sion 19895	1.364)	k0.070	Precis	sion 17405	1.364x	0.070	Preci	sion 19895
<u>Ring</u>	Initial	Ring	Aged	Ring	Initial	<u>Ring</u>	Aged	Ring	Initial	Ring	Aged	Ring	<u>Initial</u>	<u> Ring</u>	Aged
1	2382	9	N/A	1	2264	9	2286	1	2112	9	2103	1	2050	9	2012
2	2385	10	2286	2	2218	10	2269	2	2090	10	1984	2	1890	10	1974
3	2477	11	2319	3	1935	11	1382	3	N/A	11	2134	3	1912	11	1792
4	N/A	12	2092	4	2386	12	2180	4	2073	12	2118	4	1994	12	1952
5	2432	13	2108	5	2024	13	2202	5	N/A	13	2138	5	2027	13	2019
6	2357	14	2329	6	2372	14	2171	6	2104	14	1807	6	1884	14	2095
7	1410	15	2307	7	2330	15	2241	7	2173	15	1714	7	1710	15	2158
8	<u>2083</u>	16	<u>1695</u>	8	<u>2333</u>	16	<u>2375</u>	8	<u>1917</u>	16	<u>1766</u>	8	<u>2014</u>	16	<u>1490</u>
Avg:	2218±378		2162±229	Avg:	2233±167	,	2138±313	Avg:	2078±86		1971±181	Avg:	1935±112		1937±210
Streng	gth Change	:	-3 %	Streng	gth Change):	-4 %	Streng	th Change	:	-5 %	Strengt	h Change:		0 %
7.739	x0.070	Precis	sion 19052	7.739	x0.070	Precis	sion 19921	16.955	5x0.139	Precis	ion 19422	16.955	(0.139	Preci	sion 19895
7.739 : <u>Ring</u>	x0.070 <u>Initial</u>	Precis <u>Ring</u>	sion 19052 Aged	7.739) <u>Ring</u>	x0.070 <u>Initial</u>	Precis <u>Ring</u>	sion 19921 Aged	16.955 <u>Ring</u>	5 x0.139 Initial	Precis <u>Ring</u>	tion 19422 Aged	16.955 <u>Ring</u>	(0.139 <u>Initial</u>	Preci <u>Ring</u>	sion 19895 <u>Aged</u>
7.739 : <u>Ring</u> 1	x0.070 <u>Initial</u> 1590	Precis <u>Ring</u> 9	sion 19052 <u>Aged</u> 1231	7.739 2 <u>Ring</u> 1	x0.070 <u>Initial</u> 1891	Precis <u>Ring</u> 7	sion 19921 <u>Aged</u> 1468	16.955 <u>Ring</u> 1	5 x0.139 <u>Initial</u> 958	Precis <u>Ring</u> 9	ion 19422 <u>Aged</u> 796	16.955) <u>Ring</u> 1	x0.139 <u>Initial</u> 1411	Preci <u>Ring</u> 9	sion 19895 <u>Aged</u> 1289
7.739 <u>Ring</u> 1 2	x0.070 <u>Initial</u> 1590 1322	Precis <u>Ring</u> 9 10	sion 19052 <u>Aged</u> 1231 1595	7.739 2 <u>Ring</u> 1 2	x0.070 <u>Initial</u> 1891 1483	Precis <u>Ring</u> 7 8	<mark>sion 19921</mark> <u>Aged</u> 1468 1774	16.955 <u>Ring</u> 1 2	5 x0.139 <u>Initial</u> 958 910	Precis <u>Ring</u> 9 10	sion 19422 <u>Aged</u> 796 482	16.955 Ring 1 2	k0.139 <u>Initial</u> 1411 1065	Preci <u>Ring</u> 9 10	sion 19895 <u>Aged</u> 1289 1542
7.739 <u>Ring</u> 1 2 3	x0.070 <u>Initial</u> 1590 1322 1327	Precis <u>Ring</u> 9 10 11	sion 19052 <u>Aged</u> 1231 1595 1513	7.7393 <u>Ring</u> 1 2 3	x0.070 <u>Initial</u> 1891 1483 1650	Precis <u>Ring</u> 7 8 9	sion 19921 Aged 1468 1774 1359	16.955 <u>Ring</u> 1 2 3	5 x0.139 <u>Initial</u> 958 910 1133	Precis <u>Ring</u> 9 10 11	ion 19422 <u>Aged</u> 796 482 1627	16.955 5 <u>Ring</u> 1 2 3	x0.139 <u>Initial</u> 1411 1065 1260	Preci <u>Ring</u> 9 10 11	sion 19895 <u>Aged</u> 1289 1542 1251
7.739 <u>Ring</u> 1 2 3 4	x0.070 <u>Initial</u> 1590 1322 1327 2192	Precis <u>Ring</u> 9 10 11 12	sion 19052 <u>Aged</u> 1231 1595 1513 1622	7.739 2 <u>Ring</u> 1 2 3 4	x0.070 <u>Initial</u> 1891 1483 1650 507	Precis Ring 7 8 9 10	sion 19921 <u>Aged</u> 1468 1774 1359 1495	16.955 <u>Ring</u> 1 2 3 4	5 x0.139 <u>Initial</u> 958 910 1133 1098	Precis <u>Bing</u> 9 10 11 12	ion 19422 Aged 796 482 1627 155	16.955 2 <u>Ring</u> 1 2 3 4	k0.139 <u>Initial</u> 1411 1065 1260 1088	Preci <u>Ring</u> 9 10 11 12	sion 19895 <u>Aged</u> 1289 1542 1251 1206
7.739 <u>Ring</u> 1 2 3 4 5	x0.070 <u>Initial</u> 1590 1322 1327 2192 1417	Precis <u>Ring</u> 9 10 11 12 13	sion 19052 <u>Aged</u> 1231 1595 1513 1622 1800	7.739 2 Ring 1 2 3 4 5	x0.070 <u>Initial</u> 1891 1483 1650 507 1653	Precis <u>Ring</u> 7 8 9 10 11	sion 19921 <u>Aged</u> 1468 1774 1359 1495 1836	16.955 <u>Ring</u> 1 2 3 4 5	5x0.139 <u>Initial</u> 958 910 1133 1098 1119	Precis <u>Ring</u> 9 10 11 12 13	ion 19422 Aged 796 482 1627 155 1399	16.955 5 <u>Ring</u> 1 2 3 4 5	k0.139 <u>Initial</u> 1411 1065 1260 1088 1585	Preci Ring 9 10 11 12 13	sion 19895 <u>Aged</u> 1289 1542 1251 1206 1527
7.739 <u>Ring</u> 1 2 3 4 5 6	x0.070 <u>Initial</u> 1590 1322 1327 2192 1417 1377	Precis <u>Ring</u> 9 10 11 12 13 14	sion 19052 <u>Aged</u> 1231 1595 1513 1622 1800 1984	7.739 ; <u>Ring</u> 1 2 3 4 5 6	x0.070 <u>Initial</u> 1891 1483 1650 507 1653 <u>1789</u>	Precis <u>Ring</u> 7 8 9 10 11 12	sion 19921 Aged 1468 1774 1359 1495 1836 <u>1761</u>	16.955 <u>Ring</u> 1 2 3 4 5 6	5x0.139 Initial 958 910 1133 1098 1119 825	Precis <u>Bing</u> 9 10 11 12 13 14	sion 19422 Aged 796 482 1627 155 1399 1085	16.955 5 <u>Ring</u> 1 2 3 4 5 6	k0.139 <u>Initial</u> 1411 1065 1260 1088 1585 1242	Preci Ring 9 10 11 12 13 14	sion 19895 <u>Aged</u> 1289 1542 1251 1206 1527 1346
7.739 <u>Ring</u> 1 2 3 4 5 6 7	x0.070 <u>Initial</u> 1590 1322 1327 2192 1417 1377 2027	Precis <u>Ring</u> 9 10 11 12 13 14 15	sion 19052 <u>Aged</u> 1231 1595 1513 1622 1800 1984 1681	7.739 ; <u>Ring</u> 1 2 3 4 5 6	x0.070 Initial 1891 1483 1650 507 1653 <u>1789</u>	Precis <u>Ring</u> 7 8 9 10 11 12	sion 19921 Aged 1468 1774 1359 1495 1836 <u>1761</u>	16.955 <u>Ring</u> 1 2 3 4 5 6 7	5x0.139 Initial 958 910 1133 1098 1119 825 1471	Precis <u>Bing</u> 9 10 11 12 13 14 15	sion 19422 Aged 796 482 1627 155 1399 1085 804	16.9555 Ring 1 2 3 4 5 6 7	k0.139 <u>Initial</u> 1411 1065 1260 1088 1585 1242 1333	Preci Ring 9 10 11 12 13 14 15	sion 19895 <u>Aged</u> 1289 1542 1251 1206 1527 1346 1421
7.739 <u>Ring</u> 1 2 3 4 5 6 7 8	x0.070 <u>Initial</u> 1590 1322 1327 2192 1417 1377 2027 <u>1370</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19052 Aged 1231 1595 1513 1622 1800 1984 1681 1796	7.739 2 <u>Ring</u> 1 2 3 4 5 6	x0.070 Initial 1891 1483 1650 507 1653 <u>1789</u>	Precis <u>Ring</u> 7 8 9 10 11 12	sion 19921 Aged 1468 1774 1359 1495 1836 <u>1761</u>	16.955 <u>Ring</u> 1 2 3 4 5 6 7 8	5x0.139 Initial 958 910 1133 1098 1119 825 1471 1514	Precis <u>Bing</u> 9 10 11 12 13 14 15 16	sion 19422 Aged 796 482 1627 155 1399 1085 804 <u>308</u>	16.9555 Ring 1 2 3 4 5 6 7 8	k0.139 Initial 1411 1065 1260 1088 1585 1242 1333 1533	Preci <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19895 Aged 1289 1542 1251 1206 1527 1346 1421 <u>1448</u>
7.739 : <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	x0.070 <u>Initial</u> 1590 1322 1327 2192 1417 1377 2027 <u>1370</u> 1578±342	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19052 Aged 1231 1595 1513 1622 1800 1984 1681 <u>1796</u> 1653±225	7.7392 <u>Ring</u> 1 2 3 4 5 6 Avg:	x0.070 <u>Initial</u> 1891 1483 1650 507 1653 <u>1789</u> 1496±504	Precis <u>Ring</u> 7 8 9 10 11 12	sion 19921 <u>Aged</u> 1468 1774 1359 1495 1836 <u>1761</u> 1616±198	16.955 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	5x0.139 <u>Initial</u> 958 910 1133 1098 1119 825 1471 <u>1514</u> 1129±250	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19422 Aged 796 482 1627 155 1399 1085 804 <u>308</u> 832±518	16.9555 Ring 1 2 3 4 5 6 7 8 Avg:	k0.139 <u>Initial</u> 1411 1065 1260 1088 1585 1242 1333 <u>1533</u> 1315±190	Preci <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19895 <u>Aged</u> 1289 1542 1251 1206 1527 1346 1421 <u>1448</u> 1379±126

• •

۲

4

(44)

× 1

Table H-9. Tensile Elongation Data for Precision O-Rings

a a - -

0.301×	0.054	Precis	sion 19052	0.301×	0.054	Precis	ion 19895	1.364x	0.070	Precis	ion 17405	1.364x0	.070	Precis	sion 19895
Ring	<u>Initial</u>	Ring	Aged	Ring	Initial	<u>Ring</u>	Aged	Ring	<u>Initial</u>	Ring	<u>Aged</u>	<u>Ring</u>	Initial	Ring	<u>Aged</u>
1	393	9	N/A	1	374	9	305	1	321	9	287	1	284	9	293
2	428	10	309	2	359	10	308	2	316	10	262	2	275	10	252
3	415	11	318	3	316	11	198	3	N/A	11	278	3	282	11	230
4	N/A	12	297	4	394	12	303	4	301	12	283	4	297	12	250
5	413	13	286	5	339	13	291	5	N/A	13	281	5	296	13	253
6	404	14	329	6	390	14	298	6	323	14	234	6	265	14	274
7	246	15	322	7	393	15	293	7	331	15	226	7	249	15	261
8	359	16	239	8	<u>387</u>	16	<u>315</u>	8	<u>290</u>	16	<u>233</u>	8	<u>253</u>	16	<u>161</u>
Avg:	380±63		300±31	Avg:	369±29		289±38	Avg:	314±15		261±26	Avg:	275±18		247±39
Elonga	tion Chan	ige:	-21 %	Elonga	ation Chan	ige:	-22 %	Elonga	tion Chan	ge:	-17 %	Elongati	ion Change):	-10 %
7.739x	0.070	Precis	ion 19052	7.739x	0.070	Precis	ion 19921	16.955	x0.139	Precis	ion 19422	16.955x	0.139	Precis	sion 19895
7.739x <u>Ring</u>	0.070 Initial	Precis <u>Ring</u>	ion 19052 Aged	7.739x <u>Ring</u>	0.070 <u>Initial</u>	Precis <u>Ring</u>	ion 19921 <u>Aged</u>	16.955 <u>Ring</u>	x0.139 Initial	Precis <u>Ring</u>	ion 19422 <u>Aged</u>	16.955x <u>Ring</u>	0.139 Initial	Precis <u>Ring</u>	sion 19895 Aged
7.739x <u>Ring</u> 1	0.070 <u>Initial</u> 188	Precis <u>Ring</u> 9	ion 19052 Aged 125	7.739 x <u>Ring</u> 1	0.070 <u>Initial</u> 267	Precis <u>Ring</u> 7	<mark>ion 19921</mark> <u>Aged</u> 173	16.955 <u>Ring</u> 1	x0.139 <u>Initial</u> 159	Precis <u>Ring</u> 9	ion 19422 <u>Aged</u> 111	16.955x <u>Ring</u> 1	0 .139 <u>Initial</u> 227	Precis <u>Ring</u> 9	sion 19895 <u>Aged</u> 174
7.739x <u>Ring</u> 1 2	0.070 <u>Initial</u> 188 154	Precis <u>Ring</u> 9 10	ion 19052 <u>Aged</u> 125 138	7.739x <u>Ring</u> 1 2	0.070 <u>Initial</u> 267 207	Precis <u>Ring</u> 7 8	ion 19921 <u>Aged</u> 173 203	16.955 <u>Ring</u> 1 2	x0.139 <u>Initial</u> 159 161	Precis <u>Ring</u> 9 10	ion 19422 <u>Aged</u> 111 78	16.955x <u>Bing</u> 1 2	3 0.139 <u>Initial</u> 227 228	Precis <u>Ring</u> 9 10	sion 19895 <u>Aged</u> 174 195
7.739x <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 188 154 142	Precis <u>Ring</u> 9 10 11	ion 19052 <u>Aged</u> 125 138 135	7.739 × <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 267 207 231	Precis <u>Ring</u> 7 8 9	ion 19921 <u>Aged</u> 173 203 159	16.955 <u>Ring</u> 1 2 3	x0.139 <u>Initial</u> 159 161 199	Precis <u>Ring</u> 9 10 11	ion 19422 <u>Aged</u> 111 78 206	16.955x <u>Ring</u> 1 2 3	0 .139 <u>Initial</u> 227 228 236	Precis <u>Bing</u> 9 10 11	sion 19895 <u>Aged</u> 174 195 160
7.739x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 188 154 142 318	Precis <u>Ring</u> 9 10 11 12	ion 19052 Aged 125 138 135 140	7.739× <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 267 207 231 207	Precis <u>Ring</u> 7 8 9 10	ion 19921 <u>Aged</u> 173 203 159 171	16.955 <u>Ring</u> 1 2 3 4	x0.139 <u>Initial</u> 159 161 199 180	Precis <u>Ring</u> 9 10 11 12	ion 19422 <u>Aged</u> 111 78 206 23	16.955x <u>Ring</u> 1 2 3 4	8 0.139 <u>Initial</u> 227 228 236 179	Precis <u>Ring</u> 9 10 11 12	sion 19895 <u>Aged</u> 174 195 160 169
7.739x <u>Ring</u> 1 2 3 4 5	0.070 <u>Initial</u> 188 154 142 318 160	Precis <u>Ring</u> 9 10 11 12 13	ion 19052 Aged 125 138 135 140 160	7.739x Ring 1 2 3 4 5	0.070 <u>Initial</u> 267 207 231 207 210	Precis <u>Ring</u> 7 8 9 10 11	ion 19921 <u>Aged</u> 173 203 159 171 199	16.955 <u>Ring</u> 1 2 3 4 5	x0.139 <u>Initial</u> 159 161 199 180 193	Precis <u>Ring</u> 9 10 11 12 13	ion 19422 <u>Aged</u> 111 78 206 23 185	16.955x <u>Ring</u> 1 2 3 4 5	0.139 <u>Initial</u> 227 228 236 179 249	Precis Bing 9 10 11 12 13	sion 19895 <u>Aged</u> 174 195 160 169 191
7.739x <u>Ring</u> 1 2 3 4 5 6	0.070 <u>Initial</u> 188 154 142 318 160 155	Precis <u>Ring</u> 9 10 11 12 13 13	ion 19052 <u>Aged</u> 125 138 135 140 160 201	7.739 × <u>Ring</u> 1 2 3 4 5 6	0.070 <u>Initial</u> 267 207 231 207 210 231	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 173 203 159 171 199 180	16.955 <u>Ring</u> 1 2 3 4 5 6	x0.139 <u>Initial</u> 159 161 199 180 193 142	Precis <u>Ring</u> 9 10 11 12 13 14	ion 19422 <u>Aged</u> 1111 78 206 23 185 146	16.955x <u>Ring</u> 1 2 3 4 5 6	0.139 <u>Initial</u> 227 228 236 179 249 206	Precis <u>Ring</u> 9 10 11 12 13 14	sion 19895 Aged 174 195 160 169 191 170
7.739x <u>Ring</u> 1 2 3 4 5 6 7	0.070 <u>Initial</u> 188 154 142 318 160 155 263	Precis <u>Ring</u> 9 10 11 12 13 14 15	ion 19052 Aged 125 138 135 140 160 201 151	7.739× Ring 1 2 3 4 5 6	0.070 <u>Initial</u> 267 207 231 207 210 231	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 173 203 159 171 199 180	16.955 <u>Ring</u> 1 2 3 4 5 6 7	x0.139 <u>Initial</u> 159 161 199 180 193 142 236	Precis <u>Ring</u> 9 10 11 12 13 14 15	ion 19422 <u>Aged</u> 111 78 206 23 185 146 111	16.955x <u>Ring</u> 1 2 3 4 5 6 7	0.139 <u>Initial</u> 227 228 236 179 249 206 212	Precis <u>Ring</u> 9 10 11 12 13 14 15	sion 19895 Aged 174 195 160 169 191 170 185
7.739x <u>Ring</u> 1 2 3 4 5 6 7 8	0.070 <u>Initial</u> 188 154 142 318 160 155 263 <u>158</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19052 <u>Aged</u> 125 138 135 140 160 201 151 <u>164</u>	7.739× Ring 1 2 3 4 5 6	0.070 <u>Initial</u> 267 207 231 207 210 231	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 173 203 159 171 199 180	16.955 <u>Ring</u> 1 2 3 4 5 6 7 8	x0.139 <u>Initial</u> 159 161 199 180 193 142 236 <u>236</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19422 <u>Aged</u> 111 78 206 23 185 146 111 <u>53</u>	16.955x <u>Bing</u> 1 2 3 4 5 6 7 8	0.139 <u>Initial</u> 227 228 236 179 249 206 212 <u>245</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19895 Aged 174 195 160 169 191 170 185 <u>186</u>
7.739x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.070 <u>Initial</u> 188 154 142 318 160 155 263 <u>158</u> 192±64	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19052 Aged 125 138 135 140 160 201 151 <u>164</u> 152±24	7.739 × <u>Ring</u> 1 2 3 4 5 6 Avg:	0.070 <u>Initial</u> 267 207 231 207 210 231 226±23	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 173 203 159 171 199 180 181±17	16.955 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	x0.139 <u>Initial</u> 159 161 199 180 193 142 236 <u>236</u> 188±35	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19422 Aged 111 78 206 23 185 146 111 <u>53</u> 114±63	16.955x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	10.139 <u>Initial</u> 227 228 236 179 249 206 212 <u>245</u> 223±23	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19895 Aged 174 195 160 169 191 170 185 <u>186</u> 179±12

٠

0

. 4

N.

Table H-10. Tensile Strength Data for Test Slabs

Parke	er 316104		Parke	r 316710		Parke	r 317403		Parke	er 317851		Parke	r 318466	
<u>Site</u>	Initial	Aged	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	Initial	Aged	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	Initial	Aged
1	1689	1550	1	2469	2015	1	1761	1766	1	2669	2180	1	1657	1584
2	1390	1580	2	2618	2507	2	1605	1768	2	2599	2216	2	1122	1651
3	1563	1396	3	2379	2292	3	1569	1668	3	2370	1427	3	1531	1655
4	<u>1608</u>	<u>1304</u>	4	<u>2546</u>	<u>2315</u>	4	<u>1424</u>	<u>1856</u>	4	<u>2481</u>	<u>1938</u>	4	<u>1528</u>	<u>NA</u>
Avg:	1563±126	1458±130	Avg:	2503±103	2282±203	Avg:	1590±138	1765±77	Avg:	2530±132	1940±364	Avg:	1459±233	1630±40
Stren	gth Change:	-7%	Streng	yth Change	: -9%	Streng	gth Change:	11%	Stren	gth Change:	-23%	Streng	oth Change:	12%
RD 14	1810		RD 15	107		RD 15	107 (4 min	. cure)	RD 15	5107 (3 min.	cure)			
RD 14 <u>Site</u>	1810 Initial	Aged	RD 15 <u>Site</u>	107 Initial	Aged	RD 15 <u>Site</u>	107 (4 min. Initial	. cure) <u>Aged</u>	RD 15 <u>Site</u>	5107 (3 min. Initial	cure) <u>Aged</u>			
RD 14 <u>Site</u> 1	1810 <u>Initial</u> 2252	<u>Aged</u> 2137	RD 15 <u>Site</u> 1	1 07 <u>Initial</u> 2055	<u>Aged</u> 2079	RD 15 <u>Site</u> 1	1 07 (4 min <u>Initial</u> 2123	. cure) <u>Aged</u> 1895	RD 15 <u>Site</u> 1	5 107 (3 min. <u>Initial</u> 2343	cure) <u>Aged</u> 1924			
RD 14 Site 1 2	1810 <u>Initial</u> 2252 2162	<u>Aged</u> 2137 2161	RD 15 <u>Site</u> 1 2	1 07 <u>Initial</u> 2055 2161	<u>Aged</u> 2079 2132	RD 15 <u>Site</u> 1 2	1 07 (4 min <u>Initial</u> 2123 2133	. cure) <u>Aged</u> 1895 N/A	RD 15 <u>Site</u> 1 2	5 107 (3 min. <u>Initial</u> 2343 2057	cure) <u>Aged</u> 1924 2118			
RD 14 Site 1 2 3	1810 Initial 2252 2162 2157	<u>Aged</u> 2137 2161 2046	RD 15 <u>Site</u> 1 2 3	107 <u>Initial</u> 2055 2161 2173	<u>Aged</u> 2079 2132 1819	RD 15 <u>Site</u> 1 2 3	1 07 (4 min <u>Initial</u> 2123 2133 2057	. cure) <u>Aged</u> 1895 N/A 2114	RD 15 <u>Site</u> 1 2 3	5 107 (3 min. Initial 2343 2057 2017	cure) <u>Aged</u> 1924 2118 2100			
RD 14 Site 1 2 3 4	1810 Initial 2252 2162 2157 <u>2300</u>	<u>Aged</u> 2137 2161 2046 <u>2337</u>	RD 15 <u>Site</u> 1 2 3 4	107 Initial 2055 2161 2173 <u>2101</u>	<u>Aged</u> 2079 2132 1819 <u>2009</u>	RD 15 <u>Site</u> 1 2 3 4	107 (4 min. Initial 2123 2133 2057 <u>2052</u>	. cure) <u>Aged</u> 1895 N/A 2114 <u>1842</u>	RD 15 <u>Site</u> 1 2 3 4	5 107 (3 min. Initial 2343 2057 2017 <u>2046</u>	cure) <u>Aged</u> 1924 2118 2100 <u>1994</u>			
RD 14 Site 1 2 3 4 Avg:	1810 <u>Initial</u> 2252 2162 2157 <u>2300</u> 2218±70	<u>Aged</u> 2137 2161 2046 <u>2337</u> 2170±122	RD 15 <u>Site</u> 1 2 3 4 Avg:	107 <u>Initial</u> 2055 2161 2173 <u>2101</u> 2123±55	Aged 2079 2132 1819 <u>2009</u> 2010±137	RD 15 <u>Site</u> 1 2 3 4 Avg:	107 (4 min. <u>Initial</u> 2123 2133 2057 <u>2052</u> 2091±43	. cure) <u>Aged</u> 1895 N/A 2114 <u>1842</u> 1950±144	RD 15 <u>Site</u> 1 2 3 4 Avg:	5 107 (3 min. <u>Initial</u> 2343 2057 2017 <u>2046</u> 2116±152	cure) <u>Aged</u> 1924 2118 2100 <u>1994</u> 2034±91			
RD 14 Site 1 2 3 4 Avg: Streng	1810 <u>Initial</u> 2252 2162 2157 <u>2300</u> 2218±70 gth Change:	<u>Aged</u> 2137 2161 2046 <u>2337</u> 2170±122 -2%	RD 15 Site 1 2 3 4 Avg: Streng	107 <u>Initial</u> 2055 2161 2173 <u>2101</u> 2123±55 th Change	Aged 2079 2132 1819 <u>2009</u> 2010±137 : -5%	RD 15 Site 1 2 3 4 Avg: Streng	107 (4 min. <u>Initial</u> 2123 2133 2057 <u>2052</u> 2091±43 yth Change:	. cure) <u>Aged</u> 1895 N/A 2114 <u>1842</u> 1950±144 -7%	RD 15 Site 1 2 3 4 Avg: Streng	5107 (3 min. <u>Initial</u> 2343 2057 2017 <u>2046</u> 2116±152 gth Change:	cure) <u>Aged</u> 1924 2118 2100 <u>1994</u> 2034±91 -4%			

<

Precis	sion 19052 <i>i</i>	4	Precis	ion 19895	Α
<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	<u>Aged</u>
1	1744	1737	× 1 ×	1673	1448
2	1556	1723	2	1659	1672
3	1587	1603	3	1578	1424
4	<u>1957</u>	<u>1721</u>	4	<u>1717</u>	<u>1716</u>
Avg:	1711±183	1696±62	Avg:	1657±58	1565±150
Streng	th Change:	-1%	Streng	th Change:	-6%

Table H-11. Tensile Elongation Data for Test Slabs

Parker 31	6104		Parker 3	16710		Parker 3 ⁻	17403		Parker 31	7851		Parker 3	18466	
Site	Initial	Aged	Site	Initial	Aged	Site	Initial	Aged	Site	Initial	<u>Aged</u>	Site	Initial	<u>Aged</u>
1	216	164	1	186	166	1	227	201	1	181	163	1	569	632
2	188	186	2	193	185	2	241	215	2	188	169	2	412	569
3	187	153	З	174	168	З	223	234	З	164	131	3	522	562
4	206	161	4	191	169	4	193	232	4	<u>181</u>	144	4	<u>636</u>	<u>NA</u>
Ava:	199±14	166±14	Avg:	186±9	172±9	Avg:	221±20	221±16	Avg:	179±10	152±17	Avg:	535±95	588±39
Elongation	n Change	-17%	Elongatic	n Change	-8%	Elongatio	n Change	0%	Elongatio	n Change	-15%	Elongatio	on Change	10%
RD 14810			RD 1510	7		RD 1510	7 (4 min. (cure)	RD 15107	7 (3 min. c	ure)			
Site	<u>Initial</u>	Aged	Site	Initial	Aged	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	Aged			
1	261	246	1	236	232	1	243	187	1	234	167			
2	279	241	2	230	226	2	250	N/A	2	216	202			
3	269	231	3	238	218	3	238	187	3	218	187			
4	283	271	4	<u>266</u>	<u>205</u>	4	<u>259</u>	<u>164</u>	4	217	<u>198</u>			
Avg:	273±10	247±17	Avg:	243±16	220±12	Avg:	248±9	179±13	Avg:	221±9	189±16			
Elongation	n Change	-9%	Elongatic	n Change	-9%	Elongatic	n Change	-28%	Elongatio	n Change	-15%			
Precision	19052A		Precisio	n 19895A										
Site	Initial	Aged	Site	<u>Initial</u>	Aged									
1	263	208	1	248	189									
2	245	218	2	217	210									
3	327	190	3	229	172									

e

4 <u>270</u> <u>216</u> Avg: 276±35 208±13 Elongation Change -25%

2 217 210 3 229 172 4 <u>222 219</u> 3 Avg: 229±14 198±21 5 Elongation Change -14%

Appendix I: Tensile Modulus and Work Test Data

Contents:

- Table I-1.
 Tangential Tensile Modulus Data on Butyl Rubber O-Rings (all elongation ranges)
- Table I-2.
 Tangential Tensile Modulus Data Plus Averages (all elongation ranges)
- Plot I-3. Modulus vs. Percent Elongation Range of Unaged Samples
- Plot I-4. Modulus vs. Percent Elongation Range of Aged Samples
- Plot I-5. Average Modulus of Unaged and Aged Samples
- Table I-6.
 Tensile Work Integration (0-20% elongation) on Butyl Rubber O-Rings
- Table I-7.
 Linear Tensile Modulus (0-25% elongation) on Butyl Rubber O-Rings
- Table I-8.
 Tensile Modulus (0-25%) of RD Rubber O-Rings, Cure Study (detailed test data)
- Table I-9.
 Tensile Modulus (0-25%) of Other RD Rubber O-Rings (detailed test data)
- Table I-10.
 Tensile Modulus (0-25%) of Parker O-Rings (detailed test data)
- Table I-11.
 Tensile Modulus (0-25%) of Precision O-Rings (detailed test data)
- Table I-12.
 Tensile Modulus (0-25%) of Test Slabs (detailed test data)

Table I-1.	Non-Linear,	Tangential '	<u> Tensile Modul</u>	us Data (all	elongation r	anges) on	<u>Butyl Ru</u>	<u>ubber O-Rings</u>

E)

-

ς.

Vendor	Ring size	Rubber Batch	Ring No.	M	odulus 5-10%		Modulus 10-15%			Modulus Modulus 5-15% 10-20 % unaged aged ∆% unaged aged			odulus 0-20%		Modulus 0-25%			
				<u>unaged</u>	aged	<u>Δ%</u>	<u>unaged</u>	<u>aged</u>	<u>Δ%</u>	<u>unaged</u>	<u>aged</u>	Δ%	unaged	aged	Δ%	unaged	aged	$\Delta\%$
Parker	0.116 x 0.038	318466	8/8	592±36	575±55	-3	548±79	652 <u>+</u> 60	19	568±57	622±53	10	521±75	621±31	19	537±46	596±32	11
Parker	0.301 x 0.054	316104	5/4	839±67	887±156	6	795±83	785±83	-1	801±56	825±118	3	743±47	752±125	1	768±35	797±101	4
Parker		316710	7/5	912±125	981±154	8	846±65	846±219	0	851±77	882±174	4	798±40	814±102	2	838±48	840±99	0
Parker	1.364 x 0.070	316104	4/3	693±27	906±30	31	566±69	655±36	16	652±41	782±17	20	565±57	714±14	26	669±36	752±18	12
Parker		317403	7/8	760±59	744±84	-2	669±61	672±68	0	713±31	694±62	-3	580±28	635±43	9	636±13	663±32	4
Parker	7.688 x 0.070	316104	5/5	951±182	815±236	-14	848±75	749±89	-12	907±125	774±149	-15	829±85	756±92	-9	875±49	812±77	-7
Parker		317851	8/7	473±33	605±33	28	372±41	533±34	43	423±28	569±32	35	377±48	481±27	28	452±34	558±21	23
Parker	16.339 x 0.103	316104	8/8	1006±13	1044±146	4	767±16	759±32	-1	884±11	891±79	1	696±11	691±21	-1	826±5	845±33	2
Parker		316710	8/8	936±19	962±45	3	699±16	674±15	-4	814±14	808±23	-1	636±17	613±15	-4	765±15	769±19	1
RD	0.301 x 0.054	15107	8/8	544±67	517±53	-5	315±46	479±60	52	414±15	490±44	18	381±31	504±27	32	427±17	494±24	16
RD	0.551 x 0.070	14810	7/8	421±171	440±100	5	371±19	404±53	9	406±43	397±37	-2	348±9	394±21	13	364±8	395±12	9
RD		15107	8/6	457±88	507±64	11	400±66	403—63	1	386±26	452±28	17	353±29	398±25	13	372±14	422±25	13
RD	1.114 x 0.070	14810	7/8	368±44	428±42	16	329±60	380±37	16	389±12	410±25	5	303±40	347±26	15	368±12	385±21	5
RD		15107	7/8	412±71	484±35	17	379±54	398±54	5	419±27	457±14	9	341±38	376±26	10	390±26	428±19	10
RD	7.185 x 0.103	14810	7/8	401±22	420±16	5	321±14	344±13	7	354±7	384±9	8	333±12	345±13	4	370±14	386±19	4
RD		15107	8/8	471±23	519±17	10	400±15	443±16	11	424±11	467±11	10	366±12	420±21	15	424±18	474±17	12
RD	11.196 x 0.103	14936	7/7	452±23	493±16	9	396±27	447±31	13	412±12	459 <u>+</u> 22	11	381±22	423±39	11	416±15	453±28	9
RD		15107	7/8	452±30	529±25	17	373±16	476±32	28	409±8	396±20	-3	385±25	477±25	24	423±21	508±18	20
Precision	0.301 x 0.054	19052	7/7	646±90	623±39	-4	500±157	543±135	9	570±42	630±19	11	483±45	514±45	6	570±29	630±18	11
Precision		19895	8/8	613±93	682±50	11	513±49	583±62	14	543±43	611±59	13	490±17	537±62	10	530±17	625±27	18
Precision	1.364 x 0.070	17405	6/8	660±39	698±28	6	526±9	575±27	9	579±24	636±19	10	475±18	561±34	18	553±20	633±23	14
Precision		19895	8/7	664±58	662±47	0	522±29	526±39	1	592±20	590±33	0	485±20	511±46	5	576±19	600±37	4
Precision	7.739 x 0.070	19052	8/8	794±36	841±35	6	676±71	776±31	15	717±48	812±26	13	678±63	768±45	13	732±53	849±36	16
Precision		19921	6/6	839±41	890 <u>±</u> 32	6	671±32	722±21	8	730±32	797±19	9	589±21	648±10	10	700±23	772±14	10
Precision	16.955 x 0.139	19422	8/8	635±29	702±32	11	482±25	547±19	13	551±22	617±23	12	444±23	519±15	17	527±17	610±17	16
Precision		19895	8/8	651±34	746±34	15	476±14	561±29	18	559±18	652±26	17	430±13	539±27	25	554±13	654±28	18

ه,

•

Vendor	Ring size	Rubber Batch	Mod 5-1	luius 0%	Modulus 10-15%		Modulus 5-15%		Modulus 10-20%		Modulus 0-25%		Average Modulus	
			unaged	aged	unaged	aged	unaged	aged	unaged	aged	unaged	aged	unaged	aged
Parker	0.116 x 0.038	318466	592	575	548	652	568	622	521	621	537	596	553	613
Parker	0.301 x 0.054	316104	839	887	795	785	801	825	743	752	768	797	789	809
Parker		316710	912	981	846	846	851	882	798	814	838	840	849	873
Parker	1.364 x 0.070	316104	693	906	566	655	652	782	565	714	669	752	629	762
Parker		317403	760	744	669	672	713	694	580	635	636	663	672	682
Parker	7.688 x 0.070	316104	951	815	848	749	907	774	829	756	875	812	882	781
Parker		317851	473	605	372	533	423	569	377	481	452	558	419	549
Parker	16.339 x 0.103	316104	1006	1044	767	759	884	891	696	691	826	845	836	846
Parker		316710	936	962	699	674	814	808	636	613	765	769	770	765
		<u>avg.</u>	<u>796</u>	<u>835</u>	<u>679</u>	<u>703</u>	<u>735</u>	<u>761</u>	<u>638</u>	<u>675</u>	<u>708</u>	<u>737</u>	711	742
RD	0.301x 0.054	15107	544	517	315	479	414	490	381	504	427	494	416	497
RD	0.551 x 0.070	14810	421	440	371	404	406	397	348	394	364	395	382	406
RD		15107	457	507	400	403	386	452	353	398	372	422	394	436
RD	1.114 x 0.070	14810	368	428	329	380	389	410	303	347	368	385	351	390
RD		15107	412	484	379	398	419	457	341	376	390	428	388	429
RD	7.185 x 0.103	14810	401	420	321	344	354	384	333	345	370	386	356	376
RD		15107	471	519	400	443	424	467	366	420	424	474	417	465
RD	11.196 x 0.103	14936	452	493	396	447	412	459	381	423	416	453	411	455
RD	i	15107	452	529	373	476	409	396	385	477	423	508	408	477
		<u>avg.</u>	<u>442</u>	<u>482</u>	<u>365</u>	<u>419</u>	<u>401</u>	<u>435</u>	<u>355</u>	<u>409</u>	<u>395</u>	<u>438</u>	<u>391</u>	<u>437</u>
Precision	0.301 x 0.054	19052	646	623	500	543	570	630	483	514	570	630	554	588
Precision		19895	613	682	513	583	543	611	490	537	530	625	538	608
Precision	1.364 x 0.070	17405	660	698	526	575	579	636	475	561	553	633	559	621
Precision		19895	664	662	522	526	592	590	485	511	576	600	568	578
Precision	7.739 x 0.070	19052	794	841	676	776	717	812	678	768	732	849	719	809
Precision		19921	839	890	671	722	730	797	589	648	700	772	706	766
Precision	16.955 x 0.139	19422	635	702	482	547	551	617	444	519	527	610	528	599
Precision		19895	651	746	476	561	559	652	430	539	554	654	534	630
		avg.	<u>688</u>	<u>731</u>	<u>546</u>	<u>604</u>	<u>605</u>	<u>668</u>	<u>509</u>	<u>575</u>	<u>593</u>	<u>672</u>	<u>588</u>	<u>650</u>

Table I-2. Non-Linear, Tangential Tensile Modulus Data (all elongation ranges and averages) on Butyl Rubber O-Rings

Plot I-3. Modulus vs. Percent Elongation Range of Unaged O-Ring Samples

Plot I-5. Average Modulus of Aged and Unaged O-Ring Samples

Vendor	Ring size	Rubber Batch	Rings	Loops	IN-LB/SQ.IN. unaged aged		_∆%	PERC unaged	ENT-LB/SQ.IN. aged	∆%
Parker	0.116 x 0.038	318466	8/8	1	2.00±0.14	2.18±0.18	9	1095±79	1197±97	9
Parker	0.301 x 0.054	316104	5/4	1	7.86±0.63	8.13±1.10	3	1662±133	1720±229	3
Parker		316710	7/5	1	8.27±0.63	7.86±1.10	-5	1749±134	1691±182	-3
Parker	1.364 x 0.070	316104	4/3	1	31.4±1.5	34.8±0.7	11	1464±70	1622±33	11
Parker		317403	7/8	1	32.8±1.7	33.6±2.5	2	1530±81	1568±118	2
Parker	7.688 x 0.070	316104	5/5	3	383±29	351±44	-8	2027±188	1856±274	-8
Parker		317851	8/7	3	221±11	267±9	21	1280±55	1522±63	19
Parker	16.339 x 0.103	316104	8/8	[:] 3	837±8	873±66	4	2233±30	2354±230	5
Parker		316710	8/8	3	799±12	834±38	4	2155±33	2297±138	7
RD	0.301 x 0.054	15107	8/8	1	5.02±0.60	5.09±0.47	1	1061±128	1076±99	1
RD	0.551 x 0.070	14810	7/8	1	6.70±0.52	7.95±0.33	19	774±60	918±38	19
RD		15107	8/6	1	7.17±0.44	7.79±0.15	9	828±51	900±17	9
RD	1.114 x 0.070	14810	7/8	1	14.9±0.5	15.3±1.0	3	853±29	876±57	3
RD		15107	7/8	<u></u> 1	15.8±0.9	17.9±0.6	13	900±53	1023±37	14
RD	7.185 x 0.103	14810	7/8	3	173±6	177±10	2	1048±40	1068±74	2
RD		15107	8/8	3	210±11	226±11	8	1310±80	1375±85	5
RD	11.196 x 0.103	14936	7/7	3	302±14	317±18	5	1172 ± 62	1206 ± 62	3
RD		15107	7/8	3	308±17	355±16	15	1194±76	1352±60	13
Precision	0.301 x 0.054	19052	7/7	1	6.25±0.35	7.38±0.29	18	1322±75	1561±61	18
Precision		19895	8/8	1	5.63±0.21	7.01±0.31	25	1190±44	1483±66	25
Precision	1.364 x 0.070	17405	6/8	1	30.3±1.3	33.3±1.1	10	1414±59	1556±51	10
Precision		19895	8/7	1	29.7±1.6	32.0±1.7	8	1384±77	1491±77	8
Precision	7.739 x 0.070	19052	8/8	3	338±15	391±12	16	1857±74	2143±75	15
Precision		19921	6/6	3	347±12	378±13	9	1990±68	2159±85	8
Precision	16.955 x 0.139	19422	8/8	3	577±9	643±11	11	1492±40	1642±24	10
Precision		19895	8/8	3	628±9	729±26	16	1686±22	1934±71	15

Table I-6. Tensile Work Integration (0-20% elongation) Data on Butyl Rubber O-Rings

Table I-7. Linear Tensile Modulus (0-25% elongation) Data on Butyl Rubber O-Rings

.**

+ (

Vendor	Ring size	Rubber	Rings	Loops	upagod	PSI	٨%
		Datch			unageu	ayeu	
Parker	0.116 x 0.038	318466	8/8	1	527±39	581±31	10.2
Parker	0.301 x 0.054	316104	5/4	1	754±22	780±96	3.4
Parker		316710	7/5	1	812±37	819±65	0.9
Parker	1.364 x 0.070	316104	4/3	1	683±26	736±12	7.8
Parker		317403	7/8	1	639±18	675±32	5.6
Parker	7.688 x 0.070	316104	5/5	3	896±31	860±58	-4.0
Parker		317851	8/7	3	489±29	586±19	19.8
Parker	16.339 x 0.103	316104	8/8	3	868±7	906±32	4.4
Parker		316710	8/8	3	819±9	842±28	2.8
PD	0.201 × 0.054	15107	0/0	4	447+20	402-07	10.2
	0.301 x 0.034	15107	0/0		447±29	493127	10.5
KD	0.551 x 0.070	14810	//8	1	358±16	403±13	12.6
RD		15107	8/6	1	367±15	414±24	12.8
RD	1.114 x 0.070	14810	7/8	1	369±14	387±25	4.9
RD		15107	7/8	1	389±25	431±22	10.8
RD	7.185 x 0.103	14810	7/8	3	418±17	435±24	4.1
RD		15107	8/8	3	507±30	553±22	9.1
RD	11.196 x 0.103	14936	7/7	3	465±22	496±31	6.7
RD		15107	7/8	3	477±26	560±21	17.4
Precision	0.301 x 0.054	19052	7/7	1	554±38	628±24	13.4
Precision		19895	8/8	1	516±16	642±22	24.4
Precision	1.364 x 0.070	17405	6/8	1	577±17	658±18	14.0
Precision		19895	8/7	1	585±27	623±46	6.5
Precision	7.739 x 0.070	19052	8/8	3	788±50	919±37	16.6
Precision		19921	6/6	3	760±21	834±18	9.7
Precision	16.955 x 0.139	19422	8/8	3	576±10	660±12	14.6
Precision		19895	8/8	3	614±10	729±29	18.7

e،

з.

Table I-8. Linear Tensile Modulus (0-25% elongation) Data for RD Rubber O-Rings, Batch 15107 Cure Study

0.301x0).054		RD 15107	0.301x	0.054		RD 15107	0.301x	0.054		RD 15107
				(4 min.	cure)			(3 min.	cure)		
<u>Ring</u>	Initial	Ring	Aged	Ring	Initial	<u>Rina</u>	Aged	Ring	Initial	Ring	Aged
1	451	9	448	1	442	9	503	1	521	9	500
2	448	10	486	2	427	10	446	2	N/A	10	529
3	481	11	500	3	452	11	442	3	467	11	523
4	481	12	523	4	414	12	464	4	453	12	541
5	421	13	502	5	443	13	472	5	456	13	544
6	442	14	532	6	417	14	480	6	444	14	526
7	394	15	472	7	408	15	467	7	475	15	554
8	456	16	479	8	439	16	487	8	437	16	547
Ava:	447±29		493+27	Ava:	430+16		470+20	Ava.	465+28		533+17
Modulus	s Change:		10%	Modulu	s Change		9%	Modulu	S Change		15%
meadia	e enange.		1070	mouulu	o onango.		070	Woodulu	o onange.		1376
1.114x0).070		RD 15107	1.114x	0.070		BD 15107	1.114x	0.070		RD 15107
				(4 min.	cure)			(3 min	cure)		
Rina	Initial	Ring	Aged	Ring	Initial	Ring	Aged	Rina	Initial	Bing	Anad
1	383	9	431	1	378	9	499	1	378	<u>, mig</u>	483
2	373	10	415	2	400	10	458	2	363	10	466
3	423	11	408	3	413	11	469	2	. 380	11	400
4	400	12	421	4	353	12	415	1	102	10	401
5	376	13	427	5	373	13	413	4 5	400	12	300
6	353	14	427	6	284	13	407	5	407	13	420
7	N/A	15	419	7	/16	14	402	7	3/0	14	470
γ Ω	116	16	410	0	410	10	440	(0	349	10	505
Aver	290+25	10	421+00	0 ·	400	10	417	0	400	10	4/4
Avy.	SO9IZS		431122	Avg:	390±22		459±31	Avg:	383±21		458±36
10// 20/11/11/11	S I		117/0	EVICICITIES OF THE PROPERTY OF	s unange:		19%	IVIOGUII	us Chande:		19%
wodulu	o onange.		11/0	modula	o onango.		1070	mouun	le enanger		
7.185x0).103		RD 15107	7.185x	0.103		RD 15107	7.185x	0.103		BD 15107
7.185x0	0.103		RD 15107	7.185x0	0.103 cure)		RD 15107	7.185x	0.103 cure)		RD 15107
7.185x0).103	Rina	RD 15107	7.185x((4 min. Ring	0.103 cure)	Rina	RD 15107	7.185x (3 min.	0.103 cure)	Bing	RD 15107
7.185x0 <u>Ring</u>	0.103 <u>Initial</u> 544	<u>Ring</u> 9	RD 15107	7.185x((4 min. <u>Ring</u> 1	0.103 cure) Initial 489	Ring 9	RD 15107	7.185x (3 min. <u>Ring</u> 1	0.103 cure) <u>Initial</u> 511	Ring 9	RD 15107
7.185x0 <u>Ring</u> 1 2	0.103 <u>Initial</u> 544 451	<u>Ring</u> 9 10	RD 15107 Aged 537 561	7.185x0 (4 min. <u>Ring</u> 1 2	0.103 cure) <u>Initial</u> 489 501	<u>Ring</u> 9 10	RD 15107	7.185x (3 min. <u>Ring</u> 1 2	0.103 cure) <u>Initial</u> 511 544	<u>Ring</u> 9	RD 15107 Aged 578 655
7.185x0 <u>Ring</u> 1 2 3	0.103 <u>Initial</u> 544 451 491	<u>Ring</u> 9 10 11	RD 15107 Aged 537 561 547	7.185x((4 min. <u>Ring</u> 1 2 3	0.103 cure) <u>Initial</u> 489 501 492	<u>Ring</u> 9 10 11	RD 15107 Aged 623 562 607	7.185xi (3 min. <u>Ring</u> 1 2 3	0.103 cure) <u>Initial</u> 511 544 569	<u>Ring</u> 9 10 11	RD 15107 Aged 578 655 634
7.185x0 <u>Ring</u> 1 2 3 4	0.103 <u>Initial</u> 544 451 491 495	<u>Bing</u> 9 10 11 12	Aged 537 561 547 603	7.185x((4 min. <u>Ring</u> 1 2 3 4	0.103 cure) <u>Initial</u> 489 501 492 495	Ring 9 10 11 12	RD 15107 Aged 623 562 607 542	7.185x0 (3 min. <u>Ring</u> 1 2 3 4	0.103 cure) <u>Initial</u> 511 544 569 517	<u>Ring</u> 9 10 11	RD 15107 Aged 578 655 634 584
7.185x0 <u>Ring</u> 1 2 3 4 5	0.103 <u>Initial</u> 544 451 491 495 532	<u>Ring</u> 9 10 11 12 13	Aged 537 561 547 603 544	7.185x((4 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) <u>Initial</u> 489 501 492 495 492	Ring 9 10 11 12 13	Aged 623 562 607 542 587	7.185x (3 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) 511 544 569 517 529	<u>Ring</u> 9 10 11 12 13	RD 15107 Aged 578 655 634 584 567
7.185x0 <u>Ring</u> 1 2 3 4 5 6	Initial 544 451 491 495 532 534	<u>Ring</u> 9 10 11 12 13 14	RD 15107 Aged 537 561 547 603 544 554	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6	0.103 cure) <u>Initial</u> 489 501 492 495 492 492 489	Ring 9 10 11 12 13 14	RD 15107 Aged 623 562 607 542 587 537	7.185x (3 min. <u>Ring</u> 1 2 3 4 5 6	0.103 cure) 511 544 569 517 529 495	Ring 9 10 11 12 13 14	RD 15107 Aged 578 655 634 584 567 666
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7	Initial 544 451 491 532 534 507	<u>Ring</u> 9 10 11 12 13 14 15	RD 15107 Aged 537 561 547 603 544 554 554 533	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6 7	0.103 cure) <u>Initial</u> 489 501 492 495 492 495 492 489 504	Ring 9 10 11 12 13 14 15	Aged 623 562 607 542 587 537 557	7.185x (3 min. <u>Ring</u> 1 2 3 4 5 6 7	0.103 cure) 511 544 569 517 529 495 504	<u>Ring</u> 9 10 11 12 13 14 15	RD 15107 Aged 578 655 634 584 567 666 588
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8	Initial 544 451 491 532 534 507 499	<u>Ring</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 554 533 545	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6 7 8	0.103 cure) Initial 489 501 492 495 492 489 504 468	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 537 557 582	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8	0.103 cure) <u>Initial</u> 511 544 569 517 529 495 504 551	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 578 655 634 584 567 666 588 587
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8 Ava:	Initial 544 451 491 495 532 534 507 499 507±30	<u>Bing</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491+11	<u>Ring</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 557 582 575+31	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527+25	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607+38
Ring 1 2 3 4 5 6 7 8 Avg: Modulus	Initial 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12%	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 582 575±31 17%	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 S Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 578 655 634 584 567 666 588 <u>587</u> 607±38 15%
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulus	D.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 554 553 553 22 12%	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 8 Avg: Modulu	0.103 cure) <u>Initial</u> 489 501 492 495 492 489 504 <u>468</u> 491±11 rs Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 582 575±31 17%	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 8 Avg: Modulu	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change:	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 578 655 634 584 567 666 588 587 607±38 15%
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulus 11.196>	Initial 544 451 491 495 532 534 507 499 507±30 s Change:	<u>Ring</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 553 545 553±22 12% RD 15107	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196:	0.103 cure) <u>Initial</u> 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196	0.103 cure) <u>Initial</u> 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulus 11.196>	Initial 544 451 491 495 532 534 507 499 507±30 s Change:	<u>Ring</u> 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 553 545 553±22 12% RD 15107	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196: (4 min.	0.103 cure) <u>Initial</u> 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure)	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107	7.185x((3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min.	0.103 cure) <u>Initial</u> 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure)	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107
7.185x0 <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> <u>Ring</u>	D.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 Initial	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged	7.185x((4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. Ring	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 582 575±31 17% RD 15107 Aged	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. Bing	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change: x0.103 cure) Initial	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 Aged
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1	0.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 <u>Initial</u> 525	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1	0.103 cure) <u>Initial</u> 489 501 492 495 492 489 504 <u>468</u> 491±11 is Change: x0.103 cure) <u>Initial</u> 433	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 582 575±31 17% RD 15107 Aged 526	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure) Initial 445	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2	D.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 <u>Initial</u> 525 490	Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 553 545 553±22 12% RD 15107 Aged 601 552	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196: (4 min. <u>Ring</u> 1 2	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 433	Ring 9 10 11 12 13 14 15 16 Ring 9 10	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 <u>Aged</u> 526 526 526	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure) Initial 445 445	Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3	Initial 544 451 491 495 532 534 507 499 507±30 s Change: (0.103 Initial 525 490 486	Ring 9 10 11 12 13 14 15 16 <u>Ring</u> 9 10	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601 552 560	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1 2 3	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 433 436	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11	RD 15107 Aged 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 Aged 526 526 526 526	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change: x0.103 cure) Initial 445 445 443	Ring 9 10 11 12 13 14 15 16 <u>Ring</u> 9 10	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3 4 5 6 7 8 Avg: Modulus 1.1.196> 3 4	Initial 544 451 491 495 532 534 507 499 507±30 s Change: (0.103 Initial 525 490 486 460	Ring 9 10 11 12 13 14 15 16 <u>Ring</u> 9 10 11 12	RD 15107 <u>Aged</u> 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 <u>Aged</u> 601 552 560 541	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1 2 3 4	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 433 433 436 418	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 <u>Aged</u> 526 526 526 526 526 526 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change: x0.103 cure) Initial 445 445 443 443	Ring 9 10 11 12 13 14 15 16 <u>Ring</u> 9 10 11	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196x Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196x 8 4 5	D.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 <u>Initial</u> 525 490 486 460 N/A	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 <u>Aged</u> 601 552 560 541 566	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 433 436 418 433	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 <u>Aged</u> 526 526 526 526 526 542 542 542 542 542 542 542 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4 5	0.103 cure) <u>Initial</u> 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change: x0.103 cure) <u>Initial</u> 445 445 443 443 433	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 10 11 12 13	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613 557
7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> 8 4 5 6 7	D.103 <u>Initial</u> 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 <u>Initial</u> 525 490 486 460 N/A 448	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601 552 560 541 566 558	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1 2 3 4 5 6	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 433 436 418 433 436	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14	RD 15107 Aged 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 Aged 526 526 526 526 526 542 542 542 542 542 542 542 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4 5 6	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 s Change: x0.103 cure) Initial 445 445 443 443 433 439	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613 557 577
Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3 4 5 6 7 8 Avg: Modulus 1 2 3 4 5 6 7	Initial 544 451 491 495 532 534 507 499 507±30 s Change: k0.103 Initial 525 490 486 460 N/A 448 460	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 11 12 13 14 15	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601 552 560 541 566 558 531	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196: (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 5 5 6 7 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 9 9 9 9	0.103 cure) <u>Initial</u> 489 501 492 495 492 489 504 <u>468</u> 491±11 is Change: x0.103 cure) <u>Initial</u> 433 433 436 418 433 436 436	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15	RD 15107 Aged 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 Aged 526 526 526 526 542 542 542 542 542 542 542 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4 5 6 7	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure) Initial 445 445 443 443 433 439 439 430	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613 557 577 567
Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3 4 5 6 7 8 Avg: Modulus 1.1.196> 2 3 4 5 6 7 8	D.103 Initial 544 451 491 495 532 534 507 499 507±30 s Change: (0.103) Initial 525 490 486 460 N/A 448 460 N/A 460 A60 A60 A60	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16 11 12 13 14 15 16	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601 552 560 541 566 558 531 571	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 Is Change: x0.103 cure) Initial 433 433 436 418 433 436 436 427	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 Aged 623 562 607 542 587 537 557 582 575±31 17% RD 15107 Aged 526 526 526 526 526 542 542 542 542 542 542 542 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8	0.103 cure) <u>Initial</u> 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure) <u>Initial</u> 445 445 443 443 433 439 439 439 439 439	Ring 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613 557 577 567 582
Modulus 7.185x0 Ring 1 2 3 4 5 6 7 8 Avg: Modulus 11.196> Ring 1 2 3 4 5 6 7 8 4 5 6 7 8 Avg:	b.103 initial 544 451 491 495 532 534 507 <u>499</u> 507±30 s Change: c0.103 initial 525 490 486 460 N/A 448 460 <u>A68</u> 477±26	Ring910111213141516Ring910111213141516	RD 15107 Aged 537 561 547 603 544 554 533 <u>545</u> 553±22 12% RD 15107 Aged 601 552 560 541 566 558 531 <u>571</u> 560+21	7.185x0 (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196: (4 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu	0.103 cure) Initial 489 501 492 495 492 489 504 <u>468</u> 491±11 s Change: x0.103 cure) Initial 433 436 418 433 436 436 427 432+6	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 623 562 607 542 587 537 557 <u>582</u> 575±31 17% RD 15107 <u>Aged</u> 526 526 526 526 542 542 542 542 542 542 542 542	7.185xi (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu 11.196 (3 min. <u>Ring</u> 1 2 3 4 5 6 7 8 Avg: Modulu	0.103 cure) Initial 511 544 569 517 529 495 504 <u>551</u> 527±25 Is Change: x0.103 cure) Initial 445 445 443 443 433 439 439 439 449 442+5	Ring 9 10 11 12 13 14 15 16 Ring 9 10 11 12 13 14 15 16	RD 15107 <u>Aged</u> 578 655 634 584 567 666 588 <u>587</u> 607±38 15% RD 15107 <u>Aged</u> 552 531 582 613 557 577 567 <u>582</u> 570±25

Table I-9. Linear Tensile Modulus (0-25% elongation) Data for RD Rubber O-Rings, Various Batches and Sizes

0.551x	0.070		RD 14810	0.551x	0.070	I	RD 15107	1.114x	0.070	1	RD 14810
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>	<u>Ring</u>	Initial	<u>Ring</u>	Aged	Ring	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>
1	361	9	380	1	359	9	442	1	352	9	372
2	372	10	413	2	372	10	401	2	368	10	355
3	339	11	413	3	347	11	447	3	364	11	386
4	N/A	12	409	4	357	12	401	4	364	12	424
5	373	13	397	5	377	13	396	5	N/A	13	380
6	340	14	403	6	392	14	N/A	6	398	14	415
7	373	15	417	7	356	15	N/A	7	368	15	405
8	<u>347</u>	16	<u>392</u>	8	<u>376</u>	16	<u>396</u>	8	<u>372</u>	16	<u>359</u>
Avg:	358±16		403±13	Avg:	367±15		414±24	Avg:	369±14		387±25
Modulu	s Change:		13%	Modulu	is Change:		13%	Modulu	is Change:		5%

7.185x0.103		ł	4D 14810	11.1962	KU.103	ł	1D 14936
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>	<u>Ring</u>	Initial	<u>Ring</u>	<u>Aged</u>
1	396	9	488	1	459	9	478
2	435	10	439	2	443	10	489
3	406	11	426	3	438	11	523
4	407	12	442	4	504	12	465
5	442	13	420	5	464	13	461
6	N/A	14	434	6	473	14	N/A
7	425	15	419	7	475	15	519
8	<u>413</u>	16	<u>410</u>	8	<u>N/A</u>	16	<u>540</u>
Avg:	418±17		435±24	Avg:	465±22		496±31
Modulu	s Change:		4%	Modulu	s Change:		7%

Table I-10. Linear Tensile Modulus (0-25% elongation) Data for Parker O-Rings

0.116x	0.038	Parker	318466	
--------	-------	--------	--------	--

Ring	Initial	<u>Ring</u>	<u>Aged</u>
1	479	9	564
2	544	10	565
З	587	11	586
4	487	12	602
5	488	13	629
6	535	14	557
7	532	15	606
8	<u>566</u>	16	<u>536</u>
Avg:	527±39		581±31
Modulı	us Change:		10%

÷.

7

0.301X	(0.054	Parke	er 316104	0.301x	0.054	Park	ker 316710	1.364x	0.070	Park	er 316104	1.364x0	.070	Parl	ker 317403
Ring	<u>Initial</u>	<u>Ring</u>	Aged	<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	Aged	<u>Ring</u>	<u>Initial</u>	Ring	<u>Aged</u>	<u>Ring</u>	Initial	<u>Ring</u>	<u>Aged</u>
1	727	6	643	1	N/A	9	706	1	672	6	724	1	621	9	661
2	750	7	795	2	811	10	N/A	2	652	7	N/A	2	652	10	662
3	746	8	864	3	829	11	839	3	711	8	748	3	621	11	645
4	789	9	817	4	783	12	N/A	4	N/A	9	735	4	N/A	12	665
5	757	10	N/A	5	841	13	857	5	696	10	N/A	5	631	13	636
				6	746	14	825					6	649	14	707
				7	853	15	865					7	668	15	698
				8	<u>823</u>	16	<u>N/A</u>					8	<u>628</u>	16	<u>728</u>
Ava:	754±22		780±96	Avg:	812±37		819±65	Avg:	683±26		736±12	Avg:	639±18		675±32
Modulu	us Change	ə:	3%	Moduli	is Change):	1%	Moduli	sı		8%	Modulus	s Change:		6%
7.688x	0.070	Park	er 316104	7.688x	0.070	Park	er 317851	16.339	x0.103	Park	er 316104	16.339x	0.103	Parl	cer 316710
7.688x Bing	0.070 Initial	Park <u>Rinq</u>	er 316104 <u>Aged</u>	7.688x <u>Ring</u>	0.070 Initial	Park <u>Ring</u>	er 317851 Aged	16.339 <u>Ring</u>	x0.103 Initial	Park <u>Ring</u>	er 316104 <u>Aged</u>	16.339x <u>Ring</u>	0.103 Initial	Parl <u>Ring</u>	ker 316710 Aged
7.688x <u>Ring</u> 1	0 .070 <u>Initial</u> 901	Park <u>Ring</u> 6	er 316104 <u>Aged</u> 812	7.688x <u>Ring</u> 1	0.070 <u>Initial</u> 466	Park <u>Ring</u> 9	ter 317851 <u>Aged</u> 600	16.339 <u>Ring</u> 1	x0.103 <u>Initial</u> 867	Park <u>Ring</u> 9	er 316104 <u>Aged</u> 837	16.339x <u>Ring</u> 1	0.103 Initial 826	Parl <u>Ring</u> 9	cer 316710 <u>Aged</u> 909
7.688x <u>Ring</u> 1 2	0 .070 <u>Initial</u> 901 872	Park <u>Ring</u> 6 7	er 316104 <u>Aged</u> 812 789	7.688x <u>Ring</u> 1 2	0.070 <u>Initial</u> 466 448	Park <u>Ring</u> 9 10	ter 317851 <u>Aged</u> 600 589	16.339 <u>Ring</u> 1 2	x0.103 <u>Initial</u> 867 874	Park <u>Ring</u> 9 10	er 316104 <u>Aged</u> 837 895	16.339x <u>Ring</u> 1 2	0 .103 <u>Initial</u> 826 836	Parl <u>Ring</u> 9 10	ker 316710 <u>Aged</u> 909 821
7.688x <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 901 872 915	Park <u>Ring</u> 6 7 8	er 316104 <u>Aged</u> 812 789 871	7.688x <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 466 448 506	Park <u>Ring</u> 9 10 11	ter 317851 <u>Aged</u> 600 589 559	16.339 <u>Ring</u> 1 2 3	x0.103 <u>Initial</u> 867 874 876	Park <u>Ring</u> 9 10 11	er 316104 <u>Aged</u> 837 895 925	16.339x <u>Bing</u> 1 2 3	0.103 <u>Initial</u> 826 836 815	Parl <u>Ring</u> 9 10 11	cer 316710 <u>Aged</u> 909 821 844
7.688x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 901 872 915 858	Park <u>Ring</u> 6 7 8 9	er 316104 <u>Aged</u> 812 789 871 918	7.688x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 466 448 506 483	Park <u>Ring</u> 9 10 11 12	ter 317851 <u>Aged</u> 600 589 559 595	16.339 <u>Ring</u> 1 2 3 4	x0.103 <u>Initial</u> 867 874 876 864	Park <u>Ring</u> 9 10 11 12	er 316104 Aged 837 895 925 938	16.339x <u>Ring</u> 1 2 3 4	0.103 Initial 826 836 815 821	Park <u>Ring</u> 9 10 11 12	xer 316710 <u>Aged</u> 909 821 844 832
7.688x <u>Ring</u> 1 2 3 4 5	0.070 <u>Initial</u> 901 872 915 858 934	Park <u>Ring</u> 6 7 8 9 10	er 316104 <u>Aged</u> 812 789 871 918 911	7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 466 448 506 483 483	Park <u>Ring</u> 9 10 11 12 13	ter 317851 Aged 600 589 559 595 595 559	16.339 <u>Ring</u> 1 2 3 4 5	x0.103 <u>Initial</u> 867 874 876 864 876	Park <u>Ring</u> 9 10 11 12 13	er 316104 Aged 837 895 925 938 913	16.339x <u>Ring</u> 1 2 3 4 5	0.103 Initial 826 836 815 821 811	Park <u>Ring</u> 9 10 11 12 13	cer 316710 <u>Aged</u> 909 821 844 832 844
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 901 872 915 858 934	Park <u>Ring</u> 6 7 8 9 10	er 316104 Aged 812 789 871 918 911	7.688x <u>Ring</u> 1 2 3 4 5 6	0.070 Initial 466 448 506 483 472 540	Park <u>Ring</u> 9 10 11 12 13 13	ter 317851 Aged 600 589 559 595 559 559 595	16.339 <u>Bing</u> 1 2 3 4 5 6	x0.103 Initial 867 874 876 864 876 876 867	Park <u>Ring</u> 9 10 11 12 13 13	er 316104 Aged 837 895 925 938 913 910	16.339x <u>Ring</u> 1 2 3 4 5 6	0.103 Initial 826 836 815 821 811 825	Park <u>Ring</u> 9 10 11 12 13 14	cer 316710 <u>Aged</u> 909 821 844 832 844 826
7.688x <u>Ring</u> 1 2 3 4 5	0.070 Initial 901 872 915 858 934	Park <u>Ring</u> 6 7 8 9 10	er 316104 Aged 812 789 871 918 911	7.688x <u>Ring</u> 1 2 3 4 5 6 7	0.070 Initial 466 448 506 483 472 540 512	Park <u>Ring</u> 9 10 11 12 13 14 15	ter 317851 Aged 600 589 559 595 559 595 595 603	16.339 <u>Bing</u> 1 2 3 4 5 6 7	x0.103 Initial 867 874 876 864 876 867 858	Park <u>Ring</u> 9 10 11 12 13 14 15	er 316104 Aged 837 895 925 938 913 910 934	16.339x <u>Ring</u> 1 2 3 4 5 6 7	0.103 Initial 826 836 815 821 811 825 807	Park <u>Ring</u> 9 10 11 12 13 14 15	cer 316710 Aged 909 821 844 832 844 826 831
7.688x <u>Bing</u> 1 2 3 4 5	0.070 Initial 901 872 915 858 934	Park <u>Ring</u> 6 7 8 9 10	er 316104 Aged 812 789 871 918 911	7.688x <u>Ring</u> 1 2 3 4 5 6 7 8	0.070 Initial 466 448 506 483 472 540 512 488	Park <u>Ring</u> 9 10 11 12 13 14 15 16	ter 317851 Aged 600 589 559 595 559 595 603 <u>N/A</u>	16.339 <u>Ring</u> 1 2 3 4 5 6 7 8	x0.103 Initial 867 874 876 864 876 867 858 <u>861</u>	Park <u>Ring</u> 9 10 11 12 13 14 15 16	er 316104 Aged 837 895 925 938 913 910 934 895	16.339x <u>Ring</u> 1 2 3 4 5 6 7 8	0.103 Initial 826 836 815 821 811 825 807 <u>813</u>	Park <u>Ring</u> 9 10 11 12 13 14 15 16	cer 316710 Aged 909 821 844 832 844 826 831 830
7.688x <u>Bing</u> 1 2 3 4 5 Avg:	0.070 <u>Initial</u> 901 872 915 858 934 896±31	Park <u>Ring</u> 6 7 8 9 10	er 316104 Aged 812 789 871 918 911 860±58	7.688x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.070 <u>Initial</u> 466 448 506 483 472 540 512 <u>488</u> 489±29	Park Bing 9 10 11 12 13 14 15 16	ter 317851 Aged 600 589 559 595 559 595 603 <u>N/A</u> 586±19	16.339 <u>Bing</u> 1 2 3 4 5 6 7 8 8 Avg:	x0.103 <u>Initial</u> 867 874 876 864 876 867 858 <u>861</u> 868±7	Park <u>Ring</u> 9 10 11 12 13 14 15 16	er 316104 Aged 837 895 925 938 913 910 934 895 906±32	16.339x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.103 <u>Initial</u> 826 836 815 821 811 825 807 <u>813</u> 819±9	Park <u>Ring</u> 9 10 11 12 13 14 15 16	cer 316710 Aged 909 821 844 832 844 826 831 <u>830</u> 842±28

• · · ·

1.0

Table I-11. Linear Tensile Modulus (0-25% elongation) Data for Precision O-Rings

A .

0.301x	0.054	Precis	sion 19052	0.301×	0.054	Precis	ion 19895	1.364x	0.070	Precis	ion 17405	1.364x0	.070	Precis	sion 19895
<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	Aged	<u>Ring</u>	<u>Initial</u>	Ring	<u>Aged</u>	<u>Ring</u>	<u>Initial</u>	<u>Ring</u>	<u>Aged</u>	<u>Ring</u>	<u>Initial</u>	Ring	Aged
1	553	9	N/A	1	496	9	637	1	547	9	620	1	574	9	545
2	504	10	587	2	531	10	675	2	572	10	661	2	565	10	614
3	582	11	669	3	517	11	609	3	N/A	11	653	3	594	11	627
4	N/A	12	625	4	531	12	615	4	588	12	653	. 4	570	12	655
5	586	13	619	- 5	503	13	657	5	N/A	13	678	5	569	13	N/A
6	594	14	628	6	517	14	635	6	572	14	674	6	590	14	598
7	560	15	637	7	538	15	649	7	588	15	670	7	569	15	631
8	<u>502</u>	16	<u>634</u>	8	<u>496</u>	16	<u>657</u>	8	<u>592</u>	16	<u>657</u>	8	<u>647</u>	16	<u>693</u>
Avg:	554±38		628±24	Avg:	516±16		642±22	Avg:	577±17		658±18	Avg:	585±27		623±46
Modulu	us Change	e:	13%	Moduli	us Change	: :	24%	Modulu	us Change):	14%	Modulus	s Change:		7%
7.739x	0.070	Precis	ion 19052	7.739x	0.070	Precis	ion 19921	16.955	x0.139	Precis	ion 19422	16.955>	0.139	Precis	ion 19895
7.739x <u>Ring</u>	0.070 Initial	Precis <u>Ring</u>	ion 19052 <u>Aged</u>	7.739x <u>Ring</u>	0.070 Initial	Precis <u>Ring</u>	ion 19921 <u>Aged</u>	16.955 <u>Ring</u>	x0.139 Initial	Precis <u>Ring</u>	ion 19422 Aged	16.955 x <u>Ring</u>	0.139 Initial	Precis <u>Ring</u>	sion 19895 <u>Aged</u>
7.739x <u>Ring</u> 1	0.070 <u>Initial</u> 799	Precis <u>Ring</u> 9	ion 19052 <u>Aged</u> 859	7.739x <u>Ring</u> 1	0 .070 <u>Initial</u> 786	Precis <u>Ring</u> 7	ion 19921 <u>Aged</u> 850	16.955 <u>Ring</u> 1	x0.139 <u>Initial</u> 568	Precis <u>Ring</u> 9	ion 19422 <u>Aged</u> 669	16.955 x <u>Ring</u> 1	8 0.139 <u>Initial</u> 617	Precis <u>Ring</u> 9	sion 19895 <u>Aged</u> 752
7.739x <u>Ring</u> 1 2	0.070 <u>Initial</u> 799 705	Precis <u>Ring</u> 9 10	ion 19052 <u>Aged</u> 859 945	7.739x <u>Ring</u> 1 2	8 0.070 <u>Initial</u> 786 786	Precis Ring 7 8	ion 19921 <u>Aged</u> 850 830	16.955 <u>Ring</u> 1 2	x0.139 <u>Initial</u> 568 565	Precis <u>Ring</u> 9 10	ion 19422 <u>Aged</u> 669 643	16.955× <u>Ring</u> 1 2	0.139 <u>Initial</u> 617 605	Precis <u>Ring</u> 9 10	sion 19895 Aged 752 702
7.739x <u>Ring</u> 1 2 3	0.070 <u>Initial</u> 799 705 863	Precis <u>Ring</u> 9 10 11	ion 19052 <u>Aged</u> 859 945 958	7.739x <u>Ring</u> 1 2 3	8 0.070 <u>Initial</u> 786 786 752	Precis Ring 7 8 9	ion 19921 <u>Aged</u> 850 830 859	16.955 <u>Ring</u> 1 2 3	x0.139 <u>Initial</u> 568 565 572	Precis <u>Ring</u> 9 10 11	ion 19422 <u>Aged</u> 669 643 663	16.955 × <u>Ring</u> 1 2 3	t 0.139 <u>Initial</u> 617 605 614	Precis <u>Ring</u> 9 10 11	sion 19895 Aged 752 702 727
7.739x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 799 705 863 739	Precis <u>Ring</u> 9 10 11 12	ion 19052 <u>Aged</u> 859 945 958 957	7.739x <u>Ring</u> 1 2 3 4	0.070 <u>Initial</u> 786 786 752 740	Precis <u>Ring</u> 7 8 9 10	ion 19921 <u>Aged</u> 850 830 859 819	16.955 <u>Ring</u> 1 2 3 4	x0.139 <u>Initial</u> 568 565 572 571	Precis <u>Ring</u> 9 10 11 12	ion 19422 <u>Aged</u> 669 643 663 658	16.955 × <u>Ring</u> 1 2 3 4	10.139 <u>Initial</u> 617 605 614 625	Precis <u>Ring</u> 9 10 11 12	sion 19895 <u>Aged</u> 752 702 727 671
7.739x <u>Ring</u> 1 2 3 4 5	0.070 Initial 799 705 863 739 793	Precis <u>Ring</u> 9 10 11 12 13	ion 19052 Aged 859 945 958 957 923	7.739x <u>Ring</u> 1 2 3 4 5	10.070 <u>Initial</u> 786 786 752 740 752	Precis <u>Ring</u> 7 8 9 10 11	ion 19921 <u>Aged</u> 850 830 859 819 812	16.955 <u>Ring</u> 1 2 3 4 5	x0.139 <u>Initial</u> 568 565 572 571 566	Precis <u>Ring</u> 9 10 11 12 13	ion 19422 <u>Aged</u> 669 643 663 658 643	16.955 × <u>Ring</u> 1 2 3 4 5	0.139 <u>Initial</u> 617 605 614 625 628	Precis <u>Ring</u> 9 10 11 12 13	sion 19895 <u>Aged</u> 752 702 727 671 743
7.739x <u>Ring</u> 1 2 3 4 5 6	0.070 Initial 799 705 863 739 793 819	Precis <u>Ring</u> 9 10 11 12 13 14	ion 19052 Aged 859 945 958 957 923 876	7.739x <u>Ring</u> 1 2 3 4 5 6	10.070 <u>Initial</u> 786 786 752 740 752 740	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 850 830 859 819 812 832	16.955 <u>Ring</u> 1 2 3 4 5 6	x0.139 <u>Initial</u> 568 565 572 571 566 588	Precis Bing 9 10 11 12 13 14	ion 19422 <u>Aged</u> 669 643 663 658 643 665	16.955 × <u>Ring</u> 1 2 3 4 5 6	10.139 <u>Initial</u> 617 605 614 625 628 597	Precis <u>Ring</u> 9 10 11 12 13 14	sion 19895 <u>Aged</u> 752 702 727 671 743 757
7.739x <u>Ring</u> 1 2 3 4 5 6 7	0.070 Initial 799 705 863 739 793 819 767	Precis <u>Ring</u> 9 10 11 12 13 14 15	ion 19052 <u>Aged</u> 859 945 958 957 923 876 900	7.739x <u>Ring</u> 1 2 3 4 5 6	10.070 <u>Initial</u> 786 786 752 740 752 740 752 740	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 <u>Aged</u> 850 830 859 819 812 832	16.955 <u>Ring</u> 1 2 3 4 5 6 7	x0.139 Initial 568 565 572 571 566 588 590	Precis <u>Ring</u> 9 10 11 12 13 14 15	ion 19422 <u>Aged</u> 669 643 663 658 643 665 680	16.955 × <u>Ring</u> 1 2 3 4 5 6 7	10.139 <u>Initial</u> 617 605 614 625 628 597 616	Precis <u>Ring</u> 9 10 11 12 13 14 15	sion 19895 Aged 752 702 727 671 743 757 736
7.739x <u>Ring</u> 1 2 3 4 5 6 7 8	0.070 Initial 799 705 863 739 793 819 767 <u>819</u>	Precis Ring 9 10 11 12 13 14 15 16	ion 19052 Aged 859 945 958 957 923 876 900 <u>932</u>	7.739x <u>Ring</u> 1 2 3 4 5 6	10.070 <u>Initial</u> 786 786 752 740 752 740 752 740	Precis <u>Ring</u> 7 8 9 10 11 12	ion 19921 Aged 850 830 859 819 812 832	16.955 <u>Ring</u> 1 2 3 4 5 6 7 8	x0.139 Initial 568 565 572 571 566 588 590 <u>585</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19422 <u>Aged</u> 669 643 663 658 643 665 680 <u>655</u>	16.955 × <u>Ring</u> 1 2 3 4 5 6 7 8	10.139 <u>Initial</u> 617 605 614 625 628 597 616 <u>608</u>	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	sion 19895 Aged 752 702 727 671 743 757 736 <u>744</u>
7.739x <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	0.070 <u>Initial</u> 799 705 863 739 793 819 767 <u>819</u> 788±50	Precis <u>Ring</u> 9 10 11 12 13 14 15 16	ion 19052 Aged 859 945 958 957 923 876 900 <u>932</u> 919±37	7.739x <u>Ring</u> 1 2 3 4 5 6 Xvg:	10.070 <u>Initial</u> 786 786 752 740 752 740 752 740 752 740	Precis <u>Bing</u> 7 8 9 10 11 12	ion 19921 Aged 850 830 859 819 812 832 834±18	16.955 <u>Bing</u> 1 2 3 4 5 6 7 8 Avg:	x0.139 <u>Initial</u> 568 565 572 571 566 588 590 <u>585</u> 576±10	Precis <u>Bing</u> 9 10 11 12 13 14 15 16	ion 19422 Aged 669 643 663 658 643 665 680 <u>655</u> 660±12	16.955 × <u>Ring</u> 1 2 3 4 5 6 7 8 Avg:	10.139 <u>Initial</u> 617 605 614 625 628 597 616 <u>608</u> 614±10	Precis <u>Bing</u> 9 10 11 12 13 14 15 16	sion 19895 Aged 752 702 727 671 743 757 736 <u>744</u> 729±29

.

• <

. .

Table I-12. Linear Tensile Modulus (0-25% elongation) Data for Test Slabs

Parke	r 316104		Parke	r 316710		Parke	r 317403		Parke	r 317851		Parke	r 318466	
<u>Site</u>	Initial	Aged	<u>Site</u>	Initial	Aged	<u>Site</u>	Initial	Aged	<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	Initial	Aged
1	876	1202	1	1001	910	1	941	992	1	970	1002	1	574	545
2	894	1037	2	965	954	2	884	1156	2	958	943	2	651	610
З	872	1134	3	1058	960	3	886	1038	3	1007	904	3	592	659
4	400	<u>1105</u>	4	<u>902</u>	1002	4	<u>977</u>	<u>1038</u>	4	<u>958</u>	<u>983</u>	4	<u>458</u>	<u>N/A</u>
Avg:	761±240	1120±68	Avg:	981±65	956±37	Avg:	922±45	1056±70	Avg:	973±23	958±43	Avg:	569±81	604±57
Modul	us Change:	47%	Moduli	us Change:	-3%	Modul	us Change:	15%	· Moduli	us Change:	-2%	Moduli	us Change:	6%

RD 14810		RD 15107			RD 15107 (4 min. cure)			RD 15107 (3 min. cure)			
<u>Site</u>	<u>Initial</u>	<u>Aged</u>	<u>Site</u>	Initial_	Aged	<u>Site</u>	Initial	Aged	<u>Site</u>	Initial	<u>Aged</u>
1	581	562	1	629	684	1	600	654	1	674	721
2	551	596	2	633	678	2	612	N/A	2	621	681
3	570	613	3	679	688	3	583	682	3	633	659
4	<u>613</u>	<u>583</u>	4	<u>621</u>	<u>614</u>	4	<u>536</u>	<u>739</u>	4	<u>638</u>	<u>641</u>
Avg:	579±26	589±21	Avg:	641±26	666±35	Avg:	583±34	692±43	Avg:	642±23	676±35
Modulus Change:		2%	Moduli	us Change:	4%	Moduli	Modulus Change:		Modulus Change: 59		5%

Precis	ion 19052/	4	Precis	Precision 19895A			
<u>Site</u>	<u>Initial</u>	Aged	<u>Site</u>	<u>Initial</u>	Aged		
1	758	765	1	777	771		
2	735	840	2	792	793		
3	714	863	3	754	825		
4	<u>716</u>	<u>824</u>	4	<u>743</u>	<u>822</u>		
Avg:	731±20	823±42	Avg:	766±22	803±26		
Modulu	us Change:	13%	Modulu	Modulus Change:			

Appendix J: Properties vs. Cure Cycle Data

Contents:

Table J-1.	Hardness and Compression Set of Materials with Different Cures
Table J-2.	Tensile Strength and Elongation of Materials with Different Cures
Table J-3.	Tensile Modulus (all elongation ranges) of Materials with Different Cures
Table J-4.	Tensile Modulus Plus Averages of Materials with Different Cures
Table J-5.	Tensile Work (0-20% elongation) of Materials with Different Cures
Plot J-6.	Modulus vs. Percent Elongation Range of Unaged Materials with Different Cures
Plot J-7.	Modulus vs. Percent Elongation Range of Aged Materials with Different Cures

Detailed ring and test slab data is contained in Tables in the preceding appendices.

Table J-1. Hardness and Compression Set Data on RD Rubber Materials With Differing Cure Schedules

All rings prepared from RD Rubber Batch No. 15107.

3 min. 12 sec. = 45% cure.

4 min. 18 sec. = 70% cure.

10 min. = 95% cure

Ring Size	Cure Time	Initial Hardness	Hardness after Aging ¹	Change in Hardness	Initial Thickness	Thickness after Aging ²	Compression Set (%)
			untor rightig				
0.301 x 0.054	3 min. 12 sec.	75.9 ± 1.1	80.8 ± 0.8	+ 4.9	0.05552±0.00057	0.05433±0.00069	7.9
	4 min. 18 sec.	75.6 ± 1.0	80.1 ± 0.6	+ 4.5	0.05490±0.00033	0.05389±0.00031	7.0
	10 min.	76.1 ± 0.4	79.3 ± 0.6	+ 3.2	0.05524±0.00044	0.05429±0.00041	6.5
1.114 x 0.070	3 min. 12 sec.	73.3 ± 1.2	80.0 ± 0.3	+ 6.7	0.06967±0.00033	0.06782±0.00013	10.8
	4 min. 18 sec.	72.9 ± 0.8	77.2 ± 0.5	+ 4.3	0.06951±0.00025	0.06839±0.00028	6.6
	10 min.	75.2 ± 0.8	76.8 ±0.6	+ 1.6	0.06930±0.00022	0.06811±0.00019	7.1
7.185 x 0.103	3 min. 12 sec.	72.8 ± 1.5	76.9 ± 0.9	+ 4.1	0.10432±0.00038	0.10164±0.00030	9.8
	4 min. 18 sec.	73.1 ± 0.5	77.7 ± 0.3	+ 4.6	0.10538±0.00072	0.10126±0.00080	14.5
	10 min.	74.2 ± 0.8	76.1 ± 0.7	+ 1.9	0.10473±0.00064	0.10318±0.00058	5.6
11.196 x 0.103	3 min. 12 sec.	72.3 ± 1.7	76.9 ± 0.9	+ 4.6	0.10468±0.00051	0.10246±0.00034	8.0
	4 min. 18 sec.	73.6 ± 0.6	76.6 ± 0.7	+ 3.0	0.10386±0.00042	0.10206±0.00033	6.7
	10 min.	72.8 ± 0.9	75.4 ± 1.4	+ 2.6	0.10685±0.00078	0.10540±0.00069	4.9
Test Slabs	3 min. 12 sec.	67.3 ± 0.8	69.8 ± 0.8	+ 2.5	0.3530±0.0016	0.3411±0.0006	13.5
	4 min. 18 sec.	66.8 ± 0.8	70.0 ± 1.2	+ 3.2	0.3358±0.0003	0.3275±0.0003	10.8
	10 min.	65.5 ± 0.5	64.8 ± 0.4	- 0.7	0.3308±0.0011	0.3188±0.0009	12.6

*

.

1. 70 hours at 212°F plus 24 hours at room temperature.

2. 22 hours compression set aging at 25% compression and 158°F plus 30 min. at room temperature.

÷

Table J-2. Tensile Strength and Elongation Data on RD Rubber Materials With Differing Cure Schedules

*

۲

All rings prepared from RD Rubber Batch No. 15107.

3 min. 12 sec. = 45% cure.

e e

4 min. 18 sec. = 70% cure.

10 min. = 95% cure

- 6

- 5

Ring Size	Cure Time	Initial Tensile Strength	Ten. Strength after Aging	Percent Change	Initial Elongation	Elongation after	Percent Change
0.301 x 0.054	3 min. 12 sec.	2429±133	2556±136	5	340±20	276±12	-18
	4 min. 18 sec.	2374±76	2369±153	0	334±15	284±15	-15
	10 min.	2236±406	2423±122	8	308±46	303±13	-2
1.114 x 0.070	3 min. 12 sec.	2177±262	2089±171	- 4	319±43	223±34	-30
	4 min. 18 sec.	2119±230	2099±771	-1	291±35	258±24	-11
	10 min.	2039±236	2153±107	6	296±49	300±23	2
7.185 x 0.103	3 min. 12 sec.	1879±249	1751±157	-7	218±22	155±10	-29
	4 min. 18 sec.	1170±332	1641±251	40	153±26	159±13	4
	10 min.	1579±302	1255±384	-20	215±30	171±39	-21
	н -						
11.196 x 0.103	3 min. 12 sec.	1746±201	1902±252	9	228±23	184±25	-20
	4 min. 18 sec.	1380±296	1869±224	35	190±29	194±20	2
	10 min.	1436±355	1396±451	- 3	175±29	152±30	-13
Test Slabs	3 min. 12 sec.	2116±153	2034±91	- 4	221±9	189±16	-14
	4 min. 18 sec.	2092±42	1950±144	-7	247±9	179±13	-28
	10 min.	2123±55	2010±137	- 5	243±16	220±12	-9

Aging conditions: 70 hours at 212°F plus 24 hours at room temperature.
Table J-3. Tensile Modulus Data on RD Rubber Materials With Differing Cure Schedules

All rings prepared from RD Rubber Batch No. 15107.

3 min. 12 sec. = 45% cure.

700/ 0000

10 min. = 95% cure

4 min. 18 sec. = 70% cure.	18 sec. = 70	% cure.
-------------------------------	--------------	---------

Ring Size	Cure Time	Modulus 5-10%	Modulus 10-15%	Modulus 5-15%	Modulus 10-20%	Modulus 0-25%
		unaged aged $\Delta\%$				
0.301 x 0.054	3 min. 12 sec.	616±79 604±78 -2	410±77 537±74 31	471±31 558±46 18	432±71 566±32 31	469±31 547±24 17
	4 min. 18 sec.	511±47 525±30 3	370±47 468±35 26	444±27 479±20 8	384±25 479±22 25	433±19 471±6 9
	10 min.	544±67 517±53 -5	315±46 479±60 52	414±15 490±44 18	381±31 504±27 32	427±17 494±24 16
1.114 x 0.070	3 min. 12 sec.	451±34 508±42 13	391±23 450±49 15	425±22 499±38 17	346±20 467±49 35	390±17 479±39 23
	4 min. 18 sec.	465±22 548±42 18	400±21 461±29 15	431±19 509±21 18	356±15 426±22 20	391±17 464±24 19
	10 min.	412±71 484±35 17	379±54 398±54 5	419±27 457±14 9	341±38 376±26 10	390±26 428±19 10
7.185 x 0.103	3 min. 12 sec.	558±28 643±34 15	503±24 572±42 14	532±20 612±37 15	477±27 541±24 13	513±21 588±33 15
	4 min. 18 sec.	533±8 617±41 16	450±21 531±32 18	497±9 579±25 16	435±15 510±20 17	479±11 556±25 16
	10 min.	471±23 519±17 10	400±15 443±16 11	424±11 467±11 10	366±12 420±21 15	424±18 474±17 12
11.196 x 0.103	3 min. 12 sec.	486±11 646±35 33	401±9 524±34 31	449±8 585±26 30	379±6 500±25 32	421±4 546±24 30
	4 min. 18 sec.	470±13 619±25 32	391±11 478±11 22	441±10 553±11 25	365±9 463±8 27	411±7 514±9 25
	10 min.	452±30 529±25 17	373±16 476±32 28	409±8 396±20 -3	385±25 477±25 24	423±21 508±18 20
Test Slabs	3 min. 12 sec.	785±89 793±28 1	556±35 580±93 4	656±31 651±55 -1	501±14 512±77 2	613±16 635±43 4
	4 min. 18 sec.	587±42 698±30 19	556±82 568±57 2	552±54 636±30 15	482±77 526±41 9	536±38 640±28 19
	10 min.	578±152 744±85 29	499±98 528±54 6	528±11 633±39 20	493±58 493±30 0	584±27 625±16 7

÷

Aging conditions: 70 hours at 212°F plus 24 hours at room temperature.

....

Table J-4. Tensile Modulus Data and Averages on RD Rubber Materials With Differing Cure Schedules

÷

#

All rings prepared from RD Rubber Batch No. 15107.

3 min. 12 sec. = 45% cure. 4 min. 18 sec. = 70% cure. 10 min. = 95% cure

. هو

4

Ring Size	Cure Time	Mod	ulus 0%	Mod	ulus 15%	Mod	ulus 5%	Mod	ulus 20%	Mod	ulus 5%	Ave Mod	rage ulus
		unaged	aged	unaged	aged	unaged	aged	unaged	aged	unaged	aged	unaged	aged
0.301 x 0.054	3 min. 12 sec.	616	604	410	537	471	558	432	566	469	547	480	562
	4 min. 18 sec.	511	525	370	468	444	479	384	479	433	471	428	484
	10 min.	544	517	315	479	414	490	381	504	427	494	416	497
1.114 x 0.070	3 min. 12 sec.	451	508	391	450	425	499	346	467	390	479	401	481
	4 min. 18 sec.	465	548	400	461	431	509	356	426	391	464	409	482
	10 min.	412	484	379	398	419	457	341	376	390	428	388	429
7.185 x 0.103	3 min. 12 sec.	558	643	503	572	532	612	477	541	513	588	517	591
	4 min. 18 sec.	533	617	450	531	497	579	435	510	479	556	479	559
	10 min.	471	519	400	443	424	467	366	420	424	474	417	465
11.196 x 0.103	3 min. 12 sec.	486	646	401	524	449	585	379	500	421	546	427	560
	4 min. 18 sec.	470	619	391	478	441	553	365	463	411	514	416	525
	10 min.	452	529	373	476	409	396	385	477	423	508	408	477
Test Slabs	3 min. 12 sec.	785	793	556	580	656	651	501	512	613	635	622	634
	4 min. 18 sec.	587	698	556	568	552	636	482	526	536	640	543	614
	10 min.	578	744	499	528	528	633	493	493	584	625	536	605

Aging conditions: 70 hours at 212°F plus 24 hours at room temperature.

Table J-5. Tensile Work (0-20% elongation) Data on RD Rubber Materials With Differing Cure Schedules

All rings prepared from RD Rubber Batch No. 15107.

3 min. 12 sec. = 45% cure.

4 min. 18 sec. = 70% cure.

10 min. = 95% cure

Ring Size	Cure Time	IN-LE	S/SQ.IN.	PERCENT	PERCENT UNAGED	PERCENT CHANGE	
		UNAGED		UTIANGE	<u>om de p</u>		
0.301 x 0.054	3 min. 12 sec.	4.71 ± 0.25	5.20 ± 0.40	10	997 ± 53	1100 ± 85	10
	4 min. 18 sec.	4.49 ± 0.25	4.48 ± 0.51	0	949 ± 54	948 ± 107	0
	10 min.	5.02 ± 0.60	5.09 ± 0.47	1	1061 ± 128	1076 ± 99	1
1.114 x 0.070	3 min. 12 sec.	15.6 ± 1.2	17.0 ± 1.3	9	893 ± 70	970 ± 74	9
	4 min. 18 sec.	15.8 ± 1.5	18.2 ± 1.8	15	900 ± 83	1040 \pm 103	16
	10 min.	15.8 ± 0.9	17.9 ± 0.6	13	900 ± 53	1023 ± 37	14
i i							
7.185 x 0.103	3 min. 12 sec.	217 ± 9	244 ± 15	12	1260 ± 48	1411 ± 100	12
	4 min. 18 sec.	234 ± 12	203 ± 6	-13	1366 ± 77	1192 ± 40	-13
	10 min.	210 ± 11	226 ± 11	8	1310 ± 80	1375 ± 85	5
11.196 x 0.103	3 min. 12 sec.	284 ± 3	364 ± 13	28	1073 ± 11	1365 ± 50	27
	4 min. 18 sec.	278 ± 4	348 ± 8	25	1050 ± 18	1310 ± 35	2 5
	10 min.	308 ± 17	355 ± 16	15	1194 ± 76	1352 ± 60	13
Test Slabs	3 min. 12 sec.	16.9 ± 0.6	17.8 ± 0.7	5	1690 ± 63	1784 ± 71	6
	4 mìn. 18 sec.	15.3 ± 2.4	20.9 ± 6.1	37	1534 ± 243	2090 ± 612	36
	10 min.	18.2 ± 2.2	18.5 ± 1.6	2	1815 ± 222	1846 ± 156	2

Aging conditions: 70 hours at 212°F plus 24 hours at room temperature.

Plot J-7. Modulus vs. Percent Elongation Range

÷

Appendix K: DSC Scans on Rubber Materials

Contents:

٩

Figure K-1. DSC Scans on O-Rings and Slabs from Different Vendors

Figure K-2. DSC Scans on Stockpile Aged W76 and W87 Butyl Rubber O-Rings

Figure K-1. DSC Scans of Butyl Rubber Materials from Different Vendors (endotherms are positive, exotherms are negative)

150

Appendix L: Drawings for Tensile Test Fixtures

ş

Contents:

- 1) Angle Mount Drawing
- 2) 0.038 inch cross section Mount Insert Drawing
- 3) 0.054 inch cross section Mount Insert Drawing
- 4) 0.070 inch cross section Mount Insert Drawing
- 5) 0.103 inch cross section Mount Insert Drawing
- 6) 0.139 inch cross section Mount Insert Drawing

All aluminum except No. 2.

UNLIMITED RELEASE

INITIAL DISTRIBUTION: Allied Signal, Inc. Federal Manufacturing & Technologies Division (FM&T) Attn: Ed Kibalo **Tommy Snider** Julie A. Stuckey, Dept. ME1-8, MS 2B37 Mark H. Wilson, Dept. MB4-2C43, MS 2C43 P. O. Box 419159 Kansas City, MO 64141-6159 MS0333 D. B. Adolf, 1841 MS0333 J. Curro, 1870 D. Salzbrenner, 1805 MS0342 MS0443 R. S. Chambers, 9117 D. J. Segalman, 9234 MS0439 J. A. Sayre, 1403 MS0961 R. Clough, 1811 MS1407 MS1407 K. T. Gillen, 1811 T. O. Hunter, 8000 MS9001 MS9002 Attn: P. N. Smith, 8200 MS9003 D. L. Crawford, 8900 MS9004 M. E. John, 8100 MS9005 J. B. Wright, 2200 E. E. Ives, 5200 MS9006 R. C. Wayne, 8400 MS9007 W. J. McLean, 8300 MS9054 MS9141 P. E. Brewer, 8800 MS9405 T. M. Dyer, 8700 MS9420 L. A. West, 8200 MS9013 D. Bozman, 2266 R. Clark, 2266 MS9013 MS9013 W. Delameter, 2266 MS9013 R. G. Miller, 2266 MS9013 R. Sauls, 2266 D. Walker, 2266 MS9013 MS9014 R. B. Anderson, 2271 MS9042 W. A. Kawahara, 8746

MS9141 K. Lee, 8746 MS9141 D. Mosher, 8746 L. I. Weingarten, 8742 MS9042 MS9141 J. Korellis, 8746 J. Totten, 8970 MS9141 MS9402 M. W. Perra, 8711 MS9403 S. H. Goods, 8712 D. E. Meeker, 8713 MS9403 B. E. Mills, 8713 MS9403 MS9403 B. C. Odegard, 8712 J. E. Smugeresky, 8712 MS9403 MS9403 J. C. F. Wang, 8713

MS9403 J. L. Yio, 8713

MS9405	L. A. Domeier, 8230 (10)
MS9405	C. C. Henderson, 8230
MS9405	J. M. Hruby, 8230
MS9405	P. N. Keifer, 8230
MS9405	D.M. Skala, 8230
MS9405	K. Wagter, 8230
MS9420	L. A. West, 8200
MS9040	Attn: B. E. Affeldt, 8210
MS9405	R. E. Stoltz, 8202
MS9409	R. H. Stulen, 8250
MS9420	R. H. Rogers, 8220
MS9430	A. J. West, 8240
MS9430	L. N. Tallerico, 8204
MS9021	Technical Communications Department, 8815, for OSTI (10)
MS9021	Technical Communications Department, 8815/Technical Library, MS0899, 4414
MS0899	Technical Library, 4414 (4)
MS9018	Central Technical Files, 8940-2 (3)